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Unbiased Test for a Location Parameter (2).

-—Case of Logistic Distribution——-

By Yoshiko Nogami

Abstract.

In this paper we deal with the Logistic distribution with density
o~ {x—-0)
£(x|d)= ————mr , for —wcxcn
{l+e— {x—8) }2

where -w¢)«w. Based on a random sample ¥,, ...,X, of size n from the density
£(x|#) we consider the problem of the testing the null hypothesis H,:f=0,
versus the alternative hypothesis H,:0#9, for some constant §,. We propose
the test with the acceptance region derived from inverting the shortest
confidence interval for ¢, and check if this test is unbiased.



§1. Introduction.

In this paper we deal with Logistic distribution whose density is given

as follows:

e {x—0)

(1) £{x|0)= , for -m<x<wm

{l+ e (x—1) }2

provided that -e<j<o. Iet X,, ... ,X, be a random sample of size n taken from
the density £(x[J). We find in Section 2 the confidence interval (C. I.) for {
with the shortest length using © Lagrange’ s method, TIn Section 3 we consider
the problem of testing the null hypothesis H,:8=(, versus the alternative
hypothesis H,:0+#48, for some constant #,. We propose the test with acceptance
region derived from inverting the shortest C. I. for (4. Let ¢ be a real
number such that O<g<l. When n=2m+l with m a nonnegative integer, we show that
our test is unbiased and of size ¢. Bul, when n=2m, because we use conventional
device to get the C, I. for §, we cannot show unbiasedness of our test.
‘However, for large m our test becomes almost unbiased as the test in case of
n=2m+1 shows.

Let. = be the defining property.

§2. The Interval Estimation for §.

et X;, ... ,X; be a random sample of size n taken from the population
with the density {1). We find the shortest C. I. for { using Lagrange’s
method.

Let n=2m+l with m a nonnegative integer, until (14). Let X.,; be the
i-th smallest observation of X,, ... ,X,. We estimate ) by Y=X ...
To get the shortest C. I. for ) we first find the density of Y. Let F{x|¢) be
the cumulative distribution function (¢.d.f.} of X. Then, by (1) we get

(2) F(X)SF(x|0)= {1+ e -0 }=1  for -mx<w,



Hence, the density of Y is of form

(3) gy (Y 10)=k(F({y) )" (1-F({y))"f(yld), for -w<y«w.
where
(4} k=l (2m+2) /{T (m+1)}%,

Iet 1 be a real number such that 0«<«p¢l. Let r, and r, be real numbers such that

r <ry,. 'To find the shortest C. I. for | at confidence coefficient 1-q we want

to minimize r,—-r, under the condition that

(5) P, [Ty <Y~ <, J=1-0.

But, it follows by a variable transformation W=F(Y) that

(6) the left hand side of (5) = P,[r,+0<Y<xry+0]

=Py [F(x,+0 ) <W<F(ry+0 ) ]1=1~p.

Hence, we want to minimize r,-~r, under the condition (6).

Lagrange’ s method. Let ) be a real number and define
F{xr,+0)

(7) L=lir,, Tyl ), - =i { § hy (w) dw —-1+¢}
F{r,+0)

where hg(w) is the density of W given by

(8) hy (w)=kw" (1-w)", For 0O<w«l

To do s0 we use

where k is given by (4). The right hand side of (8) is the probability density

function(p.d. £.) of Beta distribution Beta(m+l, m+l) with (m+l, m+l)degrees of

freedom. Then, by Lagrange’ s method we have that



dL/dr = =1 + \hy{F(xr,+0))E(xr,+0|8)=0

L/ Te= 1 = dAhy(F(ro+0))E(r,+810)=0

By (9) we get that

{10} By (F(r+0))E(xr, +0 |0 )=hy (F(x2+0) )E(ry+0 [0) (=27'), V4.
Taking
(11) Flr,+))=p(a/2) and F(rz+i)=1-§(a/2)

where j(t/2) is given by
g (e/2)
(12) f he {w) dw =e/2,
0
we obtain by (2) that r,=-r,=-r where
(13) rEF- 1 (1-f (0/2))—0 = In[{1~f(e/2)}1/B (0 /2)).
We also have hy (F{-r+)))=hy (F(r+f)) and £{-r+) [§)=£(r+0|0) with r given by (13).
Thus, (10) and (6) are satisfied for r,=-r,=-r with r given by (13). Therefore,
the shortest C. I. for { at confidence coefficient 1-¢ is given by

(14) (Y-r, Yr}=(¥-1n[{1-p (a/2)}/§ (¢ /2) ), Y+Inf {1~ (0 /2)}/B (0 /2)]).

Iet n=2m. This time we estimate § by ¥=X(, . In the similar way to the

above we get the density of Y

(15) gy (y18)=k, (F(¥})*~H (1-F(y))"f(y|0), for -wcy«w



where

(16) ky=T (2m+1)/{T (m)I (m+1)}.

Putting W=F(¥) we minimize r;-r; under the condition (6). However, since the

density of W is now of form

(17) hy (w)=k,w*" ! {1-w)",  for O«w«l

which is the p.d.f. of the Beta{m, m+l} distribution with k, defined by (16},

it is difficult to get exact values for F{r,+b#), i=1, 2 which =satisfy
(18) hy {(F{r,+0) ) (r+8 |8 )=hy (F(r,+8 ) )E{r+010).
Hence, we use conventional values for F{r,+)), i=1,2. Those are
(19} F(r +4)=fy wi,(0/2) and F{r;+0)=1-fos,. n(0/2)
where f, s (0/2) and o4, n{e/2) are respectively determined by

B we1{0/2) Bomssr, m(a/2)

(20) ! h;(w) dw = ¢/2 = | Eywo {l-w)m~! dw.
0 o

)

Thus, r; and r, are respectively given by

It

T=F 1 (fn, mer (0/2) )-8 —1n[{l—ﬂm.m+i(u/2)}/ﬂm.m+1(ﬂ/2)]

(21)

C2=F " (B, m(a/2) )0 In[{1-fnes, w(0/2)} Brns1, (e /2)]
Threfore, the C. I. for § at confidence coefficient 1—¢ is

(22) (Y-r,, ¥-1, ),

where r, and r;, are determined by (21).



6.
In the next section we check if the tests with the acceptance regions
derived from inverting the C. I.’sg (14) for n=2mt+l and (22} for n=Im,

respectively are unbiased and of size 1.

§3. Two-S5ided Test fox .

In this section we consider the problem of testing the null hypothesis H,:
f=8, versus the alternative hypothesis H, :§+0, for some constant {§,. We
propose the two-sided test with the acceptance region derived from inverting
the shortest C. I. for §,. When n=2m+l we show that our test is unbiased and
of size ¢. When n=2m our test is not unbiased because of usage of conventicnal
method for constructing t_he. C. I. for §.

Let. n=2m+1l. As in Section 2 we define Y=X (p.+.,. By inverting the shortest
C. I. (14) for 0, our test is to reject Ye(—un,f,-r}l[d,+r, +u} and to accept H,
iE Ye(fg-x, 0 o+r) where r is given by (13). Now, we show that this test is
unbiased and of size 4.

et v, ® and vy, be real numbers depending on f§, such that v, %<«y.%. Define
P (8} by

(23) P {0)=P, [Y<y,* or y,%<¥]
yzo

=1~ gy(y|0) dy
y10

where gy (yl|fl) is defined by (3). To get unbiased size—y test with the acceptance

region (v.%,v.") we choose y,* and y,° which satisfy
(24) P (00)=1"Pao [Y1°<Y<Yz°]=ﬂ
and minimize 1+ () at 0=0,; namely

(25) dy (0)/40 = Gy (Y2100 )9y (¥1" 00)=0.
ﬁ=90



7.

We consider the test with the acceptance region (f,-r,0,+r). Since from
the construction the equality (10) with r,=-r, r,=r and =0, is satisfied, we
obtain by (3) and (8) that gv{l,—Xldo)=gy(fo+xrifdo); (25) is satisfied for y,°
and y,® replaced by 0,-r and 0,+r, respectively. (24) with y,° and y,° replaced by
fo—xr and 0,+r, respectively is the same as (5) except for ¢, r, and r, replaced
by §,, -r and r, respectively. Therefore, our test with the acceptance region
{(0o—x, #o+r) is unbiased and of size ¢.

Let n=2m. As in Section 2 we define Y2X(,,. Again, by inverting the C. I.
(22) for (|, our test is to reject H, if Yeé(-w, ) o+x, JU[fo+r,, +0) and to accept
H, if Ye(lo+r,,8,+r:) where r, and r, are given by (21). In this case our test
depends on the conventicnal values for ¥(r,+§), i=1,2. Hence, we have that
gy (Bo+r, |00 )#gy{0o+rs [#o). Furthermore, (24} with y,°® and y,° replaced by
lo%r, and ,+r,, respectively is the same as (5) except For { replaced by {,.
Therefore, our test is still of size g, but not unbiased. However, for large m

our test becomes almost unbiased as the test in case of n=2m+1 shows.



