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We numerically investigate the dynamical properties of the one-component Gaussian core model in

supercooled states. We find that nucleation is increasingly suppressed with increasing density. The system

concomitantly exhibits glassy, slow dynamics characterized by the two-step stretched exponential

relaxation of the density correlation and a drastic increase of the relaxation time. We also find a weaker

violation of the Stokes-Einstein relation and a smaller non-Gaussian parameter than in typical model glass

formers, implying weaker dynamic heterogeneities. Additionally, the agreement of the simulation data

with the prediction of mode-coupling theory is exceptionally good, indicating that the nature of the slow

dynamics of this ultrasoft particle fluid is mean-field-like. This fact may be understood as a consequence

of the long-range nature of the interaction.
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The nature of the glass transition is surrounded by con-
troversy. Several scenarios have been proposed to explain
the drastic slowing down of the dynamics of supercooled
fluids near the glass transition point [1–3]. Numerical
simulation of simple model fluids is an ideal tool to test
these competing scenarios. However, the typical model
fluids studied so far, such as Lennard-Jones, soft-core,
and hard-sphere mixtures, have short-ranged, strong repul-
sive interactions in common, which dictate their thermo-
dynamic, structural, and dynamical properties and render
the results of these models qualitatively similar [4]. A new
class of model glass formers is desirable to diversify our
pictures and perspectives on the glass transition within
the limited accessible time windows of the simulations.
Recently, ultrasoft particle fluids have attracted particular
attention in soft-materials science [5]. They are systems
composed of spherical particles interacting with bounded
and weak repulsions and are a good model for various
soft materials, such as star-polymers and dendrimers. The
absence of the hard-core-like repulsion makes the thermo-
dynamic and dynamic behaviors of this class of systems
extremely rich compared with standard molecular systems.
Their phase diagrams exhibit exotic and counterintuitive
properties, including a stable fluid phase at high tempera-
tures for arbitrary densities, remelting of solids at higher
densities, and complex crystalline phases at low tempera-
tures [5]. The dynamics of the ultrasoft particle fluids also
exhibits rich and nontrivial behaviors [6–9].

In this Letter, we consider the simplest version of ultra-
soft particles, i.e., the Gaussian core model (GCM) fluid
originally introduced by Stillinger [10]. The GCM inter-
action is given by

vðrÞ ¼ �e�ðr=�Þ2 ; (1)

where � and � characterize the energy and length scales,
respectively. The GCM is an ideal model to study glassy
dynamics because its thermodynamic phase diagram is

relatively simple. Other ultrasoft particles, such as
Hertzian spheres and star polymers, exhibit complex
crystalline phases, which may affect the dynamics in the
supercooled state [6,11]. We numerically study the mono-
disperse GCM in three dimensions and show that nuclea-
tion is suppressed at very high densities and that the system
exhibits canonical glassy behavior in the supercooled state.
The quantitative agreement of the dynamical properties
with the theoretical predictions is better than that of all
previously investigated model glass formers.
The thermodynamic and dynamic properties of

the GCM have recently been vigorously investigated
[5,9,12–14]. Most previous studies, however, focused on
the density regime ��3 & 1, where the phase diagram
exhibits reentrant melting. At these densities, the mono-
disperse GCM easily nucleates to form crystals as it
crosses the phase boundary. In this Letter, we investigate
dynamics of the GCM near the fluid-crystal phase bound-
ary at the unprecedentedly high densities of ��3 > 1.
The thermodynamic properties of the system at high

densities are carefully characterized using a Monte Carlo
simulation. We identify the fluid-crystal phase boundary
using a thermodynamic integral calculation combined with
the particle-insertion method and the Frenkel-Ladd tech-
nique [12,15], as shown in Fig. 1. Stillinger showed that the
ground state of the GCM at ��3 * 0:18 is the bcc crystal

and argued that the melting temperature Tm obeys logTm /
��2=3 at high densities based on the duality relation
with the hard-sphere system [10]. We find that Tm follows
this scaling at ��3 * 1 and confirm that the crystalline
structure is indeed bcc at these densities. The details of
the thermodynamic properties will be discussed in a forth-
coming paper [16].
The dynamics of the system is investigated using a

molecular dynamics (MD) simulation in the NVT en-
semble with a Nosé thermostat in the cubic cell with a
periodic boundary condition. A time-reversible integrator,
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similar to the velocity-Verlet method, is used with a
potential cutoff at r ¼ 5� [15]. In the following, we take

�, �=kB, and �ðm=�Þ1=2 as the length, temperature, and
time units, respectively. We focus on the four densities,
� ¼ 0:5, 1.0, 1.5, and 2.0 (the melting temperatures
are Tm ¼ 4:4� 10�3, 5:0� 10�4, 5:8� 10�5, and
7:2� 10�6, respectively) and perform the MD simulations
for various temperatures below Tm, indicated by crosses in
Fig. 1. For each state point, five independent runs are
performed to improve the statistics. The system size is
fixed at N ¼ 3456. The simulations for N ¼ 2000 and
9826 confirm that the finite-size effect is negligible.
Starting from the initial configurations generated at high
temperatures, we perform the simulations for longer than
50��, where �� is the alpha-relaxation time obtained from
the intermediate scattering function (see below). The nu-
cleation of the system into the crystalline state is monitored
by the orientational order parameter Q6 [17]. Q6 is known
to be 0.5 for the bcc crystal and 0 for the disordered or fluid
state [17]. Figure 2 shows the time evolution of Q6 for
several trajectories at three state points. To compare the
different states on equal footing, t is scaled by ��, which is
a good measure of the equilibration time. At � ¼ 0:5 and
T ¼ 2:5� 10�3, for which the distance from the phase
boundary defined by � � ðTm � TÞ=Tm is about 0.43, all
five trajectories crystallize near t� 20�� [Fig. 2(a)]. At
� ¼ 1:0 and T ¼ 2:5� 10�4, despite deeper supercooling
(� ¼ 0:5) than that in Fig. 2(a), nucleation takes place at
much longer times of roughly 40�� [Fig. 2(b)]. For higher
densities, like � ¼ 1:5 [Fig. 2(c)], all sampled trajectories
remain in the fluid state although the system is more super-
cooled (� � 0:6). In addition to Q6, we also monitor the
potential energy of the system, which discontinuously
decreases as the system crystallizes. We have checked
that its time evolution is synchronized withQ6. From these
observations, we conclude that the nucleation of the GCM
is strongly suppressed at very high densities.

Next, we focus on the slow dynamics of the samples that
do not crystallize. We evaluate the self-part of the inter-
mediate scattering function, Fsðk; tÞ, after equilibration
runs of about 30��. Figure 3 shows the results for
Fsðk; tÞ for the wave vector k near the first peak of the
static structure factor SðkÞ at various temperatures for
four densities. Dashed lines at the lowest temperatures in
Figs. 3(a)–3(c) represent the data for the state points at
which at least one of the five trajectories crystallizes. At the
lowest density � ¼ 0:5, crystallization always takes place
before the slow dynamics sets in. At higher densities,

(a)  = 0.5, T = 2.5 × 10-3 

(c)  = 1.5, T = 2.4 × 10-5 (  = 0.59)

(b)  = 1.0, T = 2.5 × 10-4 (  = 0.50)

(  = 0.43)

FIG. 2. Time dependence of the orientational order parameter
Q6. (a) � ¼ 0:5, T ¼ 2:5� 10�3, (b) � ¼ 1:0, T ¼ 2:5� 10�4,
and (c) � ¼ 1:5, T ¼ 2:4� 10�5. t is scaled by ��, which is
evaluated from noncrystallizing samples. � � ðTm � TÞ=Tm

defines the distance from the melting temperature.

fcc bcc

fluid

FIG. 1 (color online). GCM phase diagram (empty squares).
Results of Prestipino et al. [12] (filled circles) are also shown.
The dashed line is a fit by logTm / ��2=3 (Stillinger [10]). The
melting and freezing lines are indistinguishable at this scale.
Crosses denote the state points where the MD simulations are
performed.

(a)  = 0.5

(c)  = 1.5

(b)  = 1.0

(d)  = 2.0

FIG. 3 (color online). Fsðk; tÞ for several state points.
(a) � ¼ 0:5 and T � 103 ¼ 7; 4; 3; 2:6, (b) � ¼ 1 and T � 104 ¼
7; 4; 3; 2:6; 2:5, (c) � ¼ 1:5 and T � 105 ¼ 7; 4; 3; 2:6; 2:4; 2:3,
and (d) � ¼ 2 and T � 106 ¼ 10; 5; 4; 3:4; 3:2; 3; 2:93. The
dashed lines in (a)–(c) denote the lowest-temperature data for
which at least one of the trajectories crystallizes. The dash-
dotted lines in (d) are the solutions of the MCT equation.
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however, the system clearly exhibits two-step relaxation,
while the radial distribution functions gðrÞ remain liquid-
like, as shown in Fig. 4(a). The sudden appearance of a
plateau in Fsðk; tÞ is the hallmark of the slow dynamics
near the glass transition. The alpha-relaxation time ��,
defined by Fsðk; ��Þ ¼ e�1, drastically increases as the
temperature decreases. In particular, glassy relaxation is
observed up to the lowest accessible temperature with no
indication of crystallization for the densest system � ¼
2:0. We also calculate the mean-square displacement
h�R2ðtÞi and observe the typical glassy behavior charac-
terized by a plateau followed by diffusive behavior in the
alpha-relaxation regime and the drastic decrease of the
self-diffusion coefficient D.

We make a more detailed characterization of the slow
dynamics and compare the results with the prediction
of mode-coupling theory (MCT). MCT has successfully
described many dynamical properties of moderately super-
cooled fluid using SðkÞ as the sole input [3]. Though still
contentious, MCT is believed to be a dynamic mean-field
theory of the glass transition [1,18,19]. It predicts the
relaxation behaviors of correlation functions such as
Fsðk; tÞ semiquantitatively and the power-law increase of
�� � jT � Tcj��, where Tc is the temperature at which
MCT predicts the spurious nonergodic transition. Other
properties that MCT successfully predicts include the
time-temperature superposition in the alpha-relaxation
regime, the k dependence of the plateau height of the

intermediate scattering function, and dynamic scaling in
the plateau regime [3]. On the other hand, MCT fails to
capture dynamics below Tc, where the activation processes
over the complex energy landscape dominate. Another
failing of MCT is that the Tc’s obtained by the fitting of
simulation data systematically deviate from those eval-
uated from the theory [20]. Furthermore, due to the
mean-field nature of the theory, MCT lacks an explanation
of the violation of the Stokes-Einstein (SE) relation and
growth of non-Gaussian parameters (NGP) [21]. We solve
the MCT equation for the GCM using SðkÞ obtained from
simulation and compared the solution with the simulation
data. We mainly focus on the data for � ¼ 1:5 and � ¼
2:0, for which the plateau of the two-step relaxation of
Fsðk; tÞ is well developed. Our results confirm that the
Fsðk; tÞ simulation data obey the time-temperature super-
position in the alpha-relaxation regime and can be fitted by

a stretched exponential function e�ðt=��Þ� with the expo-
nent � � 0:7, which agrees with the MCT results. The k
dependence of the plateau height of Fsðk; tÞ agrees with
MCTas well. We also find that the temperature dependence

of �� follows the MCT power law, �� / jT � TðsimÞ
c j��, as

shown in Fig. 4(b), where �� is plotted using the short-time
relaxation time t0 defined by Fsðk; t0Þ ¼ 0:95 as a time
unit. The result for the binary Lennard-Jones system
[Kobb-Andersen (KA) model] [22] is also shown. We fit
the data using � � 2:7 (for both � ¼ 1:5 and 2.0), which is

obtained from the MCT solution, and leaving TðsimÞ
c as the

fitting parameter. Note that the value of � is comparable to
that of the KA model [22]. These results demonstrate that
the GCM shares many properties with other model glass
formers. As shown below, however, the GCM is distinct in
several respects. First, the agreement of MCT’s Fsðk; tÞ
with the simulation data is very good. The dash-dotted
lines in Fig. 3(d) are the MCT solution fitted using " ¼
1� T=Tc as the sole parameter (aside from the time unit).
This agreement is striking, given that for other model fluids
" (and sometimes the wave vectors as well) needs to be
adjusted at each temperature to obtain a reasonable fit
[20,23] (an exception is the four-dimensional system

[24]). Second, the parameters TðsimÞ
c used to fit �� in

Fig. 4(b) are unprecedentedly close to the theoretical val-

ues T
ðtheoryÞ
c . We find that TðsimÞ

c ¼ 2:02� 10�5 and 2:66�
10�6 for � ¼ 1:5 and 2.0, respectively, whereas their theo-

retical counterparts are T
ðtheoryÞ
c ¼ 2:66� 10�5 (� ¼ 1:5)

and 3:20� 10�6 (� ¼ 2:0). The discrepancies between the
simulation and theory are 32% and 20% for � ¼ 1:5 and

2.0, respectively. For other glass formers, TðsimÞ
c is known to

differ considerably from TðtheoryÞ
c . For the KA model, for

example, TðtheoryÞ
c � 0:92 compared to TðsimÞ

c � 0:44. The
discrepancy is more than 100% [20]. The KA model at

TðtheoryÞ
c is still a high-temperature fluid and Fsðk; tÞ decays

exponentially without a hint of two-step relaxation. On the

contrary, the GCM at TðtheoryÞ
c lies deep in the region where

(c) (d)

 = 1.5

 = 2.0

(a)

Rint

Rint

(b)

FIG. 4 (color online). (a) The radial distribution function for
� ¼ 1:5 and 2.0 at the lowest temperatures. Rint represents the
‘‘interaction range’’ (see text). (b) The MCT power-law fit of ��
where Tc is a fitting parameter, (c) �� dependence of the SE
relation, and (d) the peak value of the NGP �max. Data for the
small and large particles of the KA model are also plotted. The
MCT results are shown in dashed lines.
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the plateau of Fsðk; tÞ is well developed [see Fig. 3(d)].
The third and most noticeable point is the suppression of
the SE violation and the NGP. In Figs. 4(c) and 4(d), D��
normalized by high-temperature values ðD��Þref and the
peak value of the NGP �max are shown as a function of
��=t0 (instead of T to compare the different systems on
equal footing). The NGP is defined by �ðtÞ � 3h�R4ðtÞi=
5h�R2ðtÞi � 1. The variations of bothD�� and�max for the
GCM are much weaker than those of the KA model [22].
Similar suppression of the SE violation was observed in
four-dimensional systems [24,25]. Furthermore, �max is
smaller for � ¼ 2:0 than for 1.5. Because the SE violation
and the growth of the NGP are thought to be the conse-
quences of the underlying dynamic heterogeneities near
the glass transition point [21], our results imply that the
dynamic heterogeneities are weaker in the GCM and, thus,
the nature of glassy dynamics of the GCM is more mean-
field-like than those of other systems [26].

The mean-field nature of the GCM may be attributed to
the long-range nature of the interaction potential at high
densities and extremely low temperatures, where many
particles interact with each other. In Fig. 4(a), the ‘‘inter-
action range’’ Rint defined by vðr ¼ RintÞ ¼ kBT is indi-
cated by dashed lines. Rint reaches the second and third
coordination shells, which means that many particles enter
in the range of Rint at these high densities. This is in stark
contrast with ordinary fluid systems with strong repulsive
interactions for which the interaction range is on the order
of � or the distance between neighboring particles. A more
detailed analysis supporting this hypothesis is reported
elsewhere [16].

An explanation of the drastic decrease of nucleation
rates of the GCM at high densities is still lacking. It is
tempting to speculate that this phenomenon is intimately
related to the mean-field character of the GCM. In the
context of classical nucleation theory, the time scale of
nucleation �n is proportional to that of translational diffu-
sion �D � 1=D. Recently, Tanaka has argued that nuclea-
tion should always intervene before the dynamic arrest
takes place if the SE relation is violated because
the decoupling of the translational motion of a single
particle and structural relaxation leaves �n insensitive to
temperature, while the bulk dynamics drastically slow
down [27]. This scenario has been recently examined
numerically [28]. The opposite may take place for the
GCM; that is, the weaker SE violation may lead to the
concomitant increase of �n and ��, ultimately suppressing
nucleation.

In conclusion, we demonstrated that the GCM is an
unexpectedly simple and novel glass former. The rich
dynamics of the GCM and ultrasoft particle systems in
general may answer some important unanswered questions
regarding the glass transition and nucleation.
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