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The flute instability and the associated radial transport are investigated in the tandem mirror with a
divertor mirror cell �the GAMMA10 A-divertor� with help of computer simulation, where
GAMMA10 is introduced �Inutake et al., Phys. Rev. Lett. 55, 939 �1985��. The basic equations used
in the simulation were derived on the assumption of an axisymmetric magnetic field. So the high
plasma pressure in a nonaxisymmetric minimum-B anchor mirror cell, which is important for the
flute mode stability, is taken into account by redefining the specific volume of a magnetic field line.
It is found that the flute modes are stabilized by the minimum-B magnetic field even with a divertor
mirror although its stabilizing effects are weaker than that without the divertor mirror. The flute
instability enhances the radial transport by intermittently repeating the growing up and down of the
Fourier amplitude of the flute instability in time. © 2010 American Institute of Physics.
�doi:10.1063/1.3503772�

I. INTRODUCTION

The GAMMA10 tandem mirror1–3 is planning to replace
one of anchor cells with an axisymmetric divertor mirror cell
�called GAMMA10 A-divertor�, which is illustrated in Fig.
1. A role of the GAMMA10 A-divertor is to evacuate the
ions rapidly through a magnetic null point �x-point� to the
dipole region outside the divertor mirror cell. A divertor plate
is installed in the dipole region in order to catch the ions lost
from the divertor region, which is anticipated being the
simulation experiment of the divertor of a big torus.4–7

The x-point has the following roles. Unmagnetized elec-
trons can move freely along a magnetic null line azimuthally,
so that the electrostatic potential is the same on the magnetic
flux tube passing through x-point �separatrix�. Thus the elec-
trostatic fluctuations are stabilized by the short circuit effects
on the separatrix. Ions diffused to the separatrix in the central
cell, therefore, move along a magnetic field line and finally
escape through x-point to the dipole region. The magnetic
null has a role of hole on the separatrix, where ions on the
separatrix can move freely to the dipole region due to the
nonconservation of ion magnetic moment.

The GAMMA10 A-divertor has two experimental opera-
tion modes. One is the steady state operation, where ions
diffused radially in the central cell move along a separatrix to
x-point and then are lost to the divertor plate continuously.
The flute mode fluctuations can cause a large ion radial dif-
fusion in the steady state.8 The nonaxisymmetric electrostatic
potential in the central cell, which is formed artificially by
the electron cyclotron resonance heating, can also enhance
the large ion radial transport9 as well as the neoclassical
transport due to the nonaxisymmetric magnetic field.10–13

Another operation is the one like a disruption observed
in a big torus14,15 or edge localized mode observed in a di-
vertor tokamak,16 where the plasma is made lost rapidly from
the central cell. The rapid loss of plasma is realized with help

of flute instabilities, which is one of the purpose of this
paper.

The flute modes in the GAMMA10 A-divertor operation
are stabilized by the high plasma pressure created in a re-
maining nonaxisymmetric anchor mirror cell.17 Thus the
flute modes are destabilized when the high plasma pressure
is destroyed by gas puffing in the anchor mirror cell. Another
purpose of this paper is to make clear the stabilizing effects
by a minimum-B mirror in the tandem mirror with a divertor
mirror cell.

II. FLUTE STABILITY

The flute modes are able to be stabilized in an axisym-
metric divertor mirror by means of plasma compressibility, if
pU�=const is realized radially.18 Here p is plasma pressure,
U is the specific volume of a magnetic field line defined by
U��d� /B, where B is the magnetic field and the integration
is carried out along a magnetic field line, and � is the specific
heat index; �=5 /3 is assumed through this paper. Pressure p
can be zero at the separatrix if pU�=const is satisfied be-
cause U of the magnetic field line passing through x-point is
infinitely large. The stability analysis of the divertor mirror,
taking into account the effects of the ion finite Larmor ra-
dius, magnetic field line curvature, and the plasma compress-
ibility, has been done.19–21 It was reported that the flute
modes were stabilized by the divertor mirror
experimentally.22–24

Because the classical radial transport is large around
x-point, the diffusion forms locally stable pressure profile
�with �U /��� in the neighborhood of magnetic null and un-
stable pressure profile outside this area and so �pU� /��=0 is
not satisfied around the separatrix �i.e., around the plasma
boundary�, which can destabilize the flute modes. The quan-
tity � relates to the magnetic flux defined by B=�����,
where �� ,� ,�� coordinates are used. We consider the flute
mode stability criteriona�Electronic mail: katanuma@prc.tsukuba.ac.jp.
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� �p̂� + p̂	���

B
d� � 0. �1�

Here the normal curvature �� is defined by a magnetic field
line curvature �� ê	 ·�ê	 =����+����, where ê	 �B /B,
and plasma pressures p̂	,� are represented by a separation of
variables p	,��� ,B�= p̂	,��B�����. Although Eq. �1� was de-
rived in the long thin approximation in Refs. 17, 25, and 26,
the stability criterion �1� can be applied to the fat mirror
plasma.27,28

Equation �1� is rewritten as

� �p̂� + p̂	���

B
d� = −

1

2

�

��
� �p̂� + p̂	�

B
d� �2�

in the vacuum magnetic field because of ��B�� ,� ,��=B�.
Note that Eqs. �1� and �2� are applicable to a divertor fat
plasma.27,28 The stability criterion �1�, therefore, reduces to
the classical stability criterion of flute modes

�U/�� 	 0 �3�

in the mirror cell,29 if the specific volume of a magnetic field
line U is redefined as

U �� �p̂� + p̂	�
B

d� . �4�

Equation �4� takes into account the anisotropic pressure ef-
fects in the stability criterion �3� of the divertor mirror cell,
and Eq. �3� is able to be applied to the effectively axisym-
metrized tandem mirror such as the GAMMA10 A-divertor.

Strictly speaking, the � derivative on the right-hand side
of Eq. �2� acts on �p̂�+ p̂	� as well as 1 /B, i.e.

�

��
� �p̂� + p̂	�

B
d� =� 
� �

��

1

B2��p̂� + p̂	�

+
1

B2 �

��
�p̂� + p̂	���Bd� .

Equation �2�, therefore, is correct on condition that

��p̂�+ p̂	�−1� �p̂�+ p̂	� /���
 �B2�B−2 /���. We expect that this
condition is satisfied in the long thin approximation, and then
in the anchor mirror cell.

The axial pressure profiles used in this paper are plotted
in Fig. 2, which are given by

p̂�B� � p̂��B� + p̂	�B� = maxpA

�Bm
2 − B2�

�Bm
2 − Bc

2�
,1� . �5�

Here pA is the pressure at the anchor midplane, Bc is the
magnetic field at the midplane on axis in anchor cell, and
Bm=1.7Bc. The pressure p̂ in the other region is assumed to
be unity.

The radial profiles of U for various anchor pressure pA

are plotted as a function of x in Fig. 3. Here x is the normal-
ized radial coordinate defined by x=�� /�b, where �b is the
coordinate at the separatrix. Because the GAMMA10
A-divertor is an effectively axisymmetrized tandem mirror,
U is a function of only � but not �. An appearance of
�U /�x�0 around x�0 in the case of pA�12 in Fig. 3
means that the flute modes are locally stable in the core
region. The nonlocal analysis, however, is required to deter-
mine the linear growth rate of a flute instability, the detail of
which is given in Sec. IV because the flute instability is a
global mode.

The radial profiles of the normalized dynamic vorticity
w0�x�, density DE�x�, and temperature TE�x� are assumed to
be

w0�x� = + 1.0, DE�x� = 1.0 �6�

and

TE�x� = exp�− 2x2��U�x�/U�0���−1 �7�

in the calculation of linear growth rate. The definitions of w0,
DE, and TE are given in Sec. III.

Figure 4 plots the linear growth rates of m=1 flute mode,
where m is the azimuthal mode number. Flute modes are
stable for all Us in Fig. 3, if TE�x�=1.0. The linear growth
rates of flute instability in the case of a slim TE�x� of Eq. �7�
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FIG. 1. Schematic diagram of the GAMMA10 A-divertor. The magnetic field lines are plotted with coils and the GAMMA10 vacuum vessel.
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FIG. 2. Axial profiles of pressure p̂= p̂	 + p̂� in the GAMMA10 A-divertor.
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are plotted by solid circles and in a fatter TE�x� case of Eq.
�8� are plotted by solid triangles in Fig. 4, where

TE�x� = exp�− 0.5x2��U�x�/U�0���−1. �8�

It is found that the linear growth rates of the flute mode are
larger in the slim temperature than those in the fatter tem-
perature. In the long thin approximation,17,25,26 the flute
modes are understood to be stable as long as �U�x� /�x	0 at
x�0. Figure 4, however, reveals that the flute modes are not
stable even if �U�x� /�x	0 at x�0 �i.e., pA�12 in Fig. 3�.
The stability boundary of a flute instability can be changed
by the temperature and density radial profiles.21 Thus the
self-consistent numerical simulation is necessary to estimate
the flute instability in a divertor mirror.

III. BASIC EQUATIONS

In this section we describe the basic equations used in
the simulation, which are in the framework of magnetohy-
drodynamic �MHD� equations, by which the nonlinear MHD
convection and the flute mode fluctuations are studied. The
detailed derivation of the following basic equation is de-
scribed in Refs. 8, 30, and 31. The normalized specific dy-

namic vorticity ŵ, normalized mass density D̂, and normal-

ized effective temperature T̂, which are the quantities
integrated over a unit magnetic flux tube, are defined as

ŵ�x,�� �
�

2x � x
�D̂�r2/b2�

��

2x � x
�

+ b2BM
2 �

��
�D̂� 1

r2B2 + 2B2� ��

��
� ,

D̂�x,�� �
1

�MU0
� �d�

B
=

�U

�MU0
,

T̂�x,�� �
�Ti + Te�U�−1

�Ti + Te�MU0
�−1 , �9�

where �, Te, and Ti are the mass density, electron, and ion
temperatures, all of which are assumed to be constant along
a magnetic field line; � is the electrostatic potential multi-
plied by light speed c, =U�� /�����0

��1 /UJ�d��
+ ��� ·��� / �r2B2J� with Jacobian J=����� ·��, and r is
the radius of a magnetic field line. The normalized radial
coordinate x is defined as x=�� /�b, where �b is the coordi-
nate at the separatrix, b=��b /BM, and U0=U�0�. The sub-
script M means the quantity at the midplane on axis of the
divertor mirror cell. The field line averaged quantity �X� is
defined by �X���1 /U���X /B�d�.

The adiabatic velocity v� of plasma has the form of

v� =
− �� � B

B2 + B
��

��
, �10�

where the first and second terms in the right-hand side are
the velocities across and along a magnetic field line, and Eq.
�10� satisfies � · �v� /U�=0. The specific dynamic vorticity ŵ
in Eq. �9� is written by

ŵ�x,�� = − Y0� d�

J

� · B � ��v��

B2 � −
��B · ��v���

��
�

in terms of v�, where Y0 is the normalization constant.
The basic equations, which have been derived on the

assumption of axisymmetric magnetic field, consist of the

equations of ŵ�x ,��, D̂�x ,��, T̂�x ,��, and the potential
��x ,�� determined by Eq. �9�.

Time evolutions of ŵ�x ,��, D̂�x ,��, and T̂�x ,�� are
given by the equations

�ŵ

��
+ ��,ŵ� −

1

2
�D̂,V2� +

3

10x

1

u5/3
�u

�x

�D̂T̂

��
= �2C2
 1

4x

�

�xDEf1

x

�

�x� f2

u2/3f1
2�TE

ŵ�� +
DEf2�f3 + f4�

u2/3f1
2�TE

�2ŵ

��2� , �11�
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FIG. 4. Linear growth rates of the flute instability for various pA.
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FIG. 3. The radial profiles of the normalized specific volume
u�x�=U�x� /U�0� for various pA.
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�D̂

��
+ ��,D̂� =

�2C1

4x

�

�x
uf1

x

DE

TE
3/2

�

�x
�TED̂

u5/3 ��
+ �2C1

f3DE

u2/3�TE

�2D̂

��2 , �12�

�T̂

��
+ ��,T̂� = �2C3

u2/3

12xDE

�

�x
DE

2 f1

xu

�

�x
� T̂

u1/3�TE

��
+ �2C3

DEf3

3u2/3�TE

�2T̂

��2

+
C1�2

6x�TE

�

�x
uf1

x

�

�x
�DETE

u5/3 �� . �13�

Here the notation � � defined by the equation

�A,B� �
�A

2x � x

�B

��
−

�A

��

�B

2x � x
�14�

is known as the Poisson bracket and this term represents the
convective E�B flow term in Eqs. �11�–�13�. The quantity
V2 in Eq. �11� is the normalized counterpart of �v�

2�.
The specific volume of a magnetic field line is normalized as

u�x��U�x� /U�0�; DE�x���1 /2���0
2�D̂�x ,��d� and

TE�x���1 /2���0
2�T̂�x ,��d�.

The potential � is determined by Eq. �9� as

1

x

�

�x
� D̂f1

x

��

�x
� + 4

�

��
D̂�f3 + f4�

��

��
� = 4ŵ . �15�

The constants are given by

C1 =�2MeTe

MiTi
�Ti + Te

2Te
�

M

2

,

C2 =
3

20
�Ti + Te

Ti
�

M

1/2�Ti + Te

2Ti
�

M

,

C3 = �Ti + Te

Ti
�

M

1/2

, �16�

f1 = �r2�/b2, f2 = �r4�/b4, f3 = � 1

r2B2�BM
2 b2,

f4 = �2B2�BM
2 b2. �17�

The right-hand sides in Eqs. �11�–�13� are the classical
transport terms related to the classical viscosity, resistivity,
and thermal diffusivity.32 The quantity �2, which is a small
expansion parameter, is defined by �2���M /bcsM��2Ti / �Ti

+Te��M
1/2, where csM =��pM /�M and �M = �Ti / �Mi�ci�i��M

which is related to the classical thermal diffusibility;
�2=10−2 is assumed in the paper. The quantities �ci and �i

are the ion cyclotron frequency and the ion coulomb colli-
sion time, respectively.

The basic equations can be applied under the assumption
that the plasma pressure is below the instability threshold for
Alfvén modes ����cr�1, � is plasma pressure/magnetic
pressure�, and the high frequency stable collective degrees of
freedom corresponding to magnetosonic, Alfvén, and longi-
tudinal acoustic modes are excluded from the basic
equations.8,30,31 The effects of magnetic field line curvature
on the flute interchange modes are included through the spe-
cific volume u. The basic equations do not use the long thin
approximation, thus these equations can be applied to the
divertor fat mirror plasma.

The specific volume U in this section is defined by
U=�d� /B and the integration along a magnetic field line is
not weighted with the plasma pressure. However in order to
take into account the effect of nonaxisymmetric anchor mag-
netic field in the basic equations, the specific volume is re-
defined by Eq. �4� with axial pressure profile of Eq. �5�. Only
the normalized specific volume u appearing explicitly in Eqs.
�11�–�13� uses Eq. �4�.

IV. LINEAR ANALYSIS

Equations �11�–�13� and �15� give a set of equations for
the nonlinear MHD convection. The linear analysis is helpful
to understanding the simulation results in Sec. V. The per-
turbed quantity wf is expanded in Fourier series as

wf = �
m

wf�m� exp�− i�� + im�� . �18�

Here wf�x ,��= ŵ�x ,��−w0�x� and w0�x�
��1 /2���0

2�ŵ�x ,��d�; i��−1, � is the frequency of linear
wave, and m is the azimuthal mode number. The remaining

perturbed quantities Df, Tf, and �, where Df�x ,��= D̂�x ,��
−DE�x�, Tf�x ,��= T̂�x ,��−TE�x�, are expanded in the same
way.

Because the quantities �̃�m�, wf�m�, Df�m�, Tf�m�, and u are
a function of x, the nonlocal treatment is required to obtain
the dispersion equation, the result of which is given as

�

�x
DEf1

x

��̃�m�

�x
� −

�

�x
mf1

2x2 �̃�m�
��0

�x

�DE

�x ��� −
m

2x

��0

�x
�� − 4xDE�f3 + f4�m2 +

4xwf�m�

�̃�m�
��̃�m� = 0. �19�

Here �0, where �0�x�= �1 /2���0
2���x ,��d�, is determined by

�

�x
�DEf1

x

��0

�x
� = 4xw0. �20�

The last term wf�m� /�̃�m� in the left-hand side of Eq. �19� is described as a function of zeroth-order quantities8
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4xwf�m�

�̃�m�

= −
m2

2x

��V2��0�

�x

�DE

�x �
�� −
m

2x

��0

�x
�� −

m

2x

��0

�x
+ im2�2C2

DEf2�f3 + f4�
u2/3f1

2�TE
�� − 2m

�w0

�x �� −
m

2x

��0

�x

+ im2�2C2
DEf2�f3 + f4�

u2/3f1
2�TE

� −
3m2

5�2x

1

u5/3
�u

�x

��DETE�
�x �
�� −

m

2x

��0

�x
�� −

m

2x

��0

�x
+ im2�2C2

DEf2�f3 + f4�
u2/3f1

2�TE
�� .

�21�

Equation �19� is an eigenvalue equation with eigenfunc-

tion �̃�m��x� and eigenvalue �, which can be solved with a

boundary condition of �̃�m��x�=0 at x=0 and at x=1. The
solutions of Eq. �19� are plotted in Fig. 4 for the zeroth-order
quantities given in Eqs. �6�–�8�. Equation �19� is used in Sec.
V in order to compare the linear analysis with the linear
phase of the simulations.

V. SIMULATION RESULTS

Boundary conditions adopted in the simulations
are that �DE�0� /�x=�TE�0� /�x=�w0�0� /�x=0, �DE�1� /�x
=�TE�1� /�x=0. The boundary condition of w0�x� at x=1 is
chosen that �0

1w0�x�xdx is conserved in time. The boundary
conditions for perturbed quantities are that �Df ,�2m��0� /�x
=�Tf ,�2m��0� /�x=�wf ,�2m��0� /�x=0, Df ,�2m+1��0�=Tf ,�2m+1��0�
=wf ,�2m+1��0�=0, and �Df ,�m��1� /�x=�Tf ,�m��1� /�x
=�wf ,�m��1� /�x=0.

Initial conditions are D̂�x ,��=1, T̂�x ,��=1, and
ŵ�x ,��=+1, where these initial conditions give the margin-
ally stable state to the flute modes as mentioned in Sec. II.
Those boundary and initial conditions are adopted in all
simulations in this paper. Numerical algorithm for calculat-
ing Eqs. �11�–�13� is described in Ref. 8. Time step is
��=5�10−5 and �x���= �121�26� meshes are used in the
simulation.

A. The case unstable to a flute mode

At first, the simulation in case of pA=1 is performed,
which corresponds to the case without high pressure in an-
chor mirror cell and so the flute modes are not stabilized by
the anchor mirror because �u /�x�0 everywhere in Fig. 3.
Although the initial radial profiles of DE�x� and TE�x� are

chosen to be marginally stable to the flute modes, a large
transport near the separatrix leads the system to an unstable
state.

Figure 5 plots the time evolution of �̃�m� in the linear
phase ��	200� observed at x=1 /2. The m=1 Fourier ampli-

tude �̃�m� grows in time, the growth rate of which agrees
with the solid line in the figure. Solid line in Fig. 5 is the
linear growth rate determined by the nonlocal linear analysis
in Sec. IV, where the radial profiles of DE�x�, TE�x�, and
�0�x� in Figs. 6�a� and 6�b� are used in the analysis. Here
DE�x� and TE�x� in Figs. 6�a� and 6�b� are observed in the
simulation at �=80. Figure 6�c� plots the radial profile of

m=1 Fourier amplitude �̃�m=1� observed in the simulation at
�=80, while Fig. 6�d� plots the radial profile of the eigen-

function of �̃�m=1� obtained by Eq. �19�, where the eigen-
function was obtained in calculation of the linear growth rate

in Fig. 5. Both radial profiles of �̃�m=1� and the eigenfunction
agree well with each other. So the simulation results around
�=80 are the linear growing phase. The contour plots of wf,

�̃, Df, and Tf in Fig. 7, which are observed at �=80, show
that m=1 mode is dominant in all perturbations and those

perturbations are localized around x=1 /2. Here �̃�x ,��
���x ,��−�0�x�.

The long-time behavior of Fourier amplitudes �̃�m� is
plotted in Fig. 8. The flute instability saturates at �=100 and

after that the Fourier amplitudes �̃�m� repeat the growing up
and down in time. The long-time behavior of these Fourier
amplitudes can be understood in the following consideration.

Figures 9�a�–9�c� plot the time variations of �, D̂, and T̂

0 20 40 60 80 100 120 140 160 180 20010-5

10-4

10-3

10-2

10-1

100

Φ(m)

m=1 2

3

4

pΑ=1

linear growth rate

at x = 1/2

τ
FIG. 5. Linear phase for pA=1.

0.0

0.0

1.0

0.5

-0.5

-1.0
0.2 0.4 0.6 0.8 1.0x

(a.u.)
real part

imaginary part
eigen function determined
by non-local linear theory

0.0

0.0

1.0

0.5

-0.5

-1.0
0.2 0.4 0.6 0.8 1.0x

(a.u.)
real part

imaginary part
eigen function observed
in the simulation at t=80

0.0

1.0

0.0
0.2 0.4 0.6 0.8 1.0x

0.0

1.0

0.5

0.5

0.0
0.2 0.4 0.6 0.8 1.0x

DE

TE

τ=80

τ=80

(a)

(b)

(c)

(d)
Φ∼

Φ∼
pΑ=1 pΑ=1

pΑ=1 pΑ=1

FIG. 6. Radial profiles of �a� DE�x�, �b� TE�x� at �=80. Radial profiles of �c�
the m=1 Fourier amplitude �̃�m� observed in the simulation at �=80, �d� the

eigenfunction of �̃�m=1� obtained by the nonlocal linear analysis.
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observed at �x ,��= �0,0� and �1/3,0�, while Fig. 9�d� plots

the time evolution of the Fourier amplitudes �̃�m�. There are
several features to be emphasized. The classical viscosity,
resistivity, and thermal diffusivity are included in the basic

Eqs. �11�–�13�. It is seen that the magnitudes of D̂ and T̂ at
�x ,��= �0,0� and �1/3,0� decrease slowly due to the classical
diffusion process in all time. There is a large drop of

D̂�x=1 /3,�=0� and T̂�x=1 /3,�=0� accompanied with a
rapid oscillation around �=100, which is just the same time
as a flute instability saturates. The large drops accompanied
with a rapid amplitude oscillation are observed repeatedly in
time, which coincides with the time when the Fourier ampli-

tude �̃ has a maximum in Fig. 9�d�. The period of the rapid
amplitude oscillation coincides with the period of the plasma
azimuthal rotation.

Figure 10 plots the radial fluxes of density ���x� and
temperature �T�x�, which are calculated by using the radial

profiles of �, D̂, and T̂ observed in the simulation at
�=100. The radial fluxes ���x� and �T�x� are divided into
two terms

���x� = ��
class�x� + ��

flute�x�, �T�x� = �T
class�x� + �T

flute�x� .

�22�

Here ��
class and �T

class are the radial fluxes due to the classical
transport, and ��

flute and �T
flute are the radial fluxes due to flute

mode fluctuations, which are defined, respectively, as

��
class =

�2C1

2

f1DE

xTE
3/2

�

�x
�DETE

u5/3 � ,

��
flute =

1

2�u
�

0

2�

Df
��̃

��
d� , �23�

�T
class =

�2C3

6

f1DE

xu2/3�TE

�

�x
� TE

u2/3� ,

ρfwf

Tf

τ = 80 PΑ=1
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FIG. 7. Contour plots of wf, �̃, � f, and Tf observed at �=80.
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�T
flute =

1

2�u2/3�
0

2�

Tf
��̃

��
d� . �24�

The classical radial fluxes ��
class and �T

class become large
around x�1 in Figs. 10�c� and 10�d� because ion Larmor
radius is large around the magnetic null. Therefore, there are
sharp gradients in DE and TE around x�1 in Figs. 10�a� and
10�b�. On the other hand, the radial fluxes ��

flute and �T
flute due

to flute instabilities are found to be large around x�0.4 in

Figs. 10�c� and 10�d� where the m=1 Fourier amplitude �̃�m�
has a maximum in Fig. 6�c�, which causes the large trans-
ports shown in Figs. 9�b� and 9�c�.

Radial fluxes at �=130 are plotted in Fig. 11, when is in
the decay phase of flute modes as shown in Fig. 5. The radial
fluxes ��

flute and �T
flute are found to be smaller than the clas-

sical radial fluxes ��
class and �T

class in the core region. So the
large transport due to flute mode fluctuations is not observed
at ��130 in Figs. 9�b� and 9�c�.

Figures 9–11 indicate that a maximum of Fourier ampli-

tude �̃ is accompanied with a large radial transport. As a
result of the large radial transport, the stable DE�x� and TE�x�
are realized in the core region, which stabilizes the flute
mode and makes its Fourier amplitude decrease. That is, the
saturation mechanism of the flute instability at �=100 in Fig.
8 is that the radial profiles of DE�x� and TE�x� changed to
satisfy the stable radial profile DE�x�TE�x��const as a result
of the large anomalous radial transport.

The large classical transport around x�1 makes the ra-
dial profiles of DE�x� and TE�x� unstable to the flute modes

and the Fourier amplitude �̃�m� grows again. The resultant
large diffusion by the flute instability forms the stable pres-
sure profile and the Fourier amplitudes decays. This process
is repeated and the radial transport is enhanced by the flute
mode fluctuations.

B. The case stable to a flute mode

In this section the simulation is performed in the case of
pA=20, where a magnetic well exists in the region x�0.45
in Fig. 3. The purpose in this section is to make clear
whether the flute mode is stabilized by a magnetic well or

not in a tandem mirror with a divertor mirror cell. The same
boundary conditions and initial conditions as those in Sec.
IV are adopted here.

Time evolutions of �̃�m� at x=1 /2 are plotted in Fig. 12.
The solid line in Fig. 12 is the linear growth rate obtained by
the nonlocal linear analysis in Sec. IV, where the radial pro-
files of DE�x�, TE�x�, and �0�x� observed in the simulation at
�=180 were used in the analysis. It is found that the growth
rate observed in the simulation does not agree with the linear

analysis, and all m modes of �̃�m� decrease in the nonlinear
saturation phase ���280�.

Figure 13 shows the radial profiles of m=1 Fourier am-

plitude �̃, and the radial profiles of DE and TE observed at
�=180, which were used to evaluate the linear growth rate in
Fig. 12. Although ��DETE� /�x�0 in whole region, i.e., can

be unstable to the flute modes, the radial profile �̃�m=1��x� in
Fig. 13�c� is different from the eigenfunction obtained by the
nonlocal linear analysis. Because both growth rate and eigen-
function observed in the simulation are different from the
linear analysis, the case of pA=20 is understood to be not
unstable to the flute modes.

Radial profiles of DE and TE at �=320 are shown in Fig.
14. In the region x�0.45, where �U /�x�0, the DE�x�TE�x�
has a Gaussian type of radial profile. The classical transport
increases in x just like Figs. 10 and 11, so the radial profiles
of DE and TE have sharper gradients in x�0.5. Note that
DE��U and TE� �Ti+Te�U2/3 in Eq. �9�.
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C. Various values of pA to a flute mode

The simulations for various pAs are performed. The

maximum amplitudes of m=1 Fourier component �̃�m� at

x=2 /5 are plotted in Fig. 15. The maximum amplitude �̃max

of �̃�m=1�, for example, is realized at �=104 in Fig. 8�d� and

at �=272 in Fig. 12. The maximum amplitude �̃max in the
case of pA=20 is one order magnitude smaller than the other

case of pA. The growth rates of m=1 Fourier amplitude �̃�m�
in the linear growing phase are plotted in Fig. 16 as a func-
tion of pA. Here solid triangles are the linear growth rates
observed in the simulation where �’s in the figure are the

time measured the growth rate of �̃�m=1�, while solid circles
are the linear growth rates determined by the nonlocal linear
analysis. The agreement between simulation and linear
analysis is good for pA	12. There is not a simulation result
at pA=20 in Fig. 16 because flute modes are not unstable in
the simulation.

A magnetic well exists for pA�12 as shown in Fig. 3.
The effects of the magnetic well to the flute modes are
clearly seen in Figs. 15 and 16 in a sense that the linear

growth rate and the maximum amplitude �̃max are made
lower by the magnetic well. If the plasma has a slim radial
pressure profile of �pU� /���0, the divertor mirror does not
stabilize the flute modes as mentioned in Sec. II. Because the
divertor mirror has a bad magnetic field line curvature near
axis, the magnetic well �region of the good curvature� in the
anchor minimum-B mirror cell can stabilize the flute
modes.17,25,26 The flute modes are stabilized completely by
the magnetic well for pA�20.

VI. SUMMARY

The simulations on flute modes were performed in order
to research the flute instability, the associated radial trans-
port, and the effect of a magnetic well to the flute instability.
The linear growth rates and the radial profiles of the eigen-

function �̃�m=1� in the linear phase agree well between the
simulation and nonlocal linear analysis. It was found that the
flute instability entered a nonlinear saturation phase by
changing the unstable radial profile DE�x�TE�x�, which was
caused by the large classical transport around x�1, to the
stable radial profile resulting from the flute instability after a
linear phase. In the saturation phase the flute modes repeat
the grow up and down of its Fourier amplitudes causing the
anomalous radial transport intermittently. The flute instabil-
ity, however, is not so strong to evacuate the plasma out of

separatrix fast. The perturbed potential �̃ caused by the flute
instabilities has the same amplitude along the magnetic field
line because of k	 =0, thus the radial transports are the same
in each mirror cell.

The magnetic well ��U /���0� near axis ���0� stabi-
lizes the flute modes in the long thin magnetic field. On the
other hand, the divertor magnetic field has a character
�U /��→+� at separatrix. Thus the tandem mirror with both
a divertor mirror and a minimum-B mirror has the character
that �U /���0 near axis but �U /���1 near separatrix. It
was found that the magnetic well was not able to stabilize the
flute modes in such a tandem mirror if the magnetic well was
shallow. That is, the divertor mirror weakens the ability of
minimum-B mirror to stabilize the flute modes.

Here we comment on the condition in which the divertor
cell is stabilizing the flute modes because the experiments
reported the stabilizing effects.22–24 The experiments realize
the steady state operation where the plasma radial loss is
balanced with the plasma production. The flute modes can be
stabilized by the divertor as mentioned in Sec. II if the radial
pressure profile is fat. The simulation, however, starts at the
initial condition but without the plasma source. The radial
loss through the x-point, therefore, makes the pressure radial
profile slim, which makes the flute modes unstable.
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