Semimetric Thresholds for Finite Posets

Yutaka Nakamura *

May 10, 2001

Abstract

Let \succ be a binary relation on a finite set X. This paper proves that \succ is irreflexive and transitive if and only if there is a real valued function u on X and a semimetric Ω on X such that, for all $x, y \in X$, $x \succ y \Leftrightarrow u(x)>u(y)+\Omega(x, y)$.

1 Introduction

Let \succ be an asymmetric binary relation on a set X with symmetric complement \sim : for all $x, y \in X, x \sim y$ if $\neg(x \succ y)$ and $\neg(y \succ x)$. When \succ is acyclic (i.e., the transitive closure of \succ is transitive), the simple relational system (X, \succ) will be referred to as an acyclic set. When \succ is irreflexive and transitive, (X, \succ) will be referred to as a poset (partially ordered set).

It is proved by Bridges (1983) that if X is countable, then (X, \succ) is an acyclic set if and only if the following numerical representation holds: there is a real valued function u on X such that, for all $x, y \in X$,

$$
x \succ y \Rightarrow u(x)>u(y) .
$$

This "one-way" representation is undesirable because preferences are not recovered from the numerical representation u.

Several recent studies uncovered "two-way" representations for acyclic sets (X, \succ), i.e., the numerical representations also reconstruct qualitative relation \succ. Abbas and Vincke (1993) and Agoev and Aleskerov (1993) considered finite acyclic sets and obtained the following two-way representation: there exist a real valued function u and a real valued bivariate function $\Omega \geq 0$ on $X \times X$ such that, for all $x, y \in X$,

$$
x \succ y \Leftrightarrow u(x)>u(y)+\Omega(x, y) .
$$

[^0]Since Ω can be interpreted as a threshold, this representation will be dubbed here a bivariate threshold representation. Rodríguez-Palmero (1997) provided sufficient qualitative conditions for the representation when X is a second countable topological space. A complete qualitative characterization of the representation for arbitrary X was obtained by Diaye (1999). Nakamura (2000) developed several necessary and sufficient qualitative conditions for the existence of the representation when X is the power set of a finite set. Other type of two-way representations for acyclic sets may be possible. For example, Subiza (1994) represents acyclicity by means of set-valued real functions.

The aim of the paper is to prove a similar bivariate threshold representation for finite posets. We show that (X, \succ) is a poset if and only if (X, \succ) has a bivariate threshold representation with Ω a semimetric on X, defined below, which is called a semimetric threshold representation. Posets may be more important than acyclic sets in many applications. However, there have been proposed and characterized no two-way representation of posets except Herrero and Subiza (1999), who represented arbitrary posets by means of set-valued real functions.

2 The Main Theorem

A semimetric ${ }^{1} \Omega$ on a set X is a real valued function on $X \times X$ that satisfies the following three properties, understood as applying to all $x, y, z \in X$,
(1) $\Omega(x, x) \geq 0$,
(2) $\Omega(x, y)=\Omega(y, x)$,
(3) $\Omega(x, y)+\Omega(y, z) \geq \Omega(x, z)$.

We note by (1) and (3) that $\Omega(x, y) \geq 0$ for all $x, y \in X$. The property (3) is called the triangle inequality.

Our main theorem is stated as follows.
Theorem 1 Suppose that X is finite. Then (X, \succ) is a poset if and only if there exist a real valued function u on X and a semimetric Ω on X such that, for all $x, y \in X$,

$$
x \succ y \Leftrightarrow u(x)>u(y)+\Omega(x, y)
$$

When a semimetric Ω is additively separable, i.e., for all $x, y \in X$,

$$
\Omega(x, y)=\omega(x)+\omega(y)
$$

for a nonnegative real valued function ω on X, the semimetric threshold representation characterizes special posets known as interval ordered sets.

[^1]Nakamura (2001) provided a complete qualitative characterization of the representation for arbitrary X.

To prove the theorem, we use the following version of the familiar lemma for the existence of a solution to a finite system of linear inequalities (see Fishburn, 1970). Given two N dimensional vectors of real numbers, $a=$ $\left(a_{1}, \ldots, a_{N}\right)$ and $b=\left(b_{1}, \ldots, b_{N}\right)$, we denote the inner product by $a \cdot b=$ $\sum_{i=1}^{N} a_{i} b_{i}$. A real vector is called rational if each component is a rational number, and is called integral if each of its components is an integer.

Lemma 1 Let a^{1}, \ldots, a^{M} be N dimensional rational vectors and $1 \leq K \leq$ M. Then either there is an N dimensional integral vector ρ such that

$$
\begin{aligned}
\rho \cdot a^{k} & >0 \quad \text { for } k=1, \ldots, K \\
\rho \cdot a^{k} \geq 0 & \text { for } k=K+1, \ldots, M
\end{aligned}
$$

or else there are nonnegative integers $\alpha_{1}, \ldots, \alpha_{M}$, with $\alpha_{k}>0$ for some $k \leq K$, such that

$$
\sum_{k=1}^{M} \alpha_{k} a_{j}^{k}=0 \text { for } j=1, \ldots, N
$$

Note that the last equations in the lemma are described in the vector form by

$$
\sum_{k=1}^{M} \alpha_{k} a^{k}=0
$$

where 0 is an N dimensional zero vector. Since this equation says that some of a^{1}, \ldots, a^{M} are linearly dependent, we shall call it the linearly dependent (LD) equation.

Proof of Theorem 1 If (X, \succ) has a semimetric threshold representation, then it easily follows that (X, \succ) is a poset. We shall assume henceforth that $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a nonempty finite set and that (X, \succ) is a poset.

To specify our system of linear inequalities, suppose that (X, \succ) has a semimetric threshold representation with a real valued function u on X and a semimetric Ω on X satisfying
(1a) $u(x)-u(y)-\Omega(x, y)>0$ for all $x, y \in X$ such that $x \succ y$.
(1b) $u(x)-u(y)+\Omega(x, y) \geq 0$ and $u(y)-u(x)+\Omega(x, y) \geq 0$ for all $x, y \in \mathrm{X}$ such that $x \sim y$.

For real valued functions, u on X and Ω on $X \times X$, we define an n dimensional row vector ρ_{1} and a $\frac{1}{2} n(n+1)$ dimensional row vector ρ_{2} by

$$
\begin{aligned}
\rho_{1}= & \left(u\left(x_{1}\right), \ldots, u\left(x_{n}\right)\right) \\
\rho_{2}= & \left(\Omega\left(x_{1}, x_{1}\right), \Omega\left(x_{2}, x_{1}\right), \Omega\left(x_{2}, x_{2}\right), \ldots,\right. \\
& \left.\Omega\left(x_{n}, x_{1}\right), \Omega\left(x_{n}, x_{2}\right), \ldots, \Omega\left(x_{n}, x_{n}\right)\right) .
\end{aligned}
$$

For all $x, y \in X$, we define two column vectors, $\theta(x)$ with dimension n, and $\tau(x, y)$ with dimension $\frac{1}{2} n(n+1)$ as follows: for $k=1, \ldots, n, \ell=1, \ldots, n$, $i=1, \ldots, n$ and $j=1, \ldots, \frac{1}{2} n(n+1)$, the i-th component of $\theta\left(x_{k}\right)$ and the j-th component of $\tau\left(x_{k}, y_{\ell}\right)$ are given by

$$
\begin{aligned}
\theta_{i}\left(x_{k}\right) & = \begin{cases}1 & \text { if } i=k \\
0 & \text { otherwise }\end{cases} \\
\tau_{j}\left(x_{k}, y_{\ell}\right) & = \begin{cases}1 & \text { if } j=\frac{1}{2} k(k-1)+\ell \text { and } k \geq \ell \\
1 & \text { if } j=\frac{1}{2} \ell(\ell-1)+k \text { and } k<\ell \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

We note that θ and τ are unit vectors, and $\tau(x, y)=\tau(y, x)$ for all $x, y \in X$.
Now we specify the system of linear inequalities for (1a) and (1b). Enumerate \succ as $\left(x^{1}, y^{1}\right), \ldots,\left(x^{L_{1}}, y^{L_{1}}\right)$, half of \sim as $\left(z^{1}, w^{1}\right), \ldots,\left(z^{L_{2}}, w^{L_{2}}\right)$ by using one of (x, y) and (y, x) when $x \sim y$, and $X \times X \times X$ as $\left(a^{1}, b^{1}, c^{1}\right), \ldots$, $\left(a^{L_{3}}, b^{L_{3}}, c^{L_{3}}\right)$. Then letting $\rho=\left(\rho_{1}, \rho_{2}\right)$ be a $\frac{1}{2} n(n+3)$ dimensional row vector, our system of linear inequalities are stated as follows:
(a)

$$
\rho \cdot\left[\begin{array}{c}
\theta\left(x^{i}\right)-\theta\left(y^{i}\right) \\
-\tau\left(x^{i}, y^{i}\right)
\end{array}\right]>0 \quad \text { for } i=1, \ldots, L_{1}
$$

(b)
(c)

$$
\begin{array}{ll}
\rho \cdot\left[\begin{array}{c}
\theta\left(z^{i}\right)-\theta\left(w^{i}\right) \\
\tau\left(z^{i}, w^{i}\right)
\end{array}\right] \geq 0 & \text { and } \\
\rho \cdot\left[\begin{array}{c}
\theta\left(w^{i}\right)-\theta\left(z^{i}\right) \\
\tau\left(z^{i}, w^{i}\right)
\end{array}\right] \geq 0 & \text { for } i=1, \ldots, L_{2}
\end{array}
$$

$$
\rho \cdot\left[\begin{array}{c}
0 \\
\tau\left(a^{i}, b^{i}\right)+\tau\left(b^{i}, c^{i}\right)-\tau\left(a^{i}, c^{i}\right)
\end{array}\right] \geq 0 \quad \text { for } i=1, \ldots, L_{3}
$$

Inequalities (a) and (b) follow from (1a) and (1b), respectively. The triangle inequality is reflected in (c). Nonnegativity of Ω follows from (b), (c), and irreflexivity of \succ. Symmetry of Ω is already reflected in definition of τ.

We are to establish that the system of linear inequalities (a), (b), and (c) has a ρ solution. Therefore, a poset (X, \succ) has a semimetric threshold representation. Suppose on the contrary that there is no ρ solution. Then it follows from Lemma 1 that there are nonnegative integers α_{1} for $i=$ $1, \ldots, L_{1}, \beta_{i 1}$ for $i=1, \ldots, L_{2}, \beta_{i 2}$ for $i=1, \ldots, L_{2}$, and γ_{i} for $i=1, \ldots, L_{3}$ such that $\alpha_{j}>0$ for some $1 \leq j \leq L_{1}$, and the following LD equation holds:

$$
\begin{gathered}
\sum_{i=1}^{L_{1}} \alpha_{i}\left[\begin{array}{c}
\theta\left(x^{i}\right)-\theta\left(y^{i}\right) \\
-\tau\left(x^{i}, y^{i}\right)
\end{array}\right]+\sum_{i=1}^{L_{2}} \beta_{i 1}\left[\begin{array}{c}
\theta\left(z^{i}\right)-\theta\left(w^{i}\right) \\
\tau\left(z^{i}, w^{i}\right)
\end{array}\right]+\sum_{i=1}^{L_{2}} \beta_{i 2}\left[\begin{array}{c}
\theta\left(w^{i}\right)-\theta\left(z^{i}\right) \\
\tau\left(z^{i}, w^{i}\right)
\end{array}\right] \\
+\sum_{i=1}^{L_{3}} \gamma_{i}\left[\begin{array}{c}
0 \\
\tau\left(a^{i}, b^{i}\right)+\tau\left(b^{i}, c^{i}\right)-\tau\left(a^{i}, c^{i}\right)
\end{array}\right]=0
\end{gathered}
$$

Let $m=\sum \alpha_{i}, \ell=\sum \beta_{i 1}+\sum \beta_{i 2}$, and $k=\sum \gamma_{i}$. Then $m>0, m=\ell+k$, and $0 \leq \ell \leq k$, because τ s are unit vectors and, for all $x, y, z, w \in X$, $\tau(x, y) \neq \tau(z, w)$ if $x \succ y$ and $z \sim w$.

List the elements of \succ, \sim, and $X \times X \times X$ with α_{i} repeats for $\left(x^{i}, y^{i}\right)$, $\beta_{i 1}$ repeats for $\left(z^{i}, w^{i}\right), \beta_{i 2}$ repeats for $\left(w^{i}, z^{i}\right)$, and γ_{i} repeats for $\left(a^{i}, b^{i}, c^{i}\right)$, and enumerate them as

$$
\begin{array}{ll}
\left(x_{1}^{*}, y_{1}^{*}\right), \ldots,\left(x_{m}^{*}, y_{m}^{*}\right) & \text { for } \succ, \\
\left(z_{1}^{*}, w_{1}^{*}\right), \ldots,\left(z_{\ell}^{*}, w_{\ell}^{*}\right) & \text { for } \sim \\
\left(a_{1}^{*}, b_{1}^{*}, c_{1}^{*}\right), \ldots,\left(a_{k}^{*}, b_{k}^{*}, c_{k}^{*}\right) & \text { for } X \times X \times X .
\end{array}
$$

Then the LD equation is described as follows:

$$
\begin{aligned}
& \sum_{i=1}^{m}\left[\begin{array}{c}
\theta\left(x_{i}^{*}\right)-\theta\left(y_{i}^{*}\right) \\
-\tau\left(x_{i}^{*}, y_{i}^{*}\right)
\end{array}\right]+\sum_{i=1}^{\ell}\left[\begin{array}{c}
\theta\left(z_{i}^{*}\right)-\theta\left(w_{i}^{*}\right) \\
\tau\left(z_{i}^{*}, w_{i}^{*}\right)
\end{array}\right] \\
& +\sum_{i=1}^{k}\left[\begin{array}{c}
0 \\
\tau\left(a_{i}^{*}, b_{i}^{*}\right)+\tau\left(b_{i}^{*}, c_{i}^{*}\right)-\tau\left(a_{i}^{*}, c_{i}^{*}\right)
\end{array}\right]=0 .
\end{aligned}
$$

In what follows, we show that the LD equation contradicts transitivity of \succ. We have two cases to examine: $\ell=0 ; 0<\ell \leq k$.

Case $1 \quad(\ell=0) \quad$ The first n rows of the LD equation is

$$
\sum_{i=1}^{m} \theta\left(x_{i}^{*}\right)=\sum_{i=1}^{m} \theta\left(y_{i}^{*}\right),
$$

which gives that the sequence $x_{1}^{*}, \ldots, x_{m}^{*}$ is a permutation of the sequence $y_{1}^{*}, \ldots, y_{m}^{*}$. Since $x_{i}^{*} \succ y_{i}^{*}$ for $i=1, \ldots, m$, it is easily seen that transitivity of \succ is violated.

Case $2(0<\ell \leq k) \quad$ With no loss of generality, we assume that $\tau\left(z_{i}^{*}, w_{i}^{*}\right)=$ $\tau\left(a_{i}^{*}, c_{i}^{*}\right)$ for $i=1, \ldots, \ell$. Let $I_{0}=\{1, \ldots, \ell\}$. List the elements from the set $\left\{\tau\left(a_{1}^{*}, b_{1}^{*}\right), \ldots, \tau\left(a_{\ell}^{*}, b_{\ell}^{*}\right), \tau\left(b_{1}^{*}, c_{1}^{*}\right), \ldots, \tau\left(b_{\ell}^{*}, c_{\ell}^{*}\right)\right\}$ that have no identical vector in $\tau\left(x_{1}^{*}, y_{1}^{*}\right), \ldots, \tau\left(x_{m}^{*}, y_{m}^{*}\right)$, and enumerate them as $\tau^{1}, \ldots, \tau^{\ell_{1}}$. If there is an $1 \leq i^{\prime} \leq \ell$ such that

$$
\begin{array}{ll}
\tau\left(a_{i^{\prime}}^{*}, b_{i^{\prime}}^{*}\right)=\tau\left(x_{j^{\prime}}^{*}, y_{j^{\prime}}^{*}\right) & \text { for some } 1 \leq j^{\prime} \leq m, \\
\tau\left(b_{i^{\prime}}^{*}, c_{i^{\prime}}^{*}\right)=\tau\left(x_{j^{\prime \prime}}^{*}, y_{j^{\prime \prime}}^{*}\right) & \text { for some } 1 \leq j^{\prime \prime} \leq m,
\end{array}
$$

then $a_{i^{\prime}}^{*} \succ b_{i^{\prime}}^{*}$ and $b_{i^{\prime}}^{*} \succ c_{i^{\prime}}^{*}$, so by transitivity of $\succ, a_{i^{\prime}}^{*} \succ c_{i^{\prime}}^{*}$. Since $\tau\left(a_{i^{\prime}}^{*}, c_{i^{\prime}}^{*}\right)=$ $\tau\left(z_{i^{\prime}}, w_{i^{\prime}}^{*}\right)$, we obtain a contradiction $a_{i^{\prime}}^{*} \sim c_{i^{\prime}}^{*}$. Hence $\ell \leq \ell_{1} \leq 2 \ell$.

By the LD equation, there is a sequence of ℓ_{1} vectors from the set $\left\{\tau\left(a_{\ell+1}^{*}, c_{\ell+1}^{*}\right), \ldots, \tau\left(a_{k}^{*}, c_{k}^{*}\right)\right\}$ that is identical to the sequence $\tau^{1}, \ldots, \tau^{\ell_{1}}$. Thus $2 \ell \leq k$. With no loss of generality, we assume that $\tau^{i}=\tau\left(a_{\ell+i}^{*}, c_{\ell+i}^{*}\right)$ for $i=1, \ldots, \ell_{1}$. Thus let $I_{1}=\left\{\ell+1, \ldots, \ell+\ell_{1}\right\}$.

Next we construct a set $I_{2}=\left\{\ell+\ell_{1}+1, \ldots, \ell+\ell_{1}+\ell_{2}\right\}$ of indices as follows. List the elements from the set

$$
\left\{\tau\left(a_{\ell+1}^{*}, b_{\ell+1}^{*}\right), \ldots, \tau\left(a_{\ell+\ell_{1}}^{*}, b_{\ell+\ell_{1}}^{*}\right), \tau\left(b_{\ell+1}^{*}, c_{\ell+1}^{*}\right), \ldots, \tau\left(b_{\ell+\ell_{1}}^{*}, c_{\ell+\ell_{1}}^{*}\right)\right\}
$$

that have no identical vector in $\tau\left(x_{1}^{*}, y_{1}^{*}\right), \ldots, \tau\left(x_{m}^{*}, y_{m}^{*}\right)$, and enumerate them as $\tau^{\ell_{1}+1}, \ldots, \tau^{\ell_{1}+\ell_{2}}$. With no loss of generality, we assume that $\tau^{\ell_{1}+i}=$ $\tau\left(a_{\ell+\ell_{1}+i}^{*}, c_{\ell+\ell_{1}+i}^{*}\right)$ for $i=1, \ldots, \ell_{2}$. Of course, we may have $I_{2}=\emptyset$, i.e., $\ell_{2}=0$. If this is the case, we stop. Otherwise, we continue the recursive construction of $I_{3}, \ldots, I_{m^{\prime}}$ in a similar manner until $I_{m^{\prime}}$ becomes empty. Since X is finite, m^{\prime} is also finite.

Now we have that, for $i=1, \ldots, m^{\prime}$,

$$
I_{i}=\left\{\ell+\ell_{1}+\cdots+\ell_{i-1}+1, \ldots, \ell+\ell_{1}+\cdots+\ell_{i}\right\}
$$

where $\ell_{0}=\ell_{m^{\prime}}=0$. We observe that, for $i=1, \ldots, m^{\prime}-1$, there is a distinct $j^{\prime} \in I_{i-1}$ for every $j \in I_{i}$ such that either $\tau\left(a_{j^{\prime}}^{*}, b_{j^{\prime}}^{*}\right)=\tau\left(a_{j}^{*}, c_{j}^{*}\right)$ or $\tau\left(b_{j^{\prime}}^{*}, c_{j^{\prime}}^{*}\right)=\tau\left(a_{j}^{*}, c_{j}^{*}\right)$.

Since $I_{m^{\prime}}=\emptyset$, we obtain that, for all $i \in I_{m^{\prime}-1}$, there are $1 \leq j^{\prime} \leq m$ and $1 \leq j^{\prime \prime} \leq m$ such that

$$
\begin{aligned}
\tau\left(a_{i}^{*}, b_{i}^{*}\right) & =\tau\left(x_{j^{\prime}}^{*}, y_{j^{\prime}}^{*}\right) \\
\tau\left(b_{i}^{*}, c_{i}^{*}\right) & =\tau\left(x_{j^{\prime \prime}}^{*}, y_{j^{\prime \prime}}^{*}\right)
\end{aligned}
$$

so that $a_{i}^{*} \succ b_{i}^{*}$ and $b_{i}^{*} \succ c_{i}^{*}$. Thus, by transitivity of $\succ, a_{i}^{*} \succ c_{i}^{*}$ for all $i \in I_{m^{\prime}-1}$, so that, for all $i \in I_{m^{\prime}-2}$,

$$
\begin{array}{ll}
\text { either } & \tau\left(a_{i}^{*}, b_{i}^{*}\right)=\tau\left(a_{i^{\prime}}^{*}, c_{i^{\prime}}^{*}\right) \quad \text { for some } i^{\prime} \in I_{m^{\prime}-1} \\
\text { or } & \tau\left(a_{i}^{*}, b_{i}^{*}\right)=\tau\left(x_{j^{\prime}}^{*}, y_{j^{\prime}}^{*}\right) \text { for some } 1 \leq j^{\prime} \leq m
\end{array}
$$

and

$$
\begin{array}{ll}
\text { either } & \tau\left(b_{i}^{*}, c_{i}^{*}\right)=\tau\left(a_{i^{\prime \prime}}^{*}, c_{i^{\prime \prime}}^{*}\right) \quad \text { for some } i^{\prime \prime} \in I_{m^{\prime}-1} \\
\text { or } & \tau\left(b_{i}^{*}, c_{i}^{*}\right)=\tau\left(x_{j^{\prime \prime}}^{*}, y_{j^{\prime \prime}}^{*}\right) \quad \text { for some } 1 \leq j^{\prime \prime} \leq m .
\end{array}
$$

Therefore, $a_{i}^{*} \succ c_{i}^{*}$ for all $i \in I_{m^{\prime}-2}$. This process continues up to I_{0} backwardly, so that we can conclude that $a_{i}^{*} \succ c_{i}^{*}$ for all $i \in I_{0} \cup I_{1} \cup \cdots I_{m^{\prime}-1}$. However, $a_{i}^{*} \sim c_{i}^{*}$ for all $i \in I_{0}$. This is a contradiction. This completes the proof.

3 Conclusion

This paper proved that a finite poset has a semimetric threshold representation. However, our proof of the representation theorem is not constructive. It remains an open problem to give a constructive proof, which may also
answer a question whether arbitrary posets have semimetric threshold representations.

References

Abbas, M. and Vincke, Ph. (1993) Preference structures and threshold models. Journal of Multi-Criteria Decision Making 2, 171-178.

Agoev, R. and Aleskerov, F. (1993) Interval choice: classic and general cases. Mathematical Social Sciences 26, 249-272.

Bridges, D.S. (1983) Numerical representation of intransitive preferences on a countable set. Journal of Economic Theory 30, 213-217.
Diaye, M-A. (1999) Variable intervals model. Mathematical Social Sciences 38, 21-33.
Fishburn, P.C. (1970) Utility Theory for Decision Making Wiley, New York.
Herrero, C. and Subiza, B. (1999) Set-valued utilities for strict partial orders. Journal of Mathematical Psychology 43, 433-440.

Nakamura, Y. (2000) Threshold models for comparative probability on finite sets. Journal of Mathematical Psychology 44, 353-382.

Nakamura, Y. (2001) Real interval representations. Journal of Mathematical Psychology (to appear).
Rodríguez-Palmero, C. (1997) A representation of acyclic preferences. Economics Letters 54, 143-146.
Subiza, B. (1994) Numerical representations of acyclic preferences. Journal of Mathematical Psychology 38, 467-476.

[^0]: *Institute of Policy and Planning Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan; e-mail: nakamura@shako.sk.tsukuba.ac.jp; Tel. 0298-53-5547; Fax. 0298-53-5070

[^1]: ${ }^{1} \mathrm{~A}$ metric is a semimetric that has the property that $\Omega(x, y)=0$ if and only if $x=y$.

