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Abstract

The IEEE 1394 is a standard for the high performance serial bus interface. This standard
has the isochronous transfer mode that is suitable for real-time applications and the
asynchronous transfer mode for delay-insensitive applications. It can be used to construct
a small-size local area network. We have modeled this standard by a simple queueing
model under some assumptions and calculated the average waiting time of a packet in the
buffer in the steady state. We also give some numerical results in order to estimate the
performance of this serial bus roughly.

1 Introduction

The IEEE 1394 is a high performance serial bus interface as a specification of the bus
by which computers and I/O equipments are interconnected together [1] [2] [3]. It was
standardized by IEEE in 1995 on the basis of the specification of the bus called Fire Wire
that had been developed by Apple, Inc.

The IEEE 1394 can be used not only as a bridge bus but also as an interconnection
among personal computers, peripheral devices, video decks, digital video cameras, and
so on. This ability enables us to construct a small-size local area network environment
such as Small Office Home Office (SOHO). For example, the IEEE 1394 is considered
to construct a home network in [4]. When it was standardized in 1995, the maximum
transmission speed of the bus was 400Mbps. Then IEEE planned to specify a version of
higher speed called P1394b by the summer of 1999. It will enhance the current IEEE
1394 to be used to construct a large-size local area network in the office and other sites.

The IEEE 1394 has several characteristics that are different from any other LANs
such as the Ethernet, the token-ring, etc. We put special emphasis on the following two
characteristics related to the performance of this bus.

One is that the IEEE 1394 uses an arbitration method for the multiple access control.
This method is of centralized type and there exists a special node that controls the access
to the bus in the network.

The other is that the IEEE 1394 has two kinds of data transfer modes called isochronous
transfer mode (ITM) and asynchronous transfer mode (ATM). In the I'TM, the IEEE 1394
guarantees almost exactly periodic data transmissions. Therefore, the ITM is suitable for
real-time applications. In the ATM, a node attached to the bus can send only one packet



at a time when the bus is free. Besides, the node that wants to transmit a packet in
the ATM must defer to other nodes transmitting packets in the ITM. It means that the
transmission of a packet in the ITM has a higher priority than that in the ATM. In the
IEEE 1394, time is divided into fixed-size frames called cycles. The duration of a cycle is
125 pseconds. At most 80% of this time is available to transmit packets in the ITM. The
rest of this time is available for the packets in the ATM. During this time, the node that
wants to transmit a packet in the ITM must defer to the nodes transmitting packets in
the ATM. The capacity of transmitting packets in the ITM per cycle is independent of
the traffic load in the ATM, while the that of transmitting packets in the ATM per cycle
depends on the traffic load in the ITM. Because of this asymmetry, the performance of
the bus in the ATM is affected by the behavior of the traffic in the ITM.

The purpose of this paper is to study the performance of the bus in terms of the average
waiting time of an arbitrary packet in the buffer in the steady state. We first consider the
number of isochronous packets in the buffer, then that of asynchronous packets. Given
some assumptions, we derive the probability generating function for the number of the
asynchronous packets in the buffer by a Markov chain under certain overhead of the
isochronous traffic. We finally calculate the average waiting time of an asynchronous
packet in the buffer as a performance index of the bus.

2 Multiple Access Control and Data Transfer Modes

In this section, we describe the multiple access control and the data transfer modes in the

IEEE 1394. See Figure 1.
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Figure 1: The organization of a cycle in the IEEE 1394 [1].

Since the IEEE 1394 is a bus specification, more than one node cannot transmit
data simultaneously. Therefore, the IEEE 1394 needs some multiple access control as
the Ethernet does. It uses an access method called arbitration. There are two types of
arbitration, namely, isochronous arbitration and asynchronous arbitration.

2.1 Isochronous Transfer Mode
The transmission of a packet in the I'TM is divided into three phases:

1. Isochronous arbitration (arb phase)



2. Data transfer (data phase)
3. Isochronous gap (gap phase)
According to [5, p.117], the isochronous arbitration is done as follows.

a. All nodes attached to the bus set their clock by a cycle start (CS) packet sent by
the root. The root is a node that controls and manages access to the bus. The root
sends a CS packet every 125 pseconds. The interval between consecutive CS packets
is a cycle. An overall network cycle synchronization must be maintained.

b. A node that wishes to transmit a packet sends the root a request for the transmis-
sion after it detects an isochronous gap (IG). The IG is a state in which no signal
propagates on the bus during for a short time.

c. The root assigns a certain channel to the node that has first sent a request, and
this node transmits a packet. After that, this node is prohibited from transmitting
until the next cycle. Since at most 100 useconds are available to transmit packets
in the ITM within a cycle, the transmission request is refused when the time taken
for transmitting packets in the I'TM exceeds 100 pseconds.

d. Steps 1, 2 and 3 are repeated. In the case of the ITM, no ACK is returned. The
node assigned a channel by the root can transmit one packet per cycle unless it
sends the root a signal to release the channel.

2.2 Asynchronous Transfer Mode
The transmission of a packet in the ATM is divided into four phases:
1. Asynchronous arbitration (arb phase)
2. Data transfer (data phase)
3. Acknowledgment (ack phase)
4. Subaction gap or arbitration reset gap (gap phase)

According to [5, p.116], the process of the asynchronous arbitration is as follows.

a. A node that wishes to transmit a packet sends a request for transmission to the
root after it detects a subaction gap (SG) or an arbitration reset gap (ARG). The
SG is a state in which no signal propagates on the bus for a short time. The ARG
is a state in which no signal propagates on the bus for a period that is much longer

than an IG.

b. The root allows the node that has first sent a request to transmit a packet. Then,
this node transmits only one packet. After that, it is prohibited from transmitting
until it detects an ARG.

c. The node that receives a packet returns an ACK. Then the bus gets in the state in
which no signal propagates.



d. Steps 1, 2 and 3 are repeated until all nodes complete transmitting their packets.
After that, an ARG occurs, and every node can again send the root a request for
the transmission.

The mechanism by which the transmission of a packet in the ITM has priority over
that in the ATM works as follows. Assume that there are two nodes. One of them wishes
to transmit a packet in the ITM, and the other wishes to transmit a packet in the ATM.
At the beginning of a cycle, the root sends a CS packet. After that, the bus enters a state
in which no signal propagates on the bus. After some time, both nodes identify this state
as an IG since it is shorter than the SG and the ARG. Thus the node that has a packet
in the ITM transmits first.

3 Analytical Model

A discrete-time queueing system is considered as a model of the IEEE 1394. First, some
assumptions are made in order to make the analysis tractable. Then we construct a
Markov chain for the number of packets in the buffer.

3.1 Modeling Assumptions

Our modeling assumptions are as follows.

e Discrete time: Time is divided into fixed-length intervals, called slots, such that
the transmitter can transmit exactly one packet during a slot both in the ITM and
in the ATM. It implies that the arbitration, data transfer, and the IG occur in one
slot in the ITM and that the arbitration, data transfer and the SG or ARG occur
in one slot in the ATM.

e Maximum number of packets transmitted in a cycle: The maximum number
of isochronous packets transmitted within a cycle is M, and that of both isochronous
and asynchronous packets is N. This means that a cycle is divided into N slots, and
that it may take up to M slots to transmit isochronous packets and up to [N — M1t
slots to transmit asynchronous packets in the cycle.

e Multiple Access Control: The arbitration method explained in Section 2 is not
taken into consideration in our model.

¢ Simple Queueing Model: There is an infinite-capacity FIFO queue for each
transfer mode. All isochronous packets generated in the nodes flow into its queue,
so do all asynchronous packets.

e Arrival Streams: The arrival streams of isochronous and asynchronous packets
from all nodes are considered to be Poisson with rates A4 and Aj, respectively.

e Packet Transmission: No packet arriving in a cycle is transmitted in the same
cycle. It is transmitted only after the next cycle. Thus the packets transmitted
in nth cycle are those that arrived at the queue before the nth cycle. In the real
system, however, a packet arriving in a cycle can be transmitted immediately if the
bus is free.



3.2 Markov Chain Model

A discrete-time Markov chain is used as a means of modeling isochronous and asyn-
chronous traffic. The average waiting times of isochronous and asynchronous packets in
the steady state are obtained using this model in Section 4.

Let X, be the number of isochronous packets in the queue at the beginning of the nth
cycle, and let Y, be the number of asynchronous packets in the queue at the beginning of
the nth cycle. Let Ar(/slot) be the arrival rate of isochronous packets, that is, A; is the
average number of packets that arrive in a slot. Similarly, let A 4(/slot) be the arrival rate
of asynchronous packets, that is, A4 is the average number of packets that arrive in a slot.
Some additional random variables are introduced. Let X’ be the number of isochronous
packets in the queue at the beginning of the h + 1 th slot in the nth cycle. Let Y* be the
number of asynchronous packets in the queue at the beginning of the A + 1 th slot in the
n th cycle. Finally, let Po()A) be a random variable whose distribution is Poisson with
rate A.

The relationships between these random variables are given as follows.

Xnp1 = Po(NMp) +[X, — M]* (1a)

Y1 = Po(NX4)+[Y, = (N —min(M, X))t (1b)
Xt = Po(hAr)+ X, — min(h, M)]* h=1,...,N—-1 (1c)
vh o {Po(h)\A)+[Yn—(h—min(h,Xn))]+ h=1,...,M (14)
n Po(hda) + [Yy — (h —min(M, X, )]* h=M+1,...,N—1

In (la), X,41 consists of two parts. One is the number of isochronous packets arriving
during the nth cycle, which is Po(NA;). The other is the number of isochronous packets
remaining in the queue after the I'TM transmission phase in the nth cycle, which is
[X, — M]*. In (1b), Yoy, also consists of two parts. One is the number of asynchronous
packets arriving during the nth cycle, which is Po(N)A4). The other is the number of
asynchronous packets remaining in the queue after the ATM transmission phase in the
nth cycle, which is [V, — (N — min(X,,, M))]*. In (1c), X* consists of two parts. One is
the number of isochronous packets arriving during h slots, which is Po(hAr). The other
is the number of isochronous packets remaining in the queue at the end of the Ath slot
in the nth cycle, which is [X, — min(h, M)]*. In (1d), ¥* also consists of two parts.
One is the number of asynchronous packets arriving during h slots, which is Po(h,).
The other is the number of asynchronous packets remaining in the queue at the end
of the hth slot in the nth cycle, which is [V, — (h — min(h, X,))]* if h = 1,..., M, or
[Y, — (h — min(M, X,)))]T if h= M +1,..., N — 1. For simplicity, if we define

Xpn = [X, —min(h, M)]* h=1,...,N -1 (2a)
v o [V, — (h —min(h, X,))]" h=1,...,M (2b)
mh [V, — (h— min(M,X,))]" h=M+1,...,N
we can write (la)-(1d) as
Xn+1 = PO(N/\[) + Xn,N (3&)
Yn-l-l = PO(N)\A) + Yn,N (3b)
Xi, = Po(hAr)+ Xntip h=1,...,N -1 (3c)
Yh, = Po(hAa)+ Yasin h=1,...,N—1 (3d)



Note that Y, 1, and therefore Y,,, depend on X,. Thus the isochronous traffic is indepen-
dent of the asynchronous traffic while the asynchronous traffic depends on the isochronous
traffic.

According to the specification of the IEEE 1394, it may take up to 80% of a cycle time
to transmit isochronous packets. For example, if N = 10, then M = 8. The relationship
among X,,, X* 'V, and Y,* in this case is illustrated in Figure 2.
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Figure 2: Relationship among X,,, X, Y, and Y;*.

4 Analysis

In this section, we obtain the average waiting time of an isochronous and an asynchronous
packet as the performance measure. The stability conditions are also derived.

4.1 Isochronous Transfer Mode

We first consider the isochronous traffic, which can be treated independently of the asyn-
chronous traffic.
From (3a) and (3c), the probability generating functions for X,, and X are given by

Xo(z) = eMMEDX, | n(2) 4
Xhz) = eMEDX L (2) h=1,...,N (4)

According to the probabilities

P([X,—R*=0) = P(X,<h)
P((X,—h]"=k) = P(Xp=k+h) k=1,...

the probability generating function of X, ; is given by

Xn,n(2) % k]T/IO—l (5)
o [Xn(z)—i- kg P(X, :k)(zM—zk)] h=M+1,...,N



Let X(z) be the probability generating function for the number of isochronous pack-
ets in the queue at the beginning of a cycle in the steady state. Also let X"(z),h =
1,2,..., N — 1, be the probability generating function for the number of isochronous
packets in the queue at the beginning of the A +1 th slot of a cycle in the steady state. In
addition, 7{,k =0,..., M —1, is defined as the probability that the number of isochronous
packets in the queue is k£ at the beginning of a cycle in the steady state. We then get
X(2) and X"(z) as follows.

M (T (M — Ry

X(z) = M _ NA(s—1) (6)

M= (X (2) + Thl(zh — 2%)nE)
h

h=1,....M

z
RAr(z—1) M-1/ M _ _k\_z (7)
6 (O il Clts L IV

Xh(z)z

z

The number of roots of a denominator of X(z) can be found by applying Rouché ’s
theorem.

Rouché ’s theorem [6, p.20]: If f(z) and g(z) are analytic functions of z inside and
on a closed contour C on the complex z-plane, and if also |g(z)| < |f(2)| on C, then f(z)
and f(z) + g(z) have the same number of zeros inside C.

In the present case, f(z) and g(z) are defined by

flz)=2M (8)

g(z) = =MD (9)

On a circle |z| = 1 + € for a small € > 0, we have

l9(z)] < 14 eNA+o(e) (10)
1f(2)l = (1 4+ =14 Me+ o(e) (11)

Therefore, |g(2)| < |f(2)| if
Ar < ~AN{ (12)

which is the stability condition for the isochronous traffic.

If the last inequality holds, the number of roots of a denominator of X(z) is equal to
that of f(z), which is M. Let such roots but 1 be zy,...,2p-1. f 2,k =1,..., M — 1,
is substituted into X (z), then the numerator of X (z) must be 0. These M — 1 roots are
calculated by Lagrange’s theorem.

Lagrange’s theorem [6, p.20]: Let f(z) and g(z) be analytic on and inside a closed
contour C surrounding a point a, and let w be such that the inequality

wg(2)] < |2 — al (13)
is satisfied at all points z on C. Then the equation

z=a+wg(z) (14)



in z has exactly one root inside C', and further, any function f(z) which is analytic on
and inside C can be expanded as a power series in w by the formula

) = flo)+ 3 G (L2 ater) | (15
In our case, we set values or functions to a, w, g(z), and f(z) as follows.
a=0, w = ™M m=1,...,.M -1
g(z) = (MMENIM, fz) = 2 (16)

where ¢ := y/—1. Then, the M — 1 roots of the denominator of X(z) inside the unit circle
are given by

27\'1\174111!' dn_l

- i e pa— (eN)\I(z—l)) )74

|
n=1 n.

m=1,...,M—1 (17)

z=0
The preceding argument leads to a set of M —1 linear equations for ¥,k = 0,..., M —1.

M-1

Soomi(l —zE) =0 m=1,...,M—1 (18)
k=0
If there is another equation, all M unknown coefficients 7{,k = 0,..., M — 1 are deter-

mined. The last equation can be obtained from the normalizing condition as

M-1
S 7 (M —k) =M — N); (19)
k=0

Let X be the average number of isochronous packets in the queue at the beginning of
a cycle in steady state. It is given by

dX(z)

X = dz

(20)

z=1

Also, let XA h =1,..., N —1, be the average number of isochronous packets in the queue
at the beginning of the A + 1 th slot of a cycle in the steady state. These are given by

dX"(z)

Xh =
X dz

hAi—h+ X+ 50—k h=1,...,M
= (21)
=1

hA\f =M+ X+ M M —k)rf h=M+1,...,N -1

Finally, by Little’s theorem, the average waiting time of an isochronous packet in the
steady state is given by L
X+ 30 XP

NAp

(22)



4.2 Asynchronous Transfer Mode

Let us proceed to consider the asynchronous traffic. Note that it is influenced by the
presence of the isochronous traffic.

From (3b) and (3d), the probability generating functions for Y,, and Y,* are given by

Yo(z) = eNMENY, ) n(2) 93
Yhz) = My, (2) h=1,...,N—1 (23)

In order to express the probability generating function for Y,, 5, we introduce some more
auxiliary functions as follows.

h—1
XM (z):= > P(X, =k)z* h=1,...,.M (24)
k=0
h-1
YW (z):= 3 P(Y, = k)2 h=1,...,N (25)
k=0
XM+ P(X, >h)2" h=1,...,.M
Drp(z) = {X;M>(z) +P(X,>M):M h=M+1,...,N (26)
Zz;éP(Xn:k)P(Yn Sh_k_l)
C — h=1,....M
mho MIP(X,=k)P(Y,<h—k—-1)+P(Y,<h—M—-1)P(X, > M)
h=M+1,...,N
(27)
Oz = o YR (2) P(X, = k)2F
h=1,...,M
E.n(z) =

Copz® = (THG Y0 (2) P(X, = k)2F + YP=M)(2) P(X, > M)zM)
h=M+1,...,N

(28)
Thus the probability generating function of Y, j is given by
Y.(2)D, E,
You(z) = 122 ’h(jh) + Ennl2) =1,...,N—1 (29)

Let Y(z) be the probability generating function for the number of asynchronous pack-
ets in the queue at the beginning of a cycle in the steady state. Let Y*(2) be the prob-
ability generating function for the number of asynchronous packets in the queue at the
beginning of the A+1 th slot of a cycle in the steady state. In addition, 77,k =0,..., N—1,
is defined as the probability that the number of asynchronous packets in the queue is k at
the beginning of a cycle in the steady state. Furthermore, X"(z),Y"(z), Dy(2), Cy, and
E,(z) denote the functions corresponding to X’ (z), Y, (2), Dpi(2),Cnn, and E,x(2) in
(24)-(28), where P(X, = k) and P(Y, = k) are replaced with 7§ and 7}, respectively.

Let Dy(z) be the probability generating function for the number of slots occupied by
. the isochronous packets transmitted in a cycle in the steady state. It is given by

M-1 M-1
DN(Z) = Z ﬂzzk + (1 - Z W]f) M (30)
k=0 k=0

9



Using D(2) and Ex(z), we can express Y (z) and Y"(2) as

eNAA(z—l)EN(Z)

Y(z) = N NN Dy (3 (31a)

() = ehra(z—1) (Y(z)lh?h(z) + Ex(z)) h=1,... N1 (31b)

z

We can obtain the unknown coefficients 7}, k = 0,..., N — 1, in the same say as in the
case of the isochronous transfer mode. Namely, in the application of Rouché ’s theorem
to find the number of roots in the denominator of Y(z) in (31a), we put

fz) = (32
g(z) = =D Dy () (33)
on |z] = 1+ ¢ for a small € > 0. Since e¥*4(>=1) is the probability generating function

of the Poisson distribution with rate NA4 and Dn(z) is also the probability generating
function, g(z) is a probability generating function too. Thus we have

19(2)] < 1+ ¢ (NAa + D) + ofe) (34)
[f(2) = (146" =1+ Ne+to(e) (35)
where Dy = [dDy/dz],_, is the average number of slots occupied by the isochronous

packets transmitted in a cycle in the steady state. Therefore, |g(2)| < |f(2)] if

Dn
This is the stability condition for the combination of isochronous and asynchronous traffic.
The average number of asynchronous packets in the queue at the beginning of a cycle
in the steady state is given by

dY (z)

Y= dz

(37)

z=1
The average number of asynchronous packets in the queue at the beginning of the h + 1
th slot of a cycle in the steady state is given by

—  dY"(2)

VF = h=1,...,N—1 (38)

z=1
Finally, by Little’s theorem, the average waiting time of an asynchronous packet in
the steady state is given by . L
Y+ 305 YF

N, (39)

10



5 Numerical Results

This section presents the numerical results for the average waiting times of isochronous
and asynchronous packets in each queue in the steady state under the following conditions:

e Transmission speed : 100 Mbps

e Duration of a slot (unit of time) : 12.5 useconds

e Number of slots of a cycle: N = 10

e Maximum number of the slots in a cycle available for the ITM : M = 8

Figure 3 plots the average waiting time of an isochronous packet in the queue in the
steédy state. It indicates that when the arrival rate approaches 0.8, the waiting time
diverges infinitely. On the other hand, when the arrival rate is close to 0, the waiting time
tends to 5.5 in unit of time, which is half the cycle length.

Figure 4 displays the average waiting time of an asynchronous packet in the queue in
the steady state, parameterized by the arrival rate of isochronous packets. The waiting
time of an asynchronous packet in the queue with the arrival rate of isochronous packets
being 0.5, 0.3, and 0 is considered. According to this figure, the waiting time of an
asynchronous packet tends to infinity when its arrival rate is close to one minus that of

isochronous packets.

UnitTime= 125 microsec
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Figure 3: Average waiting time of an isochronous packet.

6 Concluding Remarks

We have modeled the IEEE 1394 high performance serial bus interface by a simple
queueing model under some assumptions and calculated the average waiting time of an
isochronous and an asynchronous packet in the buffer in the steady state. We have also
shown some numerical results in order to estimate the performance of this serial bus

11



Unit Time = 125 micro sec
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Figure 4: Average waiting time of an asynchronous packet.

roughly. However, our present model is far from the real system. First, it does not take
the arbitration method into consideration. Second, we have assumed that a packet arriv-
ing in a cycle is not transmitted in the same cycle, and that it is transmitted after the
next cycle. This is not the case in the real system. Therefore it remains us to revise the
model so as to take these and other details into consideration.
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