INSTITUTE OF POLICY AND PLANNING SCIENCES

Discussion Paper Series

No. 861

An Unbiased Test for the Location Parameter of the Uniform Distribution

bу

Yoshiko Nogami

April 2000

UNIVERSITY OF TSUKUBA Tsukuba, Ibaraki 305-8573 JAPAN An Unbiased Test for the Location Parameter of the Uniform Distribution.

By Yoshiko Nogami

Abstract.

In this paper the author considers the uniform distribution with the density

$$f(x|\theta) = \begin{cases} (\delta_2 - \delta_1)^{-1} & \text{for } \theta + \delta_1 \le x < \theta + \delta_2 \\ 0, & \text{otherwise} \end{cases}$$

where $-\omega < \theta < \omega$ and δ_1 (i=1,2) are real numbers such that $\delta_1 < \delta_2$. Based on a random sample X_1, \ldots, X_n of size n from the density $f(x|\theta)$ she considers the problem of testing the null hypothesis $H_0: \theta = \theta_0$ versus the alternative hypothesis $H_1: \theta \neq \theta_0$ for some constant θ_0 . She proposes the test with the acceptance region derived from inverting the shortest confidence interval for θ_0 and show that this test is unbiased.

§1. Introduction.

Let $I_{\Lambda}(x)$ be an indicator function such that $I_{\Lambda}(x)=1$ if $x\in A$; =0 if $x\notin A$, for a set A. Let $\stackrel{.}{=}$ be the defining property. In this paper we deal with the uniform distribution over the set $[\theta + \delta_1, \theta + \delta_2)$ with the density

$$f(x|\theta) = c^{-1}I_{(\theta+\delta_1, \theta+\delta_2)}(x), \quad \forall \theta \in (-\infty, \infty)$$
 (1.1)

where δ_1 (i=1,2) are real numbers such that $\delta_1 < \delta_2$ and $c = \delta_2 - \delta_1$ (>0).

Let X_1, \ldots, X_n be a random sample of size n taken from the density (1.1). Let $X_{(1)}$ be the i-th smallest observation of X_1, \ldots, X_n . In this paper we use, in Section 2, the Lagrange's method to get the shortest confidence interval (C. I.) for the location parameter ℓ based on an unbiased estimator $Y=(X_{(1)}+X_{(n)}-\delta_0)/2$ with $\delta_0=\delta_1+\delta_2$. In Section 3 we consider the problem of testing the null hypothesis $H_0: \ell=\ell_0$ versus the alternative hypothesis $H_1: \ell\neq\ell_0$ for some constant ℓ_0 . Let α be a real number such that $0<\alpha<1$. We propose the test with the acceptance region derived from inverting the shortest C. I. for ℓ_0 at confidence coefficient $1-\alpha$. We show that the proposed test is unbiased and of size α .

§2. The interval eatimation for (.

Let X_1, \ldots, X_n be a random sample of size n taken from the density (1.1). We find the shortest C. I. for ℓ at confidence coefficient $1-\alpha$ using the Lagrange's method.

We first estimate \emptyset by $Y^{*}=(X_{(1)}+X_{(n)}-\delta_0)/2$. To get the shortest C. I. for \emptyset we find the probability density function (p.d.f.) of Y. Applying the variable transformation $Y=(X_{(1)}+X_{(n)}-\delta_0)/2$ and $Z=X_{(1)}$ to the joint p.d.f. of $(X_{(1)},X_{(n)})$ and taking the marginal p.d.f. we obtain the p.d.f. of Y as follows:

$$g_{Y}(y|\theta) = \begin{cases} nc^{-n} (c-2|y-\theta|)^{n-1}, & \text{for } -c/2 < y-\theta < c/2 \\ 0, & \text{otherwise.} \end{cases}$$
 (2.1)

From (2.1) θ is also the location parameter of the distribution of Y. Hence, to get the shortest C. I. for θ at confidence coefficient $1-\alpha$ we shall find real numbers r_1 and r_2 $(r_1 < r_2)$ which minimize $r_2 - r_1$ under the condition that

$$P_{\theta}[r_{1} \langle Y - \theta \langle r_{2}] = \int g_{Y}(Y | \theta) dy \approx 1 - \alpha. \qquad (2.2)$$

Let) be a real number and define

$$L \stackrel{\theta+r_2}{=} L(r_1, r_2; \lambda) \stackrel{\epsilon}{=} r_2 - r_1 - \lambda \{ \} \qquad g_Y(y | \theta) dy - 1 + \alpha \}.$$

$$\theta+r_1$$

By the Lagrange's method, we find r_1 and r_2 which satisfy (2.2) and

$$\begin{cases} \partial L/\partial r_1 = -1 + \lambda g_Y(\theta + r_1 | \theta) = 0 \\ \\ \partial L/\partial r_2 = 1 - \lambda g_Y(\theta + r_2 | \theta) = 0 \end{cases}$$
(2.3)

Since by (2.3) we obtain that

$$g_{Y}(\theta+r_{1}|\theta)=g_{Y}(\theta+r_{2}|\theta) \ (=\lambda^{-1}), \qquad \forall \theta, \qquad (2.4)$$

we merely obtain r_1 and r_2 which satisfy (2.4) and (2.2) for any $\theta \in (-\infty, \infty)$. From (2.4) and (2.1) we obtain $r_2 = -r_1 (\stackrel{!}{=} r)$. Substituting these into (2.2), making a variable change $u = y - \theta$ and performing further calculations leads to

the left hand side of
$$(2.2)=2$$
 $nc^{-n}(c-2u)^{n-1}$ $du = 1-(1-(2r/c))^n$.

Solving $\alpha = (1-(2r/c))^n$ we get

$$r=c(1-\alpha^{1/n})/2.$$
 (2.5)

Hence, the shortest C. I. for ℓ at confidence coefficient $1-\alpha$ is

$$(Y-r, Y+r) \tag{2.6}$$

where r is given by (2.5).

§3. The two-sided test for 1.

In this section we consider the problem of testing the null hypothesis H_0 : $\theta = \theta_0$ versus the alternative hypothesis $H_1: \theta \neq \theta_0$ for some constant θ_0 .

As in Section 2 we define $Y = (X_{(1)} + X_{(n)} - \delta_0)/2$. By inverting the shortest C. I. (2.6) for θ_0 our test is to reject H_0 if $Y \in (-\infty, \theta_0 - r) \cup [\theta_0 + r, \infty)$ and to accept H_0 if $Y \in (\theta_0 - r, \theta_0 + r)$ where r is given by (2.5). Now, we show that this test is unbiased and of size α .

Let y_1^0 and y_2^0 be real numbers depending on θ_0 such that $y_1^0 \lt y_2^0$. We define $\psi(\theta)$ by

$$\psi (\theta) \stackrel{\triangleq}{=} P_{\theta} [Y \langle y_1^0 \text{ or } y_2^0 \langle Y] = 1 - \begin{cases} g_Y(y | \theta) dy \\ y_1^0 \end{cases}$$

where $g_Y(y|\theta)$ is defined by (2.1). To get unbiased size- α test with the acceptance region (y_1^0,y_2^0) we choose y_1^0 and y_2^0 which satisfy

$$\psi (\theta_0) = 1 - P_{\theta_0} [y_1^0 \langle Y \langle y_2^0] = \alpha$$
 (3.1)

and minimize $\psi(\theta)$ at $\theta=\theta_0$; namely

$$d\psi(\theta)/d\theta \bigg|_{\theta=\theta_0} = g_Y(y_2^0 | \theta_0) - g_Y(y_1^0 | \theta_0) = 0.$$
 (3.2)

We consider the test with the acceptance region (ℓ_0-r,ℓ_0+r) . Since from the construction the equality (2.4) with $r_1=-r$, $r_2=r$ and $\ell=\ell_0$ is satisfied, (3.2) with y_1^0 and y_2^0 replaced by ℓ_0-r and ℓ_0+r , respectively holds. On the other hand, (3.1) with y_1^0 and y_2^0 replaced by ℓ_0-r and ℓ_0+r , respectively is the same as (2.2) except for ℓ , r_1 and r_2 replaced by ℓ_0 , -r and r, respectively. Therefore, our test with the acceptance region (ℓ_0-r,ℓ_0+r) is unbiased and of size α .