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ABSTRACT

As a sequel to the original paper by the same authors, Isogai, Ohashi and Sumita
(2010), this paper examines the effect of the CDO scheme applied to the classical
NBP. The distribution function of the profit with CDO is derived explicitly as a
function of the order quantity @. Sufficient conditions are established under which
the optimal solution for the Value at Risk (VaR) problem with CDO is superior or
inferior to that without CDO. Furthermore, the VaR problem of NBP without CDO is
analyzed in detail for the case of the exponentially distributed demand, deriving the
optimal solution @z and 7y explicitly. Assuming that the stochastic demand 2
is exponentially distributed, extensive numerical experiments reveal that the overall
effect of CDO is present when the underlying risk for the opportunity loss is rather
large.

Keyword: Collateralized Debt Obligation, Risk Control, Newsboy Problem, Value at
Risk

1. Introduction

In the previous paper by the same authors, Isogai, Ohashi and Sumita (2010), the
Collateralized Debt Obligation (CDO) scheme has been applied to the classical
newsboy problem (NBP) for managing the inventory risk, which arises from
uncertainty with respect to the stochastic demand p . The inventory risk was
expressed in terms of the opportunity loss between the maximum possible profit and
the actual realization of the profit given the order quantity ¢. The CDO scheme
was then incorporated by specifying a CDO tranche consisting of a pair of an
attachment point X, and a detachment point X,, as well as the risk-neutral premium
¢. Here, the attachment point K, means that the protection buyer, which is the
retailer issuing the CDO, is fully responsible for the opportunity loss up to A.. The
protection seller, which is the tranche investor buying the CDO, compensates the
opportunity loss beyond A, but up to A, for the protection buyer. In exchange, the
predetermined premium ¢ is paid to the protection seller by the protection buyer,
where the value of ¢ is set in such a way that no-arbitrage condition of the credit
derivative market is satisfied, i.e., the expected profit without CDO would be equal to
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the expected profit with CDO including the premium payment ¢. Consequently, the
expected profit is indifferent about whether or not the CDO scheme is applied.

In order to examine the effect of the CDO scheme applied to NBP, in Isogai, Ohashi
and Sumita (2010), the value at risk (VaR) problem for NBP without CDO was first
formulated, where the optimal order quantity @,,, would be determined so as to

minimize the probability 7, ofthe profit falling below ¥, subject to the constraint
that the expected profit stays above V. This problem was analyzed mathematically by
deriving the distribution function Wye(Q, %) of the profit without CDO, denoted by
PR.»(Q, D), explicitly. In particular, when the stochastic demand is uniformly
distributed, both @}, and 7,5 were derived explicitly in a closed form. The VaR
problem for NBP with CDO was next formulated with @.,, and 7y, formally
defined, and the distribution function W,,,(@,x) of the profit with CDO, denoted by
PR:»0(Q, D), was obtained. For the case of the uniformly distributed stochastic demand,
numerical results were exhibited, demonstrating under what conditions the CDO
scheme would be likely to be effective in that 7:,, <nys , that is, the optimal
solution for the VaR problem with CDO is better than that without CDO.

This paper is a sequel to the original paper, where some properties of the CDO
scheme applied to NBP are established newly. More specifically, Wy (Q. %) is
re-expressed as a function of @, rather than as a function of x as in the original
paper. This in turn enables one to establish conditions under which a stochastic
ordering between PRu(Q.0) and PRy(Q.0) would be present, that is,
stochastically PR;po(@ D) is dominated by PRys(Q D) or dominates PRyz(Q. D) .
These conditions are also sufficient to assure 75, =7y for the former case and
Moo <Muse for the latter case. Furthermore, the VaR problem for NBP without CDO is
analyzed for the case of the exponentially distributed stochastic demand. Based on
these results, numerical experiments are presented, illustrating the above sufficient
conditions and further providing rules of thumb for 75, <7y to hold, that is, one
can expect the merits of the CDO scheme for the VaR problem with the exponentially
distributed stochastic demand.

The structure of this paper is as follows. In Section 2, a succinct summary of the
classical NBP and the associated VaR problem with CDO is provided from Isogai,
Ohashi and Sumita (2010). The distribution function W,y0(@.%) of PR.(Q. D) is
then re-expressed as a function of @ in Section 3. Furthermore, sufficient conditions
are established under which a stochastic ordering would be present between
PRys(Q.D) and PR;p(Q. D). Tt is shown that these conditions are also sufficient to
assure  7gp0 =Musr (OF Mgpo <nus ). Section 4 is devoted to the detailed analysis of
the VaR problem of NBP without CDO for the case of the exponentially distributed
demand. Numerical results are given in Section 5, demonstrating that the merits of the
CDO approach would exist under certain conditions for the exponential case. Finally,
some concluding remarks are given in Section 6.



2. Classical Newsboy Problem and the Associated VaR Problem with CDO
We consider a product whose value drops substantially after a fixed point in time, say

T . The demand for the product over the period [0,7] is given as a non-negative
random variable 0. Throughout the paper, it is assumed that the distribution function

of D is absolutely continuous with Fy(Ne AD< A= [ ,(»)av having the mean s 0]

The corresponding survival function is given by FD(x)d; AD> A=1- F(0=[" t,(N)ay-

Let T and 7P be the procurement cost and the sales price per one product
respectively. Given that the order quantity is @, if J<@, each unsold product has the
residual value 7.1t is natural to assume that

D<r<ée<p. (1)
If D>Q each of the lost opportunities would cost §. Assuming that the payment

would be made and the revenue would be received at time 7, the profit PR,,(Q, D)
can then be described as

PRypp(Q.D)=(p—8)Q— (5—7)[Q— D" —3[D— Q. (2)

where we define [4]" =max{a0}. Let the distribution function and the expectation of
PR,;(Q, D) be denoted by

Wypp(Q.z) % P[PRypp(Q,D) < z]; npp(Q) EEE[?R’\;HPLQ- D)l . )

The classical NBP is then to determine the optimal order quantity @, so as to
maximize 7ys(Q). For notational convenience, we write

Qypp = arg {3}11&13{ Tnvpp(Q) . 4)

From (2), the maximum profit that one can expect is (7-7)x D which occurs if @
happens to be 0. The difference between this maximum profit and the actual profit
may then be interpreted as the opportunity loss. More formally, we define

= lef | - = .
Inr(Q, D) (5— 5D — PRyup(Q,D) . )
Let T, and T, bedefined by
G0 Te-v; e ¥p—c+5 . (6)

One sees from (2) and (5) that

Iner(Q, D)y=éo[Q-D] +év[D-Q] . (7)



Let the expectation of 7,,,(@, D) be denoted by

Hinpr(Q) =Ellypp(Q.D)] . (®)

It can be readily seen from (3) through (8) that maximizing Z.s»(Q) is equivalent to
minimizing  #;.,,-(Q). It then follows that

Qvpp = arg{_;nin '”E:NHI’{QJ . (9)

From (7), it can be shown that

Hiypp(Q.2) = Pliypp(Q,D) > 2] = Fp(Q — (LJ +Fp(Q+ (’ ). (10)
-} -7
Since 4#,,,,(Q)= [ H, (@ x)atx, it then follows that
Q@ Y 11
Binpp@) = ¢o | Fplr)dr+éy / Fplx)dx . (1n
Jo Jg

It has been shown that #;.,,,(Q) is strictly convex in @ and has the unique minimum
point @, givenby

o (12)

* :F—'_
Q.'\ BP n {f;fil +IE’!"

The reader is referred to Khouja (1999) for further details.

For incorporating the one-term CDO approach in the context of the NBP, it is
necessary to convert the monetary values evaluated at time 7, where such values are
highlighted by ~ in the above discussions, into the corresponding present values. This
can be accomplished by discounting the monetary values evaluated at time 7 by
e where 1, isthe risk free rate. The present value of a monetary value evaluated

attime 7 is denoted by dropping ~ in the notation. One can confirm the following
conversions.

ryT ,—FfT

P ec=c¢ =TT

p=e" Cir=¢ 7i8=e 1" PRypp(Q.D) = r"_"-fTPR‘\:;;p{Q.D) :
H"'.\:;”.\(Q. T) = e "7 I"i"'_\:‘r”)fQ. x); 'ﬁ_\-‘j}p(Q) = (:‘_J'-rrﬁ.\-';;p{Q} ;

Ingp(Q.D) = e "Tingp(Q.D) : co=e"Tép ; ey = e iy . (13)

From (13), it can be readily seen that 74»(Q) achieves the maximum also at @,
and one has

. _ (&) 5
Qipp = arg max mypp(Q) = Fp'( ). (14)
Q co + e

It should be noted from (3), (5) and (13) that



TneplQ)=(P—c)pp — pinpp(Q) , (15)
where #45-(@) canbe obtained from (11) and (13) as

, “ (16)
penep(Q)=(co+ey) Fp(r)dz +cylpp —Q) .
Jo

The next theorem provides a necessary and sufficient condition for the maximum
expected profit = W(Q}’VBP) to be positive.

Theorem2.1 (Isogai, Ohashiand Sumita (2010) )

1 aZ/BP
7 war(Qysr) > 0 if and only if < ;TDL sdfy(%)

Co+Cy

Throughout the paper, we assume that the condition of Theorem 2.1 is satisfied.

Recently the classical NBP has been analyzed from the perspective of a conditional
VaR problem by Gotoh and Takano (2007). In this paper, as in Isogai, Ohashi and
Sumita (2010), the following VaR problem, which is different from that of Gotoh and
Takano (2007), is considered.

[VaR-NBP]
11511 nvep subject to Wypp(Q,v) < nnvep : Tvep(Q) =

From (15), the strict convexity of #.s(Q) implies the strict concavity of 7ys(Q).
Hence, there exist &@,, and @,s such that the feasible region FA(W) for [VaR-NBP]
can be written as

FRG) ={Q: 745p(Q) 2 v} =1Q: Q,, < Q< Q, 4. (17)

In order to apply the CDO scheme to the classical NBP, we let the loss function
T,5,(@, D) in (7) replace the credit risk in the original CDO context. More specifically,

given a tranche consisting of a pair of an attachment point X, and a detachment
point K, we define I, ,(r) by

0 if Iypp(T) € [0, K,

Lk, 1y (T) dof { Ivpp(T) — K, if ?NBP{TJ € [Kq Kq] . (17)
K;— K; if Ivpp(r) e [Ky, ]

where I, .,(z) is the payment paid to the retailer issuing the CDO by the tranche

investor buying the CDO at time 7 . After a little algebra, as given in Theorem 5.1 of

Isogai, Ohashi and Sumita (2010), one finds that (@ D)= AL (@ D) is given

by

N T 13
g :_J_.;sz Fpl@——)+FplQ@+ —) dr.
K ] K. [ile} orr



The risk neutral CDO premium ¢ is then given by

e ik, kg (€) (19)
K;—- K, '

£(Q) =

where we write £(@ inplace of ¢ to emphasize that ¢ isa functionof @.

Let PR;p,(Q. D) and PRys(Q, D) be the present value of the profit with CDO and that
without CDO respectively. From (19), the present value of the amount to be paid to
the tranche investor by the retailer is given by

§0Q) x (Ka— Ka) =¢ "Tpjye 4 (Q) .
It then follows that
PRepo(Q.D) = PRypp(Q, D) — e ™ pj e o (@) +e Ly, kc(Q.D) . (20)
In parallel with (3), we define
Wepo(Q.x) & P[PRepo(Q.D) < 1l; mepo(Q) © E[PRcpo(Q. D)) . 21)
The VaR problem with CDO can now be formulated as follows.

[VaR-NBP-CDO)] (22)
H%i}ll Nepo  subject to Wepo(Q,vo) = nopo : Topo(Q) = v

In the next section, we express W,,,(@.%) asa functionof @ and establish sufficient
conditions under which a stochastic ordering would be present between PRy(Q, D)
and PR;,(Q, D). These conditions are also sufficient for the CDO scheme applied to
NBP to be effective ( or not effective ).

3. Sufficient Conditions for GD O Scheme Applied to NBP
to Be Effective or Not Effective

The following two theorems in the previous paper are relevant to the discussions in
this section. For notational convenience, the following functions are introduced.

def e —x ¢ (Q.2) def colQ + (23)

8 p—r

£+(Q, )

s .
e g, k) (Q)

G(Q.x) = £(Q.x)+- :
p—1 (24)




e_r’rTﬂE[;{u_Kd]{Q]

E]

QE(Q: T) = ‘E+ LQ J—J -

T+ E_rfT;IJr‘lKG:K&](Q} + e "ITR,

G(Q,x) =

p—c
T4 e g e e (Q)+e K,
G@Q.z) = 2 ;_“L .

e ik, k(@) — e T (Ka — Ka)
p—r "

GR.x) = &(Q.2)+

e ik, k) (Q) — e (Ka — Ka)
8 ’

CG(Q: T) = £+ [Q '1,] -

Theorem 3.1 (Isogai, Ohashiand Sumita (2010) )

Let W,z(Q x)= A PR, (@, D)< x]. One then has

Fp(¢-(Q,z)) + Fp(&+(Q.2)) if 2 < (p—e)Q
1 otherwise '

Wypp(Q,z) = {

Theorem 3.2 (Isogai, Ohashiand Sumita (2010) )

Let M/cgg(aa X): F{Pﬁcgg(aa D)S X] . One then has

i
Wepo(Q,2) =) Gi(Q.x)

i=1

where G/(Q.,x) for /=1---, 6, are givenas follows.

0 if re(—00 21a)
Gi(Q,x) = F}JKIQQ: T}] - Fp(Q - {-{;?J if ve [Tl:a. i'l:Q]
Fp(Q)—Fp(Q — £=) if e (rg,x)

co

where

rg—(p—rks if L2 g

rg=(p—e)Q—e Tu; AQ), T1a= _ ]
: ) Hfe ’ rrg - (p-1)Q if Q< g2

0 if & (—00,734)
Ga(Q.z) = FD{QJr%%? — Fp(¢(Q,z)) if x € [v20,72:9] ,
Fp(Q+%2) — Fp(Q) if € (r2q,00)

where

(25)

(26)

@7

(28)

29)



sK,
T2 = TR, Ta = T1:Q — —= .
e

0 if z € (—00,r34)
G3(Q.2) = ¢ Fp(Ga(Q.2)) — Fp(Q — 22) if = € [23.4. 73]
Fp(Q—%2) - Fp(Q-£%) if 2 € (z30.%)

) mg eI, — (p—c)% if IE_:f <Q ra = g —e 1K, *{'p*C)% if ‘ETJ“ =@
T s - (p- Q- e TTK, if Q< - w1 (p-o)Q ¢ Ky if Q<
0 if e (-0, 244)
Gy(Q,2) = { Fp(€(Q,2) — Fp(Q@+£2) if € [240,744]
Fp(Q+ £4) - Fp(Q+£2) if 2 € (v4q, )

where
sK, . K
Thq =T1:0 — —, Tad =T1.0 —€ T Kg+(p— f—')w—d .
cu Cr
Fp(¢s(Q,z)) if xe (—o0,rs.4]
Gs(Q).z) = ) o ]
5(Q,7) { Fu[Q—%}J if x € (z54,00)
where
N TR .0 if £2<Q
T\ rg - Qe (Ky - K,) if Q< Ka
Go(Q.7) = 1‘?)[(6(0-. x)) if ze(—o0, 244
e Ff)L'Q+§%"'J if € (rgd,00)
where

_ K
Tea=r1.Q—€ T Ko+ (p— C)ﬁ—d :
i)

The expression of W;,,(@.%) in Theorem 3.2 is inconvenient to study Wp,(@.%) asa
function of Q, which is needed to solve the VaR problem with CDO in (22). When
V>0, Wypo(@.Y,) canbe re-expressed as shown in the following theorem. The proof
is lengthy, laborious and more or less algebraic, and is omitted here.

Theorem 3.3
Let x>0 and define,
r4e s e (@) K, K
q1{$) _ L[Ka,Kq4] QE('-T) = QI{I} 4+ (.! - — w_d)
p—c p— e
sKa Ka(p—r1)

(;,);(W B »oqulT) = qi(x) + A p—
gs(r) = qi(z) + (w 2 4 _d)

p—¢  Co

g3(z) = qi(z) +

(30)



The following three statements then hold.

0, (x if %d’;f’;s
@  max{g(0, 6(0}<q(0<q,0<g(n and max{g (0, ¢ ()= K peors
g(x if —2%>
K,  p-c
(b) If Ko _P=C+S then
K, p-c
1 ifQ < gi(z)
Fp(¢i(Q.z)) + Fp(6(Q, x)) ifgi(r) < Q < gz(x)
Fp(G(Q.z) — Fp(&(Q.x)
Wepo(Q,z) = +Fp(Ca(Q. 2)) + Fp(G(Q.x)  ifaa(z) < Q < g3(x)
Fp(¢i(Q,x)) + Fp(¢s(Q, x)) ifga(x) < Q < qux)
Fp(¢a(Q. x)) + Fp(G(Q. x)) if a(z) < Q < g5(x)
Fp(G(Q,x) + Fp(G(Q, x)) ifgs(z) < Q
() If Koy P=C+S then
K, p-¢
1 if Q) < qo(x
F;.}t.r;t_Q.:rn —Fr.>r:csr:0..:r)v if ga(z) < Q a1 ()
Fp(6(Q, ) — Fp(G(Q, =
Wepo(Q,z) = +Fp(la Q x) +FnlgaLQ ) ifgi(z) < Q < ga(x)
Fp(&1(Q.z)) + Fp(¢(Q, ) if g3(z) < Q < qu(x)
Fp(&(Q. =) + Fp(G(Q. x)) if g4(r) < Q < gs(x)
Fp(¢(Q. ) + Fp(¢s(Q, z)) if gs(z) < Q

We are now in a position to establish sufficient conditions under which a stochastic
ordering would be present between PRus(Q D) and PReso(Q, D). We recall that a
nonnegative random variable X is stochastically larger than another nonnegative
random variable v ifand only if 7 (x> F,(x forall x>0, where F (0=AX>x
is the survival function of x. This ordering is often denoted by X -, v. In this paper,
we extend this concept to arbitrary random variables. More specifically, we define

that a random variable X is stochastically larger than another random variable Y

on [0,0) ifand only if 7, (x> F,(x forall x>0. This ordering is denoted by

X, V.

Theorem 3.4

Let ¢(x, ¢(x and g, (x beas in (30). The following two statements hold true for
XxX>0.

(a) If ’/?J;f;s and  g(0<Q<q0 ,then PR(Q D)>g, PR.(Q, D).

(b) If @>g(» and Hiix,, ;(d](a)S Ky~ K,» then PR.(Q, D)<sr. PReoo(Q. D)



Proof
We note from Theorems 3.1 and 3.3(b) together with (26) and (29) that, for x>0,

Wypp(Q.1) — Wopo(@Q, x)

. . . e ik, k(@)
= {F:.J (6-(Q,z)) — Fp (&—iQ--‘I‘J + pl_‘”.;'.”'

_ _ e ik, k(@)
+ {Fn (£+(Q,2)) — Fp (&—(Q-s') - e )} .

Since F,(x) is monotonically increasing and F,(x) is monotonically decreasing,

each of the two terms on the right hand side of'the above expression is negative, and
W,e(Q,v,) < W,,,(Q,v,), proving (a). For part (b), we similarly observe that

Wapp(Q,x) — Wepo(Q, x)
) . ) e T (Kg— Ka) —e " pp g g
= {FI.J (£-(Q.z)) — Fp (5—iQ~3'J - P ol

_ _ ) e IT(Ky— Kg)—e " Mps ()
+{Fn (£.(Q,7)) — Fpp (é—iQ--’f')— - Lo K )}

Under the condition 4, (@) < K, - K,, the monotonicity of ~ £,(» and that of

Fo(x) imply that Ww,..(Q v,)>W,,,(Q,v,), completing the proof. i

We next show that Theorem 3.4 also provides sufficient conditions for 57 > or

-
7 vgp

77000 77/|/5P :

Theorem 3.5
Let 4,, and @, beasin (17). Thenthe following two statements hold.

(a) If //‘;d<p;_"”;s and Q7 < 0,(1,) sthen o <pt .

(b) If QS(V)< OVL and luL[/( K ](0) S K K for vQe FR(V) then 77N5P 776‘[70
Proof

Suppose @, .z <q(%). One sees, from Theorem 3.3(b) and (17) to gether with the
conditions in (a), that W,,,(Q,y)=1 for v@e FRy) so that 1=75p0 =17ye . If G(v)<Q, 4,
itagain follows that ¢(v)< @y, < @, < g,(1) . Consequently, from Theorem 3.4 (a) ,
one has

’7*0*00 = WCDO(OZ*DO’ VO) 2 WIVBP( 0*0*00’ ’/0) 2 W/VEP(O:I;BP’ ’/0) = 77;;‘5/0 ’
proving (a). For part (b), if ¢;(%)< @, and py, Kd](O) <K,— K, for vaeFRy),

Theorem 3.4(b) implies that PR,,.(Q, D)<s;. PRyy,(Q D) for V@e FAK). It then
follows that

10



e = W/I/BP( O;VBP’ V()) = M/[,‘DO( a/kVBP’ VO) = M/E‘DO( OL‘DO’ VO) =Tcpo »

completing the proof. O

4. Analysis of the VaR Problem with Exponential Stochastic Demand
The purpose of this section is to analyze VaR-NBP with the exponentially distributed
stochastic demand. This in turn provides a basis for comparing the optimal solution of

VaR-NBP with that of VaR-NBP-CDO via numerical examples in Section 5.

Let D be exponentially distributed with p.d.f 7,(n defined by

folx) = Ae ™ U(x), (31)
where
Vi) — { L if 220 (32)
() otherwise

The distribution function and the survival function of 0 canbe written respectively
as

Fp(z) = (1— e ™ \U(z) ; Fp(z) =1 — U(z) + e *U(z). (33)

From (14), one finds that the optimal order quantity @, maximizing the expected
profit is given by

op = 5 v (34)
J » — — l oo |1 - .
CNar 3 log ( + m)
From (15) together with (16), it follows that
(¢ ) A T — 35
Tnvpp(Q) = —coQ — lco + o )e n p—r | ( )

A A

The corresponding maximum expected profit is then obtained from (34) and (35) as

co A

P [y 7 p—c
mvep(Q@npp) = —L\lug (l + —) . . (36)
Throughout this section, it is assumed that

vp < (p—¢)Quy-k - (37)

11



Under this condition, the survival function of PR,,.(Q, D) denoted
by Wuer(Q,v,)= APRA0, D)> 1y ]=1-W,(0, ;) , canbe obtained from Theorem 3.1 as

Wypp(Q,u) = e *-(@w) _g=2e:(Qu) (38)
e~ M-(Qu) {1 _ ¢ ME+(Qu .\—{_-_'f,;r_!-:l.‘.‘}

oM (Qn) (l . e—m..rfur,z-:;]) .

where A(Q, x)=&.(Q,X—£.(Q, x). We are now in a position to prove the next
theorem.

Theorem 4.1

Under the condition of (37), the optimal solution of VaR-NBP can be obtained as

(Quin. Wypp(Qur.vo)) if Qerplvo) < Quyr
(Q¥pp-TNgp) = (Qam(l‘o)- Wy pp(Qerp(tn). vo) ) if Qo < Qegpln) < Qupir
( Quir. Wypp(Qui:r, o)) if Qexp(0) > Quy:r

. 1 P — 1+ 8§ 1 — 1+ 8)(p—c)
where Ounp(t0) = [r{] . log {1 L )(p J}] _
p— Alp—r)s sco

Proof

From (38), one sees that

log Wy sp(Q,10) = —A—(Q,v0) + log(1 — e A&y (39)

By differentiating (39) with respectto @, it follows that

8 i~ A , (p—r+s)(p—-ec) (40)
@MMHHPEQ- vg) = e {f-o T @@ — 1) } -
and
52 . 2 AAQ0) (1 — 11 512 (p — )2
a—glug Wapp(O.15) — _Ace (p—r+s)(p—rc) 0. (41)

a0 (e¥a@w) — 1)* (p — r)2s2

Hence, logW,,(Q,v,) is strictly concave in @ andso is  W( @, v,) Accordingly,

Wige(Q, %) has the unique maximum at @,,(v) , satisfying 6%103; Wy50(Q, v,) =0 .

Q=0.y (W)

This then implies that W,,,(Q,1,) takes the unique minimum at @Q.,(%) . From (40), it
can be readily seen that

. 1 1 —T+ 8 )— 7 +38)(p—c)
Qezp(to) = —— [?-'{] + p-rre log {l + “ : I)[p ) H .
p—c Alp—r)s 800

12



If 4, w)<aq,,,then W,(Q ) is monotonically increasing in Qe FR(,) and

( a;;BP’ 777!75:5 ):( 01/,:L9 W/VBP(OV,:L’ VO) ) : If 0|/,:L£0 (V())SOV,:H’ W/I/EP(O’ VO) Clearly takes

exp

the minimum value at Q.. (%) and therefore ( g, ni., )=( Q. (%), Wigp( Qi (4). %)

Finally, when ¢ (y)> @ Wyer(Q,1,) 1s monotonically decreasing in Qe FR(Y) SO

w:R 2

that  ( Quger e )= Q.o Wigp(Q,.5. %) ), completing the proof. O

5. Numerical Results

In this section, we illustrate Theorem 3.5 through numerical examples. Furthermore,
in order to explore the potential of the CDO scheme applied to NBP in a more
general context, the optimal solution for VaR-NBP and that for VaR-NBP-CDO
would be compared by altering the underline parameters ¥, ¥% and p . The basic
set of the parameter values is provided in Table 5.1, which would be employed
throughout this section unless specified otherwise.

Table 5.1 Basic Set of Parameter Values

p | the unit sales price 3

¢ | the unit procurement cost 1

r | the unit residual value 0.1

s | the unit opportunity cost 0.5
4, | the mean of the demand 5000

r, | the risk free rate 0.0001

K, | the attachment point 500

K, | the detachment point 600, 1000, 3000, 5000

The expected loss #.(@) and the expected profit 7(@ are first plotted in Figures
5.1 and 5.2, respectively. The former is strictly convex and the latter is strictly
concave, as expected.

13000 5000

Q)

. T T
Hyep(Q
12000 | 1 4000 -

11000 | 3000 F

10000 | 2000 |
8000 1000

8000

7000 —tooo |

6000

—2000

5000

L L L L L L L L L
~3000 L L L 1 L ' L I L
o] 1000 2000 3000 4000 5000 @000 7000 BOOO  B000 10000 0 1000 2000 5000 4000 5000 6000 7000 8000 9000 10000

Q Q

Figure 5.1 Expected LoSS #:us(Q) Figure 5.2 Expected Profit (@)
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Figure 5.3 illustrates Theorem 5.3 (a) with v =4000 and v, =14200 . One sees from
Table 5.1 that

Ko 15 < 125=P=C+S and  Q,,=7111 < 7T158=0,() ,
K, p-c

and the conditions are satisfied. We observe that

ok

( Quger uge )=C Qppe Wygo( Q.. %) )=( 7111, 0.997 )

and ( @por Mpo )=( 0|/1:R’ M/wa(av,;ﬁ:'/o) )=( 7111, 1.000 )

08 . . \ .
5500 6000 6500 7000 7500 8000
Q. Q Q, o 5y

il b

4040

Q)

4020
4000 -
3980
3960

3940

L L L L
5500 G000 o 6500 7000 7500 8000
v Q

Figure 5.3 Theorem 3.5 (a)

Theorem 5.3 (b) is illustrated numerically in Figure 5.4. We note that
0:(14)=5578 < 6195=0,,
Figure 5.3 shows Mk, m(@) as a functionof @, demonstrating s, , (A< K, - K,
so that the conditions for Theorem 5.3 (b) are satisfied. For this case, we observe that
C Queps use )= Qs Wigp(Q,10 %) )=( 6195, 0.411 )

and ( Qpoor Meoo )=C Qyys Wepp(Q,.1, %) )=( 6195, 0392 ) .
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Figure 5.4 Theorem 3.5(b) Figure 5.5 47 «,(Q

In Figure 5.6, W,,,(Q,2000) and WW,,(Q,2000) are plotted along with 7#(Q), where
v 1is varied from 3000 and 3500 to 4000, while K, =3000 is fixed. One sees that the
feasible region FA() becomes narrower as the threshold, v, of the expected profit
increases. Accordingly, both 7y, and 7;, become worse and increase as Y
increases. It is worth noting that the CDO approach is effective only when Y%
becomes sufficiently large.

4 S S S S— |
-3000 ) S S SO SO SR SO SO SO S S— E %000
0 1000 2000 3000 4000 5000 G000 7000 BOCO 9000 10000 1000 2000 3000 4000 SO000 6000 7000 6000 BOOO 10000 2005 $4000: 000; FOC: S007 "0000" J0007 18000 +H000) i

v;=3000 v,=3500 v,=4000

Figure 5.6 z(@ and W,,,(Q2000) Vs. W,,,(@,2000) [ K, =3000]
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Similarly to Figure 5.6, W,,(Q.v,), W,,,(Q ) and 7(@ are depicted in Figure
5.7, where VY is varied from 1000 and 1500 to 2000, while ¥ is fixed at 3500 with
K, =3000 . It can be observed that it becomes more difficult to control the profit as
the threshold ¥ becomes larger. While nps >n5, for 1, =1000, 1500 , this

inequality is reversed and the CDO approach becomes ineffective for v, =2000.

v, =1000 v, =1500 V, = 2000
Figure 5.7 @ and Ww,,(Qv)Vs. W,,(Qv) [ K,=3000 , v, =3500 ]

In order to observe the impact of the price on the optimal solutions more closely,
Figure 5.8 depicts 7y and 7y, as functions of /2, where ¥, =2000, V =3500
and K, =3000 are fixed. The CDO approach becomes effective when # becomes
sufficiently large.

Figure 5.8 nys VS. 7w [ K,=3000 ,1, =2000, v =3500 ]

Finally, Figure 5.9 illustrates how 7y and 7, are impacted when (V,,4) and
K, are changed, where the white areas represent the regions in which the CDO
approach is effective. It can be observed that the CDO approach can be effective only
when V is sufficiently large for K, =5000. The area in which the CDO approach
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performs better shifts toward the lower side of v, and becomes larger as K|,
decreases.

K, =1000 K, =3000 K, = 5000

Figure 5.9 ny VS. mn5 as (v,4) and K, Change

6. Concluding Remarks

As a sequel to the original paper by the same authors, Isogai, Ohashi and Sumita
(2010), this paper examines the effect of the CDO scheme applied to the classical

NBP. The distribution function W,,(@, %) of PR:(Q D) is re-expressed as a

function of @. Furthermore, sufficient conditions are established under which a
stochastic ordering would be present between PRyz(Q. D) and PR;p,(Q, D). Tt is

shown that these conditions are also sufficient to assure 7750 =7ys (O 75pp <Mysr ).
The VaR problem of NBP without CDO is analyzed in detail for the case of the
exponentially distributed demand, deriving @, and 7,5 explicitly.

Extensive numerical experiments reveal that the overall effect of CDO is present
when the underlying risk for the opportunity loss is rather large. More specifically,
assuming that the stochastic demand 0 is exponentially distributed, the CDO
approach could become effective if

(1 the expected profit should be held above a high level;

(i) the probability of having a huge loss should be contained;

(i) the price is very high; and

(iv) the detachment point K, should be held relatively low.
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