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Abstract

This paper deals with discrete-time version of problem as to selecting profitable orders out

of customers sequentially arriving at companies operating in service industries which provide two

classes of services. The first class of service is designed to meet the various needs of their customers,

and the company 1) has an option to accept or reject a particular order (admission control), or

2) decides the price of a particular order to offer to an arriving customer (pricing control). The

second classes of service is provided as a sideline to avoid server’s being idle, and to yield extra

income, referred to as the profit from a sideline; in other words, the second class of service is offered

only when the number of orders for the first class of service is less than the number of servers.

Further, a cost is paid to search for customers, called the search cost. The introduction of the

search cost eventually yields the option as to whether or not to conduct the search. We discuss the

admission control problem and pricing control problem in an identical framework and investigate

the following problems:

1. a) When to accept or reject an arriving order (in admission control problem), or what price

to offer to an arriving customer (in pricing control problem); and b) which type of service to

provide?

2. When to enact the search or skip the search?

3. How many servers to assign to the sideline when the profit from the sideline is sufficiently

large?

We examine and clarify the structure of the optimal decision rule maximizing the total expected

present discounted net profit gained over an infinite planning horizon. Finally, we show that when

the profit from the sideline is large, the optimal policies may not be monotone in the number of

orders in the system.

Keywords: Queueing; Admission control; Pricing control; Profit from a sideline

1 Introduction

In [18] we posed and examined the problem of selecting profitable orders out of customers sequen-

tially arriving at companies operating in service industries which provide two classes of services.

The first class of service is designed to meet the various needs of their customers, and the company

1) has an option to accept or reject a particular order (admission control [1] [2] [6] [11] [19]),

or 2) decides the price of a particular service to offer to an arriving customer (pricing con-

trol [8] [9] [10] [13] [20] [23]). The admission control problem and the pricing control problem

have been separately formulated and examined so far [5] [7] [12] [21]. It was shown in [18] that
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both problems can be discussed in an identical framework and that this result comes from the

fact that the properties of the underlying functions are identical. The second classes of service is

provided as a sideline to avoide server’s being idle, and to yield extra income, referred to as the

profit from a sideline; in other words, the second class of service is offered only when the number

of orders for the first class of service is less than the number of servers.

Our work is motivated by a man power company that places greater emphasis on providing

specialized services (such as human resources recruitment, personnel training, and so on) than

providing temporary staffing as a sideline. Temporary staffing is designed to connect candidates

seeking open positions, who post their resumes in a talent bank in the company through the inter-

net, with clients who are reluctant to make a long term staffing commitment. In a company, when

there exist more orders for specialized services to be handled than the number of servers/teams

will be dispatched or assigned to them. However, when the number of orders accepted so far is

less than that of servers/teams, and thereby some of teams become to be idle, the servers/teams

that are idle will take part in providing temporary staffing as a sideline during that period. The

company charges a fee as a commission for providing this service: The fee is the profit from the

sideline in this case. The strict definition of the subsidiary service is provided in A2 and A3 of the

next section. When the profit obtained from subsidiary services as a sideline is larger than that

from specialized services, the company will naturally place a higher priority on the former than

the latter, or the company will assign some of servers/teams to the latter. Here, a problem arises

in determining the level of profit from the sideline such that if the profit is higher than the level,

1) the company should give the sideline the topmost priority 2) the company should decide the

number of servers/teams to assign to the sideline. In this paper we have succeeded in answering

this problem through the conclusion that the optimal decision rule has a bimodal property in the

number of orders in the system (see Section 8).

From the practical viewpoint that some costs must be paid in order for the company to find

orders; the introduction of the search cost may be an inevitable requirement. The search cost has

been introduced in almost all conventional models of optimal stopping problems [4] [15] [16] [22] but

not in those of customer selection problems. Further, it should be noted that the introduction of

the search cost eventually yields the option as to whether or not to conduct the search. However,

thus far this new option has not been taken into consideration in the models of the customer

selection problems. The decision on whether or not to enact the search may be influenced not only

by the search cost but also the profit from the sideline. In this paper we clarify that if the search

cost or the profit from the sideline is less than a given value, it is optimal to conduct the search

for orders, or else to skip the search.

The rest of this paper is organized as follows. Section 2 provides a strict definition of the model

of the problem treated in the paper. Section 3 describes the optimal equation of the model. In

Section 4 we define some functions, called underlying function. Using these functions, in Section 5

we transform the optimal equation for convenience of discussion in the subsequent sections. In

Section 6 the properties of the optimal decision rule are examined and summarized. Section 7

discusses some important aspects of the problem through numerical experiments, and Section 8
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considers the practical implications of the results obtained in the above sections and summarizes

the conclusions derived.

2 Model

The model examined in the paper is defined on the assumptions below:

A1. The model is defined as a discrete-time sequential stochastic decision process with an infinite

planning horizon. Let points in time be equally spaced on the axis of the planning horizon,

and let the time interval between successive two points in time be called the period.

A2. When the number of particular orders accepted so far is less than that of servers/teams, and

thereby some of teams become to be idle, the servers/teams that are idle will take part in

providing subsidiary services as a sideline during that period, and thereby yields the profit

from the sideline. It is assumed that any subsidiary service can be completed within one

period, implying that the orders of subsidiary service arrriving during that period should be

always accepted. Let the profit obtained from the sideline for one server during one period be

denoted by r ≥ 0.

A3. Only when a search is enacted by paying a search cost s ≥ 0 at a point in time, a particular

order appears at the next point in time with a probability λ ( 0 < λ ≤ 1 ). It is assumed that

the orders of subsidiary service appear without paying search cost.

A4. By N > 1 let us denote the maximum permissible number of orders which can be held in the

system at any instance; a model with N = 1 is examined in [17].

A5. By n ≥ 2 let us denote the number of servers/teams available in the company where n ≤ N .

A6. Let the prices offered by subsequently appearing customers, w,w′, · · · , in the admission

control problem and the maximum permissible ordering prices of subsequently appearing

customers, w,w′, · · · , in the pricing control problem be both independent and identically

distributed random variables having a known continuous distribution function F (w) with a

finite expectation µ. Then, in the pricing control problem, if the system offers a price z to

an appearing customer, the probability of the customer placing the order with the system is

given by

p(z) = Pr{z ≤ w}. (2.1)

In both admission control and pricing control problems, for certain given numbers a and b

(0 < a < b < ∞) let us define the probability density function as follows;

f(w) = 0, w < a, f(w) > 0, a ≤ w ≤ b, f(w) = 0, b < w (2.2)

where clearly a < µ < b. Throughout the paper, for simplicity let us denote the expectation

of a given function g(w) as to w by E [g(w)].

A7. With a probability q ( 0 < q < 1 ) an order in the system at a certain point in time is

completed and goes out of the system at the next point in time.
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A8. Let the discount factor be denoted by β < 1.

Here, note that the decision on the problem is based on the following three rules:

1) The rule whether or not to accept an order from each arriving customer in the admission

control problem.

2) The rule as to the ordering price to offer in the pricing control problem.

3) The rule whether to continue or to skip the search in both problems.

The objective is to find the optimal decision rule so as to maximize the total expected present

discounted net profit gained over an infinite planning horizon, the total expected present discounted

value of prices of orders accepted or placed plus the profits from a sideline minus the total expected

present discounted value of search costs.

For expressional simplicity, by the notations C, K, A, and R let us denote the decisions of,

respectively: continuing the search, skipping the search, accepting an order, and rejecting an

order1 . Further, by the notations 〈C〉, 〈K〉, 〈A〉, and 〈R〉 let us imply that the corresponding

decisions are optimal. 〈A(w)〉 and 〈R(w)〉 denote that it is optimal to accept an appearing

order w and reject it, respectively, in the admission control problem. 〈O(z)〉 denotes that it is

optimal to offer the price z for an order in the pricing control problem.

Further, for convenience in later discussions let us define

α = λβT (0) − c, (2.3)

γ = (1 − β(1 − q))−1 > 1 (2.4)

where it can be easily shown that

1 − γqβ = γ(1 − β) > 0. (2.5)

3 Optimality Equation

In the derivation of the system of the optimal equations of this problem, the following three points

should be noted:

1. In both admission control problem and pricing control problem, by u(φ, i) we shall denote

the maximum total expected present discounted net profits starting from a state of having the

fictitious customer φ and i ( 0 ≤ i ≤ N) orders in the company; let us refer to such a situation as

state (φ, i). If i ≤ n, then n−i production lines will be idle, which implies that the profit from a

sideline (n− i)r is yielded. When in state (φ, N), even if a customer appears, the order cannot

be accepted due to the assumption of i ≤ N ; accordingly, the present state (φ, N) remains

unchanged at the next point in time if no order in the company is completed with probability

1 − q.

2. In the admission control problem, by u(w, i) let us denote the maximum total expected present

discounted net profits starting with i ( 0 ≤ i < N) orders in the company and an arriving

customer, who offers a price w.

1We do not use S as a notation representing “skipping the search” because it is often used for representing “stop
the search”
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3. In the pricing control problem, by u(1, i) let us denote the maximum total expected present

discounted net profits starting with i ( 0 ≤ i < N) orders in the company and an arriving

customer, to whom the company proposes a price z for an order.

Since the expectation of immediate reward at any point in time is clearly finite, using the conven-

tional way outlined in the discussion of the Markovian decision process [14, p29-30], we can easily

show that |u(φ, i)| ≤ M/(1 − β) for a sufficiently large M > 0, i.e., u(φ, i), u(w, i), and u(1, i) are

bounded in i. Now, for convenience in the later discussions, let us define

hi = u(φ, i) − u(φ, i + 1), 0 ≤ i < N. (3.1)

Then the system of optimal equations can be described as follows:

1. Admission control problem:

u(φ, 0) = max

{

C : β
(

λE[u(ξ, 0)] + (1 − λ)u(φ, 0)
)

− s + nr,

K : βu(φ, 0) + nr

}

, (3.2)

u(φ, i) = max



















C : (1 − q)β
(

λE [u(ξ, i)] + (1 − λ)u(φ, i)
)

+qβ
(

λE[u(ξ, i − 1)] + (1 − λ)u(φ, i − 1)
)

− s,

K : (1 − q)βu(φ, i) + qβu(φ, i − 1)



















(3.3)

+(n − i)rI(i ≤ n)3, 1 ≤ i < N,

u(φ,N) = max















C : (1 − q)βu(φ, N)

+qβ
(

λE[u(ξ,N − 1)] + (1 − λ)u(φ, N − 1)
)

− s,

K : (1 − q)βu(φ, N) + qβu(φ,N − 1)















, (3.4)

u(w, i) = max

{

A : w + u(φ, i + 1),

R : u(φ, i)

}

, (3.5)

= max{w − hi, 0} + u(φ, i), 0 ≤ i < N. (3.6)

2. Pricing control problem:

5
I(·) denotes the indicator function. For the given statement S if S is true, then I(S) = 1, or else I(S) = 0.
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u(φ, 0) = max

{

C : β
(

λu(1, 0) + (1 − λ)u(φ, 0)
)

− s + nr,

K : βu(φ, 0) + nr

}

, (3.7)

u(φ, i) = max



















C : (1 − q)β(λu(1, i) + (1 − λ)u(φ, i)
)

+qβ
(

λu(1, i − 1) + (1 − λ)u(φ, i − 1)
)

− s,

K : (1 − q)βu(φ, i) + qβu(φ, i − 1)



















(3.8)

+(n − i)rI(i ≤ n), 1 ≤ i < N,

u(φ,N) = max















C : (1 − q)βu(φ, N)

+qβ
(

λu(1,N − 1) + (1 − λ)u(φ, N − 1)
)

− s,

K : (1 − q)βu(φ, N) + qβu(φ,N − 1)















, (3.9)

u(1, i) = max
z

{p(z)
(

z + u(φ, i + 1)
)

+ (1 − p(z))u(φ, i)} (3.10)

= max
z

p(z)(z − hi) + u(φ, i), 0 ≤ i < N. (3.11)

4 Underlying Functions

In this section we define some functions, called underlying functions, and state their properties.

These functions play an important role in analyzing the properties of the optimal decision rule of

the model. For any real number x let us define

T (x) =







E [max{w − x, 0}] for the admission control problem,

max
z

p(z)(z − x) for the pricing control problem,
(4.1)

L(x) = λβT (x)− c, (4.2)

called, respectively, the T - and L-functions where T (0) > 0. In the pricing control problem, by

z(x) let us designate the z attaining the maximum of p(z)(z − x) on (−∞,∞) for a given x if it

exists; i.e., T
(

z(x)
)

= p
(

z(x)
)(

z(x) − x
)

. By using the two T -functions with the same function

name we will show that the two different optimal equations prescribed in the previous section can

be reduced to the identical form of optimal equations in the next section. Noting this result and

the fact that the two T -functions have identical properties (see lemma 6.1 of [18]), we succeeded in

analyzing both problems in an identical framework. However, it should be noted that discussions

as to the optimal prices, which are not seen in the admission control problem, are added to the

pricing control problem (see Lemma 4.1).

Lemma 4.1 For the pricing control problem we get :

(a) z(x) is nondecreasing in x.

(b) There exists a finite x? < a such that if x < (> )x?, then z(x) = (> ) a.

Proof. See [3, Lemmas 6.13, and 6.18].

Note. It is not yet proven which of z(x?) > a or z(x?) = a is true in [3]. If F (w) is a uniform

distribution on [a, b] with 0 < a < b, then x? = 2a − b (See App. B. of [18]).
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5 Transformation

Let us define

v(i) =







E[u(w, i)] for the admission control problem

u(1, i) for the pricing control problem







, 0 ≤ i < N. (5.1)

Then noting Eq. (4.1), from Eqs. (3.6) and (3.11) we have

v(i) = T (hi) + u(φ, i) or equivalently T (hi) = v(i) − u(φ, i), 0 ≤ i < N. (5.2)

Now, we can immediately rearrange both Eqs. (3.2) to (3.4) and Eqs. (3.7) to (3.9) into the identical

expressions below.

u(φ, 0) = max{λβv(0) + (1 − λ)βu(φ, 0) − s, βu(φ, 0)} + nr, (5.3)

u(φ, i) = max



















(1 − q)β(λv(i) + (1 − λ)u(φ, i)
)

+qβ
(

λv(i − 1) + (1 − λ)u(φ, i − 1)
)

− s,

(1 − q)βu(φ, i) + qβu(φ, i − 1)



















(5.4)

+(n − i)rI(i ≤ n), 1 ≤ i < N, (5.5)

u(φ,N) = max

{

(1 − q)βu(φ, N) + qβ
(

λv(N − 1) + (1 − λ)u(φ, N − 1)
)

− s,

(1 − q)βu(φ, N) + qβu(φ,N − 1),

}

, (5.6)

Further, Eqs. (5.3) to (5.6) can be rewritten as, respectively,

u(φ, 0) = βu(φ, 0) + max{λβ
(

v(0) − u(φ, 0)
)

− s, 0} + nr, (5.7)

u(φ, i) = (1 − q)βu(φ, i) + qβu(φ, i − 1) + (n − i)rI(i ≤ n) + max{λ(1 − q)β(v(i) − u(φ, i))

+λqβ
(

v(i − 1) − u(φ, i − 1)
)

− s, 0}, 1 ≤ i < N, (5.8)

u(φ,N) = (1 − q)βu(φ, N) + qβu(φ,N − 1) + max{λqβ
(

v(N − 1) − u(φ,N − 1)
)

− s, 0}, (5.9)

which can be immediately rearranged into

u(φ, 0) =
(

max{λβ
(

v(0) − u(φ, 0)
)

− s, 0} + nr
)

/(1 − β), (5.10)

u(φ, i) = γqβu(φ, i − 1) + γ(n − i)rI(i ≤ n) + γ max{λ(1 − q)β
(

v(i) − u(φ, i)
)

+λqβ
(

v(i − 1) − u(φ, i − 1)
)

− s, 0}, 1 ≤ i < N, (5.11)

u(φ,N) = γqβu(φ,N − 1) + γ max{λqβ
(

v(N − 1) − u(φ,N − 1)
)

− s, 0} (5.12)

where γ is defined by Eq. (2.4). Hence, using Eq. (5.2), we can rewrite Eqs. (5.10) to (5.12) as

follows.
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u(φ, 0) = (max{λβT (h0) − s, 0} + nr)/(1− β), (5.13)

u(φ, i) = γqβu(φ, i − 1) + γ(n − i)rI(i ≤ n)

+γ max{λ(1 − q)βT (hi) + λqβT (hi−1) − s, 0}, 1 ≤ i < N, (5.14)

u(φ,N) = γqβu(φ,N − 1) + γ max{λqβT (hN−1) − s, 0}. (5.15)

Further, using the L-function defined by Eq. (4.2), we can rewrite Eqs. (5.13) to (5.15) as follows.

u(φ, 0) = (max{L(h0), 0} + nr)/(1− β), (5.16)

u(φ, i) = γqβu(φ, i − 1) (5.17)

+γ max{(1 − q)L(hi) + qL(hi−1), 0} + γ(n − i)rI(i ≤ n), 1 ≤ i < N,

u(φ,N) = γqβu(φ,N − 1) + γ max{qL(hN−1) − (1 − q)s, 0}. (5.18)

Below, for convenience let

Q0 = L(h0), (5.19)

Qi = (1 − q)L(hi) + qL(hi−1), 1 ≤ i < N, (5.20)

QN = qL(hN−1) − (1 − q)s. (5.21)

Then Eqs. (5.16) to (5.18) can be rewritten as follows.

u(φ, 0) = (max{Q0, 0} + nr)/(1− β), (5.22)

u(φ, i) = γqβu(φ, i − 1) + γ max{Qi, 0} + γ(n − i)rI(i ≤ n), 1 ≤ i ≤ N. (5.23)

Regarding hi as a function of r, let us represent hi and Qi by, respectively, hi(r) and Qi(r), i.e.,

Q0(r) = L(h0(r)), (5.24)

Qi(r) = (1 − q)L(hi(r)) + qL(hi−1(r)), 1 ≤ i < N, (5.25)

QN (r) = qL(hn−1(r)) − (1 − q)s. (5.26)

Here, by ri let us denote the smallest solution of Qi(r) = 0, if it exists, i.e.,

ri = min{r
∣

∣ Qi(r) = 0}. (5.27)

From all the above it can be easily seen that the optimal decision rules for any given i can be

prescribed as follows.

Optimal Decision Rule 5.1

1. Admission control problem:

i. Let 0 ≤ i ≤ N . If Qi > 0, then 〈C〉i, or else 〈K〉i.

ii. Let 0 ≤ i < N and an order with value w appear after the search was enacted. If w > hi,

then 〈A(w)〉i, or else 〈R(w)〉i.

2. Pricing control problem:

8



i. Let 0 ≤ i ≤ N . If Qi > 0, then 〈C〉i, or else 〈K〉i.

ii. Let 0 ≤ i < N and a customer appear after the search was enacted. Then 〈O(z)〉 where

zi = z(hi).

6 Analysis

Lemma 6.1 Let α ≤ 0. Then Qi ≤ 0 for 0 ≤ i ≤ N .

Proof. Proven in the same way as in the proof of lemma 6.5 of [18] we can prove the assertion.

Lemma 6.2 For a given i such that n ≤ i < N we have:

(a) If Qi ≤ 0, then hi−1 > hi, hence hi−1 ≥ hi.

(b) If hi−1 < hi, then hi−1 < hi < · · · < hn−1 < b and Qj > 0 for j with i ≤ j < N .

(c) If Qi > 0, then Qj > 0 for i ≤ j < N .

Proof. Proven in the same as in the proofs of, respectively, lemmas 6.6(b), 6.7, and 6.9 of [18].

Corollary 6.1 If hi−1 ≤ hi, then hi−1 ≤ hi ≤ · · · ≤ hM−1 < b and Qj > 0 for j with i ≤ j < N .

Proof. Proven in the same way as in the proof of lemma 6.2(b).

Lemma 6.3

(a) hi(r) is nondecreasing in r for i ≥ 0.

(b) limr→∞ hi(r) = ∞ and limr→−∞ hi(r) = −∞ for i ≥ 0.

(c) Qi(r) is nonincreasing in r for all i ≥ 0.

(d) For 0 ≤ i ≤ n we have:

1 There exists ri > 0.

2 If r < (≥) ri, then Qi(r) > (≤) 0.

Proof. Proven in the same way as in the proofs of, respectively, lemmas 6.10, 6.11, 6.12, and 6.13

of [18].

Lemma 6.4

(a) Let r = 0.

1 Q0(r) > 0.

2 If h0 = 0, then hi is nondecreasing in i.

3 If h0 > 0, then hi is strictly increasing in i.

(b) If rn ≤ r, then hn−1 > hn.

Proof. (a) Proven in the same way as in the proofs of lemma 6.14(a) of [18].

(b) Let rn ≤ r. Then from Lemma 6.3(d2) we have Qn(r) ≤ 0, hence hn−1 > hn due to

Lemma 6.2(a).

Let us define

r̂ = min{r
∣

∣ hn−1(r) > hn(r)}. (6.1)
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Lemma 6.5 We have rn ≥ r̂ > 0 where if r ≥ (<) r̂, then hn−1 > (≤) hn.

Proof. From Lemma 6.4 we have hn−1 ≤ hn for r = 0 and hn−1 > hn for r ≥ rn, implying that

there exists a positive r̂ ≤ rn such as hn−1(r) > hn(r). Accordingly, the latter half of the assertion

is clearly true.

From the results obtained so far, we have the following theorem restating Optimal Decision Rule

5.1.

Theorem 6.1

(a) Let α ≤ 0. Then 〈K〉
0≤i≤N .

(b) Let α > 0.

1 Let rn ≤ r. Then 〈K〉n≤i<N or there exists i∗(n < i∗ < N ) such that 〈K〉n≤i<i∗ and

〈C〉i∗≤i<N .

2 Let r < rn.

i 〈C〉n≤i<N .

ii Let r̂ ≤ r. Then hi is not always nondecreasing in i ≥ n.

iii Let r = 0.
1 If h0 = 0, then hi is nondecreasing in i with hi < b for 0 ≤ i < N .

2 If h0 > 0, then hi is strictly increasing in i with hi < b for 0 ≤ i < N .

Proof. (a) Evident from Lemma 6.1.

(b) Let α > 0. Here note that r̂ ≤ rn from Lemma 6.5.

(b1) Let rn ≤ r. Clearly Qn(r) ≤ 0 from Lemma 6.3(d2) with i = n, hence 〈K〉n. From this

result and the fact that once continuing the search is optimal for a certain i, i.e., 〈C〉i, then it also

is so for all i′ with i ≤ i′ < N due to Lemma 6.2(c). Accordingly, the assertion clearly holds.

(b2) Let r < rn.

(b2i) Then QN (r) > 0 from Lemma 6.3(d2) with i = n, hence Qi(r) > 0 for n ≤ i < N from

Lemma 6.2(c), thus 〈C〉n≤i<N .

(b2ii) Let r̂ ≤ r. Then since hn−1 > hn from Lemma 6.4(b), it follows that hi is not always

nondecreasing in i.

(b2iii) Let r = 0.

(b2iii1,b2iii2) Immediate from Lemmas 6.4(a).

In the pricing control problem it should be noted that the monotonicity of hi in i stated above is

inherited to the optimal price zi due to Lemma 4.1(a). Since zi = z(hi), from Lemma 4.1(b) we

see that zi = a if hi < x?.

7 Numerical Experiments

Let us examine the properties of the optimal decision rules through numerical experiments.

7.1 Admission Control Problem

Let F (w) be the uniform distribution on [0.01,1.01] and let λ = 0.95, q = 0.35, β = 0.99, s = 0.01,

and N = 15. In this case, T (0) = 0.51, hence α = λβT (0) − s = 0.47 > 0. Then for r̂, rn, and

10



hn−1 ' hn, n = 2,3,4,5, we obtain the results of numerical experiments shown in Table 7.1. Here

note that it is only when r = r̂ that hn−1 ' hn may occurs due to the definition of r̂ given by

Eq. (6.1).

Table 7.1: r̂, rn, and hn−1 ' hn.

n = 4n = 3n = 2 n = 5

hn−1 ' hn '

rn '
r̂ ' 0.019 0.007 0.005 0.005

0.121 0.064 0.041 0.030

0.340 0.373 0.389 0.404

I. Relationship among r̂, r0, and h
� .

Figure 7.1 depicts the relationships of hi with the number of back orders i and the profit from

a sideline r. The figure tells us that:

1. hi is nondecreasing in the profit from a sideline r for all i.

2. If r < r̂, then hi is strictly increasing in i ≥ 0.
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Figure 7.1: Graphs of the selection criterion hi in the number of backorders i.
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3. If r = r̂, then hn−1 ' hn and hi is strictly increasing in i ≥ n.

4. If r̂ ≤ i < rn, then there exist i′ and i′′ such that hi is strictly increasing in i ≤ i′, strictly

decreasing in i′ < i ≤ i′′, and again strictly increasing in i ≥ i′′.

5. If i is sufficiently large, then hi coincides with hi for r = 0.000. This reflects the fact that

the larger the number of back orders may become, the smaller the possibility of the back

orders being exhausted may get; as a result, the effect of r on hi is gradually diminished.

II. The optimal decision rules on continuing or skipping the search.

Table 7.2 represents the optimal decision rules on continuing the search or skipping the search

in each state for each given r. Table 7.2 tells us that:

Table 7.2: Optimal decision rules on continuing or skipping the search.

in, rn

r = 0.000

r = 0.121

r = 0.136

r = 0.150

r = 0.000

r = 0.063

r = 0.065

r = 0.100

r = 0.000

r = 0.040

r = 0.071

r = 0.100

r = 0.000

r = 0.029

r = 0.071

r = 0.310

n = 2

n = 3

n = 4

n = 5

rn = 0.121

rn = 0.064

rn = 0.041

rn = 0.030

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉

〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉

〈C〉 〈C〉 〈K〉 〈K〉 〈K〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉

〈C〉 〈C〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉

〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉

〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉

〈C〉 〈C〉 〈C〉 〈K〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉

〈C〉 〈C〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈C〉 〈C〉 〈C〉 〈K〉

〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉

〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉

〈C〉 〈C〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈C〉 〈C〉 〈K〉

〈C〉 〈C〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉

〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉

〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉 〈C〉

〈C〉 〈C〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉

〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉 〈K〉

1. If r < rn, then it is always optimal to continue the search as seen Theorem 6.1(b2i)

except for the state (φ, 15). When i = 15, any of continuing the search and skipping may

be optimal,

2. If r ≥ rn, implying that if the profit from a sideline r is sufficiently large, it can be seen

that it is always optimal to skip the search (case of n = 5 and r = 0.310) or that there

exists i
′

< i
′′

such that if i < i
′

, continuing the search is optimal, if i
′

≤ i ≤ i
′′

, skipping

the search is optimal, and if i
′′

< i, again continuing the search is optimal; that is, there

exist double critical values in terms of i. In case of n = 2 and r = 0.150 we have i
′

= 2

and i
′′

= 7.
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Figure 7.2: Graphs of hi and zi.

7.2 Pricing Control Problem

Let F (w) be the uniform distribution on [2, 3], i.e., a = 2 and b = 3 and let λ = 0.90, q = 0.55,

β = 0.99 and s = 0.05. In this case, we have x? = 2a−b = 1. Since x? > 0, we obtain T (0) = a = 2,

hence α = λβT (0) − s = 1.732 > 0.

Figure 7.2 depicts the relationships of hi and zi(= z(hi)) with the number of back orders i and

the profit from a sideline r. The figures tell us that:

1. hi is nondecreasing in the profit from a sideline r for all i.

2. If r < r̂, then hi is strictly increasing in i ≥ 0.

3. If r = r̂, then hn−1 ' hn and zi is strictly increasing in i ≥ n.

4. If r̂ ≤ i < rn, then there exist i′ and i′′ such that hi and zi is strictly increasing in i ≤ i′,

strictly decreasing in i′ ≤< i ≤ i′′, and again strictly increasing in i ≥ i′′. We can notice that

i′ is given by n − 1.

5. The graph on the right shows the optimal ordering price zi. Here note that there exists i such

that hi < x? = 2a − b = 1 in the graph of hi. Since zi = z(hi) = a for hi < x? = 1 due to

Lemma 4.1(b), it follows that zi = z(hi) for such i becomes equal to a = 2; in other words,

zi = z(hi) is truncated by a, the low bound of the distribution function F (w). Further, it should

be noted that there exists hi < a such that its corresponding optimal ordering price zi becomes

greater than a, i.e., zi = z(hi) > a.

8 Conclusions and Considerations

First, it should be noted that the following two opportunity losses are closely related to the

customer selection problem.

1. Opportunity loss I . Suppose there are great deal of particular orders in the system. Then

the service capacity soon becomes full; with the result that orders from customers arriving

thereafter can not be accepted, however high their profitabilities may be. This leads to the
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opportunity loss that if adequate allowance were kept in the service capacity by having rejected

less profitable orders in advance, the company could have enjoyed accepting upcoming profitable

orders. We shall refer to this loss as Opportunity loss I.

2. Opportunity loss II . Suppose the profit from a sideline is sufficiently small. Then excessively

refraining from accepting particular orders due to the apprehension that Opportunity loss I

could occur causes a decrease in the number of orders in the system. This time, many servers

may soon become idle and they should be assigned to the sideline with relatively small profit,

causing the opportunity loss that if more particuar orders had been accepted in advance, profit

could have been gained from them. We shall refer to this loss as Opportunity loss II.

Next, below let us state the two types of oscillations as to the number of particular orders i in the

system.

1. On the range of i over which the optimal selection criterion hi is increasing in i, the number

of particular orders i in the system oscillates with an equilibrium point for the same reason as

that stated in Section 9 of [18] (r < r̂ of C2); let us refer to such behavior of i as the stable

oscillation.

2. On the range of i over which the optimal selection criterion hi is decreasing in i, the number of

particular orders i in the system oscillates as follows: (1) The smaller the number of particular

orders in the system may become, the higher the optimal selection criterion hi becomes; as

a result, the number of particular orders in the system is prompted to become further small

and (2) The larger the number of particular orders i in the system may become, the lower the

optimal selection criterion hi gets; as a result, the number of particular orders in the system

is prompted to become further large. This fact suggests that once the i enters this range,

it behaves as if it is escaping from the region. Let us refer to such behavior as the unstable

oscillation.

The optimal decision rules described in theorem 6.1 are almost similar to those of [18]. However,

the conclusions obtained from this problem are different from those in [18] in the sense below.

First, it should be noted that there exist r̂ and rn with r̂ < rn (2 ≤ n ≤ N), which provides

thresholds implying that: (1) If the profit from a sideline r is less than r̂, the optimal selection

criterion hi is increasing in the number of particular orders i in the system, or else it is bimodal

in i and (2) If the profit from a sideline r is less than rn, it is optimal to conduct the search for

orders, or else it is not always optimal to enact the search. Below, let us explain the implications

of the above two thresholds:

1. Let r < r̂, i.e., the profit from a sideline is sufficiently small. Then the optimal selection criterion

hi is increasing in the number of particular orders i in the system. Hence, the behavior of the

number of particular orders in the system shows the stable oscillation.

2. Let r̂ ≤ r < rn. In this case, as seen in Figure 7.1, there exist i′ and i′′ (i′ < i′′) such that

hi is strictly increasing on [0, i′], strictly decreasing on (i′, i′′], and again strictly increasing on

(i′′, N ]. In other words, the optimal selection criterion hi is bimodal in the number of particular

orders i in the system over [0,N ]. Below, let us state the implications of the bimodal property.
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i. Let i ≤ i′. Then the optimal selection criterion hi is increasing in the number of particular

orders i in the system. This fact implies the following. If there are few particular orders

in the system, all the servers will become soon idel, and the company has to assign these

all servers to the sideline with a relatively small amount of profit. This yields Opportunity

loss II. Accordingly, in order to avoid this loss, the optimal selection criterion hi should

be set low to accept orders even though their profitabilities may not be so high. However,

as the number of particular orders i increases, the service capacity comes to be filled with

paricular orders, leading to the possibility of obtaining an income from a sideline is small.

This yields Opportunity loss I. Therefore, in order to avoid this loss and prevent all the

production lines from being full with orders, the optimal selection criterion should be set

high; as a result, the number of particular orders i becomes small, hence the company can

enjoy the profit from a sideline.

ii. Let i′ < i. Then the optimal selection criterion hi is unimodal in the number of particular

orders i over (i′, N ]; the managerial implication of this unimodality is the same as that

stated in Section 9 of [18] (r̂ ≤ r < r0 of C2).

iii. The fact that the optimal selection criterion hi is increasing on each of the two ranges,

[0, i′] and (i′′, N ], implies that there exists a stable point of oscillation on each of the two

ranges. Once the number of particular orders i enters the range (i′, i′′], a dynamics starts

operating to prompt the number of particular orders i to move to one of the two ranges [0, i′]

and (i′′, N ] since the behavior of the number of particular orders shows unstable oscillation.

Here, it is to be noted that the stable points on [0, i′] and (i′′, N ] are related to, respectively,

the number of production lines to be fulled with orders and the number of particular orders

to be held in the system.

iv. The fact that hi is a bimodal function of i suggests us the following. For an order with

certain price w there exists i
′

< i
′′

< i
′′′

such that if i ≤ i
′

, it is optimal to reject the order,

if i
′

< i ≤ i
′′

, it is optimal to accept it, if i
′′

< i ≤ i
′′′

, again it is optimal to reject it, and

i
′′′

< i, again it is optimal to accept it. In other words, there exist the triple critical values

in terms of i at which rejecting and accepting an order become indifferent.

3. Let rn ≤ r, i.e., the profit from a sideline is sufficiently large. Then the optimal selection

criterion hi may be monotone, unimodal, or bimodal in i. However, since no order appears

on the range where it is optimal to skip the search (see Table 7.2), the hi has no practical

meaning as a selection criterion. Now, as seen in Table 7.2, there exist two critical values i
′

and i
′′

(i
′

< i
′′

). The i′ provides the number of servers to be assigned to provide the specialized

services (particular orders), so that the number of servers to be assigned to the sideline will be

given as n− i′. The i′′ provides the number of particular orders up to which skipping the search

is optimal. Further, we see that:

i. If i ≤ i
′

, then i
′

servers are all available for handling particular orders and it is optimal to

conduct the search for orders until the number of particular orders becomes i′.

ii. If i
′

< i < i
′′

, it is optimal to skip the search; as a result, the number of particular orders

in the system decreases up to i′. Hence, it becomes possible to assign n − i′ servers to the
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sideline, and thereby yields a profit from the sideline.

iii. If i
′′

≤ i, the company shoul again conduct the search for orders to make profit.

The above stated considerations are related to the admission control problem. The same consid-

erations as those stated above are also obtained for the pricing control problem.
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