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Abstract

Let � be a binary relation on a finite set X. This paper proves
that � is irreflexive and transitive if and only if there is a real valued
function u on X and a semimetric Ω on X such that, for all x, y ∈ X,
x � y ⇔ u(x) > u(y) + Ω(x, y).

1 Introduction

Let � be an asymmetric binary relation on a set X with symmetric com-
plement ∼: for all x, y ∈ X, x ∼ y if ¬(x � y) and ¬(y � x). When � is
acyclic (i.e., the transitive closure of � is transitive), the simple relational
system (X,�) will be referred to as an acyclic set. When � is irreflexive
and transitive, (X,�) will be referred to as a poset (partially ordered set).

It is proved by Bridges (1983) that if X is countable, then (X,�) is an
acyclic set if and only if the following numerical representation holds: there
is a real valued function u on X such that, for all x, y ∈ X,

x � y ⇒ u(x) > u(y).

This “one-way” representation is undesirable because preferences are not
recovered from the numerical representation u.

Several recent studies uncovered “two-way” representations for acyclic
sets (X,�), i.e., the numerical representations also reconstruct qualitative
relation �. Abbas and Vincke (1993) and Agoev and Aleskerov (1993) con-
sidered finite acyclic sets and obtained the following two-way representation:
there exist a real valued function u and a real valued bivariate function Ω ≥ 0
on X ×X such that, for all x, y ∈ X,

x � y ⇔ u(x) > u(y) + Ω(x, y).
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Since Ω can be interpreted as a threshold, this representation will be dubbed
here a bivariate threshold representation. Rodŕiguez-Palmero (1997) pro-
vided sufficient qualitative conditions for the representation when X is a
second countable topological space. A complete qualitative characterization
of the representation for arbitrary X was obtained by Diaye (1999). Naka-
mura (2000) developed several necessary and sufficient qualitative conditions
for the existence of the representation when X is the power set of a finite
set. Other type of two-way representations for acyclic sets may be possible.
For example, Subiza (1994) represents acyclicity by means of set-valued real
functions.

The aim of the paper is to prove a similar bivariate threshold represen-
tation for finite posets. We show that (X,�) is a poset if and only if (X,�)
has a bivariate threshold representation with Ω a semimetric on X, defined
below, which is called a semimetric threshold representation. Posets may be
more important than acyclic sets in many applications. However, there have
been proposed and characterized no two-way representation of posets except
Herrero and Subiza (1999), who represented arbitrary posets by means of
set-valued real functions.

2 The Main Theorem

A semimetric1 Ω on a set X is a real valued function on X×X that satisfies
the following three properties, understood as applying to all x, y, z ∈ X,

(1) Ω(x, x) ≥ 0,
(2) Ω(x, y) = Ω(y, x),
(3) Ω(x, y) + Ω(y, z) ≥ Ω(x, z).

We note by (1) and (3) that Ω(x, y) ≥ 0 for all x, y ∈ X. The property (3)
is called the triangle inequality.

Our main theorem is stated as follows.

Theorem 1 Suppose that X is finite. Then (X,�) is a poset if and only
if there exist a real valued function u on X and a semimetric Ω on X such
that, for all x, y ∈ X,

x � y ⇔ u(x) > u(y) + Ω(x, y).

When a semimetric Ω is additively separable, i.e., for all x, y ∈ X,

Ω(x, y) = ω(x) + ω(y)

for a nonnegative real valued function ω on X, the semimetric threshold
representation characterizes special posets known as interval ordered sets.

1A metric is a semimetric that has the property that Ω(x, y) = 0 if and only if x = y.
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Nakamura (2001) provided a complete qualitative characterization of the
representation for arbitrary X.

To prove the theorem, we use the following version of the familiar lemma
for the existence of a solution to a finite system of linear inequalities (see
Fishburn, 1970). Given two N dimensional vectors of real numbers, a =
(a1, . . . , aN ) and b = (b1, . . . , bN ), we denote the inner product by a · b =∑N

i=1 aibi. A real vector is called rational if each component is a rational
number, and is called integral if each of its components is an integer.

Lemma 1 Let a1, . . . , aM be N dimensional rational vectors and 1 ≤ K ≤
M . Then either there is an N dimensional integral vector ρ such that

ρ · ak > 0 for k = 1, . . . ,K,
ρ · ak ≥ 0 for k = K + 1, . . . ,M ,

or else there are nonnegative integers α1, . . . , αM , with αk > 0 for some
k ≤ K, such that

M∑
k=1

αka
k
j = 0 for j = 1, . . . , N.

Note that the last equations in the lemma are described in the vector form
by

M∑
k=1

αka
k = 0,

where 0 is an N dimensional zero vector. Since this equation says that some
of a1, . . . , aM are linearly dependent, we shall call it the linearly dependent
(LD) equation.

Proof of Theorem 1 If (X,�) has a semimetric threshold representation,
then it easily follows that (X,�) is a poset. We shall assume henceforth that
X = {x1, . . . , xn} is a nonempty finite set and that (X,�) is a poset.

To specify our system of linear inequalities, suppose that (X,�) has a
semimetric threshold representation with a real valued function u on X and
a semimetric Ω on X satisfying

(1a) u(x)− u(y)− Ω(x, y) > 0 for all x, y ∈ X such that x � y.
(1b) u(x)−u(y)+Ω(x, y) ≥ 0 and u(y)−u(x)+Ω(x, y) ≥ 0 for all x, y ∈X
such that x ∼ y.

For real valued functions, u onX and Ω onX×X, we define an n dimensional
row vector ρ1 and a 1

2n(n+ 1) dimensional row vector ρ2 by

ρ1 = (u(x1), . . . , u(xn)),
ρ2 = (Ω(x1, x1),Ω(x2, x1),Ω(x2, x2), . . . ,

Ω(xn, x1),Ω(xn, x2), . . . ,Ω(xn, xn)).
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For all x, y ∈ X, we define two column vectors, θ(x) with dimension n, and
τ(x, y) with dimension 1

2n(n + 1) as follows: for k = 1, . . . , n, ` = 1, . . . , n,
i = 1, . . . , n and j = 1, . . . , 1

2n(n+ 1), the i-th component of θ(xk) and the
j-th component of τ(xk, y`) are given by

θi(xk) =
{

1 if i = k,
0 otherwise,

τj(xk, y`) =


1 if j = 1

2k(k − 1) + ` and k ≥ `,
1 if j = 1

2`(`− 1) + k and k < `,
0 otherwise.

We note that θ and τ are unit vectors, and τ(x, y) = τ(y, x) for all x, y ∈ X.
Now we specify the system of linear inequalities for (1a) and (1b). Enu-

merate � as (x1, y1), . . . , (xL1 , yL1), half of ∼ as (z1, w1), . . . , (zL2 , wL2) by
using one of (x, y) and (y, x) when x ∼ y, and X ×X ×X as (a1, b1, c1), . . .,
(aL3 , bL3 , cL3). Then letting ρ = (ρ1, ρ2) be a 1

2n(n + 3) dimensional row
vector, our system of linear inequalities are stated as follows:

(a)

ρ ·
[
θ(xi)− θ(yi)
−τ(xi, yi)

]
> 0 for i = 1, . . . , L1,

(b)

ρ ·
[
θ(zi)− θ(wi)
τ(zi, wi)

]
≥ 0 and

ρ ·
[
θ(wi)− θ(zi)
τ(zi, wi)

]
≥ 0 for i = 1, . . . , L2,

(c)

ρ ·
[

0
τ(ai, bi) + τ(bi, ci)− τ(ai, ci)

]
≥ 0 for i = 1, . . . , L3.

Inequalities (a) and (b) follow from (1a) and (1b), respectively. The triangle
inequality is reflected in (c). Nonnegativity of Ω follows from (b), (c), and
irreflexivity of �. Symmetry of Ω is already reflected in definition of τ .

We are to establish that the system of linear inequalities (a), (b), and
(c) has a ρ solution. Therefore, a poset (X,�) has a semimetric threshold
representation. Suppose on the contrary that there is no ρ solution. Then
it follows from Lemma 1 that there are nonnegative integers α1 for i =
1, . . . , L1, βi1 for i = 1, . . . , L2, βi2 for i = 1, . . . , L2, and γi for i = 1, . . . , L3

such that αj > 0 for some 1 ≤ j ≤ L1, and the following LD equation holds:

L1∑
i=1

αi

[
θ(xi)− θ(yi)
−τ(xi, yi)

]
+

L2∑
i=1

βi1

[
θ(zi)− θ(wi)
τ(zi, wi)

]
+

L2∑
i=1

βi2

[
θ(wi)− θ(zi)
τ(zi, wi)

]

+
L3∑
i=1

γi

[
0

τ(ai, bi) + τ(bi, ci)− τ(ai, ci)

]
= 0.
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Let m =
∑
αi, ` =

∑
βi1 +

∑
βi2, and k =

∑
γi. Then m > 0, m = `+ k,

and 0 ≤ ` ≤ k, because τs are unit vectors and, for all x, y, z, w ∈ X,
τ(x, y) 6= τ(z, w) if x � y and z ∼ w.

List the elements of �, ∼, and X ×X ×X with αi repeats for (xi, yi),
βi1 repeats for (zi, wi), βi2 repeats for (wi, zi), and γi repeats for (ai, bi, ci),
and enumerate them as

(x∗1, y
∗
1), . . . , (x∗m, y

∗
m) for �,

(z∗1 , w
∗
1), . . . , (z∗` , w

∗
` ) for ∼,

(a∗1, b
∗
1, c
∗
1), . . . , (a∗k, b

∗
k, c
∗
k) for X ×X ×X.

Then the LD equation is described as follows:

m∑
i=1

[
θ(x∗i )− θ(y∗i )
−τ(x∗i , y

∗
i )

]
+
∑̀
i=1

[
θ(z∗i )− θ(w∗i )
τ(z∗i , w

∗
i )

]

+
k∑

i=1

[
0

τ(a∗i , b
∗
i ) + τ(b∗i , c

∗
i )− τ(a∗i , c

∗
i )

]
= 0.

In what follows, we show that the LD equation contradicts transitivity
of �. We have two cases to examine: ` = 0; 0 < ` ≤ k.

Case 1 (` = 0) The first n rows of the LD equation is

m∑
i=1

θ(x∗i ) =
m∑

i=1

θ(y∗i ),

which gives that the sequence x∗1, . . . , x
∗
m is a permutation of the sequence

y∗1, . . . , y
∗
m. Since x∗i � y∗i for i = 1, . . . ,m, it is easily seen that transitivity

of � is violated.

Case 2 (0 < ` ≤ k) With no loss of generality, we assume that τ(z∗i , w
∗
i ) =

τ(a∗i , c
∗
i ) for i = 1, . . . , `. Let I0 = {1, . . . , `}. List the elements from the set

{τ(a∗1, b
∗
1), . . . , τ(a∗` , b

∗
`), τ(b∗1, c

∗
1), . . . , τ(b∗` , c

∗
`)} that have no identical vector

in τ(x∗1, y
∗
1), . . . , τ(x∗m, y

∗
m), and enumerate them as τ1, . . . , τ `1 . If there is

an 1 ≤ i′ ≤ ` such that

τ(a∗i′ , b
∗
i′) = τ(x∗j′ , y

∗
j′) for some 1 ≤ j′ ≤ m,

τ(b∗i′ , c
∗
i′) = τ(x∗j′′ , y

∗
j′′) for some 1 ≤ j′′ ≤ m,

then a∗i′ � b∗i′ and b∗i′ � c∗i′ , so by transitivity of�, a∗i′ � c∗i′ . Since τ(a∗i′ , c
∗
i′) =

τ(zi′ , w∗i′), we obtain a contradiction a∗i′ ∼ c∗i′ . Hence ` ≤ `1 ≤ 2`.
By the LD equation, there is a sequence of `1 vectors from the set

{τ(a∗`+1, c
∗
`+1), . . . , τ(a∗k, c

∗
k)} that is identical to the sequence τ1, . . . , τ `1 .

Thus 2` ≤ k. With no loss of generality, we assume that τ i = τ(a∗`+i, c
∗
`+i)

for i = 1, . . . , `1. Thus let I1 = {`+ 1, . . . , `+ `1}.
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Next we construct a set I2 = {` + `1 + 1, . . . , ` + `1 + `2} of indices as
follows. List the elements from the set

{τ(a∗`+1, b
∗
`+1), . . . , τ(a∗`+`1 , b

∗
`+`1), τ(b∗`+1, c

∗
`+1), . . . , τ(b∗`+`1 , c

∗
`+`1)}

that have no identical vector in τ(x∗1, y
∗
1), . . . , τ(x∗m, y

∗
m), and enumerate

them as τ `1+1, . . . , τ `1+`2 . With no loss of generality, we assume that τ `1+i =
τ(a∗`+`1+i, c

∗
`+`1+i) for i = 1, . . . , `2. Of course, we may have I2 = ∅, i.e.,

`2 = 0. If this is the case, we stop. Otherwise, we continue the recursive
construction of I3, . . . , Im′ in a similar manner until Im′ becomes empty.
Since X is finite, m′ is also finite.

Now we have that, for i = 1, . . . ,m′,

Ii = {`+ `1 + · · ·+ `i−1 + 1, . . . , `+ `1 + · · ·+ `i},

where `0 = `m′ = 0. We observe that, for i = 1, . . . ,m′ − 1, there is a
distinct j′ ∈ Ii−1 for every j ∈ Ii such that either τ(a∗j′ , b

∗
j′) = τ(a∗j , c

∗
j ) or

τ(b∗j′ , c
∗
j′) = τ(a∗j , c

∗
j ).

Since Im′ = ∅, we obtain that, for all i ∈ Im′−1, there are 1 ≤ j′ ≤ m
and 1 ≤ j′′ ≤ m such that

τ(a∗i , b
∗
i ) = τ(x∗j′ , y

∗
j′),

τ(b∗i , c
∗
i ) = τ(x∗j′′ , y

∗
j′′),

so that a∗i � b∗i and b∗i � c∗i . Thus, by transitivity of �, a∗i � c∗i for all
i ∈ Im′−1, so that, for all i ∈ Im′−2,

either τ(a∗i , b
∗
i ) = τ(a∗i′ , c

∗
i′) for some i′ ∈ Im′−1,

or τ(a∗i , b
∗
i ) = τ(x∗j′ , y

∗
j′) for some 1 ≤ j′ ≤ m,

and
either τ(b∗i , c

∗
i ) = τ(a∗i′′ , c

∗
i′′) for some i′′ ∈ Im′−1,

or τ(b∗i , c
∗
i ) = τ(x∗j′′ , y

∗
j′′) for some 1 ≤ j′′ ≤ m.

Therefore, a∗i � c∗i for all i ∈ Im′−2. This process continues up to I0 back-
wardly, so that we can conclude that a∗i � c∗i for all i ∈ I0 ∪ I1 ∪ · · · Im′−1.
However, a∗i ∼ c∗i for all i ∈ I0. This is a contradiction. This completes the
proof. 2

3 Conclusion

This paper proved that a finite poset has a semimetric threshold representa-
tion. However, our proof of the representation theorem is not constructive.
It remains an open problem to give a constructive proof, which may also
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answer a question whether arbitrary posets have semimetric threshold rep-
resentations.
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