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Abstract: This paper presents optical coherence tomography (OCT)
signal intensity variation based segmentation algorithmsfor retinal layer
identification. Its main ambition is to reduce the calculation time required
by layer identification algorithms. Two algorithms, one forthe identification
of the internal limiting membrane (ILM) and the other for retinal pigment
epithelium (RPE) identification are implemented to evaluate structural
features of the retina. Using a 830 nm spectral domain OCT device, this
paper demonstrates a segmentation method for the study of healthy and
diseased eyes.
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1. Introduction

An established method in ophthalmic imaging, optical coherence tomography (OCT) has the
great advantage that it provides high-resolution three dimensional (3D) images of the human
eye noninvasively. As technical development continues, its resolution and imaging speed will
be further improved. One problem is that high resolution 3D imaging produces large quantities
of data, and modifying the measured raw data requires substantial processing. That is time-
consuming and degrades the clinical usability of OCT. To improve the practicability of OCT
technology in ophthalmology therefore depends on effective data processing.

One essential part of OCT data processing is segmentation, in which different tissue layers
are identified and separated from each other. A number of severe eye diseases (age-related mac-
ular degeneration (ARMD), choroidal neovascularisation (CNV), glaucoma, etc.) cause struc-
tural changes in the retina and the choroid. To evaluate these changes quantitatively requires a
segmentation-based determination of the thicknesses of the different tissue layers. One of the
most important layers to be identified is the retinal pigmentepithelium (RPE), which is often
considered as a limiting membrane between the retina and thechoroid. In a normal eye, RPE is
appeared as the most hyper-scattering layer in an OCT image.Another hyper scattering layer
which exists slightly superior to the RPE is outer tips of photoreceptors. In a standard resolution
OCT image, the RPE and outer tips are too close to be resolved and often appeared as a single
hyper scattering line. This combined hyper scattering lineis clinically recognized as an RPE
complex, and regarded as the indicator of RPE. In pathologiccases, the RPE is often deformed
strongly and rarely disconnected and disappeared. Also theidentification of the internal limit-
ing membrane (ILM) is important, because it is constitutes alimiting membrane between the
vitreous and the retina. Distance between the ILM and the RPEis regarded to be a measure for
retinal thickness. That information is used to evaluate both retinal diseases and the effectiveness
of surgery and other treatments.

Several different methods are available for identifying the internal layers of posterior human
eye [1, 2, 3, 4, 5, 6, 7]. Most of these are based on intensity variations in backscattered signal
[1, 2, 3, 4, 5, 6]. ILM segmentation offers a straightforwardapproach, because the contrast
between vitreous and retina is typically very good, but RPE segmentation has been found a
challenging undertaking, especially in pathologic cases.One novel approach identifies RPE on
the basis of the polarization scrambling property of RPE tissue [7].

However, regardless of whether tissue identification is based on segmentation relying on in-
tensity variation in OCT signals or polarization sensitiveOCT data, the required calculation
time for 3D data processing using currently available methods is very long, making these meth-
ods a bit unpractical. To establish the justification and validity of that statement, we did the
literature review of published segmentation methods. Articles published by Koozekanani et al.
[1], Ishikawa et al. [2] and Baroni et al. [6] do not mention a required calculation time. Mujat et
al. published a method for retinal nerve fiber layer thickness determination. The processing of
a single image (with 1000 A-scans) took 62 seconds [3]. If data segmentation of volume with
138 images is performed, the needed calculation time would be more than 2 hours. The corre-
sponding processing time for semi-automatic segmentationmethod published by Szkulmowski
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et al. [4] was about 5 minutes for data volume containing 200 images with 600 A-scans/image.
That time includes the increment of processing time caused by a necessary manual intervention.
The computation time of segmentation method published by Fernandez et al. was 24 seconds
for a 1024x512 image, entailing a 55 minutes total data processing time for volume with 138
images [5]. Simpler version of the RPE segmentation method published by G̈otzinger et al.
took 8.3 minutes for volume with 60 images (1000 A-scans/image) [7]. Although the segmen-
tation method based on the polarization scrambling property of RPE tissue seems more specific
for RPE identification than intensity based algorithms, it requires polarization sensitive OCT
(PS-OCT), which is not commercially available so far, and isnot yet common in clinics. Con-
sequently, we have decided to concentrate on intensity signal-based RPE segmentation.

This work demonstrates an alternative method for identifying the ILM and RPE based on
intensity variations in OCT signals. The main ambition is todecrease the necessary calculation
time, while still obtaining reliable segmentation results.

2. Methods

2.1. Retinal pigment epithelium identification
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Fig. 1. Steps in RPE identification. (i) The positions of maximum intensity pixels are deter-
mined and a 2D RPE position matrix is obtained, (ii) Automated binarization is performed
to obtain a mask to identify erroneous pixels in the RPE position matrix (iii) Erroneous pix-
els are removed and replaced with new numerical values based on information on neigh-
bouring pixels, (iv) 30 pixels around the RPE estimation are extracted from the original
volume data, (v) the position of the RPE is redetermined on the basis of maximum in-
tensity determination. The thus obtained RPE position map can be further improved by
repeating steps (iv-vi) using a reduced amount of pixels around the estimated RPE.

Actual layer identification can be started after normal SD-OCT pre-processing, including
depth motion compensation. RPE and ILM identification can beperformed independently.
Moreover, the presented RPE segmentation algorithm does not require any denoising, allowing
us to avoid unnecessary complexity of calculation. The principle of the algorithm is based on
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the fact that the intensity of backscattered light is largest at the RPE complex. Fig. 1 depicts the
sequences of the RPE identification algorithm.

Logarithmic scaled OCT signal intensity for each A-scans inmeasured data volume is de-
scribed by{Ix,y (z), x ∈ [1,M], y ∈ [1,N]} , wherez refers to the depth position of pixel from
the beginning of the depth scan.M is the position of the A-scan in each B-scan andN is
the position of B-scans. ThusM×N is the total number of A-scans in the processed data
volume. Initially, step (i) in Fig. 1, the maximum intensityvalue of each A-scan in the 3D
data is determined by{max(Ix,y (z))} and the depth positions of these pixels are identified
{zmax(I)(x,y)}. The obtained matrix can be considered as the first estimation for RPE position
{zmax(I)(x,y) = zrpe1(x,y)}. Due to the speckle noise and signal distortion caused by retinal
vessels, this first RPE position, based on determining the position of the maximum intensity
pixels, is not perfect. However, the majority of erroneous pixels in the 2D RPE position matrix
{zrpe1(x,y)} are located in the retinal nerve fiber layer (RNFL). Because of the large distance
between the RPE and the RNFL, it is possible to determine erroneous pixels by intensity-based
thresholding. To facilitate the position identification oferroneous pixels, the obtained RPE po-
sition matrix is processed using top-hat filtering, which computes the morphological opening
of the image and then subtracts the result from the original image [8]. The size of used structur-
ing element was 5(x)×5(y) pixels. To get a mask{Brpe1 (x,y)} that can be used for identifying
the position of erroneous pixels in the RPE position matrix,the top-hat filtered RPE position
matrix is thresholded by an automatic binarization algorithm based on Otsu’s method (step
(ii) in Fig. 1.) [9]. All pixels that are expected to be erroneous in the RPE position approxi-
mation matrix are first set to a so-called NaN value , which contains no numerical value (if
Brpe1 (x,y) = 0 thenzrpe1(x,y) = NaN). All matrix elements with a NaN value are then re-
placed by a numerical value based on the nearest neighboringpixel value (step (iii) Fig. 1) and
smoothened by a moving window median filter (size 30 (x)×2 (y) pixels) to obtain the matrix
{Zrpe1(x,y)}. To ensure that also the minor RPE position variations such as small drusens can
be detected, 30 pixels (∼129 µm) in depth around the estimated RPE are extracted{Ix,y (z),
z∈ [Zrpe1(x,y)−10,Zrpe1(x,y)+20]} and reprocessed (step (iv) Fig. 1.). The IS/OS junction
located just above RPE complex is also a relatively highly scattering tissue layer may cause
problems for RPE position identification based on evaluation of maximum intensity. However,
the probability that the RPE is identified erroneously at theIS/OS junction can be minimized,
because the IS/OS junction is thinner than RPE. Thus, if the position of the six pixels with the
highest intensity in each A-scan are determined, the medianof each six pixels group can be
calculated to find the position of the RPE along each A-scan. Next the obtained RPE position
matrix is smoothened by 40 (x)×2 (y) moving window median filter (step (v) Fig.1) and a third
iteration round is performed. This time processing extendsonly to 20 pixels in depth (∼86
µm) around estimated RPE of each B-scan{Ix,y (z), z∈ [Zrpe2(x,y)−10,Zrpe2(x,y)+10]}, and
the obtained matrix is smoothened by a moving average medianfilter with a window size of
1(x)×30(y). Since the maximum number of iterations in this work was four, the final itera-
tion involved 10 pixels (∼43 µm) around RPE{Ix,y (z), z∈ [Zrpe3(x,y)−5,Zrpe3(x,y)+5]}.
Zrpe2(x,y) and Zrpe3(x,y) refer to the estimated RPE position matrices after the second and
third iteration, respectively. Finally, the obtained RPE position matrix is smoothened by a 20
(x)×1 (y) moving window median filter. It should be noticed that the size of the used filters are
connected to the geometrical dimensions of sample and thus they must be adjusted if scanning
protocol is changed.

2.2. Internal limiting membrane identification

Another important layer that needs to be identified, particularly when estimating retinal thick-
ness, is the ILM, which can be considered as a limiting membrane between the retina and the
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Fig. 2. Steps in ILM identification. (i) A threshold value is calculated automatically and
each slice of volume data is binarized; (ii) the depth position of the first zerovalue of each
binarized A-scan is determined to get a first estimation of the ILM position; (iii) to remove
erroneous ILM position pixels, 45 pixels around the estimated ILM are extracted and re-
processed; (iv) intensity-based binarization is performed again with same threshold value
as the first time; (v) the depth position of the ILM is re-estimated based on determining
the position of the first zero value pixels of A-scans; (vi) to improve the reliability of the
obtained ILM position matrix, steps (iii-v) are repeated with a smaller amountof pixels
around the estimated ILM.

vitreous. Owing to the very different optical properties ofthe retinal nerve fiber layer (RNFL)
and the vitreous, the contrast between the ILM and the vitreous is typically very good in OCT
images. This is because there are no highly scattering or absorbing tissues before the ILM.
Consequently, ILM identification can be performed efficiently using automatic intensity-based
binarization.

First, a suitable intensity threshold value is determined for each B-scan in a data cube, and the
first 5 pixels in depth of each B-scan{Noisey (x,z), y∈ [1,N], x∈ [1,M], z∈ [1,5]} are extracted.
Assuming that these pixels only contain a noise signal, threshold determination of each B-scan
is based on evaluating 5×M pixels. The threshold is selected such that 0.5% of the pixels are set

to be zero after binarization{
M

∑
x=1

5

∑
z=1

Bnoisey (x,z) ≤ 0.005×5×M}. HereBnoisey (x,z) refers

to the binarized form ofNoisey (x,z). Because of the noise variations of processed B-scans, each
of them are binarized with their own threshold (see step (i) in Fig. 2.) and the estimation for
the position of the ILM is obtained by determining the depth position of the first zero value of
each A-scan (see step (ii) in Fig. 2.). Due to the noise signalmentioned above the ILM position
matrix contains erroneous pixels. To remove them, the 2D ILMposition matrix is smoothed by
moving window median filters (size 1(x)×25(y) and 25(x)×1(y)). In addition, 45 pixels (∼194
µm) around it{Sy (x,z), y∈ [1,N], x∈ [1,M], z∈ [Zilm(x,y)−15,Zilm(x,y)+30]} are extracted
from the original data (see step (iii) in Fig. 2.). In this expression,Zilm refers to the first depth
position estimation of the ILM. To get more reliable segmentation results, steps (iii-v) can be
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repeated with smaller amount of pixels around the ILM (see step (vi) in Fig. 2.). In this work,
only three iterations were performed. During the last iteration, 30 pixels (∼129µm) around the
estimated ILM{z∈ [Zilm2(x,y)−3,Zilm2(x,y)+27]} of each B-scan were reprocessed. Here,
Zilm2 refers to a second depth position estimation of the ILM. Finally, the obtained position
matrix is smoothened by a moving window median filter with a size of 10(x)×1(y) pixels.
Because the number of reprocessed pixels is reduced dramatically between adjacent iterations,
the calculation time does not increase significantly. Like in RPE segmentation method, the size
of used filters must be adjusted if the scanning protocol is changed.

3. Results

We employed a spectral domain OCT (SD-OCT) system to obtain three-dimensional OCT im-
ages. As light source, the system used a superluminescent diode (SLD) with a centre wavelength
of 840 nm and a FWHM spectral bandwidth of 50 nm. The measured optical power of the beam
on the cornea was 700µW (less than ANSI limit). A transmission type diffractive grating of
1200 lines/mm was used. The scanning rate of the camera (Basler, L103k-2k) was 18.7 kHz
and the exposure time of each A-line was 53.3µs. With a measured maximum sensitivity of
99.3 dB, the system had a measured axial resolution of 8.8µm in air. A more detailed descrip-
tion of the measurement setup can be found in Reference [10].All segmentation algorithms are
implemented in Matlab and all data processing was performedby a normal personal computer
(2.4 GHz CPU, 2.93 GB RAM).

3.1. Layer segmentation and investigation of a healthy macula

Performed on a healthy volunteer, the first experimental measurements of the macula involved
1024 depth scans (with 320 pixels) per frame, with the entiredata set containing 138 frames.
The imaging area was about 5×5 mm2 and the measurement time was about 7.6 s. Using the
segmentation methods described above, the position of the RPE and the ILM were identified
with calculation times of 21 s and 16 s, respectively. To evaluate the quality of the segmentation
process, Fig. 3 shows an en-face projection image and 10 cross-section images with the RPE
and ILM superimposed on them. Only very small ILM and RPE segmentation errors can be
seen.
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Fig. 3. RPE and ILM layer segmentation results in a healthy volunteers macula. En-face
projection image and ten cross-section images with identified RPE (green line) and ILM
(red line). The position of each cross-section image is pointed by a number and a line in the
en-face image. The projection image covers an area of 5×5 mm2 and the vertical dimension
of each cross-section image is 1.37 mm. (in air)

We analysed the accuracy of the obtained RPE and ILM segmentation results by evaluating
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all B-scans manually. Assuming that if the segmentation error is less than 10% of the average
thickness of normal retina (255±16µm), the error can be considered to be small [1]. All unclear
results were regarded to be erroneous. In our evaluation that limit was set to be 5 pixels (∼ 22
µm). In the case of RPE segmentation, 99.7% of depth scans has smaller error than 5 pixels
when the corresponding value for ILM segmentation was 99.2%.

Because layer segmentation is performed over the whole measured area, 2D position maps of
the RPE and ILM can be obtained. Calculating the distance between the two boundaries allows
determining the thickness of the retina. Figure 4 presents the obtained RPE and ILM position
maps and a retinal thickness map. The position of the RPE and ILM are given by the depth
from the top of the cross-section image, while the scale barsindicate the optical distance.
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Fig. 4. Healthy volunteers macula. (a) Position map of the ILM; (b) positionmap of the
RPE; (c) retinal thickness map. The position of the ILM and RPE are given by the depth
from the top of the cross-section image. The effect of the refractive index of the tissue is
not taken into account.

One potential clinical application of our method involves the quantitative determination of
retinal thickness. Assuming that the average refractive index of retinal tissue is n = 1.38, the
physical thickness of the measured retina varies between 156 µm and 305µm. Central retinal
thickness (area with a 1 mm diameter) was measured to be 202µm which is comparable with
previously published studies on the normal eye [11, 12].

3.2. Layer segmentation and investigation of a macula with disease

Macular imaging of a patient with ARMD was performed to evaluate applicability of the pre-
sented segmentation method for abnormal eye. The measured data set contained 140 frames
with 1022 depth scans (with 380 pixels) per frame. Covering an imaging area of about 5×5
mm2 , the required RPE and ILM segmentation times were 21 s and 16 s, respectively. Results
of the segmentation are shown in Fig. 5. As seen, only a few, small segmentation errors can be
found, demonstrating that ILM segmentation was successful. On the other hand, evaluating the
quality of RPE segmentation is not unambiguous, due to the distortion of the RPE. Nonetheless,
assuming that the RPE is not totally destroyed in the area of elevation, also the RPE segmen-
tation seems to be very reliable. Manually performed segmentation accuracy analysis showed
that ILM segmentation was performed without errors larger than 5 pixels. In the case of RPE
segmentation, at least 96.7% of the depth scans were segmented without significant error. The
portion of uncertain segmentation results from the total number of analyzed depth scans was
3.0%.

Figure 6 shows the obtained RPE and ILM position maps together with a retinal thickness
map. The position of the RPE and ILM is given by the depth from the top of the cross-section
image, while the scale bars indicate optical distances. Figure 6(c) shows that retinal thickness
increases significantly around the elevation.
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Fig. 5. Macula of the left eye with ARMD. An en-face projection image and ten cross-
section images showing the identified RPE (green line) and ILM (red line). The position
of each cross-section image is pointed by a number and a line in the en-face image. The
projection image covers an area of 5×5 mm2 and the vertical dimension of each cross-
section image is 1.72 mm.
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Fig. 6. Macula of a patient with ARMD. (a) Position map of the ILM; (b) position map
of the RPE; (c) retinal thickness map. The positions of the ILM and RPE are given by the
depth from the top of cross-section image. The effect of refractive index is ignored.

Macular imaging of a patient with polypoidal choroidal vasculopathy (PCV) was also per-
formed during the experiments. Here, too, the measured dataset contained 140 frames with
1022 depth scans (with 450 pixels) each, and the imaging areawas about 5×5 mm2 . The re-
quired RPE and ILM segmentation times were 21 s and 17 s, respectively. Displayed in Fig. 7,
the obtained results demonstrate that ILM segmentation worked very reliably again with only
some minor segmentation errors present, even though the measured OCT signal from the ILM
was strongly attenuated on the fringes of the measured area.However, evaluating the RPE seg-
mentation quality is a bit problematic, due to the severely distorted RPE. Cross-section image
4 in Fig. 7. shows a possible RPE segmentation error (indicated by a white arrow). A part of
the RPE complex seems to have broken off, producing a strongly backscattering layer which is
detected by the segmentation algorithm. Shown in cross-section image 7 is a clearly erroneous
segmentation result. Thus, the method is incapable of detecting a deep gap between two adja-
cent elevations. Manual evaluation showed that ILM segmentation was performed with smaller
error than 5 pixels for 98.6% of depth scans and the corresponding value for RPE segmentation
was 97.0%.

Obtained RPE and ILM position maps and a retinal thickness map are shown in Fig. 8, with
the position of the RPE and ILM indicated by the depth from thetop of the cross-section image,
while the scale bars denote optical distance. Fig. 8.(c) shows that retinal thickness increases
significantly around the elevation of the RPE.
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Fig. 7. Macula of the right eye with PCV. An en-face projection image and ten cross-section
images showing the identified RPE (green line) and ILM (red line). The position of each
cross-section image is pointed by a number and a line in the en-face image.The projection
image covers an area of 5×5 mm2, and the vertical dimension of each cross-section image
is 1.64 mm. Images 4 and 7 are magnified to see segmentation results in more details. White
arrows are used to indicate the location of errors.
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Fig. 8. Macula of a patient with PCV. (a) Position map of the ILM; (b) positionmap of the
RPE;(c) retinal thickness map. The position of the ILM and the RPE are given by the depth
from the top of the cross-section image. The effect of refractive index is ignored.
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4. Discussion

As the presented ILM and RPE identification results suggest,the proposed method can be suc-
cessfully applied to the study of the macula area. Even though the focus here was on macular
segmentation, it should be possible to use the presented methods to identify the ILM and the
RPE in the optic nerve head area (ONH) as well. The advantagesof these methods stem from
three facts at least. Firstly, the ILM and RPE layers can be segmented directly from the meas-
ured OCT data without massive denoising. Secondly, 3D information of pixels belonging to the
ILM or the RPE are used for identification. And thirdly, rather simple tools are used iteratively.
This makes the segmentation process very effective and reduces the required calculation time to
about 17 s and 21 s for the ILM and the RPE, respectively. Contrast this with the corresponding
calculation times for other published methods, which are inthe range of several minutes. We
may thus conclude that the presented method is tens of times faster than the other methods.
Moreover, ILM segmentation seems even more reliable and efficient than RPE segmentation.
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Fig. 9. The effect of iterations on segmentation result (a) RPE estimation based on max-
imum intensity search (red dots). The green line stands for final segmentation result; (b)
RPE position estimate after masking the erroneous pixels (yellow dots); (c)representative
cross-section image (healthy eye) with the red line showing the result of thefirst iteration,
while the yellow and green lines stand for the second and third iteration, respectively; (d)
magnified image of the region of interest with the white arrows showing the position where
the second iteration fails; (e) representative cross-section image (ARMD eye) with the red
line showing the result of the first iteration, while the yellow, blue and green lines stand
for the second, third and forth iteration, respectively; (f) magnified image of the region of
interest with the white arrows showing the position where the two first iterationsfail.
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As the developed algorithms approach the layer of interest iteratively, more accurate RPE
and ILM identification results can be obtained by performingadditional iterations. In Fig. 9.
the effect of different steps on segmentation results are shown. The first RPE estimation is based
on maximum intensity determination. Due to the other highlyback-scattering layers like RNFL
and IS/OS junction, the maximum intensity search produces often artefacts to segmentation
result. In Fig. 9(a), the results of maximum intensity search (red dots) are shown. Many dots
which are far away from RPE can be seen. After the top-hat filtering and the erroneous pixel
masking (step (iii) in Fig. 1), the number of erroneous pixels can be decreased significantly
(Fig. 9(b)). In Fig. 9(c) and (d), the advantage of iterativesegmentation is shown. Due to the
relatively strong smoothing used in the first iteration, theestimation for the ILM position is
erroneous, especially in areas such as in the fovea, where the ILM is curved in shape. Although
the results of the second and third iteration do not differ much, a detailed evaluation shows
that the second iteration slightly oversmooths the ILM position map. This suggests that the
artefacts caused by filtering can be decreased if the iterative approach is used. In Fig. 9(e) and
(f), the difference between adjacent iterations on RPE segmentation is shown. The erroneous
segmentations results of iterations 1 and 2 can be decreasedby additional iterations. Further,
additional iteration rounds obviously increase the required calculation time. It is clear that the
optimum number of iterations depends on the quality of the processed data and the required
accuracy of identification. The presented segmentation results suggest that two iteration rounds
suffice to give satisfactory identification results. When theRPE segmentation is performed, the
first iteration takes 14% of the total RPE processing time. The portion of second, third and forth
iterations from that total calculation time was 23%, 33% and30% respectively. In the case of
ILM segmentation, the first iteration requires 27%, second iteration 47% and third 36% of the
total processing time.

It is well know fact that intensity variation based OCT data segmentation methods have ten-
dency to give erroneous segmentation results especially inpathologic cases, which is also true
for our approach. The algorithm assumes that the ILM and RPE layers are continuous. How-
ever, that is not true in all cases, as the layers can also be strongly distorted or even destroyed
by a disease. Also the misalignment of frames in the OCT volume might be problematic, be-
cause information of neighbouring pixels is used for estimating the position of the ILM and the
RPE. As a result, the presented method may give erroneous segmentation results. Although, the
presented segmentation method seems to work quite reliably, the number of evaluated cases is
very limited. The further investigation of segmentation accuracy is needed.

5. Conclusion

An alternative intensity variation-based ILM and RPE segmentation method is presented. Since
its algorithms, which can be utilized independently, do notrequire massive pre-processing, it
is very effective in terms of calculation time. In successful tests with a normal and a diseased
macula, the entire data processing took less than 40 secondsfor both layers, demonstrating
that the method offers a highly promising tool for ophthalmological studies and enhances the
usability of OCT technology in clinical applications.
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