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Abstract

We deal with interior point methods (IPMs) for solving a class of so-called P�(�) comple-

mentarity problems (CPs). First of all, several elementary results about P�(�) mappings and

P�(�) CPs are presented. Then we extend some notions introduced recently by Peng, Roos

and Terlaky [22] for linear optimization problems to the case of CPs. New large-update

IPMs for solving CPs are introduced based on the so-called self-regular proximities. To

build up the complexity of these new algorithms, we impose a new smoothness condition

on the underlying mapping and this condition can be viewed as a natural generalization of

the relative Lipschitz condition for convex programs introduced by Jarre [6]. By utilizing

various appealing properties of self-regular proximities, we will show that if the undertaken

problem satis�es certain conditions, then these new large-update IPMs for solving CPs have

polynomial O
�
n

q+1

2q log n

�

�
iteration bounds where q is the so-called barrier degree of the

corresponding proximity.
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1 Introduction

We consider the standard nonlinear complementarity problem(CP):

(CP) Find (x; s)

such that s = f(x); (x; s) � 0; xs = 0:

Here f is a continuous mapping from <n to <n and xs denotes the componentwise product of

the vectors x and s. To be more speci�c, we also call it a linear complementarity problem (LCP)

if the involved mapping f(x) is aÆne, i.e., f(x) =Mx+c for someM 2 <n�n
; c 2 <n; otherwise

we call it a nonlinear complementarity problem (NCP) when f(x) is nonlinear.

CPs have a broad range of associations with di�erent areas. First, at its infancy in 1960s, the

LCP was closely associated with linear and quadratic optimization (LO and QO) problems.

Now it is known that CPs cover fairly general classes of mathematical programming problems

with versatile applications in engineering, economics, and science. For instance, by exploiting

the �rst-order optimality conditions of the underlying optimization problem, any general convex

optimization problem satisfying certain constraint quali�cations (e.g., Slater constraint quali�-

cation [14]) can be modeled as a monotone CP. Closely related to CPs is a large class of problems:

Variational Inequality Problems (VIPs) that are widely used in the study of equilibrium in, e.g.,

economics, transportation planning and game theory. As a result of its wide association with

optimization and equilibrium problems, the study on CPs has attracted much attention from

many researchers in di�erent �elds such as operations research, mathematics, computer science,

economics and engineering for long since its introduction. Several monographs [2, 5] and surveys

[3, 4, 19] have documented the basic theory, algorithms and applications of NCPs and their role

in optimization theory. It is worthwhile to mention that many classical numerical algorithms

for solving CPs are based on approaches for optimization problems or equation systems.

Besides its many meaningful applications, CPs contain one common feature that is crucial to the

study of general mathematical and equilibrium programming problems. This is the concept of

complementarity. Actually, the concept of complementarity plays an important role in the design

and analysis of numerical algorithms, particularly IPMs for solving large classes of problems.

Since Karmarkar's epoch-making paper [10], the study of IPMs has 
ourished and thousands

of papers have been published about IPMs. At the early stage of research on IPMs, people

focused mainly on algorithms for LO and QO. Due to the close connection between LCPs and

LO and QO, IPMs for LCPs were soon suggested as a direct extension of primal-dual IPMs

for LO. According to records, the �rst IPM for LCPs was proposed by Kojima, Mizuno and

Yoshise [13] and their algorithm was originated in the primal-dual IPMs for LO. Later Kojima,

Megiddo, Noma and Yoshise [11] set up a framework of IPMs for tracing the central path of a

class of LCPs. Independent of the works by this Japanese group, Monteiro and Alder [16] also

proposed an IPM for convex quadratic optimization problems which could indeed be applied to

monotone LCPs. Since then, the study of IPMs for CPs has paralleled to that for LO. A general

and uni�ed analysis about path-following methods for VIPs and CPs was given by Nesterov and

Nemirovskii in [18]. The survey by Yoshise [24] gave a comprehensive review about the major

developments in IPMs for CPs and listed lots of available references up to that time.

Let us brie
y describe how an IPM works for CPs. First let us consider the following relaxed

system of CP

s = f(x); s > 0; x > 0; xs = �e;

where � is a positive constant and e denotes the all-one vector. It has been shown [11, 15]
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that the above system has a unique solution (x(�); s(�)) if the considered CP satis�es certain

conditions. This solution set forms a path as � goes to zero which is called the central path.

Most of IPMs for CPs follow this path appropriately and approximate the solution set of the

problem as � reduces to zero.

To trace the central path approximately, various strategies have been introduced to keep the

iterative sequence staying in a certain neighborhood of the central path as well as reducing

the parameter �. These strategies have played an important role both in the analysis and

practice of IPMs. It is worth to point out that there are two general strategies used in IPMs

with respect to the update of the parameter �. These are the so-called small-update and large-

update IPMs. It has been proven and generally accepted that the worst-case iteration bound

of small-update IPMs is better than that for large-update IPMs while the later ones perform

much more eÆciently in practice (see the discussion in the introduction of [22]). This is a big

gap between the theory and practice of IPMs.

Recently, the �rst three authors of this paper introduced the concept of self-regular functions

in the positive orthant and the cone of positive de�nite matrices [22] as well as self-regular

proximities which are used in IPMs to keep control on the distance of an iterative sequence to

the central path and de�ne the corresponding search directions. By using some new analysis

tools developed in [21, 22] and employing new search directions, we were able to show that

new large-update IPMs for LO have polynomial O
�
n

q+1

2q log n

�

�
iteration bounds where q is a

constant, the so-called barrier degree of the proximity. This is a signi�cant improvement over

the known O �n log n

�

�
iteration bound of large-update IPMs before.

The present work aims at extending the results of [22] to large classes of CPs. As we will see

in our later analysis, this is far from a trivial task. The reason for this is that, the convergence

rate of IPMs has been established only for classes of problems which satisfy certain Lipschitz

conditions such as the self-concordant condition posed by Nesterov and Nemirovskii [18], the

relative Lipschitz condition introduced by Jarre [6, 7] and the scaled Lipschitz condition by

Zhu [27]. For CPs, Jansen [8], Jansen et'al [9] introduced a smoothness condition which can be

viewed as a straightforward extension of the scaled Lipschitz condition. In this paper, to establish

the complexity of our algorithm, we will introduce a new smoothness condition for the considered

problem. This new condition can be regarded as a generalization of Jarre's condition. Via using

extensively the properties of self-regular proximities, we will prove that if the considered CP

satis�es several assumptions, then our new large-update IPMs have polynomial O
�
n

q+1

2q log n

�

�
iteration bounds while small IPMs still stay with the best to date O

�
n
1

2 log n

�

�
iteration bounds.

The class of CPs we will discuss in this paper is the class of so-called P�(�) CPs. It is worth to

mention that there exists some inconsistency about the de�nition of a nonlinear P�(�) mapping
in the CP literature. For instance, in some references (see [25, 26]) a P�(�) mapping is de�ned
according to certain speci�c properties of the mapping itself while in some other references such

as [9], it is required that the Jacobian of the considered mapping to be a P�(�) matrix. The

reason for these di�erent de�nitions is that in the study of some properties such as the feasibility

of the problem, the de�nition based on the mapping itself is more direct and more applicable,

while in the estimation of the complexity of IPMs for CPs, the Jacobian matrix plays a much

more important role. In this paper, we will consider this issue �rst and show that these di�erent

de�nitions are equivalent if the undertaken mapping f(x) is continuously di�erentiable.

An important ingredient in IPMs for CPs is the existence of the central path, since otherwise
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we can't apply IPMs to the problem. For P�(�) LCPs, Kojima et'al [12] had already proven

that if a P�(�) LCP is strictly feasible, then the central path is uniquely de�ned and converges

to the solution set of the problem. We also mention that in [11], the authors considered the

homotopy path for several classes of CPs under certain assumptions. However they did not

specify their results to nonlinear P�(�) CPs. Slightly to our surprise, during the preparation of

this paper, the authors also noted that albeit there have already quite a number of papers [9]

dealing with IPMs for P�(�) CPs, none of them discussed explicitly the existence of the central

path for nonlinear P�(�) CPs. In the present paper, we will discuss this question for general

nonlinear P�(�) CPs under certain assumption. Our results is a direct extension of those in [12]

for P�(�) LCPs.

The paper is organized as follows. In Section 2, we will �rst state some assumptions about the

problem and then give several fundamental results about P�(�) mappings and CPs. In Section 3
we describe the new algorithm based on a self-regular proximity and introduce a new smoothness

condition for the underlying mapping f(x). Section 4 is devoted to study the complexity of the

algorithm. Finally we close this paper by some concluding remarks in Section 5.

2 Preliminary Results on P�(�) Mappings and P�(�) CPs

In the present section, we will �rst state some basic assumptions about the considered class of

CPs and give several elementary results about CPs under those assumptions. We start with

some basic de�nitions of classes of matrices[12].

De�nition 2.1 Let � be a nonnegative constant. A matrix M 2 <n�n
is said to be a P� (�)

matrix if and only if there holds

(1 + 4�)
X

i2I+(x)
xi[Mx]i +

X
i2I�(x)

xi[Mx]i � 0; 8x 2 <n
;

where

I+(x) = fi 2 I : xi[Mx]i � 0g; I�(x) = fi 2 I : xi[Mx]i < 0g;
and

I = f1; 2; � � � ; ng:

We remark that the index sets I+ (x) and I� (x) depend not only on x 2 <n but also the

matrixM . The class of P� (�) matrices includes as speci�c case the class of positive semide�nite
matrices where the constant � = 0.

We denote by P� the union of all P�(�) matrices with � � 0. We next introduce the de�nitions

of P and P0 matrices [2].

De�nition 2.2 A matrix M 2 <n�n
is said to be a P (or P0) matrix if and only if for any

x 6= 0 2 <n
, there exists at least one index i 2 I such that xi(Mx)i > 0 (or xi(Mx)i � 0).

>From the above de�nition, one can easily see that P � P�(�) � P� � P0. For more discussion

about the relations among the class of P� (�) matrices and other classes of matrices we refer to

[11].
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The following technical result about P and P0 matrices will be used in our later discussion. We

have

Lemma 2.3 If M is a P matrix, then there exists a vector x such that

Mx > 0; x > 0;

If M is a P0 matrix, then there exists a nonzero vector x such that

Mx � 0; x � 0:

Proof: The �rst statement of the lemma is precisely the same as Corollary 3.3.5 in [2], thus

its proof is omitted here. To prove the second statement of the lemma, we observe that if M is

a P0 matrix, then the matrix M + �E is a P matrix, here we denote by E the identity matrix

in <n�n. Thus, from the �rst statement of the lemma, we know that for any � > 0, there exists

a vector x� > 0 with kx�k = 1 such that

Mx� > 0; x� > 0:

Therefore, there must exist an accumulation point x� of the sequence x�k as �k reduces to to

zero. By taking limits if necessary, one can see that

Mx
� � 0; x

� � 0;

which completes the proof of the second result of the lemma. 2

We next progress to de�ne the notion of a P�(�) mapping.

De�nition 2.4 Let � be a nonnegative constant. A mapping f(x) : <n ! <n
is said to be a

P�(�)-mapping if for any x 6= y 2 <n
, the relation

(1 + 4�)
X

i2If+(x;y)
(xi � yi) (fi(x)� fi(y)) +

X
i2If

�
(x;y)

(xi � yi) (fi(x)� fi(y)) � 0; (1)

holds, where

If+(x; y) = fi 2 I : (xi � yi) (fi(x)� fi(y)) � 0g;
If�(x; y) = fi 2 I : (xi � yi) (fi(x)� fi(y)) < 0g:

The mapping f(x) is said to be a strict P�(�) mapping if inequality (1) holds strictly for any

x 6= y 2 <n
.

It follows directly from the above two de�nitions that if f(x) = Mx + q, then f(x) is a P�(�)
mapping if and only if its Jacobian matrix M is a P�(�) matrix. In the sequel we consider an

extension of this observation in case that f(x) is nonlinear and continuously di�erentiable. We

proceed by introducing a speci�c subclass of P�(�) mappings.

De�nition 2.5 Let � be a nonnegative constant. A mapping f(x) : <n ! <n
is said to be a

P�(�; �) mapping if for any x 6= y 2 <n
, the relation

(1 + 4�)
X

i2If+(x;y)
(xi � yi) (fi(x)� fi(y)) +

X
i2If�(x;y)

(xi � yi) (fi(x)� fi(y)) � � kx� yk2
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holds, where

If+(x; y) = fi 2 I : (xi � yi) (fi(x)� fi(y)) � 0g;
If�(x; y) = fi 2 I : (xi � yi) (fi(x)� fi(y)) < 0g:

>From this de�nition it follows immediately that a P�(�; �) mapping with � > 0 is a strict P�(�)
mapping. Similarly, we also de�ne

De�nition 2.6 Suppose that � is a nonnegative constant. A matrix M is said to be a P�(�; �)
matrix if

(1 + 4�)
X

i2I+(x)
xi (Mx)

i
+

X
i2I�(x)

xi (Mx)
i
� � kxk2 ; 8x 6= 0 2 <n

holds, where

I+(x) = fi 2 I : xi (Mx)
i
� 0g;

I�(x) = fi 2 I : xi (Mx)
i
< 0g:

Our next result characterizes the interrelation between P�(�) and P�(�; �) mappings. We have

Lemma 2.7 Let � be a nonnegative constant. Then a mapping f(x) : <n ! <n
is a P�(�)

mapping if and only if for any positive � > 0, the mapping f�(x) = f(x) + �x is a P�(�; �)
mapping.

Proof: The necessary part of the lemma is trivial. Since if f(x) is a P�(�) mapping with

� � 0, then for any x; y 2 <n we know that the set If+(x; y) is nonempty. Further, it is easy

to see that, for any � > 0, the inclusions If+(x; y) � If�+ (x; y) and If�� (x; y) � If�(x; y) hold.
Therefore it follows directly

(1 + 4�)
X

i2If
�

+
(x;y)

(xi � yi) ((f�)i(x)� (f�)i(y)) +
X

i2If�
�
(x;y)

(xi � yi) ((f�)i(x)� (f�)i(y))

� (1 + 4�)
X

i2If

+(x;y)

(xi � yi) ((f�)i(x)� (f�)i(y)) +
X

i2If�(x;y)
(xi � yi) ((f�)i(x)� (f�)i(y))

� � kx� yk2 + (1 + 4�)
X

i2If+(x;y)
(xi � yi) (fi(x)� fi(y)) +

X
i2If

�(x;y)

(xi � yi) (fi(x)� fi(y))

� � kx� yk2 ;

where the �rst two inequalities follow from the assumption that � � 0 and the fact that If�+ (x; y)

is nonempty, and the last inequality is given by the de�nition of P�(�) mapping.

To prove the suÆcient part of the lemma, let us assume that f�(x) is a P�(�; �) mapping for

any suÆciently small � > 0. Suppose that the statement of the lemma is false, i.e., f(x) is not

a P�(�) mapping. Then, from De�nition 2.4, we deduce that there exist x; y 2 <n such that

(1 + 4�)
X

i2If+(x;y)
(xi � yi) (fi(x)� fi(y)) +

X
i2If�(x;y)

(xi � yi) (fi(x)� fi(y)) < 0:
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Let us denote

�0 =
(1 + 4�)

P
i2If

+(x;y)
(xi � yi) (fi(x)� fi(y)) +

P
i2If�(x;y)(xi � yi) (fi(x)� fi(y))

kx� yk2
;

�1 = max
i2If

�(x;y)

(xi � yi)(fi(x)� fi(y))

kx� yk2
:

From their choices, one can easily verify that both �0 and �1 are negative. Let

�2 =
1

2
min

� ��0
1 + 4�

;��1
�
:

Obviously �2 > 0 holds. Let us de�ne f�2(x) = f(x) + �2x for any x 2 <n. For this speci�c

mapping f�2 , it is straightforward to check that If�2� (x; y) = If�(x; y) and hence If�2+ (x; y) =

If+(x; y). Therefore, one has

(1 + 4�)
X

i2If�2
+

(x;y)

(xi � yi) ((f�2)i(x)� (f�2)i(y)) +
X

i2If�2
�

(x;y)

(xi � yi) ((f�2)i(x)� (f�2)i(y))

= (1 + 4�)
X

i2If+(x;y)
(xi � yi) ((f�2)i(x)� (f�2)i(y)) +

X
i2If

�
(x;y)

(xi � yi) ((f�2)i(x)� (f�2)i(y))

= (1 + 4�)
X

i2If+(x;y)
(xi � yi) (fi(x)� fi(y)) +

X
i2If�(x;y)

(xi � yi) (fi(x)� fi(y))

+ (1 + 4�) �2
X

i2If+(x;y)
(xi � yi)

2 + �2

X
i2If

�(x;y)

(xi � yi)
2

� �0 kx� yk2 + (1 + 4�)�2 kx� yk2 � �0

2
kx� yk2 < 0;

where the �rst inequality is true since � � 0, and the last inequality follows from the choice

of �2. The above discussion means that the mapping f�2(x) is not a P�(�; �) mapping. This

contradicts to our assumption that f�(x) is a P�(�; �) mapping for any positive � > 0. Thus

f(x) must be a P�(�) mapping which completes the proof of the lemma. 2

Note that in the above proof, we indeed show that if f(x) is not a P�(�) mapping, then there is

a suÆciently small � > 0 such that f�(x) is not a P�(�) mapping. Since a P�(�; �) mapping is
obviously a P�(�) mapping, thus we obtain readily the following corollary.

Corollary 2.8 Let � be a nonnegative constant. Then a mapping f(x) : <n ! <n
is a P�(�)

mapping if and only if for any positive � > 0, the mapping f�(x) = f(x) + �x is a P�(�)
mapping.

One can prove the following results for P�(�) and P�(�; �) matrices similarly, by specifying the

mapping f(x) to f(x) =Mx+ q.

Corollary 2.9 Let � be a nonnegative constant. Then a matrix M 2 <n�n
is a P�(�) matrix

if and only if for any positive � > 0, the matrix M + �E is a P�(�) (or P�(�; �)) matrix.

We progress to present some relations between a di�erentiable P�(�) mapping and its Jacobian

matrix rf(x). One has
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Lemma 2.10 Suppose that f(x) : <n ! <n
is continuously di�erentiable and � � 0; � > 0.

If f(x) is a P�(�) (or P�(�; �)) mapping, then for any x 2 <n
, rf(x) is a P�(�) (or P�(�; �))

matrix.

Proof: We consider �rst the case for P�(�; �) mappings. To prove the statement of the lemma,
for any x; u 2 <n, let us consider a sequence

n
x+ 1

j
u : j = 1; 2; : : :

o
. Since f(x) is a P�(�; �)

mapping, there exist two sequences of index sets Ij+ := If+(x+ 1
j
u; x) and Ij� := If�(x+ 1

j
u; x)

such that

(1 + 4�)
X
i2Ij+

1

j
ui

�
fi(x+

1

j
u)� fi(x)

�
+
X
i2Ij

�

1

j
ui

�
fi(x+

1

j
u)� fi(x)

�
� �

j2
kuk2 :

By the �niteness of I, there exist two index sets I 0+(x; u) and I 0�(x; u) and a subsequence J

such that for all j 2 J , Ij+ = I 0+(x; u) and Ij� = I 0�(x; u) hold. Therefore, for any j 2 J , we

have

1

j
ui

�
fi(x+

1

j
u)� fi(x)

�
� 0; 8i 2 I 0+(x; u);

1

j
ui

�
fi(x+

1

j
u)� fi(x)

�
< 0; 8i 2 I 0�(x; u);

and

(1 + 4�)
X

i2I 0+(x;u)

1

j
ui

�
fi(x+

1

j
u)� fi(x)

�
+

X
i2I 0�(x;u)

1

j
ui

�
fi(x+

1

j
u)� fi(x)

�
� �

j2
kuk2 :

Taking the limits j !1 for j 2 J , we obtain

ui[rf(x)u]i � 0 (i 2 I 0+(x; u)); ui[rf(x)u]i � 0 (i 2 I 0�(x; u))

and

(1 + 4�)
X

i2I 0

+(x;u)

ui[rf(x)u]i +
X

i2I 0

�(x;u)

ui[rf(x)u]i � � kuk2

which implies that rf(x) is a P�(�; �) matrix. The proof for P�(�) mappings follows similarly.
2

In what follows we consider a converse case of the above lemma, namely discuss the properties of

a continuously di�erentiable mapping f(x) under the condition that rf(x) is a P�(�; �) matrix
for any x 2 <n. One has

Lemma 2.11 Suppose that f(x) : <n ! <n
is continuously di�erentiable and � � 0. If the

Jacobian matrix rf(x) is a P�(�; �) matrix with � > 0 for any x 2 <n
, then f(x) is a strict

P�(�) mapping.

Proof: The proof takes a similar recipe as that in [17] for P mapping. For self-completeness,

we give a detailed proof here. The proof is inductive. We �rst observe that the result is trivial

if n = 1. Hence we can assume hereafter that the statement holds for some n� 1 � 1.
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Suppose that rf(x) is a P�(�; �) matrix for any x 2 <n. Let us suppose that the statement of

the lemma is not true, i.e., there exist two points in x 6= y 2 <n such that

(1 + 4�)
X

i2If+(x;y)
(xi � yi) (fi(x)� fi(y)) +

X
i2If

�(x;y)

(xi � yi) (fi(x)� fi(y)) � 0: (2)

We �rst consider the case that there exists some i 2 I such that xi = yi. For simplicity we can

assume that i = n and consider the subfunction

hi(�1; � � � ; �n�1) = fi(�1; � � � ; �n�1; yn); i = 1; � � � ; n� 1:

Since rh(�1; � � � ; �n�1) is again a P�(�; �) matrix for any (�1; � � � ; �n�1) 2 <n�1, the induction
hypothesis implies that h is a strict P�(�) mapping in <n�1 and therefore for any x 6= y 2 <n

with some xi = yi for i 2 I, there holds

(1 + 4�)
X

i2If+(x;y)
(xi � yi) (fi(x)� fi(y)) +

X
i2If

�(x;y)

(xi � yi) (fi(x)� fi(y)) > 0: (3)

This relation contradicts to (2).

Thus it remains to consider the case that xi 6= yi for all i 2 I. For any �xed y 2 <n, let us

denote by 
y the set given by

fx 2 <n : (1 + 4�)
X

i2If+(x;y)
(xi�yi) (fi(x)� fi(y))+

X
i2If�(x;y)

(xi�yi) (fi(x)� fi(y)) � 0; x > yg:

We proceed to show that 
y is empty. Suppose to the contrary that 
y is nonempty. Let us

consider any convergent sequence xk 2 
y with x
k ! x. It follows readily x � y and

(1 + 4�)
X

i2If+(x;y)
(xi � yi) (fi(x)� fi(y)) +

X
i2If�(x;y)

(xi � yi) (fi(x)� fi(y)) � 0:

Now we have three cases, namely (i): x 6= y but xi = yi for some i 2 I; (ii): x = y; (iii): x > y.

The �rst case (i) is impossible since otherwise from the �rst part of our proof we already know

that inequality (3) holds if there are some xi = yi and x 6= y. If case (ii) holds, then one has

lim
k!1

1

kxk � yk
�
f(xk)� f(y)�rf(y)(xk � y)

�
= 0:

Let us denote �k = diag
�
x
k

1 � y1; x
k

2 � y2; � � � ; xkn � yn

�
, it follows

lim
k!1

1

kxk � yk2
�k

�
f(xk)� f(y)�rf(y)(xk � y)

�
= 0:

Observe that the sequence f x
k�y

kxk�ykg is bounded and thus has at least an accumulation point.

Without loss of generality, we can further assume that

lim
k!1

x
k � y

kxk � yk = u; kuk = 1:

Denote

If�(x; u) = fi 2 I : ui(rf(y)u)i < 0g; If+(x; u) = fi 2 I : ui(rf(y)u)i � 0g:

9



Then one can easily see that there exists a suÆciently large integer ~k such that for any k � ~k,

there hold

If�(xk; y) � If�(x; u); If+(xk; y) � If+(x; u):
Since � � 0, we have

lim
k!1

(1 + 4�)
P

i2If+(xk;y)(x
k

i
� yi)(fi(x

k)� fi(y)) +
P

i2If�(xk;y)(x
k

i
� yi)(fi(x

k)� fi(y))
kxk � yk2

� lim
k!1

(1 + 4�)
P

i2If+(u;y)(x
k

i
� yi)(fi(x

k)� fi(y)) +
P

i2If
�(u;y)

(xk
i
� yi)(fi(x

k)� fi(y))

kxk � yk2

= (1 + 4�)
X

i2If

+(u;y)

ui(rf(y)u)i +
X

i2If�(u;y)
ui(rf(y)u)i � � kuk2 = �;

where the last inequality is implied by the assumption in the lemma that rf is a P�(�; �) matrix
with � > 0. The above relation implies that for suÆciently large k, the inequality

(1 + 4�)
X

i2If

+(x
k;y)

(xki � yi)(fi(x
k)� fi(y)) +

X
i2If

�(x
k;y)

(xki � yi)(fi(xk)� fi(y)) > 0

holds, which contradicts to the assumption xk 2 
y. This implies that y doesn't belong to the

boundary of 
y. Our above discussion shows the cases (i) and (ii) are impossible. Hence only

case (iii) remains to deal with. In this situation, we have x 2 
y which further implies 
y is

closed. Let us de�ne

u = argminx2
y
kx� yk : (4)

If 
y is nonempty, then we know that u is (might not uniquely) well-de�ned. Moreover, for any

u satisfying relation (4), one can easily prove the following conclusion

if x 2 
y and x � u =) x = u: (5)

Since rf(u) is a P�(�; �) matrix and thus a P matrix, by Lemma 2.3 there is a vector h < 0

such that rf(u)h < 0. It follows immediately

lim
t!0

1

t
(f(u+ th)� f(u)) = rf(u)h < 0:

Since y < u 2 
y, one can choose suÆciently small t > 0 such that the relations u > u+ th > y

and f(u+ th)� f(u) < 0 hold. >From the continuity of f(x) it follows

(1 + 4�)
X

i2If+(u+th;y)

(ui + thi � yi) (fi(u+ th)� fi(y))

+
X

i2If

�(u+th;y)

(ui + thi � yi) (fi(u+ th)� fi(y)) < 0:

The above discussion means that y < u + th < u and u + th 2 
y for suÆciently small t > 0

which contradicts the statement (5). Hence case (iii) can't be true and this further implies that


y is empty.

Now suppose that x 6= y satis�es (2). Then xi 6= yi for any i 2 I; otherwise it will contradict
to the �rst part of the proof. Denote � = diag (sign (x1 � y1) ; � � � ; sign (xn � yn)), and let
~f(x) = �f(�x). Then for any x 2 <n, r ~f(x) is a P�(�; �) matrix since the diagonal matrix �

10



is nonsingular. Moreover, by the construction of ~f(x), the relations ~x = �x > �y = ~y hold. It

follows directly

(1 + 4�)
X

i2I ~f

+(~x;~y)

(~xi � ~yi)
�
~fi(~x)� ~fi(~y)

�
+

X
i2I ~f

�(~x;~y)

(~xi � ~yi)
�
~fi(~x)� ~fi(~y)

�

= (1 + 4�)
X

i2If+(x;y)
(xi � yi) (fi(x)� fi(y)) +

X
i2If�(x;y)

(xi � yi) (fi(x)� fi(y)) � 0;

which is a contradiction to the second part of our proof. From our above discussions we have

seen that for any x 6= y 2 <n, the inequality (2) does not hold. Therefore f(x) is a strict P�(�)
mapping. This completes the proof of the lemma. 2

Now we are ready to state one of the main results in this section which is a combination of

Lemma 2.10 and Lemma 2.11.

Lemma 2.12 Suppose that f(x) : <n ! <n
is continuously di�erentiable. Then f(x) is a

P�(�) mapping if and only if rf(x) is a P�(�) matrix for any x 2 <n
.

Proof: The necessary part of the lemma follows from Lemma 2.10. Hence it remains to prove

the suÆcient part. Since rf(x) is a P�(�) matrix for any x 2 <n, it is trivial to see that for

any � > 0 and x 2 <n, the matrix rf(x)+�E is a P�(�; �) matrix. Therefore, by Lemma 2.11,
we deduce that the mapping f(x) + �x is a P�(�) mapping for any � > 0. Now let us recall

Corollary 2.8, one can conclude that f(x) is a P�(�) mapping. This completes the proof of the
lemma. 2

Our above lemma clarify some unclear arguments in the de�nition of P�(�) mappings in the

literature.

In the rest of this section we discuss the existence of the central path for nonlinear P�(�) CPs.
For this we �rst impose two assumptions on the considered CP which will be used throughout

this paper.

A.1 Interior Point Condition: there exists a known point (x0; s0) which satis�es

s
0 = f(x0); (x0; s0) > (0; 0):

A.2 f is a continuously di�erentiable P�(�) mapping with � � 0.

We remark that these assumptions are quite general and mild assumptions in the IPM literature

for CPs. The class of P�(�) CPs is a rather general class of CPs which covers CPs with P and

monotone mappings. In the case of LCPs, it reduces to class of LCPs introduced by [12] which

is to date the largest set of LCPs that could be solved by IPMs in polynomial time. Assumption

A.1 is generally required in the study of feasible IPMs for CPs. It is worthwhile to point out that

for monotone CPs, by using an augmented homogeneous model described by Andersen and Ye

in [1], we can always get a strictly feasible point for the reconstructed CP. For P�(�) LCPs, one
can apply the big-M method introduced in the monograph [12] to get a strictly feasible initial

point. However, as observed by Peng, Roos and Terlaky [20], Andersen and Ye's homogeneous

model can not be applied to a P�(�) CP since there is no guarantee that the new formulated CP

11



is still in the class of P�(�) CPs. We also mention that as shown by Zhao and Li (Theorem 4.2

in [26]), a P�(�) complementarity problem is strictly feasible if and only if its solution set is

nonempty and bounded.

We now progress to show that the central path exists uniquely if the considered CP satis�es

Assumptions A.1 and A.2. For this let us �rst introduce some de�nitions and notations.

De�nition 2.13 A mapping f(x) : <n ! <n
is said to be a P0 mapping if for every x; y 2 <n

with x 6= y, there exists an index i 2 I such that

xi � yi 6= 0 and (xi � yi) (fi(x)� fi(y)) � 0:

Let D be a subset of <2n and de�ne

r(x; s) := s� f(x); r(<2n
++) := fu 2 <n : u = s� f(x); (x; s) 2 <2n

++g;
F (x; s) := (xs; r(x; s)); F�1(D) := f(x; s) 2 <2n

+ : F (x; s) 2 Dg:

In the paper [11], the authors showed that the central path exists if the CP satis�es A.1 and

the conditions below:

#A.1 The set F
�1(D) is bounded for every compact subset D of <n

+ � r(<2n
++).

#A.2 f is a P0 mapping.

Since a P�(�) mapping is obviously a P0 mapping, the condition #A.2 is implied by A.2. In

what follows we will show that the condition #A.1 holds under the assumptions A.1 and A.2.

Lemma 2.14 If a CP satis�es the conditions A.1 and A.2 then the condition #A.1 holds as

well.

Proof: The proof is very similar to Section 3 of [11], for self-completeness, we write it out

here. Suppose that the set F�1(D) is unbounded for a compact subset D of <n

+�r(<2n
++). Then,

we can take a sequence f(xk; sk) : k = 1; 2; : : :g � <2n
+ such that limk!1 k(xk; sk)k = 1 and

limk!1(sk � f(xk)) = �u 2 D. Since r(<2n
++) is an open subset of <n, we can �nd a vector

~u 2 r(<2n
++) such that sk � f(xk) � ~u for every suÆciently large k. In addition, the de�nition

of r(<2n
++) ensures the existence of an (~x; ~s) 2 <2n

++ satisfying ~s � f(~x) = ~u. Because the set

f(xksk; sk � f(xk)) : k = 1; 2; : : :g � D is bounded, we can �nd positive numbers � and � such

that the following inequalities

(1 + 4�)
X

i2If

+(x
k;~x)

x
k

i s
k

i +
X

i2If�(xk;~x)
x
k

i s
k

i � (1 + 4�)n max
i2I

fxki ski g � �

and

(1 + 4�)
X

i2If+(xk;~x)
~xi

�
s
k

i
� fi(x

k)� ~ui + ~si

�
+

X
i2If�(xk;~x)

~xi

�
s
k

i
� fi(x

k)� ~ui + ~si

�

� (1 + 4�)n max
i2I

n
~xi

�
s
k

i
� fi(x

k)� ~ui + ~si

�o
� �

12



hold. Since ~s� ~u = f(~x), by a simple calculation, we have

(xk
i
� ~xi)

�
fi(x

k)� fi(~x)
�

= (xk
i
� ~xi)

�
s
k

i
� (sk

i
� fi(x

k)� ~ui + ~si)
�

= x
k

i
s
k

i
� ~xis

k

i
� xk

i

�
s
k

i
� fi(x

k)� ~ui + ~si

�
+ ~xi

�
s
k

i
� fi(x

k)� ~ui + ~si

�
for each i 2 I. Using the facts xk � 0 and sk � f(xk)� ~u � 0, for each i 2 I, we deduce

x
k

i
s
k

i
� ~xis

k

i
� xk

i

�
s
k

i
� fi(x

k)� ~ui + ~si

�
+ ~xi

�
s
k

i
� fi(x

k)� ~ui + ~si

�
� x

k

i
s
k

i
� ~xis

k

i
� x

k

i
~si + ~xi

�
s
k

i
� fi(x

k)� ~ui + ~si

�
:

>From the above observations it follows directly that

0 � (1 + 4�)
X

i2If+(xk;~x)
(xk

i
� ~xi)

�
fi(x

k)� fi(~x)
�
+

X
i2If

�
(xk;~x)

(xk
i
� ~xi)

�
fi(x

k)� fi(~x)
�

� (1 + 4�)
X

i2If+(xk;~x)

n
x
k

i s
k

i � ~xis
k

i � x
k

i ~si + ~xi

�
s
k

i � fi(x
k)� ~ui + ~si

�o

+
X

i2If�(xk;~x)

n
x
k

i
s
k

i
� ~xis

k

i
� x

k

i
~si + ~xi

�
s
k

i
� fi(x

k)� ~ui + ~si

�o

� � + �

�

0
B@(1 + 4�)

X
i2If+(xk;~x)

~xis
k

i +
X

i2If

�(x
k;~x)

~xis
k

i

1
CA

�

0
B@(1 + 4�)

X
i2If+(xk;~x)

x
k

i ~si +
X

i2If

�(x
k;~x)

x
k

i ~si

1
CA

� � + � �
�
~xT sk + (xk)T ~s

�
;

and hence

~xT sk + (xk)T ~s � � + �

for every suÆciently large k. Since (xk; sk) 2 <2n
+ (k = 1; 2; : : :), the above inequality implies

that the sequence f(xk; sk)g lies in the bounded set f(x; s) 2 <2n
+ : ~xT s+ x

T ~s � � + �g. This
contradicts the assumption limk!1 k(xk; sk)k =1 and the proof is completed. 2

The following result is a direct consequence of Lemma 2.14 and Lemma 4.2 in [11].

Proposition 2.15 Suppose that a CP satis�es assumptions A.1 and A.2. Then the central

path of the underlying CP exists.

3 New Interior-Point Methods for P�(�) CPs

In the present section we introduce some new IPMs for solving P�(�) CPs. These new IPMs are

based on the so-called self-regular functions and self-regular proximities introduced in [22]. We

start with the basic de�nition of a univariate self-regular function.
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De�nition 3.1 A univariate function  (t) : <++ ! <++ is said to be self-regular if it satis�es

the following two conditions:

C.1  (t) is strongly convex with respect to t > 0 and vanishes at its global minimal point t = 1,

i.e.,  (1) =  
0(1) = 0. Further, there exist positive constants �1; �2 > 0 and p � 1, q � 1

such that

�1(t
p�1 + t

�1�q) �  
00(t) � �2(t

p�1 + t
�1�q); 8t 2 (0;1): (6)

C.2 For any t1; t2 > 0,

 (t1t2) �
1

2
( (t21) +  (t22)): (7)

Here the parameters p and q are called the growth degree and the barrier degree of the function

 (t), respectively. A typical family of self-regular functions is given by

�p;q(t) =
1

p(p+ 1)

�
t
p+1 � 1

�
+

1

q(q � 1)

�
t
1�q � 1

�
+
p� q

pq
(t� 1) ; p; q � 1: (8)

It is worth to mention that the function �p;q(t) satis�es condition C.1 with �1 = �2 = 1.

To facilitate our discussion about new IPMs, we need to introduce more notations. First we

remind the reader that whenever no confusion is possible, for convenience we will use capital

syllables to denote the diagonal matrix obtained from a vector; for instance D = diag (d). For

every (x; s) > 0 and � > 0, we de�ne8>>>><
>>>>:

v :=
q

xs

�
;

vmin := minfvi : i 2 Ig;
vmax := maxfvi : i 2 Ig:

(9)

As in [22], we de�ne the proximity for CP by

	(xs; �) := 	(v) =

nX
i=1

 (vi): (10)

Correspondingly we say the proximity 	(v) is self-regular if its kernel function  (t) is self-regular.

Let us de�ne

� := kr	(v)k: (11)

The following proposition collects some basic features of the function 	(v) which is a copy of

Proposition 3.3 in [22]. For ease of reference, we quote it here without proof.

Proposition 3.2 Let the proximity 	(v) be de�ned by (10). Then there holds

	(v) � �
2

2�1
; (12)

vmin �
�
1 +

q�

�1

�� 1

q

; (13)

and

vmax �
�
1 +

p�

�1

� 1

p

: (14)

14



If vmax > 1 and vmin < 1, then

� � �1

 
(vpmax � 1)2

p2
+
(v
�q
min � 1)2

q2

!1

2

: (15)

For any # > 1,

	(#v) � �2

�1

�
#
p+1	(v) + #�0

p;q
(#)
q
2n�1	(v) + n�1�p;q(#)

�
: (16)

The functions  (t) and 	 have many fascinating properties which are quite helpful in the analysis

of IPMs. We refer the reader to Section 2 of [22] for most of these interesting features.

Denote Fo

CP
the strictly feasible set of CP, i.e.,

Fo

CP
:= f(x; s) 2 <2n

++ : s = f(x)g:

Our algorithm generates a sequence in the neighborhood N (�; �) de�ned by

N (�; �) = f(x; s) 2 Fo

CP
;	(x; s; �) � �g: (17)

For simpli�cation of expression, we de�ne

f(x+ ��x) := (f1(x+ �1�x); : : : ; fn(x+ �n�x))
T
;

rf(x+ ��x) := (rf1(x+ �1�x); : : : ;rfn(x+ �n�x))
T
:

We further impose the following conditions on the nonlinear mapping f .

A.3 There exist a constant L � 0 such that for any (x; s) 2 Fo

CP
; �x 2 <n

and any vector

� 2 <n

+ satisfying x+ k�k1�x > 0, the inequality





v
s
(rf(x+ ��x)�rf(x))�x





 � Lk�k1




v
s
rf(x)�x





 (18)

holds.

We mention that closely related Assumption A.3 is another condition:

#A.3 



v
s

�
f(x+ ��x)� f(x)

�
�rf(x)�x

�



 � �L




v
s
rf(x)�x





 (19)

for any (x; s) 2 Fo

CP
; �x 2 <n

and any positive number � 2 <++ satisfying x+��x > 0.

By Taylor's expansion, we can easily see that the inequality (19) is satis�ed if Assumption A.3

holds. Thus Assumption #A.3 is slightly weaker than Assumption A.3. However, Assumption

A.3 is more suitable for the analysis of our new IPMs based on self-regular proximities which

are characterized by their second derivatives. It is worth to point out that Assumption A.3 is

satis�ed automatically for any LCP. Nevertheless, one can see that these two assumptions are

essential equivalent in <1.
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It deserves to mention that in the paper [9], the authors essentially assumed that the relation (19)

holds for all the points in a speci�c neighborhood of the central path1 . Thus, the condition 3.2

in [9] might be slightly weaker than assumption #A.3 to some extent. However, it should be

noted that some constants in condition 3.2 of [9] might depend on the mapping f(x) and the

neighborhood of the central path as well. Therefore it is much more diÆcult to estimate these

constants. At last we also notice that relation (18) can be viewed as a kind of relative Lipschitz

condition for the Jacobian rf(x).

We proceed to describe the new algorithm for CPs which is an extension of the large update

primal-dual algorithm for LO proposed in [22]. Starting from a strictly feasible point, the

algorithm generates a strictly feasible sequence in the neighborhood N (�; �) given by (17).

Thus, at each iterate, we will check whether the iterate is in the neighborhood N (�; �). If the

answer is `no', then we solve the following Newton-type system

�rf(x)�x+�s = 0 (20)

s�x+ x�s = ��vr	(v) (21)

to get a new search direction. Since the matrix H = �rf(x) is a P�(�) matrix, it is guaranteed
that the system has a unique solution for every r	(v) (see, e.g., [12]). As we will see later,

by progressing properly along this search direction we will be able to reduce the value of the

proximity. This procedure is repeated until the iterate enters the neighborhood N (�; �) again.

If the present iterate is in N (�; �), then one reduces the barrier parameter � by a constant ratio.

The above process will be redone until the iterate is in the neighborhood and the parameter �

becomes suÆciently small.

For the displacement �x, let us de�ne

x(�) := x+ ��x; s(�) := f(x+ ��x): (22)

Similarly to the LO case, we require that the step size � should be taken so that the proximity

measure function 	 decreases suÆciently. A default bound for such a step size � will be given

later by (49). The general procedure of our algorithm can be described as follows.

Large Update Primal{Dual Algorithm for CP

Input

A proximity parameter � > �
�1
1 ;

an accuracy parameter " > 0;

a �xed barrier update parameter �, 0 < � < 1;

(x0; s0) and �0 = (x0)T s0=n such that 	(x0; s0; �0) � � .

begin

x := x
0; s := s

0;

while n� > " do

� := (1� �)�;

while 	(x; s; �) � � do

Solve the system (20) { (21) and compute �x and �s;

Compute a step size � > 0 and let x := x(�) and s := s(�);

end
end

end.

1 Note that the equation (12) in Condition 3.2 of [9] includes a typo. The factor � in the right hand side should

be �
2 and then equation (13) is correct.
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Remark 3.3 In the algorithm, we can update the parameter � by two di�erent ways which

depend on the choice of the constant �. The �rst one is to choose � as a number independent

of the problem, for instance � = 0:9. In such a case, we call the algorithm a large-update IPM.

If the constant � is chosen according to the dimension of the problem, e.g. � = 1p
n
, then the

algorithm is named as a small-update IPM. In this paper, we will focus only on large-update

IPMs which are much more eÆcient in practice than small-update IPMs.

Remark 3.4 In the algorithm we always assume that vmax > 1. This is because when vmax � 1,

we can reduce the value of the proximity in the algorithm (or stay in a certain neighborhood of

the central path) by appropriately reducing �. In such case we even do not need to solve the

Newton-type system.

4 Complexity of the algorithm

This section is devoted to estimating the complexity of the algorithm. The section consists

of three parts. In the �rst subsection, we will present some bounds for the norm of the search

direction and the maximal feasible step size. In the second subsection we estimate the decrement

of the proximity for a feasible step size. Finally, we summarize the complexity of the algorithm

in the last subsection.

4.1 Ingredients for estimating the proximity

In this section, we provide certain ingredients that are used for estimating the proximity. We

start by introducing some notations. For each � > 0 and � 2 <n, let us de�ne

�s(�) :=
1

�
(f(x+ ��x)� f(x)); (23)

dx :=
v

x
�x; ds :=

v

s
�s; (24)

ds(�) :=
v

s
�s(�); (25)

rds(�) :=
1

�

�
v

s
rf(x+ ��x)�x

�
; (26)

rds(�) := ([rds(�1)]1; [rds(�2)]2; : : : ; [rds(�n)]n)T (27)

or equivalently [rds(�)]i :=
1

�i

�
vi

si
rfi(x+ �i�x)�x

�
:

Note that the functions �s(�) and ds(�) are not de�ned at � = 0. However, one can easily see

that these two de�nitions can be extended to the case � = 0 as

�s(0) := lim
�!0

�s(�) = rf(x)�x; ds(0) := lim
�!0

ds (�) =
v

s
rf(x)�x: (28)

It should be noticed that, by using the notations introduced by (24), we can rewrite the system

(20) { (21) as

��fdx + ds = 0; dx + ds = �r	(v) (29)

where �f := �V S
�1rf(x)V S�1. Note that the choice of 	(v) is completely independent of the

mapping f(x). Therefore, in the rest of the paper, we assume that 	(v) is self-regular. The

following lemma about P�(�) matrices is precisely the same as Lemma 3.4 in [12], we copy it

here for purpose of ease reference.
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Lemma 4.1 A matrix M is a P�(�) matrix if and only if for any positive de�nite diagonal

matrix �, and any �x;�s; h 2 <n
, the relations

��1�x+��s = h; �s =M�x

always imply

�xT�s � �� khk2 :

Now let us recall de�nition (11) of �. By using the above lemma and following an analogous

discussion as that in the proof of Lemma 3.1 in [9], one can readily obtain the following results

which present some bounds for the search direction in various scaled spaces.

Lemma 4.2 Suppose that Assumption A.2 holds. Let (�x;�s) be the unique solution of the

system (20)-(21) and (dx; ds) be the corresponding solution of the system (29) in the scaled

v-space. Then we have

(i) ���2 � �xT�s
�

= d
T

x
ds � 1

4�
2
,

(ii) kdxdsk1 = 1
�
k�x�sk1 � 1

4(1 + �)�2,

(iii) kdxk2 + kdsk2 = kdx + dsk2 � 2dTx ds � (1 + 2�)�2,

(iv) kx�1�xk = kv�1dxk � 1
vmin

kdxk �
p
1+2�
vmin

�,

(v) ks�1�sk = kv�1dsk � 1
vmin

kdsk �
p
1+2�
vmin

�.

Let us de�ne

�̂ := min

�
1;

vmin

�
p
1 + 2�

�
: (30)

It follows from result (iv) of Lemma 4.2 that x + ��x > 0 for all � 2 [0; �̂). In light of the

de�nition of rds(�) in (26), rds(�) can be represented by

rds(�) =
1

�

@

@�
(�ds(�)) (31)

and the equation (18) in Assumption A.3 can be expressed as

k�rds(�)� dsk � Lk�k1 kdsk: (32)

The following result follows directly from the the above observations.

Lemma 4.3 Suppose that Assumption A.3 holds. Then

(i) k�rds(�)k � (1 + �L)kdsk � (1 + L)kdsk;

(ii) k�ds(�)k � �(1 + �L)kdsk � �(1 + L)kdsk

for every � 2 [0; �̂); �̂ � 1 and every vector � satisfying 0 � � � �e,
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Proof: Assertion (i) directly follows from (32) and the relation that � � �̂ � 1. To con�rm

assertion (ii), we observe that for any i 2 I, via using Taylor's series expansion, one can deduce

[�ds(�)]i =
vi

si
(fi(x+ �i�x)� fi(x))

=
vi

si
(fi(x) + �irfi(x+ �

0
i
�x)�x� fi(x))

=
vi

si
�irfi(x+ �

0
i�x)�x

= �i[�
0rds(�0)]i;

where �0
i
2 (0; �i). Since �

0
i
< �i � � for all i 2 I, it follows from (i) that

k�ds(�)k = k�(�0rds(�0))k � k�k1


�0rds(�0)



� �k�0rds(�0)k � �(1 + �L)kdsk:

This completes the proof of Assertion (ii). 2

Note that the constant �̂ has already provided a lower bound for a step size to keep the feasibility

of x(�) = x+��x. However, we do not know whether for all � 2 (0; �̂), the displacement s(�)

is strictly feasible as well. In what follows we will estimate the growth behavior of the norm of

s(�) for all � 2 (0; �̂). This further gives a lower bound for a strictly feasible step size for both

x(�) and s(�). By combining Lemma 4.2, Lemma 4.3 and Proposition 3.2 together, we obtain

the following result:

Lemma 4.4 Suppose that Assumptions A.2 and A.3 hold and that the function 	(v) given by

(10) is self-regular. Then for any � 2 (0; �̂), there holds

k(x�1�x; s�1�s(�))k = k(v�1dx; v�1ds(�))k � ���1 �
p
1 + 2�(1 + L)�

�
1 +

q�

�1

� 1

q

where

�� =
�̂

1 + L : (33)

Further, the maximal step size �max � ��.

Proof: By the de�nition (24), we see that

k(x�1�x; s�1�s)k = k(v�1dx; v�1ds)k
� 1

vmin

q
kdxk2 + kdsk2

� �
p
1 + 2�

vmin

� �

�
1 +

q�

�1

� 1

q p
1 + 2�

where the second and third inequalities follow from (iii) of Lemma 4.2 and Proposition 3.2,

respectively. Since

kds(�)k � (1 + L)kdsk
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for every � 2 (0; �̂), from result (ii) of Lemma 4.3 and Proposition 3.2 it follows that

k(x�1�x; s�1�s(�))k = k(v�1dx; v�1ds(�))k
� 1

vmin

q
kdxk2 + kds(�)k2

� 1

vmin

q
kdxk2 + (1 + L)2kdsk2

� 1

vmin
(1 + L)

q
kdxk2 + kdsk2

�
p
1 + 2�(1 + L) � �

vmin

�
p
1 + 2�(1 + L) �

�
1 +

q�

�1

� 1

q

for every � 2 (0; �̂). Note that a step size � is feasible if and only if both x + ��x � 0 and

s+ ��s(�) � 0 hold. This gives the last statement of the lemma. 2

Note that because L � 0, obviously �� � �̂ holds.

4.2 Estimate of the proximity after a step

We are going to estimate the decrement of the proximity for a feasible step size. First let us

de�ne

v(�) :=

s
x(�)s(�)

�
=
q
(v + �dx)(v + �ds(�)) =

q
v2(e+ �v�1dx)(e + �v�1ds(�)) (34)

Since the proximity after one feasible step is de�ned by 	(v(�)), to estimate the decrement of

the proximity for a step size �, it suÆces to consider the gap of the proximities before and after

one step which is de�ned as a function of the step size �:

�	(�) := 	(v(�)) �	(v): (35)

Because the function 	(v) is self-regular, from condition C.2 it follows directly

�	(�) =

nX
i=1

( (vi(�)) �  (vi))

� �	(v) + 1

2

nX
i=1

( (vi + �[dx]i) +  (vi + �[ds(�)]i):

For any i 2 I, let us de�ne
wi(�) :=  (vi + �[ds(�)]i):

Obviously

wi(�) = wi(0) + �w
0
i
(0) +

Z
�

0
(w0

i
(�)� w

0
i
(0))d�

holds. Moreover, by simple calculus and using the notations de�ned by (25),(26) and the relation

(28), one can directly check that the terms in the previous equation can be written as

wi(0) =  (vi);

w
0
i
(�) =  

0(vi + �[ds(�)]i)[�rds(�)]i
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=  
0(vi + �[ds(�)]i)

�
v

s
rf(x+ ��x)�x

�
; (36)

w
0
i
(0) =  

0(vi)
�
v

s
rf(x)�x

�
=  

0(vi)[ds]i: (37)

Thus we obtain that

 (vi + �[ds(�)]i) =  (vi) + � 
0(vi)[ds]i +

Z
�

0
(w0

i
(�)� w

0
i
(0))d�:

Similarly, we have

 (vi + �[dx]i) =  (vi) + � 
0(vi)[dx]i +

Z
�

0
(r0

i
(�)� r

0
i
(0))d�

where

ri(�) :=  (vi + �dx):

Therefore, from (10), (11) and (29), we conclude that the summation is given by

nX
i=1

( (vi + �[dx]i) +  (vi + �[ds(�)]i)) =

nX
i=1

 (vi) + �

nX
i=1

 
0(vi)[dx + ds]i +�	1(�)

= 	(v)� �kr	(v)k2 +�	1(�)

= 	(v)� ��
2 +�	1(�); (38)

where

�	1(�) :=

nX
i=1

Z
�

0
(r0i(�)� r

0
i(0))d� +

nX
i=1

Z
�

0
(w0i(�)� w

0
i(0))d�

=

Z
�

o

 
nX

i=1

(r0i(�)� r
0
i(0)) +

nX
i=1

(w0i(�)� w
0
i(0))

!
d�

An important step in the estimation of the value �	1(�) is to estimate the derivatives r0
i
(�)

and w0
i
(�). This is done in the following lemma.

Lemma 4.5 Suppose that Assumptions A.2 and A.3 hold and that the proximity 	(v) is self-

regular. Then for any � 2 (0; ��), we have

(i)

max
i2I

f 00(vi + �[dx]i);  
00(vi + �[ds(�)]i)g � !(�)

where

!(�) := �2

n
(vmax + �

p
1 + 2�(1 + L)�)p�1 + (vmin � �

p
1 + 2�(1 + L)�)�q�1

o
; (39)

(ii)

nX
i=1

(r0i(�)� r
0
i(0)) +

nX
i=1

(w0i(�)� w
0
i(0)) � �3�

2
Z

�

0
!(�)d�

where

�3 :=
n
(1 + �)(1 + L)2 +

p
1 + 2� L

on
1 +

p
1 + 2�(1 + L)

o
: (40)
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Proof: (i): By Lemma 4.4 and the assumption on � we know that the step size in the lemma

satis�es (v + �[dx]; v + �[ds(�)]) > 0. Since the proximity 	(v) is self-regular, from condition

C.1 we obtain

 
00(vi + �[dx]i) � (vi + �[dx]i)

p�1 + (vi + �[dx]i)
�q�1

;

 
00(vi + �[ds(�)]i) � (vi + �[ds(�)]i)

p�1 + (vi + �[ds(�)]i)
�q�1

:

Note that the result (iii) of Lemma 4.2 and result (ii) of Lemma 4.3 ensure that

�kdxk � ��
p
1 + 2�; �kds(�)k � ��(1 + L)

p
1 + 2�:

Combining the above relations together we get the desired assertion (i).

We proceed to consider the assertion (ii). For this we �rst prove the following inequality

nX
i=1

(r0
i
(�)� r

0
i
(0) + w

0
i
(�)� w

0
i
(0)) � �

n
(1 + 2�)(1 + L)2!(�) +

p
1 + 2� L

o
�
2
: (41)

By using (36), (37) and the mean-value theorem [23], we obtain

nX
i=1

(w0i(�) � w
0
i(0)) =

nX
i=1

�
( 0(vi + �[ds(�)]i)(�[rds(�)]i)�  

0(vi)[ds]i
	

=

nX
i=1

�f( 0(vi + �[ds(�)]i)�  0(vi)g(�[rds(�)]i) +  
0(vi)(�[rds(�)]i � [ds]i)

	

=

nX
i=1

�
� 

00(vi + ��i[ds(��i)]i)(�i[rds(�i)]i)(�[rds(�)]i) +  
0(vi)(�[rds(�)]i � [ds]i)

	

for some 0 � � = (�1; �2; � � � ; �n)T ; �� = (��1; � � � ; ��n)T � �e. Now, by making use of assertion (i)

and applying the Cauchy{Schwarz inequality to the vectors  0(v) and �rds(�)� ds, we obtain
nX

i=1

�
� 

00(vi + ��i[ds(��i)]i)(�i[rds(�i)]i)(�[rds(�)]i) +  
0(vi)(�[rds(�)]i � [ds]i)

	

� �!(�)

nX
i=1

j�i[rds(�i)]ij � j�[rds(�)]ij+
nX

i=1

j 0(vi)j � j�[rds(�)]i � [ds]ij

� �!(�) k�[rds(�)]k � k�[rds(�)]k + kr	(v)k � k�rds(�) � dsk: (42)

From Assumption A.3 and Lemma 4.3 we conclude that

k�[rds(�)]k � k�[rds(�)]k � (1 + L)2kdsk2;

and

kr	(v)k � k�rds(�)� dsk � � � �Lkdsk:
The above two inequalities, combined with (42) further imply

nX
i=1

(w0i(�) � w
0
i(0)) � �(1 + L)2!(�)kdsk2 + � � �Lkdsk: (43)

Similarly, we can prove that

nX
i=1

(r0i(�)� r
0
i(0)) � �!(�)kdxk2: (44)
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Recalling the inequalities

kdxk2 + kdsk2 � (1 + 2�)�2;

kdsk �
p
1 + 2��;

from Lemma 4.2 and substituting them into (43) and (44), we obtain readily the following

relation

nX
i=1

�
r
0
i
(�) � r

0
i
(0) + w

0
i
(�) � w

0
i
(0)
�

� �!(�)kdxk2 + �(1 + L)2!(�)kdsk2 + � � �Lkdsk
� �(1 + 2�)(1 + L)2!(�)�2 + �L

p
1 + 2��2;

which gives (41).

Now let us turn to assertion (ii). First we observe that from (41) and the fact !(�) � 1 whenever

vmax � 1 it follows directly

nX
i=1

(r0i(�)� r
0
i(0)) +

nX
i=1

(w0i(�) � w
0
i(0)) � �

n
(1 + 2�)(1 + L)2 +

p
1 + 2� L

o
!(�)�2: (45)

By de�nition (39), we can see that

!
0(�) =

p
1 + 2�(1 + L)�(p� 1)(vmax + �

p
1 + 2�(1 + L)�)p�2

�
p
1 + 2�(1 + L)�(q + 1)(vmin + �

p
1 + 2�(1 + L)�)�q�2

�
p
1 + 2�(1 + L)�(p� 1)(vmax + �

p
1 + 2�(1 + L)�)p�2:

Since vmax � 1 and � � �� � �
�1 (see Lemma 4.4), there holds

@

@�
�!(�) = !(�) + �!

0(�)

� !(�) + �
p
1 + 2�(1 + L)�(p� 1)

�
vmax + �

p
1 + 2�(1 + L)�

�
p�2

� !(�) +
p
1 + 2�(1 + L)(p� 1)

�
vmax + �

p
1 + 2�(1 + L)�

�
p�2

� !(�) +
p
1 + 2�(1 + L)(p� 1)!(�)

= f1 +
p
1 + 2�(1 + L)(p� 1)g!(�):

Combining the above with (45), we obtain the desired assertion (ii). 2

We progress to discuss the decreasing behavior of 	(�) for a strictly feasible step size �. By

(38) and Lemma 4.5, we see that

�	1(�) � ��2�+ �3�
2
Z

�

0

Z
�

0
!(�)d�d� := �	2(�): (46)

Since the function �	2(�) is strictly convex and twice di�erentiable for a 2 [0; ��). Further it is

easy to see that the function �	2(�) is decreasing at � = 0 and increases to in�nity as � goes

to ��. Therefore, it attains its global minimum at its unique stationary point �� which satis�es

0 = �� + �3

�
�2

p
((vmax + �

�
�4�)

p � v
p

max) +
�2

p
((vmin + �

�
�4�)

�q � v
�q
min)

�
; (47)

where

�4 =
p
1 + 2�(1 + L): (48)

The next lemma gives us a lower bound of the minimal solution of ��.
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Lemma 4.6 Let �
�
be the solution of (47). Suppose that 	(v) � �

�1
1 and vmax > 1. Then

�
� � �5�

� q+1

q (49)

where

�5 :=
1

�4
min

 
�1

2�1�3 + p(�1 + 2�3)
;

�
2
1

(1 + �1)f2�1�3 + q(�1 + 2�3)g

!
(50)

and �3 and �4 are de�ned by (40) and (48) respectively.

Some special cases are as follows:

(i) If � = L = 0, i.e., the CP is linear and monotone, then �3 = 2, �4 = 1 and

�
� � min

 
�1

4�1 + p(�1 + 4)
;

�
2
1

(1 + �1)f4�1 + q(�1 + 4)g

!
�
� q+1

q :

(ii) If the proximity  (v) used in the algorithm is de�ned by the function  (t) = �p;q(t) given

by (8) with �1 = �2 = 1, then

�
� � min

�
1

2�3 + p(1 + 2�3)
;

1

4�3 + q(2 + 4�3)g

�
�
� q+1

q :

(iii) Under both of the assumptions in (i) and (ii),

�
� � min

�
1

5p+ 4
;

1

10q + 8

�
�
� q+1

q :

Proof: Let us de�ne

w1(�) = �
�

2
+
�3

p
((vmax + ��4�)

p � v
p

max)

and

w2(�) = �
�

2
+
�3

p
((vmin � ��4�)

�q � v
�q
min):

It is easy to see that both w1(�) and w2(�) are increasing functions of � for � 2 [0; ��). Moreover,

one can readily check that the equation w1(�1) = 0 has the unique solution at the point

�
�
1 =

vmax

�4�

 �
1 +

p�

2�3v
p

max

� 1

p � 1

!

and w2(�2) = 0 whenever

�
�
2 =

vmin

�4�

0
@(1�

 
1 +

q�v
q

min

2�3

!� 1

q

1
A :

Similarly to the proof of Lemma 3.11 in [22], one can verify that

�
�
1 �

�1

�4f2�1�3 + p(�1 + 2�3)g
�
�1
;

and

�
�
2 �

�
2
1

�4(1 + �1)f2�1�3 + q(�1 + 2�3)g
�
� q+1

q :
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Since equation (47) is equivalent to

w1(�
�) + w2(�

�) = 0;

�
� should satisfy

�
� � minf��1; ��2g;

and thus result (i) follows immediately from the fact � � 1. By specifying the parameter �1; �2
in case that  (t) = �p;q(t), we easily obtain results (ii) and (iii). 2

Remark 4.7 It should be noted that the step size � should be bounded by � � �
�1
( Lemma 4.5).

However, we can see that the lower bound of �
�
satis�es the restriction since the assumption

	(v) � �
�1
1 implies � � 1. Also, Lemma 4.4 ensures that the positivity of v(�) holds at the

lower bound �
�
. Thus all of the above discussions are consistent.

By a similar discussion as in the proof of Theorems 3.8 of [22], we obtain the following theorem:

Theorem 4.8 Let the function �	(�) be de�ned by (35) with �	(v) � �
�1
1 . Then the step

size �
�
de�ned by (49) is feasible. Moreover it holds

�	(��) � ��5
4
�

q�1

2q � ��5�
q�1

2q

1

4
	(v)

q�1

2q :

Here �5 is de�ned by (50). Some special cases are as follows:

(i) If � = L = 0, i.e., the CP is linear and monotone, then �3 = 2, �4 = 1 and

�	(��) � �1

4
min

 
�1

4�1 + p(�1 + 4)
;

�
2
1

(1 + �1)f4�1 + q(�1 + 4)g

!
�

q�1

2q :

(ii) If the proximity  (v) used in the algorithm is de�ned by the function  (t) = �p;q(t) with

�1 = �2 = 1, then

�	(��) � �1

4
min

�
1

2�3 + p(1 + 2�3)
;

1

4�3 + q(2 + 4�3)g

�
�

q�1

2q :

(iii) Under both of the assumptions in (i) and (ii),

�	(��) � �1

4
min

�
1

5p+ 4
;

1

10q + 8

�
�

q�1

2q :

4.3 Complexity of the algorithm for CP

We summarize the complexity of the algorithm in this last subsection. Suppose that the present

iterate is in the neighborhood N (�; �), i.e., 	(v) � � . Then the algorithm will update the

parameter � by � := (1 � �)�. Note that after such a update, the proximity 	(v) might

increase. As we showed in [22] (see also inequality (16)), the proximity after the update is still

bounded above by

	(v) �  0(�; �; n);

where

 0(�; �; n) :=
�2�

�1(1� �)
p+1

2

+ �2�
0
p;q

�
(1� �)�

1

2

�s 2n�

�1(1� �)
+ n�2�p;q

�
(1� �)�

1

2

�
: (51)

By using Theorem 4.8 directly and following a similar procedure as the discussion in Section 3.4

of [22], we can get the following results step by step.
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Lemma 4.9 Let 	(xs; �) � � and � � �
�1
1 . Then after an update of the barrier parameter no

more than 2
6666
8q�

� q�1

2q

1

�5(q + 1)
( 0(�; �; n))

q+1

2q

3
7777

iterations are needed to recenter.

In some special cases, the bounds of the number of iterations can be simpli�ed as follows:

(i) If � = L = 0, i.e., the CP is linear and monotone, then �3 = 2, �4 = 1 and2
6666
8q�

� q�1

2q

1

q + 1
max

�
4�1 + p(�1 + 4)

�1
;
(1 + �1)f4�1 + q(�1 + 4)g

�
2
1

�
( 0(�; �; n))

q+1

2q

3
7777 :

(ii) If the proximity  (v) used in the algorithm is de�ned by the function  (t) = �p;q(t) with

�1 = �2 = 1, then�
8q

q + 1
max (2�3 + p(1 + 2�3); 4�3 + q(2 + 4�3)) ( 0(�; �; n))

q+1

2q

�
:

(iii) Under both of the assumptions in (i) and (ii),�
8q

q + 1
max (5p+ 4; 10q + 8) ( 0(�; �; n))

q+1

2q

�
:

Theorem 4.10 If � � �
�1
1 , the total number of iterations required by the algorithm is not more

than 2
6666
8q�

� q�1

2q

1

�5(q + 1)
( 0(�; �; n))

q+1

2q

3
7777
�
1

�
log

n

�

�
:

In some special cases, bounds of the number of iterations are given as follows:

(i) If � = L = 0, i.e., the CP is linear and monotone, then �3 = 2, �4 = 1 and2
6666
8q�

� q�1

2q

1

q + 1
max

�
4�1 + p(�1 + 4)

�1
;
(1 + �1)f4�1 + q(�1 + 4)g

�21

�
( 0(�; �; n))

q+1

2q

3
7777
�
1

�
log

n

�

�
:

(ii) If the proximity  (v) used in the algorithm is de�ned by the function  (t) = �p;q(t) with

�1 = �2 = 1, then�
8q

q + 1
max (2�3 + p(1 + 2�3); 4�3 + q(2 + 4�3)) ( 0(�; �; n))

q+1

2q

� �
1

�
log

n

�

�
:

(iii) Under both of the assumptions in (i) and (ii),�
8q

q + 1
max (5p+ 4; 10q + 8) ( 0(�; �; n))

q+1

2q

� �
1

�
log

n

�

�
:

Note that the results in this section entirely coincides with the ones in Section 3.4 of [22],

thus the results can be regarded as natural extensions of the LO analysis to the case of CPs.

Finally we remark that from its de�nition (51) one can conclude that  0(�; �; n) � O(n) if �
is a constant in (0; 1) and � � O(n). In such a situation, if we choose the kernel function

by  (t) = �p;q(t) with q = log n � p � 1, then from Theorem 4.10 we can claim that the

algorithm has O �pn logn log n

�

�
iteration bound. This gives the to date best iteration bound of

large-update IPMs for P�(�) CPs.
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5 Concluding Remarks

Based on the self-regular proximities, a new class of search directions and IPMs for solving CPs

have been proposed. The results in this paper extend the ones reported for linear optimization

in [22]. Polynomial complexity of the algorithm has been set up for large classes of problems

under suitable assumptions. Several elementary results about P�(�) mappings and P�(�) CPs
have been presented as well.

There are some ways to further improve our results. The �rst is to consider the issue whether

we could build up the complexity of the algorithm where the proximity satis�es only condition

C.1. We mention that in [22], an aÆrmative answer to such a question had been given for linear

optimization. By following an analogous recipe as in [22], we think a positive answer can be

expected for CPs as well. However, since such a relaxation on the condition of the proximity

will not lead to an improvement of the complexity of the algorithm, and the technical proofs in

the present paper are already quite involved, we do not include such a discussion in this paper.

The second issue is how to get a strictly feasible starting point for general P�(�) CPs. As we

mentioned early in Section 2, for monotone CPs and P�(�) LCPs, there exist already certain

methods to handle this issue. However, it is still not clear whether we can �nd easily a strictly

feasible starting point for nonlinear P�(�) CPs. We also observe that, to set up the complexity

of the algorithm, the involved mapping is required to satisfy a new smoothness condition. As

proved by Andersen and Ye, a very interesting property for their homogeneous model for CP is

that, if the involved mapping f(x) is monotone and satis�es the scaled Lipschitz condition, then

so is the new mapping in the augmented homogeneous model. It is also of interest to consider

whether our new smoothness condition can be preserved while applied to their model.
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