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Abstract

We study (batch arrival) MX/G/1 queues with/without vacations under random order
of service (ROS) discipline. By considering the conditional waiting times given the states
of the system when an arbitrary message arrives, we derive the Laplace-Stieltjes trans-
forms of the waiting time distributions and explicitly obtain their first two moments. The
relationship for the second moments under ROS and first-come first-served disciplines is
shown to be precisely the same as that found by Takacs and Fuhrmann for (single arrival)
M/G/1 queues.
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1 Introduction

We consider (batch Poisson arrival) MX/G/1 queues with/without vacations under random order of
service (ROS) discipline. Messages arrive in batches at the buffer of infinite capacity and are served
for generally distributed service times. A single server works continuously until the system becomes
empty. When the server finds the system empty, he waits for the first batch to arrive at the system
— a non-vacation model, or he takes a vacation — vacation models. We assume that the lengths of
vacations are independent and identically distributed.

The M*/G/1 queues under first-come first-served (FCFS) discipline have been studied so far in
the literature. For example, Burke [2], Cooper (sec. 5.10 in [4]) and Kleinrock (prob. 5.11 and 5.12
in [9]) studied those without vacations, so did Baba [1] with vacations.

Under the ROS discipline, the next message for service is selected at random among messages
waiting in the queue. Kingman [8], Takdcs [12], Conolly [3], and Takagi and Kudoh [14] studied
(single arrival) M/G/1 queues without vacations. Scholl and Kleinrock [11] studied an M/G/1 queue
with multiple vacations. The results in this paper for MX/G/1 queues with and without vacations
under ROS discipline are new, and include all the above as special cases.

As for vacation, we consider two cases (Doshi [5]). If the server returns from a vacation to find
no messages waiting, in the multiple vacation case, he begins another vacation immediately; in the
single vacation case, he waits for the first batch to arrive while keeping the system idle.

In this paper we study the following three models:

NV MX/G/1 without vacations,
MV MZX/G/1 with multiple vacations,
SV MZX/G/1 with single vacations.

Our objective is the derivation of the first two moments of the waiting time distribution for the
above three cases. First, in Section 2 we derive the queue size distribution ef messages in each model
at the beginning of service to a message. Next, we derive the waiting time moments for the NV
model in Section 3, for the MV model in Section 4, and for the SV model in Section 5. We then
make some comparisons with FCFS systems through numerical examples in Section 6.

We assume the existence of the steady state in the system. We use the following notation:
A arrival rate of batches,

B(t) distribution function (DF) for service time of a message,
B*(s) Laplace-Stieltjes transform (LST) of B(t),

b mean service time,
b(®) ith moment of service time,
|4 vacation time,

V() DFforV,



V*(s) LST of V(t),
In probability that the batch size (number of messages in a batch) is n,

G(z) generating function (GF) for g,,
GM(z) first derivative of G(z),

g mean batch size,

g® 1th factorial moment of the batch size,
P traffic intensity (p = Agb),

E[] expected value of a random variable,

W*(s) LST of the DF for the waiting time of an arbitrary message.

2 Queue Size at a Service Start Point

In this section, we derive the probability generating function (PGF) for the number of messages
waiting for service in the queue at the beginning of service to a message in the steady state, denoted
by ®(z). We can apply an identical approach to all the above models. Note that the queue size
distribution is invariant as long as the service discipline is impartial (sec. 3.4 in Kleinrock [9]).
First, we derive the PGF II(z) for the queue size at the departure point of an arbitrary message
in the steady state, by using the method of the embedded Markov chain. By adopting each departure

point as a Markov point, we have the following equations for each model.

- 06 ron ERCE B2, "
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+{11(z) - mo A2, (10

z

where 7y denotes the probability that there are no messages in the system at the departure point.

Solving (1) and determining my by normalization condition II(1) = 1, we have

o 1 [l = G(z)]B*[X - AG(2)]
_1-p [1-G(z - AG(z
U == = Hp—em -z (22)
MV . .
e = 122 L=V - AGEER - AG() -

MgE[V]’ B*[A - \G(2)] - z ’



SV _ 1-p 1=V*A=AG(2)] +[1 - G(2)]V*(N)
g(V*(A\) + AE[V]) B*[A = AG(2)] — =

From (2) and by noting that the PGF of the number of messages arriving in a service time is given

by B*[X — AG(z)], we can obtain ®(z) as follows.

I1(2)

- B*[A — AG(2)]. (2¢)

NV
q)()_l—p- 1-G(2) 3

T B DGR -2 (32)
MV B(z) = 1-p 1=-V*[A=AG(2)] 3b
Y= NEV] BP-2C@)] -2 (30)

SV
8(z) = 1-p 1=V A= AG(E)] +[1 - GEIV (Y 39
“0= VOV + AE[V]) B*[A— \G(2)] — 2 ' ¢

3 Waiting Time for the NV Model

The waiting time W of an arbitrary message is defined as the time interval from its arrival to the
service start. Consider an arbitrary message, denoted by M, in a system without server vacations.
First, we derive the conditional waiting time distribution of M when it arrives during an idle period
in Section 3.1, and that during a busy period in Section 3.2. Because Poisson arrivals see time
averages (PASTA), (see sec. 11.2 in Heyman and Sobel [7]), we have

E[W?] = (1 — p)E[W'|idle] + pE[W'|busy] i=1,2,---. (4)

3.1 Conditional waiting time — idle case

If M arrives during an idle period, it has a chance to be selected for service immediately (called
eligible in the following). Suppose that M arrives with k other messages in a batch to find the server

idle. Denoting by II! the number of messages, other than M, included in the batch, we have

k + 1)gk+1 (k +1)gk+1
7k = Prob{II' = k} = ( e ;
k { } Y200 + 1)gjt1 g
which yields
¢))
I'(z) = E[z"] = ¢ g(z), (5a)
)
By = S, (5b)
o

E[(IT")?) - E[T'] 7 (5¢)

Next, let W (s) be the LST of the DF for the waiting time of M from the epoch that M gets

eligible for service, on the condition that there are k messages excluding M in the system at the
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Figure 1: The conditional waiting time when M is not selected with prob. k/(k + 1).

epoch. If M is selected for next service immediately with probability 1/(k+ 1), then the waiting time
is 0. Otherwise M is delayed with probability k/(k + 1) until a later chance, which occurs after a
service time (Figure 1). Denoting by j the number of messages which arrive during the service time,
thus there being k + j — 1 messages excluding M in the system when the service ends, we have the

following recurrence formula

%* 1 k = * *
Wi (s) = P mgBJ’(S)Wqu(S), k=0,1,2,--, (6)

where B3(s) (j = 0,1,...) denotes the joint LST of the DF for a message service time and the

probability that j messages arrive during that service time, and satisfies
m .
Z Bj(s)z’ = B*[s + A — AG(2)]. )
§=0

Equation (6) extends Kingman’s result [8] which gives the formula for the M/G/1 queue. By following

Také4cs [12], we obtain the first two moments as follows (see Appendix A).

B = 5 (82)
o 2k(k—1)0% | K[(6 — p)b@ +22g@p?]
W= p6-2 '~ @-mre-20 (80)
From (5), (6) and (8), we obtain
Ele=*W|idle] = i T Wi (s), (9a)
k=0
(@)

E[W]idle] = (29_ ;’)g, (9b)

2idle] — 2952 g2[(6 — p)b® + 22g@b7)
BT = G-209 T 2= pPG-20)s (8c)
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Figure 2: The conditional waiting time when M arrives during a busy period.

3.2 Conditional waiting time — busy case

If the server is busy at the arrival time of M, it is only after the completion of current service that
M gets eligible for service. Let z be the length of the service which is going on when M arrives.
First, we derive the waiting time conditioned on z. The waiting time of M consists of the remaining
time of z with the LST W}(s|z) and the time thereafter until the the start of a service to M with
the LST Wj(s|z) (Figure 2). Note that the two conditional waiting times are independent of each
other.

3.2.1 Derivation of W}(s|z)

Since an arrival point is uniformly distributed over [0, z], we immediately have

% dy 1—e %%
* = Sy =
Walslo) = [ e = =2

3.2.2 Derivation of Wj(s|z)

When the current service ends, M gets the first chance to be selected for service. Let m2(z) be
the probability that there are k messages excluding M in the system when the service z ends, and
I1B(z; x) be its PGF. IIB(z; z) is given as the product of the following three independent terms. The
first is (3a), the PGF for the number of messages in the system when the service starts. The second

e~ 21-G@)z which represents the PGF for the number of messages that arrive during the service,
excluding those in the batch M belongs to. The third is G()(z)/g which represents the PGF for the
number of messages arriving with M in a batch and excluding M. Hence we have

00 _ — G(2)]e~N1-G(2)]z (1)
2z 2) = 3, mi(¢)2" = : g - [lB*[C;(—)LG(z)] —z z g(z)' (1)

By using (11), we obtain

[ee]

Ws(slz) = Z TP (z) Wi (s). (12)



3.2.3 Unconditioning on z

The LST of the conditional waiting time distribution is given by
Ele™*" |busy, 7] = W(s|z) - Wj(s|z). (13)

We now uncondition this equation with respect to z. The probability that a message arrives during a
service of length z is proportional to z as well as to the relative frequency of such length, thus given
by zdB(z)/b (sec. 5.2 in Kleinrock [9]). Substituting (10) and (12) into (13) and then unconditioning,

we obtain

© zdB(z) 1 — 7% &

—sW _ B *
O R A L (14
From (8) and (14), its first two moments are given by
(3 —20)g®b b®
E[W |busy] = , 15a
Wbesy = st =)@ —p)g T 20— (152)
25(3) Ag[b@)2 2(4 — 3p)g® b2
E[W?busy] = 15b
Wibwl = si—p@—mb T U=pPC—-mb  3A-pC-nB-20g
(18 — 26p + 11p% — p*)g @D (4 — p— 4p® + 20%)[g@ )2
1-p22-0%B-209  (1-p)2(2-p)@—2p)9*
3.3 Unconditional waiting time
By substituting (9) and (15) into (4), we get the first two moments of the waiting time
Agb® g@b
EW| = + , 16a
Wl = sa—p " 2u -0y (162)
(3) (2)72 (3) 32
EW? 2)gb [)\gl; ] 29%b
31-p)2-p) (Q-p2%2-p) 3(1-p)(2-p)g
1 2)p2) 4 A[g(272p3
(1+p)g + Mg (16b)

(1-p)2(2-p)g
4 Waiting Time for the MV Model

In the MV model, if the server returns from a vacation to find no messages waiting, he begins another
vacation immediately. A regenerative point (sec. 6.4 in Heyman and Sobel [7]) of this system is the
epoch at which the system becomes empty and a vacation begins. The time interval between two such
successive regenerative points is called a regeneration cycle (sec. 2.2 in Takagi [13]), whose length is
denoted by V.. The LST V}(s) of the DF and the mean for V, are given by

Vis) = V*[s+A—20}(s)], (17a)
E[V] = IE[TV;]), (17b)



where ©}(s) is the LST of the DF for the length © of a busy period initiated with the service times
of the messages included in a batch, and satisfies the equation

@;(s) =G[B*[s+ X - A@;(s)]] (18)

which gives
Elo,] = 2% 19
91— 1 — P ( )

A vacation always appears once in a regeneration cycle, thus
. E[V]

Prob[vacation| = =1-p, 20

which gives
Prob[busy| = p. (21)

Hence we have

E[W'] = (1 — p)E[W'|vacation] + pE[W'|busy] i=1,2,---. (22)

4.1 Conditional waiting time — vacation case

We can derive the conditional waiting time similarly to Section 3.2. Letting z be the length of a

vacation which is effective when M arrives, we have

© zdV(z) 1 —e %% & N
E[V] ST kzz;] 7rIY(Q")VVI&: (3), (23)

Ele=*" |vacation] =
0

where 7 (z) denotes the probability that there are k messages excluding M in the system when a
vacation of length z ends. Those messages consist of the following two types of messages. The first
is the group of messages that arrive during the vacation, excluding those in the batch M belongs to.

The second is the group of messages arriving in the same batch as M, excluding M. Thus we have

e )
Z WX(.’L‘)Z‘C — e——)\[l-G(z)]a: . G (z) ) (24)
k=0 9

The first two moments of (23) are given by

@b L2+ p)E[V?]

E[W |vacation] = s2=p T e E (25a)
2 vacation] — 29 gD[(6 — p)b®@ + 229D
Bl Ivacation) = G G2 T 2= PG -20)9
[(6 — P)2g®6® + (6 + 50— 20°)g@PBIB[V?] 28+ p+p*)E[VY] (25b)
(2 - p)2(3 —20)9E[V] 3(2 - p)3—20)E[V]’



4.2 Conditional waiting time — busy case

By an argument similar to that in Section 3.2, we get the conditional waiting time if the server is

busy when M arrives:

s _ [®zdB(z)1—e%* & .
Bl busy) = [~ FE =2 3 mRE@Wis) (26)

where 78(z) for the MV model is given by

S nB (@)t = L)L VA= AG(]Je OO G(z)
T T BB A = AG(2)] - 2] g

The first two moments of (26) are given by

(3 —20)g™®b b PEV?]

E[W |busy] = 21-p)(2-p)g 2(1-p)b 2(2-pE[V]

(28a)

29%)p? g9[(6 — p)b® + 22gPb%]
(2-p)3 —2p)g (2-p)2%B-2p)g
L [(6=0)2g*® + (6 + 50 — 26%)g@bP® | 2(3 + p + o6
(2—-p)%(3 —2p)gb 3(2—p)(3—2p)b
A2¢2p( g MEVN [ 6@ (6 —p)b@ +22g@p?
(2(1 -p)  2(1-p) 2E[V] ) (2—p (2 - p)%(3 —2p) )

262 (A292E[V3] Mg E[V2] L@- P)AgPE[V?]  A3g3b3)
2-p)(3—-2p) \ 3E[V] 2(1 - p)E[V] 2(1 - p)E[V] 3(1-p)
(Mg%®)2  X(g@)% g® (3 — p)A2gg@p®

21—p)? | 29(1-pZ " 3g(1—p) 2(1 - p)? )
2% 2(g?)2p? 2pgPbE[V?)
9(1-p)2-0p)8—-2p) ¢ (1—-p)2-p)3—2p) g(2-p)3—2p)E[V]
20b(2) ()\2g2b(b) g N /\gE[V2])
2-p)B-20)\ 1=p g(1-p) E[V]

E[W?|busy] =

1

+

+

(28b)

4.3 Unconditional waiting time
Substituting (25) and (28) into (22), we get the first two moments of the waiting time

Agb N g@b E[V?]

W] 2(1-p)  2(1-p)g 2E[V]

(29a)

22gb(®) [Agb@1]? 24(3)p?
31-p)2-p) (1-p22-p) 3(1-p)2-p)g
(1+p)g@b@ + A[g@]263  [gPb + Ag2bPE[V?] 2E[V?]
(1-p)22-p)g 9(1 —p)(2-p)E[V] " 3(2-p)E[V]

EW?

(29b)



5 Waiting Time for SV Model

In the SV model, if the server returns from a vacation to find no messages waiting, the system
becomes idle. A regenerative point of this system is the epoch at which the system becomes empty
and a vacation begins as in the MV model. The generation cycle is again the time interval between
two such successive regenerative points. The LST of the DF and the mean for the length V, of a

regeneration cycle is given by

Ve(s) = Vs+A)I*(s)0g(s) + V*[s + A = A0g(s)] — V*(s + N), (3da)
E[V] = 4 (;\()ltkj[V], (30Db)

where ©j(s) satisfies (18), and I*(s) is the LST of the length I of an idle period, given by

A 1

Since a vacation appears exactly once in a regeneration cycle, we have

E[V] _ (1-p)AE[V]
BV~ V') + ABV]’

Prob[vacation] = (31a)

The system enters an idle period of mean length 1/ if no messages arrive during a vacation. Thus

we have v O0/A (1= AV
. _ * _ —_ p *
Problidle] = BV - V) £ BV’ (31b)
which gives
Prob[busy] = 1 — Prob|vacation] — Probl[idle] = p. (31c)

From (31), we have

(1 — p)AE[V]

W] = (1-p)V*(N) E[W'|idle] + V() + AE[V]

E 1 : i ) — e
V*(A) + AE[V] [W*|vacation] + pE[W*|busy] i=1,2,

(32)

The conditional waiting time distributions when M arrives to find the server idle or on vacation

for the SV model equal those in Section 3.1 and Section 4.1. Thus it remains us to derive the
conditional waiting time distribution when M arrives during a busy period. By the same argument

as in Section 3.2, we have

© zdB(z) 1 — e %% X

—sW _ B *
Ble™ busy) = [~ T2 3 mREWS), (3)
where 72 (z) for the SV model is given by
x 1-p 1=V*A=AG(R)]+[1 -GV GW(2)
B(,\k — ) . e~ A1-G(2)]z
kzz‘;)”k (@)2" = S0 % 2BV BN = \G(2)] — 2 PR - (34)
The first two moments of (33) are given by
—20)g@p b2 E[V2

E[W [busy] = 8 = 20)g PAE[V7] (352)

=2 —pg  20=pb ' 2@=p)(V*(N) + AE[V])’
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2¢(3)p2 g [(6 — p)b® + 22gD)p3]

E[W?|busy] = (

2-p)(3-20)g (2-0)%(3 - 20)9
L [(6=p)Ag?®) + (6 + 5p — 20%)g b6 23+ p + p")bY
(2—p)%(3 —2p)gd 3(2-p)(3—2p)b
(6 — p)b@ + 2)g(Dp3 (A292b(2) N g@ A2gE[V?) )
2-p2B-20) \2(1-p) 29(1-p) 2(V*(N)+AE[V])
N 2b2 ( A3g2E[V3] Mg E[V?) (4 - 3p)N2gD E[V?
2-p)(8=2p) \3(V*(A) + AE[V]) ~ 2(1 = p)(V*(A) + AE[V])  2(1 — p)(V*()) + AE[V])

Agb® (X222 2-p)Ag®P)% | ¢® (5— 3p)/\2gg(2)b(2))
-t 2002 T 29(-p? T 31-p) T 2(1-pp (35)
(3 +20)g®p® (3 +20)\2g%(b%)> (3 +20)\2gb@ E[V?)
290 - 2-PB-20)  2L-P2-pB-2) T 22- B -20)(V* () + \EV])
Substituting (9), (25) and (35) into (32), we obtain
Agb® gDb AE[V?]
Wl = s0=p Y s =p T A7) 2B (362)
9 22gb(3) [Agb(2)]2 2g(3)p?
BV = sa-pe=n T T-pte-p T 30- 9=
(1 + p)g@b® + A[g?]%3
(1-p)2(2-p)g
N [9@b + Ag2bD|AE[V?] 2AE[V?] (36D)

9(1=p)(2 = p)(V*(A) + AE[V]) ~ 3(2 - p)(V*(N) + AE[V])’
6 Remarks and Numerical Examples

In this section we make a few remarks on the results in Sections 3 through 5. We also present
numerical examples in Figures 3 and 4, which show the mean and the coefficient of variation of the
waiting time for each model under ROS and FCFS disciplines as a function of p, where we assume
that service times follow 3-stage Erlang distribution with mean 0.5, vacation times follow 2-stage

Erlang distribution with mean 1.0, and batch sizes follow a geometric distribution with mean 2.

6.1 Comparison between ROS and FCFS

For each model, the mean waiting time under ROS equals that under FCFS; this is obvious from
Little’s formula (Little [10]) and the fact that the queue size distribution is invariant. We can also
confirm the following relationship on the second moment between the ROS and FCFS systems for

each model,

2
E[W?|gos = rpE[W2]FCFS > E[W?]rcrs. (37)

This agrees with the result for single arrival models, which was derived originally by Takécs [12] and
interpreted by Fuhrmann [6] for single arrival M/G/1 queues. We note that Fuhrmann’s technique
does not apply to batch arrival models. Therefore, the relationship in (37) is first established for

batch arrival models in this paper.

11



6.2 Comparison of systems without vacations and with vacations

From (16), (29) and (36), we see that each moment in the vacation models consists of the correspond-
ing moment in the NV model plus additional terms for each vacation model. Figures 3 and 4 show
that as p approaches 1, the mean and the coefficient of variation of the waiting time distribution for
the vacation models approach those of the NV model. This is because the probability that M arrives
to find the server on a vacation gets smaller.

On the other hand, as p approaches 0, the mean and the coefficient of variation of the waiting
time distribution for the SV model approach those of the NV model, because the probability that

the server is idle becomes equally large for both models.

6.3 Limiting values of the coefficient of variation

As p gets close to 1, the coefficient of variation of the waiting time distributions under ROS becomes
/3, while that under FCFS becomes 1. As p approaches 0, the coefficients of variation of the waiting
time distributions for the NV and SV models converge to

/6996 + 49g®p2 — 3(g()2p2
V3¢ ’

and that for the MV model to

fors®80 4.4 (gg + ) 5 (e + (7))
V3 (9 + 25y |

3 2
Note that the two expressions agree when %“/, — 0 and %‘(, — 0.

12
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Figure 3: The mean waiting time.
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c.v. of the waiting time
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Figure 4: The coefficient of variation of the waiting time.
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Appendix A Derivation of E[W;] and E[W?] in (8)
Taking the first derivative of (6) at s = 0, we get

k Eoe
E[Wy] = k—+1b+ k_-i-le:;)Bj (0)EWk4j-1]. (38)

On the other hand, from (7) we have

o
- * - i * _ _

Z}JB,-(O) = B\ -AG(2)] =P (39a)
ad d?
Y i -1B0) = 5BR-2GR) =g + 9@, (39b)
J=2 z=1

3 iBP() = 9B —ac()| = rgh®, (39¢)

j=1 ’ dz z=1

where
d
B (s) = —-Bj(s).

If we assume the form E[Wj] = ak where a is a constant, by substituting into (38) we get

ak=k—§_—I (b+j§3;(o)(k +j—1)a). (40)

Substituting (39) into (40) and manipulating, we obtain (8a). Similarly we can derive E[W?] by
taking the second derivative of (6) at s =0,

EW?] = J’i - (b(2>—223(1 VEWi4j— 1]+ZB*(0 EWZ,;_ 1]) (41)
Jj=0 j=0

If we assume the form E[W2] = Bk(k — 1) + vk where (3 and « are constants, from (41) we get

Bk(k —1) ++k = b(2>_2231) (k+j—1)b

k+1( 2—p
+ZB* k+3—1)(k+3—2)ﬁ+(k+1—17]) (42)
Substituting (39) into (42) and manipulating, we obtain

2 - 2—-p
+(A2g% + /\g(2) b)B + py. (43)

Since (43) is an identity with respect to k, solving for 8 and 7 yields (8b).
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