INSTITUTE OF POLICY AND PLANNING SCIENCES # Discussion Paper Series No. 857 Unbiased Test for a Location Parameter -Case of Logistic Distribution- by Yoshiko Nogami April 2000 UNIVERSITY OF TSUKUBA Tsukuba, Ibaraki 305-8573 JAPAN Unbiased Test for a Location Parameter (2). ---Case of Logistic Distribution--- By Yoshiko Nogami ### Abstract. In this paper we deal with the Logistic distribution with density where $-\infty : \ell : \infty$. Based on a random sample X_1, \ldots, X_n of size n from the density $f(x|\ell)$ we consider the problem of the testing the null hypothesis $H_0 : \ell = \ell_0$ versus the alternative hypothesis $H_1 : \ell \neq \ell_0$ for some constant ℓ_0 . We propose the test with the acceptance region derived from inverting the shortest confidence interval for ℓ_0 and check if this test is unbiased. #### §1. Introduction. In this paper we deal with Logistic distribution whose density is given as follows: (1) $$f(x|\theta) = \frac{e^{-(x-\theta)}}{\{1 + e^{-(x-\theta)}\}^2}$$ provided that $-\omega < \emptyset < \infty$. Let X_1 , ..., X_n be a random sample of size n taken from the density $f(x|\emptyset)$. We find in Section 2 the confidence interval (C. I.) for \emptyset with the shortest length using — Lagrange's method. In Section 3 we consider the problem of testing the null hypothesis $H_0: \emptyset = \emptyset_0$ versus the alternative hypothesis $H_1: \emptyset \neq \emptyset_0$ for some constant \emptyset_0 . We propose the test with acceptance region derived from inverting the shortest C. I. for \emptyset_0 . Let \emptyset be a real number such that $0 < \emptyset < 1$. When n=2m+1 with m a nonnegative integer, we show that our test is unbiased and of size \emptyset . But, when n=2m, because we use conventional device to get the C. I. for \emptyset , we cannot show unbiasedness of our test. However, for large m our test becomes almost unbiased as the test in case of n=2m+1 shows. Let = be the defining property. #### §2. The Interval Estimation for θ . Let X_1, \ldots, X_n be a random sample of size n taken from the population with the density (1). We find the shortest C. I. for \emptyset using Lagrange's method. Let n=2m+1 with m a nonnegative integer, until (14). Let $X_{(1)}$ be the i-th smallest observation of X_1, \ldots, X_n . We estimate \emptyset by $Y\stackrel{\epsilon}{=}X_{(m+1)}$. To get the shortest C. I. for \emptyset we first find the density of Y. Let $F(x|\emptyset)$ be the cumulative distribution function (c.d.f.) of X. Then, by (1) we get (2) $$F(x)=F(x|\theta)=\{1+e^{-(x-\theta)}\}^{-1}$$, for $-\infty < x < \infty$. Hence, the density of Y is of form (3) $$g_{Y}(y|\theta)=k(F(y))^{m}(1-F(y))^{m}f(y|\theta)$$, for $-\omega \langle y \langle \omega \rangle$. where (4) $$k=[(2m+2)/\{[(m+1)]^2.$$ Let $\mathfrak q$ be a real number such that $0 < \mathfrak q < 1$. Let r_1 and r_2 be real numbers such that $r_1 < r_2$. To find the shortest C. I. for \emptyset at confidence coefficient $1-\mathfrak q$ we want to minimize r_2-r_1 under the condition that (5) $$P_{\theta}\left[r_{1} \langle Y - \theta \langle r_{2} \rangle = 1 - \epsilon.\right]$$ But, it follows by a variable transformation W=F(Y) that (6) the left hand side of (5) = $P_{\theta}[r_1 + \theta < Y < r_2 + \theta]$ $$=P_{\theta}[F(r_1+\theta) \cdot W \cdot F(r_2+\theta)]=1-q$$. Hence, we want to minimize r_2-r_1 under the condition (6). To do so we use Lagrange's method. Let λ be a real number and define (7) $$L \stackrel{:}{=} L(r_1, r_2; \lambda) \stackrel{:}{=} r_2 - r_1 - \lambda \{ \} \qquad h_w(w) \ dw \ -1 + \alpha \}$$ $$F(r_1 + \theta)$$ where $h_w(w)$ is the density of W given by (8) $$h_w(w) = kw^m (1-w)^m$$, for $0 < w < 1$ where k is given by (4). The right hand side of (8) is the probability density function(p.d.f.) of Beta distribution Beta(m+1, m+1) with (m+1, m+1)degrees of freedom. Then, by Lagrange's method we have that (9) $$\begin{cases} \partial L/\partial r_1 = -1 + \lambda h_W(F(r_1+\theta))f(r_1+\theta|\theta) = 0 \\ \partial L/\partial r_2 = 1 - \lambda h_W(F(r_2+\theta))f(r_2+\theta|\theta) = 0 \end{cases}$$ By (9) we get that (10) $$h_{w}(F(r_{1}+\theta))f(r_{1}+\theta|\theta)=h_{w}(F(r_{2}+\theta))f(r_{2}+\theta|\theta) (=\lambda^{-1}), \quad \forall \theta.$$ Taking (11) $$F(r_1+\theta)=\beta(\alpha/2) \text{ and } F(r_2+\theta)=1-\beta(\alpha/2)$$ where $\beta(a/2)$ is given by $$\beta (\alpha/2)$$ (12) $$\int h_w(w) dw = \alpha/2,$$ we obtain by (2) that $r_1 = -r_2 = -r$ where (13) $$r = F^{-1}(1-\beta(\alpha/2)) - \theta = \ln[\{1-\beta(\alpha/2)\}/\beta(\alpha/2)].$$ We also have $h_w(F(-r+\ell))=h_w(F(r+\ell))$ and $f(-r+\ell+\ell+\ell)=f(r+\ell+\ell+\ell)$ with r given by (13). Thus, (10) and (6) are satisfied for $r_1=-r_2=-r$ with r given by (13). Therefore, the shortest C. I. for ℓ at confidence coefficient $1-\ell$ is given by $$(14) \qquad (Y-r, Y+r) = (Y-\ln[\{1-\beta(\alpha/2)\}/\beta(\alpha/2)], Y+\ln[\{1-\beta(\alpha/2)\}/\beta(\alpha/2)]).$$ Let n=2m. This time we estimate \emptyset by $Y=X_{(m)}$. In the similar way to the above we get the density of Y (15) $$g_{Y}(y|\theta)=k_{1}(F(y))^{m-1}(1-F(y))^{m}f(y|\theta), \text{ for } -\omega < y < \omega$$ where (16) $$k_1 = \lceil (2m+1)/\{\lceil (m)\rceil (m+1)\}.$$ Putting W=F(Y) we minimize r_2-r_1 under the condition (6). However, since the density of W is now of form (17) $$h_1(w) = k_1 w^{m-1} (1-w)^m$$, for $0 < w < 1$ which is the p.d.f. of the Beta(m, m+1) distribution with k_1 defined by (16), it is difficult to get exact values for $F(r_1+\theta)$, i=1,2 which satisfy (18) $$h_1(F(x_1+\theta))f(x_1+\theta|\theta)=h_1(F(x_2+\theta))f(x_2+\theta|\theta).$$ Hence, we use conventional values for $F(r_1+\emptyset)$, i=1, 2. Those are (19) $$F(r_1+\theta)=\beta_{m,m+1}(\alpha/2)$$ and $F(r_2+\theta)=1-\beta_{m+1,m}(\alpha/2)$ where $\beta_{m, m+1}(a/2)$ and $\beta_{m+1, m}(a/2)$ are respectively determined by $$\beta_{m, m+1}(\alpha/2) \qquad \beta_{m+1, m}(\alpha/2)$$ (20) $$\beta_{m+1, m}(\alpha/2) \qquad k_1 w^m (1-w)^{m-1} dw.$$ 0 0 Thus, r_i and r₂ are respectively given by $$\begin{cases} x_1 = F^{-1}(\beta_{m, m+1}(\alpha/2)) - \theta = -\ln[\{1 - \beta_{m, m+1}(\alpha/2)\}/\beta_{m, m+1}(\alpha/2)] \\ x_2 = F^{-1}(\beta_{m+1, m}(\alpha/2)) - \theta = \ln[\{1 - \beta_{m+1, m}(\alpha/2)\}/\beta_{m+1, m}(\alpha/2)] \end{cases}$$ Threfore, the C. I. for I at confidence coefficient 1-I is (22) $$(Y-r_2, Y-r_1),$$ where r_1 and r_2 are determined by (21). In the next section we check if the tests with the acceptance regions derived from inverting the C. I.'s (14) for n=2m+1 and (22) for n=2m, respectively are unbiased and of size 1. #### §3. Two-Sided Test for θ . In this section we consider the problem of testing the null hypothesis H_0 : $\emptyset=\emptyset_0$ versus the alternative hypothesis $H_1:\emptyset\ne\emptyset_0$ for some constant \emptyset_0 . We propose the two-sided test with the acceptance region derived from inverting the shortest C. I. for \emptyset_0 . When n=2m+1 we show that our test is unbiased and of size \emptyset . When n=2m our test is not unbiased because of usage of conventional method for constructing the C. I. for \emptyset . Let n=2m+1. As in Section 2 we define $Y=X_{(m+1)}$. By inverting the shortest C. I. (14) for ℓ_0 our test is to reject $Y\in (-\infty,\ell_0-r]\cup [\ell_0+r,+\infty)$ and to accept H_0 if $Y\in (\ell_0-r,\ell_0+r)$ where r is given by (13). Now, we show that this test is unbiased and of size ℓ . Let y_1^0 and y_2^0 be real numbers depending on θ_0 such that $y_1^0 < y_2^0$. Define ψ (0) by (23) $$\psi (\theta) = P_0 [Y \langle y_1^0 \text{ or } y_2^0 \langle Y]]$$ $$y_2^0$$ $$= 1 - \{ g_Y (y | \theta) dy \}$$ $$y_1^0$$ where $g_Y(y|\emptyset)$ is defined by (3). To get unbiased size- \emptyset test with the acceptance region (y_1^0, y_2^0) we choose y_1^0 and y_2^0 which satisfy (24) $$\psi (\theta_0) = 1 - P_{\theta_0} [y_1^0 < Y < y_2^0] = 0$$ and minimize $\psi(\theta)$ at $\theta=\theta_0$; namely (25) $$d\psi (\theta)/d\theta \Big|_{\theta=\theta_0} = g_Y(y_2^0 | \theta_0) - g_Y(y_1^0 | \theta_0) = 0.$$ We consider the test with the acceptance region (ℓ_0-r,ℓ_0+r) . Since from the construction the equality (10) with $r_1=-r$, $r_2=r$ and $\ell=\ell_0$ is satisfied, we obtain by (3) and (8) that $g_Y(\ell_0-r|\ell_0)=g_Y(\ell_0+r|\ell_0)$; (25) is satisfied for y_1^0 and y_2^0 replaced by ℓ_0-r and ℓ_0+r , respectively. (24) with y_1^0 and y_2^0 replaced by ℓ_0-r and ℓ_0+r , respectively is the same as (5) except for ℓ , r_1 and r_2 replaced by ℓ_0 , -r and r, respectively. Therefore, our test with the acceptance region (ℓ_0-r,ℓ_0+r) is unbiased and of size ℓ . Let n=2m. As in Section 2 we define $Y=X_{(m)}$. Again, by inverting the C. I. (22) for ℓ_0 our test is to reject H_0 if $Y\in (-\infty,\ell_0+r_1]\cup [\ell_0+r_2,+\infty)$ and to accept H_0 if $Y\in (\ell_0+r_1,\ell_0+r_2)$ where r_1 and r_2 are given by (21). In this case our test depends on the conventional values for $F(r_1+\ell)$, i=1,2. Hence, we have that $g_Y(\ell_0+r_1|\ell_0) \neq g_Y(\ell_0+r_2|\ell_0)$. Furthermore, (24) with y_1^0 and y_2^0 replaced by ℓ_0+r_1 and ℓ_0+r_2 , respectively is the same as (5) except for ℓ replaced by ℓ_0 . Therefore, our test is still of size ℓ , but not unbiased. However, for large m our test becomes almost unbiased as the test in case of n=2m+1 shows.