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Abstract
　The spatial resolution of Global Circulation Models is 
too coarse to represent regional climate variations at the 
scales required for environmental impact assessments. 
Studies on downscaling over Mongolia were comparatively 
few, except dynamical downscaling studies, which have 
done by Kimura and Sato (2004), and Sato et al. (2007), 
especially on statistical downscaling. In this study, two 
climate variables (monthly mean temperature and monthly 
precipitation amount) of the output from MIROC3-2-
hires climate model were downscaled and compared 
its performance with a bias correction method. Results 
showed that values from MIROC3-2-hires climate model 
overestimated the monthly accumulated precipitation 
and represented well the monthly mean temperature in 
eastern Mongolia during the control period from 1971 to 
2000. The cumulative density function made it possible to 
compensate the difference by 36% for precipitation and by 
16% for temperature.

Key words:  Global Circulation Model, statistical 
downscaling, bias correction, Mongolia

1. Introduction
　Global Climate Models (GCMs) provide spatial 
fields of the future climate condition with a resolution 
around 40,000 square kilometers even under the current 
technology. As a result, they can not be applied directly 
to the subject relating surface processes. Two kinds of the 
downscaling techniques have been developed that attempt 
to counter this deficiency: semi-empirical statistical 
downscaling of GCM outputs, and regional climate models 
(RCMs) nested within a GCM. A key strength of statistical 
downscaling is the low computational demand. There are 
many studies on evaluation (Benestad et al., 2007) and 
comparison (Spak et al., 2007; Schmidli et al. 2007; 
Robert et al., 2000) of these two downscaling technique 
and the methods of statistical downscaling technique as 
well (Mohammad et al., 2006). 
　Several studies on comparison (Spak et al., 2007; 
Robert et al., 2000) show that skills of the two technique 

at simulating past climate are comparable, even though 
their study areas are in dependent. Robert et al. (2000) 
concluded that the statistical downscaling required 
much greater skill for temperature estimation than for 
precipitation field. Multiple Linear Regression (Spak 
et al., 2007; Robert et al., 2000; Schmidli et al., 2007; 
Gangopadhyay et al., 2004), Bayesian Approach (Iizumi, 
2009; Ceolho et al., 2006), Cumulative Density Function 
(CDF) based statistical downscaling (Iizumi, 2009; 
Baigorria et al., 2007) are most commonly used statistical 
downscaling methods.
　In the present study, performance of the GCM, 
MIROC3-2-hires climate model is checked in eastern part 
of Mongolia, since accuracy of GCM outputs are differed 
from region to region. The most important property of the 
MIROC3-2-hires climate model is indicated by its finest 
graduation of the grid size. Then the performances of a 
statistical downscaling method based on CDF and a simple 
bias correction are compared. Here, an abbreviation of 
MIROC represents Model for Interdisciplinary Research 
on Climate.

2. Dataset and method
2.1. Model and method

　In the present study, we used climate scenario projected 
by MIROC3-2-hires model, which is high resolution 
coupling atmosphere-ocean climate model with horizontal 
resolution of 1.125° (about 100km), which was developed 
by the joint research team of Center for Climate System 
Research of the University of Tokyo, the National Institute 
for Environmental Studies, and JAMSTEC’s Frontier 
Research Center for Global Change. This climate scenario 
has one of the finest graduations and is provided by IPCC. 
Simulated data series named 20C3M which is used as a 
control data set from 1971 to 2000, and two inherent data 
series of 2011-2040 and 2071-2100 describing future 
climate conditions under SRES-A1B GHG emission 
scenario.
　The surface meteorological data set, obtained from the 
Institute of Meteorology and Hydrology of Mongolia, 
contains monthly precipitation, and monthly mean 
temperature from 1971 to 2000 for 7 stations, which locate 
in eastern part of the country (Figure 1).

2.2. Cumulative density function and bias correction

　Recently, Iizumi et al. (in press) used CDF-based 
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downscaling method in model data, which is used in 
crop modeling. The method relies on changing of CDF 
of modeled data. We applied the method separately for 
temperature and precipitation in each month. Experimental 
CDF of observed and modeled variables was constructed 
in control period (1971-2000) for each month and for 
each variable. For example, CDFs of observed and 
simulated monthly mean temperature in April are shown 
in Figure 2. Firstly, observed and simulated variables are 
sorted in ascending order and associated the probabilities 
accordingly. Next, difference between observed and 
simulated value with same probability is calculated. In 
order to modify the simulated data, the difference is added 
to simulated value.
　By sorting the modified value in chronological order, 
we get downscaled value. If the value of modified 
precipitation after downscaling was negative, we assumed 
it as zero. If we construct the CDF of simulated variables 
after downscaling, we will get exactly same CDF with 
observed variable. We applied this modification to future 
projection data in order to obtain the modified time series 
of temperature and precipitation in future. The main 
assumption here was that the bias is the same for the same 
probability both in the training period and in the future 
projection of the same model.
　For bias correction method, it was easy to find the 

difference between the observation and model simulation 
data for the control period (1971-2000), because the bias 
appeared apparently. After finding the mean difference, 
it was applied to the future climate projection data. If the 
value is less than 0 after correcting, we replaced by 0.0. 
The bias correction applied to monthly mean values of 
each 12 months.

2.3. Distribution of grid point and observatory

　Gangopadhyay et al. (2004) studied that effect of 
spatial and temporal aggregation on accuracy on statistical 
downscaling and concluded that spatial and temporal 
averaging increased the skill of downscaled precipitation 
estimates. Therefore, in the study comparison of observed 
and model variables was done only for regional averages 
in eastern Mongolia. Regional average for model data 
was average of the grid data within 45°N - 50°N and 110°

N - 120°E. As a regional average of observed variables, an 
average data of 7 observation stations, which locate within 
model data coverage, was considered (Figure 1).

3. Result and Discussion
3.1. Model performance

　In order to measure performance of the bias correction, 
we used the mean bias error (MBE), root mean squared 
error (RMSE), and standard deviation (SDV) for the 
model simulated data and bias corrected data. We also 
adopted these definitions as indications of the spatial 
difference between simulated data coverage and observed 
data coverage.
　The ability of climate model to capture the realistic 
seasonal cycles of temperature and precipitation is 
critical for a discussion on the future climate conditions. 
Therefore, we compared the simulated and observed 
monthly climatology for a period of 1971-2000.
　The climate model data overestimated the precipitation 

Fig.1  Study area, eastern Mongolia (white countered area in the 
top figure) and location of meteorological stations and 
model grid (bottom figure)

 (Black dots: location of the gridpoints, Black triangles: 
location of meteorological stations)

Fig.2  Experimental CDF of observed and simulated temperature 
of April

 (OR_MIROC indicates uncorrected original MIROC data 
and OBS – observed value)
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for all months, e.g. by 116% (for July) and 427% (for 
April), besides the annual precipitation overestimated by 
about 170%, e.g. 249.3mm for observed and 423.1 mm 
for climate model data (Table 1). Only in July and August, 
precipitation laid in their values within each standard 
deviation.
　In contrast, the temperature was well represented by 
the model. Difference between observed and simulated 
annual mean temperature was 0.27°C (Table 1) that was 
very close to the HadCM3 model’s performance, which 
was provided by Hadley Centre for Climate Prediction and 
Research, UK, and selected as the best performed GCM 
in Mongolia (Dagvadorj et al., 2009). On monthly base, it 
shows that most cases of months’ mean temperature were 
within a unit of the SDV, except in June, July and August.
　The model had a bit warmer bias during the warm 
season, e.g. from May to September, and the temperatures 
in the rest of months, except January, were simulated a 
bit colder than observed temperature (Figure 3, bottom). 
The RMSE of monthly mean temperature varies from 
1.5°C to 3.6°C (Table 2). This result was consistent with 
several other studies’ results on comparison IPCC-AR4 
GCMs’ performance (Maxino et al., 2008). They show 
that MIROC-hires had better performance for temperature, 
especially for maximum temperature.
　Inter-annual variability is also an essential element 
for model validation. Figure 4 displays comparison 
of inter-annual variability of observed and simulated 
variables of the annual mean temperature and annual total 
precipitation. The inter-annual variation of the annual 
mean temperature was relatively well correspond with 
observed variation whereas magnitude of simulated annual 
mean temperature was reasonable. For the annual total 
precipitation, the graph clearly shows that there was not 

Precipitation (mm) Temperature (°C)
Data Mean SDV RMSE Mean SDV RMSE
Observed 249.3 71.81 - 1.2 0.71 -
Climate model 423.1 53.82 190.2 1.5 0.60 0.77
Downscaled 249.3 51.86 76.7 1.2 0.69 0.77
Bias corrected 249.3 53.82 77.2 1.2 0.60 0.72

Table.1  Statistics of annual precipitation and annual mean temperature

Fig.3  Comparison of observed and simulated monthly 
precipitation (top) and monthly mean temperature (bottom)

 (OBS: observed value, OR_MIROC: uncorrected original 
output of MIROC. Gray shaded area indicates the area 
within OBS+SDV)

Data Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Ave.
Precipitation (mm)

Climate model 3.4 4.0 10.3 23.2 45.5 41.4 39.2 37.2 29.7 17.8 7.5 6.0 22.1
Downscaled 1.1 1.4 2.7 8.2 14.3 28.8 46.8 35.9 16.7 6.8 3.0 4.2 14.1
Bias corrected 1.8 1.8 4.8 9.2 23.8 32.4 37.1 34.5 17.6 8.2 3.9 2.6 14.8

Temperature (°C)
Climate model 2.8 3.3 3.5 3.4 1.8 3.6 3.4 2.5 1.5 2.3 3.4 2.5 2.8
Downscaled 2.7 3.3 3.9 2.6 1.7 2.1 1.4 1.4 1.3 2.4 3.6 2.4 2.4
Bias corrected 2.7 2.8 3.4 2.6 1.7 1.9 1.4 1.4 1.2 2.1 3.1 2.5 2.2

Table.2  RMSE values of climate model, downscaled and corrected monthly variables
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well agreement between observed and simulated values, 
which behave steady large amount of bias.

3.2. Analysis of downscaling

　After downscaling and correcting, the MBEs were 
removed for each month for both temperature and 
precipitation (Table 1). The SDV values of bias corrected 
annual means were in same order as of model annual 
means, because the present method does not influence 
the variability of the series of data. The SDV of CDF-
based downscaled temperature was closer to the observed 
temperature variation and the values were lying in the 
lowest level.
　Magnitude of the RMSE reduction in the precipitation 
was larger (~60%) than that of the temperature (~6%). 
The results of CDF-based downscaling method were 
sl ightly improved in the RMSE of precipitation 
compared with the bias correction method. Magnitude 

of the RMSE in temperature was not significantly 
improved by both methods. As shown in Table 2, the 
RMSEs were significantly reduced by 33%-36% for 
monthly precipitation and 16%-21% for monthly mean 
temperature.
　The CDF-based downscaling had better performance 
in precipitation compared to bias correction method, 
although it made worse in July for precipitation. Reduction 
of error varies by months and the biggest reduction 
observed in precipitation of March. Summer precipitation, 
especially for July and August, was not improved much. 
However, for example, overestimation of precipitation 
in July was reduced to 12% by bias correction method. 
This is accordance with Kimura and Sato (2004), which 
downscaled a precipitation over Mongolia using regional 
climate model with 10%-20% underestimation.
　The RMSE of climate model temperature was not as 
high as RMSE of precipitation. In May and September, 
it was the lowest value. The RMSE was higher in March, 
July and November. Generally, bias correction method 
showed improvement in the RMSE. Since summer, e.g. 
through June to August, temperature had comparatively 
higher warm-side bias, the RMSE of those month’s 
temperature was significantly improved.
　In general, the both methods showed comparable 
performance in improving GCM during the control period. 
Since the CDF-based downscaling method demonstrated 
slightly better skill in precipitation, it was recommended 
for a suitable modification in future projection data. The 
precipitation in July and August was not modified, because 
the MBE was in the level of a unit of the SDV (Figure 3, 
top) and the CDF-based downscaling did not improved 
July precipitation.

1971-2000 2011-2040 2071-2100
Precipitation [mm] 249.3 280.5* 350.7**

Temperature [°C] 1.2 3.2** 6.7**

  *  Statistical significance p<0.05
 **  Statistical significance p<0.01
Note: This statistical significance indicates that the values for 2011-2040 and 2071-2100 

significantly, e.g 95% and 99%, different from values for 1971-2000.  

Table.3  Simulated (1971-2000) and projected (2011-2040 and 2071-2100) climate

Periods Precipitation change [%]
Summer Winter Spring Autumn

2011-2040 13.2 38.5 -18.8 26.4
2071-2100 30.6 193.7 59.9 50.7

Temperature change [°C]
2011-2040 1.8 3.1 1.0 2.3
2071-2100 5.3 6.8 3.8 6.0

Table.4  Future change of seasonal precipitation [%], compared to control period (1971-2000)

Fig.4  Comparison of inter-annual variation of observed and 
modeled climate variables, 1969-2100

 (Top: annual  mean temperature,  Bottom: annual 
precipitation)
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4. Future climate condition
　Modified future projection showed that annual mean 
temperature was projected to be 3.2°C (p<0.01) by 
2011 to 2040 and 6.7°C (p<0.01) by end of the century 
(Table 3). Annual precipitation was projected to be 
280.5mm (p<0.05) in 2011-2040 and 350.7mm (p<0.01) 
in 2071-2100. The projected increase in precipitation in 
eastern Mongolia was also revealed by Batima et al.’s 
(2005) study. In terms of seasonal precipitation, winter 
precipitation increase was expected to be higher in both 
periods (38.5%-193.7%), while summer precipitation 
increase was projected to be lower (13.2%-30.6%), 
compared to other season’s precipitation (Table 4). These 
increases were higher than that in projection of Batima 
et al. (2005). Their projection showed 12.6%-119.4% 
increase in winter precipitation and 2.5%-11.3% increase 
in summer precipitation by 2020, 2050 and 2080. In 
addition, spring precipitation was projected to decrease 
in present study by 2011-2040. For temperature, winter 
temperature increase was projected to vary from 3.1°C 
to 6.8°C, which is the highest among seasons, whereas 
summer temperature increase was projected to be 1.8
°C -5.3°C (Table 4). These increases in temperature were 
a bit lower than that in Batima et al.’s projection. It is 
important to note that spring temperature increase was the 
lowest among temperatures in seasons.
　Seasonal distribution of the annual precipitation 
was probable to change. Figure 5 shows that winter 
precipitation ratio in annual precipitation was expected 
to gradually increase. Slightly small increase will appear 
in summer precipitation ratio in annual precipitation by 
2011-2040. By end of the century, summer precipitation 
ratio in annual precipitation was projected to decrease 
from 73% to 67%. The similar trend is expected to be 
observed in autumn precipitation. In contrast, spring 
precipitation ratio in annual precipitation was expected 
to decrease by about 3% by 2011-2040 and then it was 

projected to increase by about 5% by 2071-2100.
　Future monthly precipitation and mean temperature 
change relative to 1971-2000 were different with months 
(not shown). For monthly precipitation, precipitation 
in all months, except in May and July, was expected to 
increase by 3% to 64% in 2011-2040, compared to that 
in 1971-2000, and this increase was projected to extend 
to 19% and 24% by end of century. Precipitation in May 
and June was expected to decrease by 46% and 1% in 
2011-2040, respectively. Projected precipitation in January 
and February in 2071-2100 was higher than observed 
precipitation in March in 1971-2100. Although January 
precipitation change projected to be the highest not only 
in 2011-2040 but also in 2071-2100, projected amount 
was still less than 6mm. Although projected precipitation 
in July in 2071-2100 was 93.6mm, the increasing rate was 
the lowest. Precipitation in May was expected to decrease 
by about 45% in 2011-2040. Those are unfavorable 
condition for pasture growth. Projected precipitation in 
August was almost similar to projected precipitation in 
July by end of century.
　For monthly mean temperature, all months’ mean 
temperature, except March, were expected to increase 
by 1.3°C to 4.0°C in 2011-2040 and all months’ mean 
temperature were expected to increase by 2.5°C to 7.3°C 
in 2071-2100, compared to monthly mean temperatures in 
1971-2000. In addition, by end of century, temperature in 
January and December were projected to be warmer than 
that is in February of 1971-2000. Temperature warming 
projected to be stronger in 2071-2100. Inter-annual 
variation of temperature in April and January shows 
gradual increase in both temperatures.
　Generally, summer precipitation change projected 
to be the lowest in selected two periods, in contrast, 
winter precipitation increase projected to be highest in 
2071-2100.
　In conclusion, climate in eastern part of Mongolia was 
projected to be warm and normal in 2011-2040 and warm 
and wet in 2071-2100, compared to climate in 1971-2000. 
Summer expected to be warm and dry and winter was 
projected to be warm and wet. Warming more pronounced 
in autumn compared to spring. Spring likely to be wetter 
in 2071-2100. July precipitation, which is important 
factor for pasture growth, was expected to hardly change, 
whereas January temperature warming was obvious.

5. Conclusion
　Since there was a lack of the studies on GCM 
performance and its correction and downscaling over 
Mongolia, the present study would be contribution to this 
field.
　The examination of performance of MIROC3_2_hires Fig.5  Change of seasonal precipitation ratio in annual precipitation
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showed that the model overestimated the precipitation for 
all months by 116% to 427%. The temperature was well 
represented by the model; annual mean temperature in 
control period was simulated 0.27°C warmer than observed 
temperature. Inter-annual variability was relatively 
reasonable, especially for temperature. This analysis shows 
that over Mongolia, MIROC3-2-hires performance could 
be comparable with other GCMs’s performances, which 
were used in Dagvadorj et al.’s report (2009). However, 
MIROC3-2-hires simulation still has certain error and in 
order to use for future impacts models, we need to correct 
the error or downscale them to regional scale.
　In present study, the comparison between CDF-based 
downscaling method and bias correction method was 
done. The comparison indicates that the performance 
of both methods were comparable. However, due to its 
performance on precipitation, CDF-based statistical 
downscaling was selected and used for modification for 
future projection.
　Modified future projection projected the climate over 
eastern part of the country as warm and normal by 2011 to 
2040 and warm and wet by end of the century compared 
to control period.

Acknowledgements
　We are deeply indebted to the Institute of Meteorology 
and Hydrology, who provided the pasture yield data and 
meteorological data used in this study. Special thanks are 
extended to Dr. T. Iizumi, National Institute for Agro-
Environmental Sciences for providing an algorithm of 
CDF-based Statistical downscaling.

References
Baigorria, G.A., Jones, J.W., Shin, D.W., Mishra, A. 

and O’Brien, J.J. 2007. Assessing uncertainties in 
crop model simulations using daily bias-corrected 
Regional Circulation Model outputs. Climatol. Res. 
34, 211-222, doi:10.3354/cr00703.

Batima, P., Natsagdorj, L., Gomboluudev, P. and 
Erdenetsetseg, B. 2005. Observed climate change in 
Mongolia. AIACC Working Paper 12, 12-16.

Benestad, R.E., Hanssen-Bauer, I. and Forland, E.J. 2007. 
An evaluation of statistical models for downscaling 
precipitation and their ability to capture long-term 
trends. Int. Jour. Climsyol. 27, 649-665.

Coelho, C.A.S., Stephenson, D.B., Doblas-Reyes, F.J., 
Balmaseda, M., Guetter, A. and Oldenborgh, G.J. 
(2006), A Bayesian approach for multi-model 
downscaling: Seasonal forecasting of regional rainfall 
and river flows in South America. Meteorol. Appl.13, 

73-82, doi: 10.1017/S1350482705002045.
Dagvadorj, D., Natsagdorj, L., Dorjpurev, J. and 

Namkhainyam, B. 2009. Mongolia assessment 
report on climate change 2009. Ulaanbaatar, 
Mongolia, 27-34.

Gangopadhyay, S., Clark, M., Werner, K., Brandon, D. 
and Rajagopalan, B. 2004. Effects of spatial and 
temporal aggregation on the accuracy of statistically 
downscaled precipitation estimates in the Upper 
Colorado River Basin. Jour. Hydrometeorology 5, 
1192-1206.

Iizumi, T., Nishimori, M., Ishigooka, Y. and Yokozawa, M. 
Introduction to climate change scenario derived by 
statistical downscaling. Jour. Agric. Meteor. 66. (in 
press) 

Kimura, F. and Sato, T. 2004. Downscaling of precipitation 
over Mongolia using regional climate model. 
Proceeding of the 3rd International Workshop on 
Terrestrial Change in Mongolia, Tsukuba, Japan.

Maxino, C.C., McAvaney, B.J. Pitman, A.J. and Perkins, 
S.E. 2008. Ranking the AR4 climate models over 
the Murray-Darlng Basin using simulated maximum 
temperature, minimum temperature and precipitation. 
Int. Jour. Climatol. 28, 1097-1112.

Mohammad, S.Kh., Paulin, C. and Yonas, D. 2006. 
Uncertainty analysis of statistical downscaling 
methods. Jour. Hydrology 319, 357-382.

Robert, L.W., Lauren, E.H., William, J.G. Jr., Raymond, W. 
A., Eugene, S.T., Zaitao, P., George, H.L. and Martyn, 
P.C., 2000: Hydrological responses to dynamically 
and statistically downscaled climate model output. 
Geophysical research letters, 27, 8, 1199-1202.

Sato, T., Kimura, F. and Kitoh, A. 2007. Projection of 
global warming onto regional precipitation over 
Mongolia using a regional climate model. Jour. 
Hydrology 333, 144-154.

Schmidli, J., Goodess, C.M., Frei, C., Haylock, M.R., 
Hundecha, Y., Ribalaygua, J. and Schmith, T. 
2007. Statistical and dynamical downscaling of 
precipitation: An evaluation and comparison of 
scenarios for the European Alps. Jour. Geophys. Res. 
112, D04105, doi: 10.1029/ 2005JD007026.

Spak S., Holloway, T., Lynn, B. and Goldberg, R. 2007. A 
comparison of statistical and dynamical downscaling 
for surface temperature in North America. J. Geophys. 
Res. 112, D08101, doi:10.1029/2005JD006712.

Received 31 August 2010
Accepted 20 October 2010




