

Supplementary Figure 1. Alignment of the exon structures of human ALLERGIN-1-L, ALLERGIN-1-S1 and ALLERGIN-1-S2.

Human ALLERGIN-1-L consists of ten exons, whereas ALLERGIN-1-S1 and ALLERGIN-1-S2 lack exons 4 and 3, respectively.

Supplementary Figure 2. Establishment of transfectants expressing wild-type or mutant Allergin-1.

RBL-2H3, BW5147, and Ba/F3 transfectants expressing Flag-tagged WT or mutant (FY, Y- F^{216}; YF, Y- F^{241}; and FF, Y- $\mathrm{F}^{216,241}$) Allergin-1 were established, as described in Experimental Procedures and Figure 3A. The transfectants were stained with anti-Allergin-1 mAb (TX83) (open histogram) or isotype control antibody (shaded histogram), and analyzed by flow cytometry. Data are representative of more than two independent experiments.

Supplementary Figure 3. Generation of Allergin-1-deficient mice.

(a) A targeting vector was designed to disrupt the Allergin-1 gene by homologous recombination. The WT Allergin-1 allele (WT), the targeting vector (TV), and the targeted allele (Mutant) are shown. The first exon (I) containing the start codon was replaced by a gene for neomycin resistance (pGK-Neo). X marks the cleavage sites for Xho I restriction enzyme.
(b) Southern blot analysis of mouse genomic DNA digested with Xho I. DNA fragments from the WT ($\sim 10.6 \mathrm{~kb}$) and targeted ($\sim 7.3 \mathrm{~kb}$) alleles are shown. +/+, +/- and -/represents C57BL/6N mice that are WT, chimeric, or homozygous negative for Allergin-1, respectively.

Supplementary Figure 4. Normal development of hematopoietic cells in

Allergin-1-deficient mice.

Splenocytes (a), peritoneal exudative cells (b) and thymocytes (c) from WT ($\mathrm{n}=5$) and Allergin- $1^{-1} \mathrm{KO}$ mice $(\mathrm{n}=5)$ were stained with the antibodies indicated and analyzed by flow cytometry. Numbers in the quadrants and the boxes indicate the percentages of cell populations (mean \pm SD). Data are representative of two independent experiments.

Supplementary Table

Normal development of hematopoietic cells in Allergin-1-deficient mice

Cells	WT	KO	P value
Splenocytes $\left(\times 10^{7}\right)$	10.0 ± 5.3	12.6 ± 1.3	0.07
CD3 $\left(\times 10^{7}\right)$	2.3 ± 0.8	2.5 ± 0.8	0.74
B220 $+\left(\times 10^{7}\right)$	5.8 ± 1.3	7.0 ± 0.8	0.22
CD11b $+\left(\times 10^{6}\right)$	3.5 ± 2.3	3.7 ± 2.6	0.93
CD11c+ $\left(\times 10^{6}\right)$	1.8 ± 8.9	1.6 ± 1.3	0.88
Gr1+ $\left(\times 10^{6}\right)$	1.5 ± 0.8	1.3 ± 0.8	0.76
DX5+ $\left(\times 10^{5}\right)$	7.7 ± 5.1	6.8 ± 3.2	0.84
PECs $\left(\times 10^{6}\right)$	2.6 ± 0.7	3.6 ± 1.0	0.15
CD5+B220+ $\left(\times 10^{5}\right)$	4.8 ± 2.2	3.4 ± 1.9	0.43
CD5-B220+ $\left(\times 10^{5}\right)$	4.6 ± 1.8	6.3 ± 1.5	0.29
CD11b $+\left(\times 10^{5}\right)$	9.1 ± 5.1	14.8 ± 6.2	0.28
BM cells $\left(\times 10^{7}\right)$	3.4 ± 1.3	4.0 ± 0.4	0.47
B220+ $\left(\times 10^{6}\right)$	5.8 ± 4.2	5.7 ± 3.0	0.95
Gr1 $+\left(\times 10^{6}\right)$	7.1 ± 5.6	13.9 ± 6.9	0.60
CD11b $+\left(\times 10^{6}\right)$	5.7 ± 4.2	4.6 ± 2.1	0.81
Thymocytes $\left(\times 10^{7}\right)$	8.2 ± 0.7	7.2 ± 1.7	0.15
CD4+ $\left(\times 10^{6}\right)$	6.6 ± 1.6	6.6 ± 1.3	0.99
CD8+ $\left(\times 10^{6}\right)$	3.8 ± 0.5	0.92	
CD4+CD8+ $\left(\times 10^{7}\right)$	6.4 ± 0.4	5.6 ± 0.5	0.40

Splenocytes, peritoneal exudative cells (PECs), bone marrow (BM) cells and thymocytes from wild-type ($\mathrm{WT}, \mathrm{n}=5$) and Allergin-1-deficient mice (KO, $n=5$) were stained as described in Supplementary Figure 4, and the absolute cell number of each population (mean \pm SD) was determined.

