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Abstract

This paper compares the robustness of information retrieval (IR) metrics to incomplete relevance assessments, using
four different sets of graded-relevance test collections with submitted runs — two from TREC and two from NTCIR.
We investigate the effect of reducing the original relevance data on discriminative power (i.e., how often statistical sig-
nificance can be detected given the probability of Type I Error) and on Kendall’s rank correlation between two system
rankings. According to these experiments, Q’, iDCG’ and AP’ proposed by Sakai are superior to bpref proposed by
Buckley and Voorhees and to Rank-Biased Precision proposed by Moffat and Zobel. We also clarify some properties
of these metrics that immediately follow from their definitions.

1 Introduction

Information Retrieval (IR) evaluation using incomplete rel-
evance assessments is beginning to receive attention. Large-
scale test collections constructed through pooling such as the
TREC, CLEF and NTCIR collections are all incomplete to
some degree, in that only a small sample of the document col-
lection has been judged for relevance for each topic. While
the collection sizes tend to grow monotonically in order to
mimic real-world data such as the Web, the available man-
power for relevance assessments often remain more or less
constant, and therefore IR researchers are expected to live with
the incompleteness issue as long they adhere to the Cranfield
paradigm [3].

At ACM SIGIR '04, Buckley and Voorhees [3] proposed an
IR evaluation metric called bpref (binary preference) which is
highly correlated with Average Precision (AP) when full rele-
vance assessments are available and is yet more robust when
the relevance assessments are reduced. Recent TREC tracks
have started using this metric along with AP. Bpref penalises
a system if it ranks a judged monrelevant document above a
Jjudged relevant one, and is indepedendent of how the unjudged
documents are retrieved.

At SIGIR '07, Moffat, Webber and Zobel [8] introduced
an IR evaluation metric called Rank-Bijased Precision (RBP)
which they claimed is suitable for evaluation with incomplete
relevance data. RBP assumes that the probability that the user
moves from a document at Rank r to Rank (= + 1) is a con-
stant p, regardless of the relevance (level) of the document at
Rank r. As it does not have a recall component, adding more
relevant documents to the “qrels” (the relevance data file) al-
ways increases the RBP score.

Also at SIGIR’07, Sakai [14] reported that applying Q-
measure (Q), AP and normalised Discounted Cumulative Gain
(nDCG) to a condensed list, 1.¢., a ranked list of documents
obtained by removing all unjudged documents from the orig-
inal list, is a simpler and a better solution than bpref for han-
dling relevance data incompleteness. The metrics applied to
condensed lists will hereafter be referred to as Q’, AP’ and
nDCG’, respectively.

This paper compares the robustness of Q(), AP(),
nDCG("), bpref and RBP to incomplete relevance assessments,
using four different sets of graded-relevance test collections
with submitted runs — two from TREC and two from NTCIR.
We vestigate the effect of reducing the original relevance

data on discriminative power [11], or how often statistical sig-
nificance can be detected given the probability of Type I Error,
and on Kendall's rank correlation between two system rank-
ings [11]. According to these experiments, Q', nDCG’ and AP’
are superior to bpref and RBP. As these results hold across two
different evaluation efforts, namely TREC and NTCIR, we be-
lieve that these findings are very general.

This paper generalises Sakai’s work [14], in that (a) While
he used the NTCIR-3 and NTCIR-5 Japanese/Chinese data,
we use TREC 2003 and TREC 2004 robust track data plus the
NTCIR-6 Japanese/Chinese data to obtain more general and
substantial conclusions; (b) We compare RBP with the other
metrics, after discussing some properties of the metrics that
immediately follow from their definitions.

2 Related Work

There are at least two approaches to tackling the relevance
data incompleteness problem: One is to try to construct a bet-
ter test collection more efficiently, and another is to devise or
choose reliable IR metrics, given a test collection. This pa-
per takes the latter approach, of choosing reliable IR metrics
for handling relevance data incompleteness. Along this line,
Aslam [1] at SIGIR '06 and Yilmaz and Aslam [17] at CIKM
*06 proposed Induced AP, Subcollection AP and Inferred AP.
Induced AP is exactly what we call AP (or AveP’ [14]). We do
not consider Subcollection AP and Inferred AP in our present
study, because (a) While the goal of Yilmaz and Aslam was
to estimate the true AP values, ours is not: We prefer to ex-
plore different metrics, especially those that can handle graded
relevance; (b) Both Subcollection AP and Inferred AP require
knowledge of the pooled but unjudged documents, which lim-
its their applicability; (Subcollection AP requires even more
knowledge, namely, how small the subcollection with rele-
vance assessments is compared to the entire document collec-
tion.) (c) According to Bompada ef al. [2], Inferred AP is not
as robust as (the original) nDCG for evaluation with incom-
plete relevance data.

Grongvist’s RankEff metric [5], a simple variant of bpref,
was subsequently used by Biittcher e al [4] at SIGIR °07.
However, as we shall discuss in Section 3, its weakness is clear
from its definition. Biittcher ef al. [4] also uses Precision at

Judged documents, which relies on condensed lists just like Q,
AP’ and nDCG'. However, it is known that Precision is very
unstable and insensitive, and does not average well [12].



3 Metrics
3.1 Q(), AP(), nDCGC() and bpref

Let £ denote a relevance level, and let gain{L) denote
the gain value for retrieving an L-relevant document. With-
out loss of generality, this paper assumes that we have S-
relevant (highly relevant), A-relevant (relevant) and B-relevant
(partially relevant) documents as in NTCIR [7] in addition to
judged nonrelevant documents. Moreover, we let gain(S) =
3, gain(A) = 2 and gain(B) = 1 hereafter as it is known
that metrics such as Q and nDCG are robust to the choice
of gain values [12]. As for the TREC data, which only have
“highly relevant” and “relevant” documents, we treat the for-
mer as S-relevant and the latter as B-relevant (rather than A-
relevant). This is because it is known that typically one-half of
the relevant documents in the TREC grels are only partially or
marginally relevant [15].

Let R(L) denote the number of L-relevant documents, and
let R = 3, R(L). Letcg(r) = 3, .., 9(2) denote the
cunmlative gain at Rank r of the system output, where g (z) =
gain(L) if the document at Rank 7 is L-relevant and g(z) =
0 otherwise (i.e., if the document at Rank < is either judged
nonrelevant or unjudged). Let g1(r) and cgr(r) denote the
(cumulative) gain of an ideal ranked output, where an ideal
ranked output is one that satisfies g(r) > 0for1 <7 < R
and g(r) < g(r — 1) for r > 1. For NTCIR, for example,
listing up all S-relevant documents, followed by all A-relevant
documents, followed by all B-relevant documents produces an
ideal ranked output. Let Zsrel(r) be one if the document at
Rank 7 is relevant and zero otherwise, and let count(r) =
Y 1<icr is7el(8). Clearly, precision at Rank r is given by
P(r) = count(r}/r.

Q-measure is defined as follows:

Q-measure = _}ﬁ Zisrel(r)BR(r) (1)

Beg(r) + count(r)
fegr(r) +
where BR(r) is called the blended ratio and 3 is a persis-
fence parameter. Because BR(r) has an r in the denominator
(just like P(r)), Q-measure is guaranteed to become smaller
as a relevant document goes down the ranked list. A large
(e.g., B = 100) alleviates this effect, and makes Q-measure
more forgiving for relevant documents near the bottom of the
ranked list. Conversely, a small 8 (e.g., 8 = 1) imposes more
penalty. Sakai [13] showed empirically that & = 1,10 are
good choices, so we take 3 = 1 throughout this paper. Note

also that 8 = 0 reduces Q-measure to AP:

BR(r) = 2)

isrel(r)go—u—tf@ =Y isrel(r)P(r) . (3)

r T

1

AP = 5
For a given logarithm base a, let the discounted gain at
Rankrbedg(r) = g(r)/log, (r) forr > aand dg(r) = g(r)
for r < a. Similarly, let dg1(r) denote the discounted gain for
an ideal ranked list. nDCG at document cut-off { is defined as:

nDCG =Y dg(r)/ Y dai(r). (&)

1<r<l 1<r<l

Throughout this paper, we let | = 1000 as it is known
that small document cut-offs hurt the stability of nDCG [12].

Moreover, we let @ = 2 because it is known that using a
large logarithm base makes nDCG counterintuitive and insen-
sitive [13], despite the fact that this parameter was designed
to reflect persistence just like Q-measure’s 3. We shall come
back to this issue in Section 3.2,

At SIGIR 2007, Sakai [14] reported that Q, AP’ and
nDCG (the application of Q, AP an nDCG to condensed lists;
See Section 1) are simpler and better solutions to the problem
of evaluating IR systems with incomplete relevance data than
bpref [3].

Let ' denote the rank of a document in a condensed list,
whose original rank was 7 (> 7). Let N denote the number of
Jjudged nonrelevant documents. Then bpref can be expressed
as follows {14]:

bpref = %Zisral(r')(l -

~t

min(R,r — count(r')))
min(R, N)

3
where r’ — count () is the number of judged nonrelevant doc-
uments ranked above the relevant one at Rank ', or the mis-
placement penalty with respect to this particular relevant doc-
ument. Clearly, for any topic such that R < N, bpref reduces
to:

bpref R =%

!

min(R, v’ — count(r'))
R ).
(6)
In fact, R < N in holds for all of our TREC and NTCIR topics
(See also Table 2), so bprefis always bpref-R in our study.
Sakai [14] pointed out that the only essential difference be-
tween AP’ and bpref is that, while the former uses ' for scal-
ing each misplacement penalty ' — count(r’), the latter uses
a constant (e.g., R). Compare Eq. 6 with

isrel(r')(1-

AP’ =37, isrel(r) szl ¥
= 13 dsvel(r)(1 - D)y - (g)

Scaling by a constant is generally not good, especially if the
constant is large, because this means that the misplacement
penalties with respect to the top ranked relevant documents
are virtually ignored [14]. In other words, bpref lacks the “top
heaviness” of AP’, which is one of the main strengths of the
original AP. It is clear that bpref.N [14] and RankEff [5] both
suffer from this problem, as they use NV and R * N for scal-
ing the misplacement penalty, respectively. Sakai [14] showed
experimentally that bpref_N indeed performs very poorly.

3.2 RBP and Persistence

We now formally define RBP [8,9]. Let M denote the high-
est relevance level across all topics. RBP can be expressed as
follows:

.l 2 r-1
RBP = ——i D o()p ©)

where p(< 1) is a persistence parameter. A high value
of p represents a persistent user; a low value represents an
impatient one. As Moffat and Zobel [9] explored p =
0.5,0.8,0.95, we start our own experiments with the same
values, denoting each version of RBP by RBP.5, RBP.8 and
RBP9S5. In all of our experiments, we let gain(H) =
gain(S) = 3. Recall that our NTCIR data have S-, A- and B-
relevant documents, but our TREC data have S- and B-relevant
documents only.



The assumption behind RBP is that the user, after exam-
ining the document at Rank r, will examine the document at
Rank (r+ 1) with probability p or stop scanning the ranked list
with probability 1 — p. Thus the model assumes that the tran-
sition probability is independent of the relevance of the docu-~
ment at Rank r, which is not necessanily realistic. On the other
hand, this assumption makes RBP easy to interpret and to com-
pute. Moreover, Moffat, Webber and Zobel 8] argue that RBP
is suitable for evaluation with incomplete relevance data as it is
guaranteed to increase as more relevance judgments are added
(since it does not have a recall component) and the error due
to unjudged documents can be quantified.

However, we can discuss RBP’s possible weaknesses.
Firstly, RBP may give a very low score even to an ideal ranked
output: In fact, the fact that it does not rely on recall implies
that it denies the very existence of an “ideal” ranked output.
From Eq. 9, it is clear that the RBP for an ideal ranked listin a

. N R r—1
binary relevance environment equals (1 —p)y__, p" . Ta-
ble 1 shows the RBP value for an ideal ranked output for p =
0.5,0.8,0.95 and R = 1, 10, 100, 1000. When p = 0.95, for
example, an ideal ranked output for a topic with R = 10 rele-
vant documents receives an RBP of .4013, while one for a topic
with R = 100 relevant documents receives .9941. Whether it
is good to average such a measurement across topics can be
debated, but it is at least a fact that topics with many relevant
documents can have a far larger impact on Mean RBP than
those with few relevant ones. Moreover, Table 1 shows the ex-
treme cases of when R = 1: It can be observed that the RBP
of an ideal ranked output (i.e., one that has the only one rel-
evant document at Rank 1) can range from 0.05 (p = 0.95)
and 0.5 (p = 0.5), since RBP in this case equals 1 — p. Itis
not clear why the user’s persistence (the probability of moving
from a document from Rank r to that at Rank (r + 1)) should
influence the effectiveness value of the same ranked output so
drastically, even though only the document at Rank 1 is being
examined.

We further note that depending on recall is not necessar-
ily bad. The real user may have some idea of the number of
relevant documents, due to his background knowledge, or if
not, by looking at the total number of hits shown in the IR
interface. Moreover, even if this is not the case, a good IR
performance metric is not necessarily one that closely mimics
“user satisfaction”. For example, a user may be very satisfied
with the ranked output, having found a decent document, but
he may have missed ten other documents that are in fact more
relevant than the one he has found. That is, the user may be
happy, just because he is ignorant. From a conscientious sys-
tem developer’s point of view, if he Jziows that there are ten
relevant documents that should be retrieved, then he would de-
sign a system that can retrieve as many of them as possible
rather than a system that makes the user “happy” by showing
Just one relevant document and hiding the other relevant ones
completely. Hence Q and AP depend directly on R, the num-
ber of judged relevant documents, and even nDCG depends on
it indirectly, as it relies on an ideal ranked output.

Figure 1 compares the “top-heaviness” of RBP, AP, Q and
nDCG, by considering a ranked output that contains exactly
one relevant document, and making it move from Rank 1 to
Rank 20. The graph at the top shows the situation when
R = 10, and the one at the bottom shows the situation when
R = 100, both under a binary relevance environment. Note
that the three RBP curves are not affectd by the value of R.

Table 1. Values of RBP for an ideal ranked
output.

RBP.S | RBP.8 | RBP.95
R=1 .5 2 .05
R =10 9990 .8926 4013
R =100 1 1 9941
R = 1000 1 1 1

From the figure, it can be observed that RBP.5 is probably too
top-heavy: itbasically ignores any relevant document retrieved
below Rank 10. This makes evaluation very unstable, as we
shall see in our experiments in Section 5. RBP.8 gives a rea-
sonable “rank-bias”: RBP.95 looks almost like a straight line,
compared to other metrics such as Q-measure and nDCG.

In Figure 1, the top-heaviness curve of AP is almost com-
pletely hidden by that of Q-measure, because in a binary rel-
evance environment, Q-measure = AP holds if there is
no relevant document below Rank R, while Q-measure >
AP holds if there is at least one relevant document below
Rank R [10]. Thus the AP curve actually begins to deviate
from the Q-measure one at Rank 11 in the graph at the top
(where R = 10).

It can also be observed that the top-heaviness curves of
nDCG have a minor problem: nDCG with a logarithm base
of 2 cannot distinguish between a system that has a relevant
document at Rank 1 and one that has a relevant document at
Rank 2. This is because, according to the original definition of
nDCG (which we stick to), gain discounting cannot be applied
to ranks above a(= 2). This is precisely why using a large a
with nDCG is no good [13]: it makes the top-heaviness curve
even flatter. (One rather inelegant way to avoid this problem
is, instead of letting dg(r) = g(r)/log,(r) for v > a, to let
dg(r) = ¢g(r)/log,(r + a— 1) for all r so that gain discount-
ing can be applied to every rank.) It should also be noted that
the top-heaviness curve for nCG [6], the undiscounted version
of nDCG, is a completely flat line. That is, to nCG, it does
not matter at all at which rank the relevant document is found.
This explains why nCG performs very poorly [12].

To sum up, the IR metrics we consider in this study all have
a mechanism, each in its own way, of penalising relevant docu-
ments found near the bottom of the ranked list. But the graphs
suggest that using p = 0.5 for RBP may not be good for re-
liable evaluation. This we will verify in our experiments de-
scribed below.

4 Full and Reduced Data

Table 2 provides some statistics of the TREC and NTCIR
data we used for evaluating the IR metrics for the purpose of
evaluation with incomplete relevance assessements. We chose
these data sets as we wanted “ad hoc” test collections with
graded relevance data. The “TREC03” and “TREC04” data are
from the TREC 2003 and 2004 robust track, and the “NTCIR-
6J” and “NTCIR-6C” data are from the NTCIR-6 Crosslin-
gual track. The TREC runs are English monolingual runs,
and the NTCIR-6J (NTCIR-6C) runs mclude both monolin-
gual and crosslingual runs for the Japanese (Chinese) docu-
ment retrieval subtask.

For conducting our discriminative power experiments de-
scribed in Section 5, we randomly selected one run from each
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Figure 1. Comparison of “top-heaviness”.

Table 2. TREC and NTCIR data used in our

experiments.

TREC03 TREC04 [ NTCIR-6) | NTCIR-6C
#opics 50 49 50 50
average N 925.5 654.6 1157.9 999.4
average R 332 41.2 953 88.1
S-relevant 8.1 12.5 2.5 21.6
A-relevant - - 61.1 30.4
B-relevant 25.0 28.8 317 36.1
#teams 16 14 12 11
#runs used 30(78) 30(110) 30(73) 30(45)
(#all runs)

participating teams. Thus, with the TRECO03 data, for example,
we used 16 runs, which yields 16*15/2=120 combinations of
teams for significance testing. For computing Kendall’s rank
correlation, we wanted more runs, so we randomly sampled
30 runs from each data set, disregarding which team each run
comes from. Note that the statistical significance of Kendall’s
rank correlation depends on the number of runs [11].

To examine the effect of relevance data incompleteness on
the IR metrics, we created reduced relevance data from the
full relevance data, following the original Buckley/Voorhees
methodology [3]: First, for each topic, we created a ran-
domised list of judged relevant documents of size R, and a sep-
arate randomised list of judged nonrelevant documents of size
N. Then, for each reduction rate j € {90, 70, 50, 30, 10},
we created a reduced set of relevance data by taking the
first R; and N; documents from the two lists, respectively,
where R; = max(l,truncate(R * j/100)) and N; =
max(10, truncate(N * j/100)). The contants 1 and 10 have
been copied from [3], representing the minimum number of
judged (non)relevant documents required for a topic. (In prac-
tice, the constant 10 was seldom used since N was generally
very large.) This stratified sampling is essentially equivalent to
random sampling from the entire set of judged documents [17].

Figure 2. Reduction rate (z axis) vs. abso-
lute performance values averaged over 30
runs (y axis).

Figure 2 shows the effect of relevance data reduction on
the absolute overall performances (e.g., Mean AP) averaged
across all 30 runs for each data set. (The NTCIR graphs are
omitted due to lack of space.) The horizontal axis represents
the reduction rate j. It is clear that the values of the metrics
based on the original ranked lists (AP, Q, nDCG and RBP)
quickly diminish as the relevance data becomes more and more
incomplete. (This is not necessarily a flaw: RBP has been de-
signed to behave this way.) In contrast, the bpref_R (i.e., bpref)
curve is relatively flat, and this much supports what Buckley
and Voorhees reported [3]. However, it is also clear that the
Q', AP’ and nDCG’ curves are just as flat as the bpref one.

5 Discriminative Power

This section compares the robustness of IR metrics to
incomplete relevance assessments in terms of discrimina-
tive power (or sensitivity) using Sakai’s Bootstrap Sensitivity
Method [11]. The input to this method are a test collection, a
set of Tuns, an IR metric, and the significance level « for boot-
strap hypothesis tests. Using resampled topic sets, the method
conducts a bootstrap hypothesis test for every system pair, and
computes the discriminative power, i.e., for how many system
pairs the IR metric was able to detect a significant difference,
and the estimated overall performance difference required to
achieve that significance.

Table 3 compares the discriminative power of Q('), AP(’),
nDCG("), bpref-R and RBP with the original 100% relevance
data. For example, Table 3(a) shows that Q-measure man-
ages to detect a statistical significance for 80 pairs out of 120



Table 3. Discriminative power at o = 0.05
with 100% qrels.

[ disc. power | diff. required
(a)TRECO3
Q 807120=66.1% 0.07
Q 17/120=642% 0.07
AP 71/120=64.2% 0.07
AP 77/120=64.2% 0.09
nDCG | 71/120=59.2% 0.08
nDCG’ | 71/120=59.2% 0.08
bpref R | 69/120=57.5% 0.08
RBP8 | 57/120=47.5% 0.08
RBP95 | 55/120=45.8% 0.04
RBP.S | 45/120=37.5% 0.12
{by1 RECD4
Q 63/91=69.2% 0.08
Q 62/91=68.1% 0.08
AP 61/91=67.0% 0.07
AP 61/91=67.0% 0.07
nDCG 58/91=63.7% 0.08
nDCG' | 58M91=63.7% 0.09
bpref R | 57M1=62.6% 0.09
RBP.9S | 45/91=49.5% 0.05
RBP.8 36/91=39.6% 0.09
RBP.S 30/91=33.0% 0.12
(c)NT CIR-6]
nDCG 48766=12.1% 0.09
nDCG' | 47/66=71.2% .10
Q 47/66=71.2% 0.08
Q 47/66=71.2% 0.09
AP 46/66=69.7% 0.10
AP’ 46/66=69.7% 0.09
bpref_R | 42/66=63.6% 0.12
RBP95 | 42/66=63.6% 0.07
RBP.8 40/66=60.6% 0.08
RBP.S 36/66=54.5% 0.10
(dINTCIR-6C
nDCG | 43/55=78.2% 0.10
Q 42/55=76.4% 0.07
nDCG 42/55=76.4% 0.09
RBP9S | 42/55=76.4% 0.06
AP’ 42/55=76.4% 0.07
bpref-R | 42/55=76.4% 0.08
AP 41/55=74.5% 0.08
Q 40/55=72.7% 0.08
RBP8 38/55=63.6% 0.09
RBP.S 27/55=49.1% 0.13

(16*15/2) combinations of teams at « = 0.05, and that a dif-
ference of around 0.07 is required in order to achieve signifi-
cance given 50 topics.

We first summarise Table 3 in words:

e For TRECO03 and TREC04, Q('), AP("), nDCG(’) and
bpref_R are more discriminative than RBP.

e For NTCIR-6J, Q('), AP(") and nDCG(') are more dis-
criminative than bpref_R and RBP.

e For NTCIR-6C, Q('), AP(), nDCG(’) bprefR and
RBP.95 are more discriminative than RBP.8 and RBP.5.

e To sum up, the overall winners given 100% relevance
data are Q("), AP(") and nDCG(’).

It is clear from Table 3 that small values of p for RBP
hurt discriminative power. This is probably because a small p
makes RBP too “top heavy™: As we have seen in Figure 1, us-
ing p = 0.5 implies that IR systems are more or less evaluated
based on the top 10 documents only, which makes evaluation
very unstable [12]. For this reason, we drop RBP.05 from our
experiments henceforth.

Figure 3 shows the effect of relevance data reduction on
discriminative power for AP("), Q('), nDCG(’), bpref R and
RBP.9S and RBP.8. The results are similar to those reported
by Sakai [14], who used four data sets from NTCIR-3 and

Table 4. Discriminative power at a = 0.05
with 10% qrels.

| disc. power | diff. required
(a)TREC03
AP 63/120=52.5% 0.14
Q 61/120=50.8% 0.13
nDCG’ | 60/120=50.0% 0.14
bpref. R | 47/120=39.2% 0.16
Q 32/120=26.7% 0.09
nDCG 29/120=24.2% 0.09
RBP.95 | 26/120=21.7% 0.01
AP 13/120=10.8% 0.08
RBP.8 6/120=5.0% 0.03
(bJTREC04
Q’ 50/91=54.9% 0.11
AP’ 46/91=50.5% 0.12
nDCG’ | 43/91=47.3% 0.12
1DCG 42/91=46.2% 0.09
bpref.R | 37/91=40.7% 0.15
Q 29/91=31.9% 0.11
RBP.95 | 24M1=26.4% 0.01
AP 15/91=16.5% 0.09
RBP.8 10/91=11.0% 0.04
{c)NTCIR-6]
Q 46/66=69.7% 0.10
nDCG 45/66=68.2% 0.06
AveP’ 44/66=66.7% 0.11
nDCG’ 44/66=66.1% 0.10
Q 43/66=65.2% 0.05
bpref.R | 39/66=59.1% 0.11
RBP.9S | 36/66=54.5% 0.01
AP 34/66=51.5% 0.04
RBP.8 21/66=31.8% 0.03
(d)NTCIR-6C
q 39/55=70.9% 0.11
AP/ 39/55=70.9% 0.11
bprefR | 39/55=70.9% 0.12
nDCG’ 38/55=69.1% 0.12
nDCG 37/55=61.3% 0.06
Q 33/55=60.0% 0.04
RBP.9S | 31/55=56.4% 0.02
AP 28/53=50.9% 0.04
RBP.8 12/55=21.8% 0.03

NTCIR-5. Table 4 is similar to Table 3 but uses the 10% rel-
evance data, thus representing the “tails” of the curves. We
summarise Figure 3 and Table 4 in words:

e For TREC03 and TREC04, Q', AP’ and nDCG' are more
robust than other metrics to incomplete relevance assess-
ments. The original nDCG does well for TREC04 but
not for TREC03.

o Similarly, for NTCIR-6] and NTCIR-6C, Q', AP/,
nDCG’ and nDCG are the most robust. (Bpref appears
to do well for NTCIR-6C, but it has a problem, as we
shall discuss later using Table 5.)

e RBP.95, AP and RBP.8 are at the bottom of the list, ex-
actly in this order for all four data sets.

e To sum up, the overall winners in terms of robustness
to incomplete relevance assessments are Q, AP’ and
nDCG’. AP and RBP clearly lack the robustness. nDCG,
Q and bpref_ R lie in the middle.

The above analysis was based on the number of statisti-
cally significant differences detected given incompleteness rel-
evance data. The basic assumption here is that the set of sig-
nificantly different pairs at X% reduction rate is basically a
subset of one with the full relevance data. However, it might
be the case that most of these conclusions at X % reduction rate
are in fact inconsistent with the original conclusions with the
100% relevance data. We thus provide an additional analysis
in Table 5, which is similar in spirit to the “accuracy” of Bom-
pada ef al. [2]. The table compares, for each metric, the set



Table 5. Number of significant differences
detected with 10% qrels but not with 100%
qrels.

| #significant | #ir | percentage
(a)TRECO3
AP 3 2 5%
Q 32 2 6%
nDCG 29 0 0%
RBE.8 6 0 0%
RBP.95 26 1 4%
bpref R 47 7 15%
AP/ 63 3 5%
/ 61 5 8%
nDCG’ 60 5 8%
(b)TREC04
AP 13 1 %
Q 29 0 0%
nDCG 42 0 0%
RBP.8 10 0 0%
RBP.95 24 0 0%
bpref.R 37 4 1%
AP’ 46 5 11%
Q 50 3 6%
nDCG’ 43 1 2%
(cINTCIR6J
AP 34 2 %
Q 43 4 9%
nDCG 45 1 2%
RBP.8 21 0 0%
RBP.95 36 2 6%
bpref_R 39 1 3%
AP’ 44 2 5%
’ 46 1 2%
nDCG’ 44 0 0%
(dNTCIR-6C
AP 28 1 %
Q 33 0 0%
oDCG 37 0 0%
RBP.§ 12 0 0%
RBP.95 31 1 3%
bpref-R 39 10 26%
AP’ 39 1 3%
Q 39 1 3%
nDCG’ 38 0 0%

of significantly different pairs at 10% reduction rate with that
with the full relevance data. For example, Table 5(a) shows
that, for TRECO3, AP detected a statistical significance for 13
cases with the 10% relevance data, but two of them (15%) are
not among the set of cases detected by AP with the 100% rel-
evance data. Assuming that the conclusions with the 100%
relevance data are the ground truth, the numbers presented in
the table represent “errors”. As can be seen, the number of
errors are generally small, supporting the aforementioned as-
sumption. Bpref_R, however, appears to be quite unreliable
from this viewpoint as well: For example, Table 5(d) shows
that as many as 10 cases out of the 39 significant differences
detected by bpref_R at 10% reduction rate (See also Table 4(d})
are inconsistent with the original bpref results. This, again, is
not good news for bpref.

6 Rank Correlation

Table 6 shows the Kendall’s rank correlation values be-
tween each pair of metrics given the original relevance data.
(The NTCIR results are omitted due to lack of space.) As men-
tioned earlier, we randomly sampled 30 runs from each data set
for computing the values: With 30 runs, the correlation is sta-
tistically significant if it is over 0.34 [11]; values over 0.9 are
shown in bold to indicate high correlations. It can be observed
that while the system rankings by AP('), Q('), nDCG(') and
bpref R can be quite similar given the full relevance data, the

Table 7. Kendall’s rank correlation: 100%
vs 10% qgrels for each metric.

(a)TRECO3 (cNTCIR-6]
APT .807 || AP’ .899
RBP95 | .802 || Q .894
Q’ .793 || nDCG’ | .867
Q .738 || RBPS5 | .839
nDCG’ | .724 || nDCG .821
bpref.R | .724 bpref.R | .802
nDCG 715 || Q 743
AP .664 || RBP.8 655
RBP.8 503 || AP .563
(b)TREC04 1d)NTCIR-6C
nDCG’ | .890 4 949
/ .880 || nDCG’ | .936
bpref.R | .871 nDCG 917
AP’ 839 || Q .885
nDCG .798 || AP’ .880
RBP.95 | .752 || bprefR | .853
Q .706 {| AP 789
AP .559 || RBPSB 775

RBP.8 559 RBP.9S 756

RBP rankings can be quite different. This alone is not neces-
sarily a flaw: it just means that RBP is measuring something
substantially different from the other metrics. Recall that RBP
disregards recall.

Figure 4 shows the effect of relevance data reduction on the
system ranking for each metric: Thus, the AP ranking at X%
reduction rate is compared with the original AP ranking, and
so on. Table 7 summarises the figures by sorting the metrics
by Kendall’s rank correlation at 10% reduction rate. Figure 4
and Table 7 show that:

e Q', AP’ and nDCG’ are consistently among the most ro-
bust metrics in terms of system ranking stability. Bpref_R
does well for TREC04.

As Figure 4 shows, the system rankings by AP and RBP.8
collapse as relevance data is reduced. RBP.95 is also not
very good: at 30% reduction rate, its Kendall’s rank cor-
relation with the original ranking is as low as that of AP
for TREC04 and for NTCIR-6J; it performs as poorly as
RBP.8 for NTCIR-6C.

e To sum up, Q, AP’ and nDCG’ are again the overall win-
ners, and the advantage of introducing a new metric like
bpref is not clear in terms of system ranking stability ei-
ther. RBP is not as good as Q', AP’ and nDCG’ in terms
of system ranking stability, even with p = 0.95. Again,
nDCG, Q and bpref_R lie in the middle.

7 Conclusions

This paper compared the robustness of IR metrics to in-
complete relevance data, using four different sets of graded-
relevance test collections with submitted runs — two from
TREC and two from NTCIR. Our discriminative power ex-
periments and rank correlation experiments agreed that Q,
AP’ and nDCG', the application of Q-measure, AP and nDCG
to condensed lists, are more robust than other metrics to rel-
evance data incompleteness; that AP and RBP lack the ro-
bustness; and that nDCG, Q and bpref R lie in the middle.
As these results hold across two different evaluation efforts,
namely TREC and NTCIR, we believe that these findings are
very general. It is also interesting that Q, nDCG’ and AP’
are comparable in terms of robustness to incomplete relevance
data even though Q and nDCG are clearly superior to AP. In



Table 6. Kendall’s rank correlation between different metrics,

given 100% grels.

TREC03 | Q | nDCG | RBP8 | RBP.95 | bprefR | AP’ | Q" [ aDCG
AP 931 | 857 706 848 922 | 982 | 931 | .867
Q - 844 655 .807 871 049 | 991 | .853
nDCG - - 75 853 844 | .857 | .844 | 991
RBP.3 . - - 821 747 | 697 | .655 | .75
RBPSS - - - 899 | .839 | 798 | 853
bpref-R. - - - - 913 | .862 | .844
AP/ - - - - - 949 .867
Q - - - - - - - .853
TREC04 | Q | nDCG | RBP.8 | REPSS | bprefR | AP’ | Q | nDCG
AP 968 | 940 747 850 968 | 977 | 945 | .945
Q - 936 733 876 954 | 972 | 977 | .940
nDCG - 170 903 936 | 936 | 922 | 977
RBPS - - - 821 770 | 733 | 710 | 756
RBP.9S - - - - 913 876 | .853 .890
bpref-R - - - - 945 | .931 931
AP - - - - - - | 959 | .9d0
Q' - - - - - - - 945
other words, the advantage of using graded relevance seems to [3] Buckley, C. and Voorhees, E. M.: Retrieval Evaluation

disappear when condensed lists are used with very incomplete
relevance data.

Our TREC03, TREC04 and NTCIR-6 results, together with
the NTCIR-3 and NTCIR-5 results reported by Sakai [14], pro-
vide ample evidence that @, AP’ and nDCG’ are not only sim-
pler than but also superior to bpref. Although we have no in-
tention of claiming that Q', AP’ and nDCG’ are the perfect
solution to the problem of relevance data incompleteness, we
believe that they are more elegant than introducing metrics like
bpref and RankEff that lack the “top-heaviness” property of
AP by definition.

Even though Moffat, Webber and Zobel [8] claimed that
RBP is suitable for evaluation with incomplete relevance data,
we demonstrated that it has weaknesses. While RBP is inter-
esting in that it is independent of recall, because of this very
feature, it often cannot give 1 even to an ideal ranked output.
As we have discussed using Table 1, an ideal output for a topic
with 10 (regular) relevant documents may receive an RBP of
.4013, while an ideal output for a topic with 100 (regular) rel-
evant documents may receive an RBP of .9941. This is exactly
because RBP denies the existence of an ideal ranked output,
and whether it is good to average such a measurement across
topics can be debated. Our experimental results showed that
small values of p make RBP unreliable, and that RBP is not
as robust to incomplete relevance data as @, AP’ and aDCG’
in terms of discriminative power and system ranking stability,
even with p = 0.95.

Acknowledgments

We thank Ellen Voorhees for letting us use the TREC robust
track data, and Alistair Moffat and Justin Zobel for providing
their unpublished manuscript [9].

References

[1] Aslam, J. A., Pavly, V. and Yilmaz, E.: A Statisti-
cal Method for System Evaluation Using Incomplete
Judgments, ACM SIGIR 2006 Proceedings, pp. 541-548,
2006.

[2] Bompada, T. er al.: On the Robustness of Relevance
Measures with Incomplete Judgments, ACM SIGIR 2007
Proceedings, pp. 359-366, 2007.

with Incomplete Information, ACAf SIGIR 2004 Pro-

ceedings, pp. 25-32, 2004.

Biittcher, S. ef al: Reliable Information Retrieval Evalu-

ation with Incomplete and Biased Judgements, ACM SI-

GIR 2007 Proceedings, pp. 63-70, 2007.

Grénqvist, L.: Bvaluating Latent Semantic Vector Mod-

els with Synonym Tests and Document Retrieval, ELEC-

TRA Workshop - Methodologies and Evaluating of Lex-

ical Cohesion Techniques in Real-World Applications,

pp- 86-88, 2005.

Jarvelin, K. and Kekildinen, J.: Cumulated Gam-Based

Evaluation of IR Techniques, ACM Transactions on In-

formation Systems, Vol. 20, No. 4, pp. 422-446, 2002.

[7] Kando, N.: Overview of the Sixth NTCIR Workshop,

NTCIR-6 Proceedings, pp. i-ix, 2007.

[8] Moffat, A., Webber, W. and Zobel, J.: Strategic System
Comparisons via Targeted Relevance Judgments, ACM
SIGIR 2007 Proceedings, pp. 375-382, 2007.

[5] Moffat, A. and Zobel, J.: Rank-biased precision for Mea-
surement of Retrieval Effectiveness, under review.

{10] Sakai, T.: On the Task of Finding One Highly Relevant

Document with High Precision, Information Processing

Society of Japan Digital Courier, Vol. 2, pp. 174-188,

2006.

Sakai, T.: Evaluating Evaluation Metrics based on the

Bootstrap, ACM SIGIR 2006 Proceedings, pp. 525-532,

2006.

Sakai, T.: On the Reliability of Information Retrieval

Metrics based on Graded Relevance, Information Pro-

cessing and Management, 43(2), pp. 531-548, 2007.

Sakai, T.: On Penalising Late Arrival of Relevant Doc-

uments in Information Retrieval Evaluation with Graded

Relevance, Proceedings of the First International Work-

shop on Evaluating Information Acess (EVIA 2007),

pp- 32-43, 2007.

Sakai, T.: Alternatives to Bpref, ACAM SIGIR 2007 Pro-

ceedings, pp. 71-78, 2007.

[15] Sormunen, E.: Liberal Relevance Criteria of TREC -
Counting on Negligible Documents? ACA SIGIR 2002
Proceedings, pp. 324-330, 2002.

[16] Voorhees, E. M. and Buckley, C.: The Effect of Topic Set
Size on Retrieval Experiment Emor, ACM SIGIR 2002
Proceedings, pp. 316-323, 2002.

[17] Yilmaz, E. and Aslam, J. A.: Estimating Average Pre-
cision with Incomplete and Imperfect Judgments, CIKAM
2006 Proceedings, 2006.

[4

e

p—
n
—

[6]

(1]

[12]

[13]

[14]



TRECT3

—— AP
0
sl
+ RBFS
—+—REF 25
—s—bprefR
. AP
\ —0
- aDCG"

100 TRECO4

NTCIR-6J

- REPS&
—~=—RBF 85
~+—bopref R

AP

—0
«© n0CG

1o NTCIR-6C

Figure 3. Reduction rate (z axis) vs. dis-
criminative power at o = 0.05 (y axis).

—— AP

—8—Q
nDCG
- FBP8
—%—RBP 95
k - 07 —o— bpref R
LN oss | AP
- o
— 06 | __ oo
= 055
: - 05
an 70 0 a0 10 TRECD3
1
095
09 |——AP
—8
SN T | e
; .y \ 08 + PBPB
- N 075 |—#~RBPS5
= 07 —a—ppref R
x \ 0es | AP
N %% | —o
; N %6 |- - oo
055
: 05
90 70 50 30 10 TRECD4
—e— AP
-0
nDCG
~-- FBP8
—%—RBP 95
~8—bpref R
ot AR
_.—.Q‘
~ ADCG’
NTCIR-6J
——aF
-—— 0
TR nDCG
%08 | .« FBPSB
075 |—%—REF 95
67 —s—bpraf R
o
06 | — aDcg
056
. . 05
an 0 50 30 10 NTCIR-6C

Figure 4. Reduction rate (r axis) vs.
Kendall’s rank correlation with the 100%-

grels ranking (v axis).




	0052.tif
	0053.tif
	0054.tif
	0055.tif
	0056.tif
	0057.tif
	0058.tif
	0059.tif

