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ABSTR A C T  

 As a sequel to the original paper by the same authors, Isogai, Ohashi and Sumita 
(2010), this paper examines the effect of the CDO scheme applied to the classical 
NBP. The distribution function of the profit with CDO is derived explicitly as a 
function of the order quantity Q . Sufficient conditions are established under which 
the optimal solution for the Value at Risk (VaR) problem with CDO is superior or 
inferior to that without CDO. Furthermore, the VaR problem of NBP without CDO is 
analyzed in detail for the case of the exponentially distributed demand, deriving the 
optimal solution **

NBPQ  and **
NBP  explicitly. Assuming that the stochastic demand D  

is exponentially distributed, extensive numerical experiments reveal that the overall 
effect of CDO is present when the underlying risk for the opportunity loss is rather 
large.  

Keyword: Collateralized Debt Obligation, Risk Control, Newsboy Problem, Value at 
Risk 
 

1. Int roduc tion 

In the previous paper by the same authors, Isogai, Ohashi and Sumita (2010), the 
Collateralized Debt Obligation (CDO) scheme has been applied to the classical 
newsboy problem (NBP) for managing the inventory risk, which arises from 
uncertainty with respect to the stochastic demand   . The inventory risk was 
expressed in terms of the opportunity loss between the maximum possible profit and 
the actual realization of the profit given the order quantity Q .  The CDO scheme 
was then incorporated by specifying a CDO tranche consisting of a pair of an 
attachment point aK  and a detachment point dK , as well as the risk-neutral premium 

. Here, the attachment point aK  means that the protection buyer, which is the 
retailer issuing the CDO, is fully responsible for the opportunity loss up to aK . The 
protection seller, which is the tranche investor buying the CDO, compensates the 
opportunity loss beyond aK  but up to dK  for the protection buyer. In exchange, the 
predetermined premium  is paid to the protection seller by the protection buyer, 
where the value of  is set in such a way that no-arbitrage condition of the credit 
derivative market is satisfied, i.e., the expected profit without CDO would be equal to 

D
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the expected profit with CDO including the premium payment . Consequently, the 
expected profit is indifferent about whether or not the CDO scheme is applied.  

In order to examine the effect of the CDO scheme applied to NBP, in Isogai, Ohashi 
and Sumita (2010), the value at risk (VaR) problem for NBP without CDO was first 
formulated, where the optimal order quantity **

NBPQ  would be determined so as to 

minimize the probability **
NBP  of the profit falling below 0v  subject to the constraint 

that the expected profit stays above 1v . This problem was analyzed mathematically by 
deriving the distribution function xQWNBP ,  of the profit without CDO, denoted by 

DQPRNBP , , explicitly. In particular, when the stochastic demand is uniformly 
distributed, both **

NBPQ  and **
NBP  were derived explicitly in a closed form. The VaR 

problem for NBP with CDO was next formulated  with **
C DOQ  and **

C DO  formally 
defined, and the distribution function xQWC DO ,  of the profit with CDO, denoted by 

DQPRC DO , , was obtained. For the case of the uniformly distributed stochastic demand, 
numerical results were exhibited, demonstrating under what conditions the CDO 
scheme would be likely to be effective in that ****

NBPC DO  , that is, the optimal 
solution for the VaR problem with CDO is better than that without CDO. 

This paper is a sequel to the original paper, where some properties of the CDO 
scheme applied to NBP are established newly. More specifically, xQWC DO ,  is 
re-expressed as a function of Q , rather than as a function of   as in the original 
paper. This in turn enables one to establish conditions under which a stochastic 
ordering between DQPRNBP ,  and DQPRC DO ,  would be present, that is, 
stochastically DQPRC DO ,  is dominated by DQPRNBP ,  or dominates DQPRNBP ,  . 
These conditions are also sufficient to assure ****

NBPC DO  for the former case and 
****

NBPC DO  for the latter case. Furthermore, the VaR problem for NBP without CDO is 
analyzed for the case of the exponentially distributed stochastic demand. Based on 
these results, numerical experiments are presented, illustrating the above sufficient 
conditions and further providing rules of thumb for ****

NBPC DO  to hold, that is, one 
can expect the merits of the CDO scheme for the VaR problem with the exponentially 
distributed stochastic demand. 

The structure of this paper is as follows. In Section 2, a succinct summary of the 
classical NBP and the associated VaR problem with CDO is provided from Isogai, 
Ohashi and Sumita (2010). The distribution function xQWC DO ,  of DQPRC DO ,  is 
then re-expressed as a function of Q  in Section 3. Furthermore, sufficient conditions 
are established under which a stochastic ordering would be present between 

DQPRNBP ,  and DQPRC DO , . It is shown that these conditions are also sufficient to 
assure  ****

NBPC DO  ( or ****
NBPC DO  ). Section 4 is devoted to the detailed analysis of 

the VaR problem of NBP without CDO for the case of the exponentially distributed 
demand. Numerical results are given in Section 5, demonstrating that the merits of the 
CDO approach would exist under certain conditions for the exponential case. Finally, 
some concluding remarks are given in Section 6.  
 
 
 

x
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2. Class ical Ne wsboy Proble m and the  Associate d VaR Proble m with CD O  

We consider a product whose value drops substantially after a fixed point in time, say 
. The demand for the product over the period ],0[  is given as a non-negative 

random variable D . Throughout the paper, it is assumed that the distribution function 

of D  is absolutely continuous with          having the mean     ．
The corresponding survival function is given by 

x DDD dyyfxFxDPxF 1
def .  

Let c~  and p~  be the procurement cost and the sales price per one product 
respectively. Given that the order quantity is Q , if QD , each unsold product has the 
residual value r~ . It is natural to assume that 

(1) 

If QD , each of the lost opportunities would cost s~ . Assuming that the payment 
would be made and the revenue would be received at time , the profit DQRP NBP ,

~  
can then be described as  

         (2) 

where we define }0,max{][ aa . Let the distribution function and the expectation of 
DQRP NBP ,

~  be denoted by 

  (3) 

The classical NBP is then to determine the optimal order quantity *
NBPQ  so as to 

maximize QNBP
~ . For notational convenience, we write  

                     (4) 

From (2), the maximum profit that one can expect is Dcp ~~  which occurs if Q  
happens to be D . The difference between this maximum profit and the actual profit 
may then be interpreted as the opportunity loss. More formally, we define  

(5) 

Let Oc~  and Uc~  be defined by 

 .                  (6) 

One sees from (2) and (5) that 

(7) 

x

DD dyyfxDPxF
0

def

DED

def
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Let the expectation of DQlNBP ,
~  be denoted by  

(8) 

It can be readily seen from (3) through (8) that maximizing QNBP
~  is equivalent to 

minimizing QNBPl :
~ . It then follows that 

                       (9) 

From (7), it can be shown that 

(10) 

Since                   , it then follows that 

       (11) 

It has been shown that QNBPl :
~  is strictly convex in Q  and has the unique minimum 

point *
NBPQ  given by  

(12) 

The reader is referred to Khouja (1999) for further details.  

For incorporating the one-term CDO approach in the context of the NBP, it is 
necessary to convert the monetary values evaluated at time  , where such values are 
highlighted by ~ in the above discussions, into the corresponding present values. This 
can be accomplished by discounting the monetary values evaluated at time  by 

fre  where fr  is the risk free rate. The present value of a monetary value evaluated 
at time  is denoted by dropping ~ in the notation. One can confirm the following 
conversions. 

 

(13) 

From (13), it can be readily seen that QNBP  achieves the maximum also at *
NBPQ  

and one has 

                (14) 

It should be noted from (3), (5) and (13) that  

dxxQHQ NBPlNBPl ,
0 :

~
:

~
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(15) 

where QNBPl:  can be obtained from (11) and (13) as  

(16) 

The next theorem provides a necessary and sufficient condition for the maximum 
expected profit *

NBPNBP Q  to be positive. 

T heore m 2.1  ( Isogai, Ohashi and Sumita (2010) ) 

0*
NBPNBP Q  if and only if          . 

Throughout the paper, we assume that the condition of Theorem 2.1 is satisfied.  

 

Recently the classical NBP has been analyzed from the perspective of a conditional 
VaR problem by Gotoh and Takano (2007). In this paper, as in Isogai, Ohashi and 
Sumita (2010), the following VaR problem, which is different from that of Gotoh and 
Takano (2007), is considered.  

 

From (15), the strict convexity of QNBPl:  implies the strict concavity of QNBP . 
Hence, there exist     and     such that the feasible region )( 1vFR  for [VaR-NBP] 
can be written as 

 RvLvNBP QQQQvQQvFR ::11 11
::)( .          (17) 

In order to apply the CDO scheme to the classical NBP, we let the loss function 
DQlNBP ,

~  in (7) replace the credit risk in the original CDO context. More specifically, 
given a tranche consisting of a pair of an attachment point aK  and a detachment 
point dK , we define 

da KKL ,

~  by 

     (17) 

where 
da KKL ,

~  is the payment paid to the retailer issuing the CDO by the tranche 
investor buying the CDO at time . After a little algebra, as given in Theorem 5.1 of 
Isogai, Ohashi and Sumita (2010), one finds that ],

~
[, ,,

~ DQLEDQ
dada KKKKL  is given 

by  

           (18) 

LvQ :1 RvQ :1

*

0

1 NBPQ

D
DUO

xsdF
cc

s
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The risk neutral CDO premium  is then given by 

                       (19) 

where we write )(Q  in place of  to emphasize that  is a function of Q .  

 

Let DQPRC DO ,  and DQPRNBP ,  be the present value of the profit with CDO and that 
without CDO respectively. From (19), the present value of the amount to be paid to 
the tranche investor by the retailer is given by  

 

It then follows that  

  (20) 

In parallel with (3), we define  

   (21) 

The VaR problem with CDO can now be formulated as follows. 

       (22) 

In the next section, we express xQWC DO ,  as a function of Q  and establish sufficient 
conditions under which a stochastic ordering would be present between DQPRNBP ,  
and DQPRC DO , . These conditions are also sufficient for the CDO scheme applied to 
NBP to be effective ( or not effective ). 

 

3. Suff icie nt Conditions fo r CD O Sche me  Applie d to N BP  

to Be  Effe ctive  or Not E ffe ctive   

The following two theorems in the previous paper are relevant to the discussions in 
this section. For notational convenience, the following functions are introduced.  

           (23) 

                (24) 
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                (25) 

              (26) 

             (27) 

      (28) 

       (29) 

T heore m 3.1  ( Isogai, Ohashi and Sumita (2010) ) 

Let xDQPRPxQW NBPNBP ,, . One then has  

         

 

T heore m 3.2  ( Isogai, Ohashi and Sumita (2010) ) 

Let xDQPRPxQW C DOC DO ,,  . One then has  

 

where xQGi ,  for 6,,1i , are given as follows.  

 
where 

 

 
where 
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where 

 

 
where 

 

 

where 

 

 

where 

 

The expression of xQWC DO ,  in Theorem 3.2 is inconvenient to study 0,vQWC DO  as a 
function of Q, which is needed to solve the VaR problem with CDO in (22). When 

00v , 0,vQWC DO  can be re-expressed as shown in the following theorem. The proof 
is lengthy, laborious and more or less algebraic, and is omitted here.  

 
T heore m 3.3 

Let 0x  and define, 

        (30) 
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The following three statements then hold.  

 
(a) )()()()(),(max 54321 xqxqxqxqxq  and                    . 

                                                                      

(b)  If      , then  

 

(c)  If  
cp

scp
K
K

a

d , then 

 
 

We are now in a position to establish sufficient conditions under which a stochastic 

ordering would be present between           and          . We recall that a 

nonnegative random variable X  is stochastically larger than another nonnegative 

random variable Y  if and only if )()( xFxF YX  for all 0x , where ][)( xXPxFX  

is the survival function of X . This ordering is often denoted by YX ST . In this paper, 

we extend this concept to arbitrary random variables. More specifically, we define 

that a random variable X  is stochastically larger than another random variable Y  

on ),0[  if and only if )()( xFxF YX  for all 0x . This ordering is denoted by 

YX ST . 

 

T heore m 3.4  
Let )(1 xq , )(2 xq  and )(5 xq  be as in (30). The following two statements hold true for 

0x . 

(a) If 
cp

scp
K
K

a

d  and )()( 21 xqQxq  , then DQPRDQPR C DOSTNBP ,, .  

(b) If )(5 xqQ  and adKKL KKQ
da

)(
],[

~ , then DQPRDQPR C DOSTNBP ,,  

cp
scp

K
K

a

d

cp
scp

K
K

xq

cp
scp

K
K

xq
xqxq

a

d

a

d

if)(

if)(

)(),(max

1

2

21

DQPRNBP , DQPRC DO ,
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Proof 
We note from Theorems 3.1 and 3.3(b) together with (26) and (29) that, for 0x ,   

 
Since )(xFD  is monotonically increasing and )(xF D  is monotonically decreasing, 

each of the two terms on the right hand side of the above expression is negative, and 

),(),( 00 vQWvQW C DONBP , proving (a). For part (b), we similarly observe that  

 

Under the condition adKKL KKQ
da

)(
],[

~ , the monotonicity of  )(xFD  and that of 

)(xF D  imply that ),(),( 00 vQWvQW C DONBP , completing the proof.         

 
We next show that Theorem 3.4 also provides sufficient conditions for ****

NBPC DO
 or 

****
NBPC DO

 . 

 

T heore m 3.5 
Let     and     be as in (17). Then the following two statements hold.  

(a) If 
cp

scp
K
K

a

d  and )( 02:1
vqQ Rv  , then ****

C DONBP .  

(b) If LvQvq :05 1
)(  and adKKL KKQ

da
)(

],[
~  for         , then ****

C DONBP . 

Proof 

Suppose          . One sees, from Theorem 3.3(b) and (17) together with the 
conditions in (a), that           for         so that            . If         , 
it again follows that                     . Consequently, from Theorem 3.4 (a) , 
one has  

**
0

**
0

**
0

**** ),(),(),( NBPNBPNBPC DONBPCDOCDOCDO vQWvQWvQW  , 

proving (a). For part (b), if       and                   for         , 
Theorem 3.4(b) implies that                       for         . It then 
follows that 

LvQvq :05 1
)(

)()( 02:
**

01 1
vqQQvq RvC DO

****1 NBPC DO)( 1vFRQ1),( 0vQWC DO RvQvq :01 1
)(

)( 01:1
vqQ Rv

)( 1vFRQ

adKKL KKQ
da

)(
],[

~ )( 1vFRQ

DQPRDQPR C DOSTNBP ,, )( 1vFRQ

RvQ :1LvQ :1
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                                            , 

completing the proof.                        □  

 

4. Ana lys is of the  VaR Proble m with Expone nt ial Stoc hastic D e mand 

The purpose of this section is to analyze VaR-NBP with the exponentially distributed 
stochastic demand. This in turn provides a basis for comparing the optimal solution of 
VaR-NBP with that of VaR-NBP-CDO via numerical examples in Section 5.  

Let    be exponentially distributed with p.d.f.     defined by 

                   (31) 

where  

                     (32) 

The distribution function and the survival function of   can be written respectively 
as  

           (33) 

From (14), one finds that the optimal order quantity *
NBPQ  maximizing the expected 

profit is given by 

                        (34) 

From (15) together with (16), it follows that  

                (35) 

The corresponding maximum expected profit is then obtained from (34) and (35) as  

                (36) 

Throughout this section, it is assumed that  

                         (37) 

)(xf DD

D

**
0

**
0

**
0

**** ),(),(),( C DOC DOC DONBPC DONBPNBPNBP vQWvQWvQW
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Under this condition, the survival function of     , denoted 
by                 , can be obtained from Theorem 3.1 as  

        (38) 

where            . We are now in a position to prove the next 
theorem. 

T heore m 4.1 

Under the condition of (37), the optimal solution of VaR-NBP can be obtained as 

 

where    

Proof 

From (38), one sees that   

         (39) 

By differentiating (39) with respect to   , it follows that  

    (40) 

and 

   (41) 

Hence,             is strictly concave in   and so is          . Accordingly, 

     has the unique maximum at    , satisfying                    .  

This then implies that          takes the unique minimum at       . From (40), it 
can be readily seen that  

                

),(),(),( xQxQxQ

DQPRNBP ,

000 ,1,, vQWvDQPRPvQW NBPNBPNBP

Q

),(log 0vQWNBP Q ),( 0vQWNBP

0),(log
)(

0

0exp vQQ
NBP vQW

Q
),( 0vQWNBP )( 0exp vQ

),( 0vQWNBP )( 0exp vQ
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If          , then          is monotonically increasing in        and      

                            . If                ,          clearly takes 
the minimum value at       and therefore                             .  

Finally, when          ,          is monotonically decreasing in          so 
that                                   , completing the proof.      □  

 

5. Nume rical R esults 

In this section, we illustrate Theorem 3.5 through numerical examples. Furthermore, 
in order to explore the potential of the CDO scheme applied to NBP in a more 
general context, the optimal solution for VaR-NBP and that for VaR-NBP-CDO 
would be compared by altering the underline parameters 1v , 0v  and   . The basic 
set of the parameter values is provided in Table 5.1, which would be employed 
throughout this section unless specified otherwise.  

Table  5.1 Bas ic Se t of Parame te r Values 

p  the unit sales price 3 
c  the unit procurement cost 1 
r  the unit residual value 0.1 
s  the unit opportunity cost 0.5 

D  the mean of the demand 5000 
fr  the risk free rate 0.0001 

aK  the attachment point 500 
dK  the detachment point 600, 1000, 3000, 5000 

The expected loss )(: QNBPl  and the expected profit )(Q  are first plotted in Figures 
5.1 and 5.2, respectively. The former is strictly convex and the latter is strictly 
concave, as expected.  

 

Figure  5.1   Expe cte d Loss )(: QNBPl        Figure  5.2  Expe cte d Prof it )(Q  

LvQvQ :0exp 1
)( ),( 0vQWNBP )( 1vFRQ

)),(,(),( 0::
****

11
vQWQQ LvNBPLvNBPNBP RvLv QvQQ :0exp: 11

)( ),( 0vQWNBP

)( 0exp vQ ))),((),((),( 00exp0exp
**** vvQWvQQ NBPNBPNBP

RvQvQ :0exp 1
)( ),( 0vQWNBP )( 1vFRQ

)),(,(),( 0::
****

11
vQWQQ RvNBPRvNBPNBP

p
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Figure 5.3 illustrates Theorem 5.3 (a) with        and         . One sees from 
Table 5.1 that   

                                    and                        ,   

and the conditions are satisfied. We observe that  

 

and                                         .            . 

 

 

Figure  5.3  T heore m 3.5 (a) 

Theorem 5.3 (b) is illustrated numerically in Figure 5.4. We note that 

                        . 

Figure 5.3 shows           as a function of   , demonstrating   

so that the conditions for Theorem 5.3 (b) are satisfied. For this case, we observe that  

                                                         

and                                                     . 

)997.0,7111()),(,(),( 0::
****

11
vQWQQ RvNBPRvNBPNBP

)000.1,7111()),(,(),( 0::
****

11
vQWQQ RvC DORvCDOCDO

cp
scp

K
K

a

d 25.12.1 )(71587111 02:1
vqQ Rv

40001v 142000v

LvQvq :05 1
61955578)(

)(
],[

~ Q
da KKL

Q adKKL KKQ
da

)(
],[

~

)392.0,6195()),(,(),( 0::
****

11
vQWQQ LvC DOLvC DOC DO

)411.0,6195()),(,(),( 0::
****

11
vQWQQ LvNBPLvNBPNBP
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         Figure  5.4  T heore m 3.5(b)  Figure  5.5                  

In Figure 5.6,       and       are plotted along with )(Q , where 
1v  is varied from 3000 and 3500 to 4000, while          is fixed. One sees that the 

feasible region )( 1vFR  becomes narrower as the threshold, 1v , of the expected profit 
increases. Accordingly, both **

NBP  and **
C DO  become worse and increase as 1v  

increases. It is worth noting that the CDO approach is effective only when 1v  
becomes sufficiently large.  

 

 

  v1=3000     v1=3500        v1=4000 

Figure  5.6      and             vs .              [          ] 

)(
],[

~ Q
da KKL

2000,QWNBP 2000,QWC DO

3000dK

3000dK2000,QWNBP 2000,QWC DO)(Q
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Similarly to Figure 5.6,           ,           and )(Q  are depicted in Figure 
5.7, where 0v  is varied from 1000 and 1500 to 2000, while 1v  is fixed at 3500 with 

3000dK  . It can be observed that it becomes more difficult to control the profit as 
the   threshold 0v  becomes larger. While ****

C DONBP   for 1500,10000v , this 
inequality is reversed and the CDO approach becomes ineffective for 20000v .  

 

 

  10000v      15000v       20000v  

Figure  5.7       and          vs .             [ 3500,3000 1vK d  ] 

In order to observe the impact of the price on the optimal solutions more closely, 
Figure 5.8 depicts **

NBP  and **
C DO   as functions of   , where 20000v , 35001v  

and 3000dK  are fixed. The CDO approach becomes effective when   becomes 
sufficiently large.  

 

  Figure  5.8   **
N B P  vs .  **

C DO     [ 3500,2000,3000 10 vvK d  ] 

Finally, Figure 5.9 illustrates how **
NBP   and  **

C DO   are impacted when ),( 10 vv  and 

dK  are changed, where the white areas represent the regions in which the CDO 
approach is effective. It can be observed that the CDO approach can be effective only 
when 1v  is sufficiently large for 5000dK . The area in which the CDO approach 

0,vQWNBP 0,vQWC DO

0,vQWNBP 0,vQWC DO)(Q

p

p
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performs better shifts toward the lower side of 0v  and becomes larger as dK  
decreases.  

 

 1000dK      3000dK     5000dK  

Figure  5.9 **
NBP   vs .  **

C DO  as ),( 10 vv  and dK  Change  

 

6. Concluding Re ma rks 
 

As a sequel to the original paper by the same authors, Isogai, Ohashi and Sumita 
(2010), this paper examines the effect of the CDO scheme applied to the classical 
NBP. The distribution function xQWC DO ,  of DQPRC DO ,  is  re-expressed as a 
function of Q . Furthermore, sufficient conditions are established under which a 
stochastic ordering would be present between DQPRNBP ,  and DQPRC DO , . It is 
shown that these conditions are also sufficient to assure ****

NBPC DO  ( or ****
NBPC DO  ). 

The VaR problem of NBP without CDO is analyzed in detail for the case of the 
exponentially distributed demand, deriving **

NBPQ  and **
NBP  explicitly.  

 

Extensive numerical experiments reveal that the overall effect of CDO is present 
when the underlying risk for the opportunity loss is rather large. More specifically, 
assuming that the stochastic demand D  is exponentially distributed, the CDO 
approach could become effective if  

(i)  the expected profit should be held above a high level;  

(ii)  the probability of having a huge loss should be contained;  

(iii)   the price is very high; and  

(iv)  the detachment point dK  should be held relatively low. 
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