
2198
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.8 AUGUST 2010

PAPER

An Algorithm for Inferring K Optimum Transformations of XML
Document from Update Script to DTD

Nobutaka SUZUKI†a), Member

SUMMARY DTDs are continuously updated according to changes in
the real world. Let t be an XML document valid against a DTD D, and
suppose that D is updated by an update script s. In general, we cannot
uniquely “infer” a transformation of t from s, i.e., we cannot uniquely de-
termine the elements in t that should be deleted and/or the positions in t
that new elements should be inserted into. In this paper, we consider infer-
ring K optimum transformations of t from s so that a user finds the most
desirable transformation more easily. We first show that the problem of in-
ferring K optimum transformations of an XML document from an update
script is NP-hard even if K = 1. Then, assuming that an update script is of
length one, we show an algorithm for solving the problem, which runs in
time polynomial of |D|, |t|, and K.
key words: XML, DTD, schema update, document transformation

1. Introduction

DTDs are continuously updated according to changes in the
real world. Suppose that we maintain XML documents valid
against a DTD, and that the DTD is updated by some update
script. Then the documents may no longer be valid against
the DTD, and thus we have to transform each document into
a valid one. However, it is indeed a hard task to find an
appropriate transformation of each document manually. In
this paper, we consider an algorithm that is helpful for find-
ing appropriate transformations of XML documents when a
DTD is updated.

Let t be an XML document valid against a DTD D,
and suppose that D is updated by applying an update script
s. In general, there is more than one (possibly infinite) way
to transform t. In other words, we cannot uniquely “infer”
from s (i) the elements in t that should be deleted and/or
(ii) the positions in t into which new elements should be
inserted. Thus, we need to select an appropriate transfor-
mation from such transformations. In such a situation, it is
useful to compute the list of top-K (or K optimum) trans-
formations of t inferred from s so that we can easily select
the most appropriate transformation from the list. In this pa-
per, we consider inferring such K optimum transformations
from an update script.

For example, let us consider DTD D1 (Fig. 1 (a)). Sup-
pose that D1 is updated to D2 by an update script, which
“aggregates” subexpression “(section+,bib?)” of the content

Manuscript received October 1, 2009.
Manuscript revised February 15, 2010.
†The author is with the Graduate School of Library, Informa-

tion and Media Studies, University of Tsukuba, Tsukuba-shi, 305–
8550 Japan.

a) E-mail: nsuzuki@slis.tsukuba.ac.jp
DOI: 10.1587/transinf.E93.D.2198

Fig. 1 DTDs D1,D2 and XML documents t1, t2, t3.

model of “book” into a single label “chapter” (Fig. 1 (b)).
For tree t1 in Fig. 1 (c), we have two alternatives t2, t3 ac-
cording to the positions at which “chapter” elements should
be inserted (Fig. 1 (d,e)). Our algorithm can infer such a
list of transformations from a given update script, where
the listed trees are ordered by the “amount of changes” (the
number of insertions/deletions applied to the input tree).

As shown above, when a DTD is updated by an update
script, more than one transformation of an XML document
may be inferred from the update script, and we have to select
an appropriate transformation from them. Clearly, listing
such transformations in random order is very confusing to
users. Although there is no universally agreed criterion for
ordering such transformations, such a list can be readable
and helpful to users if its transformations are ordered by the
amount of changes, i.e., a transformation with less changes
is ranked higher. Therefore, in this paper the transformation
with the least amount of changes is treated as the optimum
one.

Let s be an update script to a DTD D, t be an XML
document valid against D, and K be a positive integer. The
main results of this paper are the following twofold:

• In general, the problem of inferring K optimum trans-
formations of t from s is intractable due to combina-
torial explosion. In fact, we show that the problem is
NP-hard even if K = 1.

• If s is restricted to be of length one, i.e., s consists only
of one update operation, the problem can be solved rel-
atively efficiently. In fact, we construct an algorithm

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers



SUZUKI: AN ALGORITHM FOR INFERRING K OPTIMUM TRANSFORMATIONS OF XML DOCUMENT FROM UPDATE SCRIPT TO DTD
2199

for solving this problem, which runs in time polyno-
mial of |D|, |t|, and K.

In this paper, we first define update operations to a
DTD. We next show a nondeterministic algorithm that trans-
forms a tree according to a given update operation. Then,
based on this algorithm, we show that the problem of infer-
ring K optimum transformations of a tree from an update
script is NP-hard even if K = 1. Finally, assuming that an
update script s to a DTD D is of length one, we show an
algorithm for inferring K optimum transformations of a tree
t from s, which runs in time polynomial of |D|, |t|, and K.

Related Work

Schema matching and other related problems have been ex-
tensively studied, e.g., [1]–[8]. These studies considered
finding an appropriate matching or transformation between
schemas, assuming that no update script between schemas
is known.

Several studies proposed update operations to schemas
and discussed related problems. Leonardi et al. proposed
update operations in order to represent the “diff” between
two DTDs [9]. Hashimoto et al. proposed update operations
to tree grammars so that no structural information of XML
documents is lost when the documents are transformed ac-
cording to a schema update [10]. Guerrini et al. proposed
update operations for inclusion problem of schemas; any
schema updated by their update operations includes its orig-
inal schema [11]. Prashant et al. proposed three update op-
erations and constructed an algorithm for generating XSLT
scripts from a given update operation [12]. Suzuki et al. pro-
posed an algorithm for deciding if, for a DTD D and an up-
date script s, a transformation of t inferred from s is unique
for any tree t valid against D [13]. To the best of the au-
thor’s knowledge, no study considers inferring K optimum
transformations of an XML document from an update script.
Finally, this paper is a revised version of Ref. [14]. This pa-
per provides (i) a revised estimation of the running time of
the algorithm for inferring K optimum transformations of a
tree from an update operation and (ii) a correctness proof of
the algorithm, as well as excluding two insignificant update
operations from those of Ref. [14]. The reason why the two
update operations are excluded is that no transformation is
required when a schema is updated by these operations, i.e.,
excluding these operations does not affect our transforma-
tion algorithm.

2. Definitions

An XML document is modeled as a node labeled ordered
tree (attributes are omitted). A text node is omitted, in other
words, we assume that each leaf node has a text node im-
plicitly. For a node n in a tree, by l(n) we mean the label
(element name) of n. In what follows, we use the term tree
when we mean node labeled ordered tree.

Let Σ be a set of labels. A regular expression over Σ is

Fig. 2 Tree representation of r.

recursively defined as follows.

• ε and a are regular expressions, where a ∈ Σ.
• If r1, · · · , rn are regular expressions, then r1 · · · rn and

r1| · · · |rn are regular expressions (n ≥ 1).
• If r is a regular expression, then r∗, r?, and r+ are reg-

ular expressions.

The language specified by a regular expression r is denoted
L(r).

In order to define update operations to a DTD, we
sometimes represent a regular expression as a term in prefix
notation. For example, we may write ·(a, ∗(|(b, c))) instead
of a(b|c)∗, where ‘·’ denotes a concatenation operator. Let r
be a regular expression in prefix notation. The set of posi-
tions of r, denoted pos(r), is defined as follows.

• If r = ε or r = a for some a ∈ Σ, then pos(r) = {λ},
where λ denotes an empty sequence.

• If r = op(r1, · · · , rn) with op ∈ {|, ·, ∗, +, ?}, then
pos(r) = {λ} ∪ {u | u = iv, 1 ≤ i ≤ n, v ∈ pos(ri)}.
Note that n = 1 if op ∈ {∗, +, ?}.

For example, let r = (a|b)(cd)∗. The prefix notation of r is
·(|(a, b), ∗(·(c, d))). Figure 2 shows the tree representation of
r, in which each node is associated with its corresponding
position. Thus pos(r) = {λ, 1, 11, 12, 2, 21, 211, 212}.

Let u ∈ pos(r). The label at u in r, denoted l(r, u), and
the subexpression at u in r, denoted sub(r, u), are recursively
defined as follows.

• If r = ε or r = a for some a ∈ Σ, then l(r, λ) = r and
sub(r, λ) = r.

• If r = op(r1, · · · , rn) with op ∈ {|, ·, ∗, +, ?}, and

– if u = λ, then l(r, u) = op and sub(r, u) = r,
– if u = jv for some 1 ≤ j ≤ n and some v ∈ pos(r j),

then l(r, u) = l(r j, v) and sub(r, u) = sub(r j, v).

For example, in Fig. 2 l(r, 1) = ‘|’, l(r, 11) = a, and
sub(r, 21) = ·(c, d).

Let w be a word over Σ. By |w| we mean the length of
w, and by w[i] we mean the ith label of w. We define that
w[i, j] = w[i]w[i+1] · · ·w[ j] (1 ≤ i ≤ j ≤ |w|). For example,
if w = kasuga, then w[3, 5] = sug.

Let r be a regular expression. By r# we mean the
superscripted regular expression resulting from r by su-
perscripting each label in r by its corresponding posi-
tion. By sym(r#) we mean the set of superscripted la-
bels occurring in r#. For example, if r = (a|b|c)(d|b)∗,
then r# = (a11|b12|c13)(d211|b212)∗ and sym(r#) =



2200
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.8 AUGUST 2010

{a11, b12, c13, d211, b212}. Let ai be a superscripted label of
a. Then by (ai)� we mean the label resulting from ai by
dropping the superscript of ai, that is, (ai)� = a. Let w′
be a superscripted word (i.e., a sequence of superscripted
labels). We define that (w′)� = w′[1]� · · ·w′[|w′|]�. For
any regular expression r, it holds that L(r) = L(r#)�, where
L(r#)� = {(w′)� | w′ ∈ L(r#)}.

A DTD is a tuple D = (d, sl), where d is a (possibly
partial) mapping from Σ to the set of regular expressions
over Σ, and sl ∈ Σ is the start label. For example, the DTD in
Fig. 1 (b) is denoted (d, book), where d is a mapping defined
as follows.

d(book) = chapter+

d(chapter) = section+bib

d(section) = ε

d(bib) = ε

For a label a ∈ Σ, d(a) is the content model of a. A tree t is
valid against D if (i) the root of t is labeled by sl and (ii) for
each node n in t the sequence of labels on the children of n
is in L(d(l(n))).

3. Update Operations to DTD

In this section, we define seven update operations to a DTD.
Let us first consider desirable properties that our update op-
erations should satisfy. First of all, the following property
should clearly be satisfied.

P1) Any content model (regular expression) in a DTD can
be updated to an arbitrary content model by using our
update operations.

Update operations to insert/delete elements and those to
insert/delete operators in a content model suffice to as-
sure (P1). However, since a DTD also specifies ancestor-
descendant relationships among elements, we often need
update operations to insert/delete elements with such rela-
tionships preserved. Thus the following property should
also be satisfied.

P2) Elements can be inserted/deleted, preserving ancestor-
descendant relationships between elements specified in
a DTD.

More concretely, let us consider how tree t1 (Fig. 3 (d))
is transformed according to the DTD update shown in
Fig. 3 (A). In this update, contact in d(student) is “ex-
tracted”, i.e., contact is deleted from d(student) and tel
and email are moved to d(student) by a single update op-
eration (Fig. 3 (b)), preserving ancestor-descendant relation-
ships between student and tel/email. Thus, according to
this update, the contact node in t1 should be deleted and
the tel and email nodes should be made as children of
the student node (Fig. 3 (e)). Here, the above DTD up-
date could seemingly be mimicked by using three dis-
tinct update operations; (i) a deletion of contact from
d(student) (Fig. 3 (B)) and (ii) insertions of tel and email

Fig. 3 Updating DTD D1 to D2 by extracting contact in d(student).

into d(student) (Fig. 3 (C)). However, this update is inap-
propriate since the update ignores the ancestor-descendant
relationships between student and tel/email and thus the
text values of tel and email elements in t1 are not preserved
(Fig. 3 (g)). Therefore, our update operations consist of the
following two kinds of operations so that (P1) and (P2) are
satisfied.

• Update operations to insert/delete elements and to in-
sert/delete operators (·, |, ∗, +, ?) in a content model.
These are operations for assuring (P1).

• Update operations to change operators (∗, +, ?) and to
insert/delete elements with ancestor-descendant rela-
tionships preserved. These are operations for assuring
(P2).

Let us now show our update operations. Let D = (d, sl)
be a DTD. First, the following two operations relate to in-
sertion/deletion of an element in a content model.

• ins elm(a, b, vi): Inserts a new label b at position vi in
d(a), where vi ∈ pos(d(a)), i is a positive integer, and
b ∈ Σ (Fig. 4 (b,c)). This is applicable to D only if d(b)
is defined, l(d(a), v) ∈ {·, |}, and the operator at v has at
least i − 1 children.

• del elm(a, vi): Deletes the label (possibly ε) at vi in
d(a). More formally, we have two cases according to
the operator at v.

– The case where l(d(a), v) = ‘·’: The label at vi
in d(a) is deleted from d(a) (Fig. 4 (a,b)). This is
applicable to D only if the operator at v has more
than one child.

– The case where l(d(a), v) = ‘|’: If l(d(a), vi) =
l(d(a), vk) for some k � i, then the label at vi in
d(a) is deleted from d(a) (deleting one of dupli-
cated labels). Otherwise, the label at vi in d(a) is
replaced by ε.

Second, the following two operations relate to extrac-



SUZUKI: AN ALGORITHM FOR INFERRING K OPTIMUM TRANSFORMATIONS OF XML DOCUMENT FROM UPDATE SCRIPT TO DTD
2201

tion/aggregation of an element.

• ext elm(a, u): Extracts the label at u in d(a). Formally,
this operation replaces the label at u in d(a) by regu-
lar expression d(l(d(a), u)) (Fig. 4 (e,f)). This is appli-
cable to D only if l(d(a), u) ∈ Σ, l(d(a), u) � a, and
d(l(d(a), u)) is defined.

• agg elm(a, b, u): Aggregates the subexpression at u in
d(a) into single label b. Formally, this operation (i) sets
d(b) = sub(d(a), u) and (ii) replaces the subexpression
at u in d(a) by b (Fig. 4 (d,e)). This is applicable to D
only if d(b) is undefined.

The following three operations relate to handling an
operator (|, ·, ∗, +, ?) in a content model.

• ins opr(a, opr, u, v): Inserts a new operator opr as the
parent of the siblings at u, · · · , v in d(a), where opr ∈
{·, |, ∗, +, ?} (Fig. 4 (c,d)). This is applicable to D only if
(i) u = v (opr has only one child) or (ii) opr ∈ {·, |} and
opr = l(d(a),w), where u = wi and v = w j for some
i < j (nesting the operator at w by opr).

• del opr(a, u): Deletes an operator at u in d(a)
(Fig. 4 (f,g)). This is applicable to D only if (i) the oper-
ator at u has only one child or (ii) l(d(a), u) = l(d(a), v),
where u = vi for some i (unnesting the operators at u
and v).

• change opr(a, opr, u): Replaces the operator at u in
d(a) by opr, where l(d(a), u), opr ∈ {?, ∗, +}.
Let op be an update operation to a DTD D. By op(D)

we mean the DTD obtained by applying op to D. Let
s = op1op2 · · · opn be a sequence of update operations. We
say that s is an update script to D if opi is applicable to
opi−1(opi−2(· · · op1(D) · · · )) for every 1 ≤ i ≤ n. By |s| we
mean the length of s, that is, |s| = n. We say that a DTD
D2 includes a DTD D1 if for any tree t, t is valid against
D2 whenever t is valid against D1. We have the following
lemma.

Lemma 1: Let D = (d, sl) be a DTD and op be an update
operation applicable to D. Then op(D) includes D if

• op = ins elm(a, b, vi) and l(d(a), v) = ‘|’,
• op = ins opr(a, opr, u, v),
• op = del opr(a, u) and l(d(a), u) ∈ {·, |}, or
• op = change opr(a, opr, u), and (i) opr = ‘∗’ or (ii)

l(d(a), u) = opr.
�

Let D be a DTD and op be an update operation appli-
cable to D. If op(D) includes D, then any tree valid against
D is also valid against op(D). Thus, if the condition of the
lemma holds, then without validating any trees we can find
out that no transformation needs to be performed. Accord-
ingly, the transformation algorithm defined in the next sec-
tion uses the lemma in order to avoid unnecessary valida-
tions.

Fig. 4 An update script to D (left) and a transformation inferred from the
update script (right).

4. Transformation Algorithm

Let t be a tree valid against a DTD D. If D is updated by
an update operation op, we need to transform t according to
op. In this section, we define an algorithm that nondeter-
ministically transforms t according to op.

The following TransOp is the main part of the algo-
rithm (Trans1 to Trans6 are shown later).

TransOp(D, t, op)

Input: a DTD D, a tree t valid against D, and an update
operation op to D.
Output: a tree valid against op(D).

1. If t is valid against op(D), return t.
2. Else

if op = ins elm(a, b, vi), return Trans1(D, t, op),



2202
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.8 AUGUST 2010

if op = del elm(a, vi), return Trans2(D, t, op),
if op = ext elm(a, u), return Trans3(D, t, op),
if op = agg elm(a, b, u), return Trans4(D, t, op),
if op = ins opr(a, opr, u, v), return t,
if op = del opr(a, u), return Trans5(D, t, op),
if op=change opr(a,opr,u), return Trans6(D,t,op).

Note that if op = ins opr(a, opr, u, v), then we do not have
to transform t, since t is valid against op(D) by Lemma 1.

Let us show six Trans subroutines. We need some def-
initions. Let r be a regular expression, u ∈ pos(r) be a po-
sition in r, and q = sub(r, u) be a subexpression of r. More-
over, let w′ be a superscripted word such that w′ ∈ L(r#).
We say that w′[i, j] maximally matches q# if w′[i, j] ∈ L(q#)
and either (i) i = 1 and j = |w′| or (ii) w′[i′, j′] � L(q#) for
any i′, j′ with {i, · · · , j} ⊂ {i′, · · · , j′}. We define that

match(w′, q#) = {(i, j) |w′[i, j] maximally matches q#}.
For example, let r = (a(b|c)+)∗ and q = sub(r, 12). Then
r# = (a11(b1211|c1212)+)∗ and q# = (b1211|c1212)+. If w′ =
a11b1211a11c1212b1211, then match(w′, q#) = {(2, 2), (4, 5)}.

Let us first show Trans1. Trans1(D, t, op) transforms
t according to op. In this case, op = ins elm(a, b, vi), and
by Lemma 1 l(d1(a), v) = ‘·’. Thus, it suffices to insert new
b elements at appropriate positions in t.† We need a defini-
tion. Let w be a word and bh be a superscripted label. We
say that a superscripted word w′ is a superscripted super-
sequence of w w.r.t. bh if removing every bh from w′ yields
a word w′′ such that (w′′)� = w. In the following, we de-
note D = (d1, sl) and op(D) = (d2, sl), and assume that each
transformation is done in bottom-up manner.

Trans1(D, t, op)

1. For each node n labeled by a in t, do the following.

a. Let n1, · · · , nm be the children of n in t. If
l(n1) · · · l(nm) � L(d2(a)), do the following.

i. Find a superscripted supersequence w′ of
l(n1) · · · l(nm) w.r.t. bh such that w′ ∈
L(d2(a)#), where bh is the superscripted label
in d2(a)# inserted by op.

ii. For each ( j, j) ∈ match(w′, bh), create a new
tree t j valid against DTD (d2, b) and insert t j

into t as the jth child of n.

2. Return t.

For example, the transformation from t1 to t2 in Fig. 4 is
done by Trans1.

Note that in step (1-a-i) above, there may be more than
one superscripted supersequence of l(n1) · · · l(nm) w.r.t. bh

matching d2(a)#, and w′ is selected nondeterministically.
Similar behaviors can be found in the other Trans subrou-
tines.

Let us next show Trans2. In this case, op =

del elm(a, vi). Thus, it suffices to delete the elements in t
that match the label in d1(a) deleted by op.

Trans2(D, t, op)

1. For each node n labeled by a in t, do the following.

a. Let n1, · · · , nm be the children of n in t. If
l(n1) · · · l(nm) � L(d2(a)), do the following.

i. Find a superscripted word w′ such that w′ ∈
L(d1(a)#) and that (w′)� = l(n1) · · · l(nm).

ii. By definition (sub(d1(a), vi))# is a single su-
perscripted label, say bvi. For each ( j, j) ∈
match(w′, bvi), delete the subtree rooted at n j

from t.

2. Return t.

The transformation from t0 to t1 in Fig. 4 is an example of
Trans2.

Let us show Trans3. In this case, op = ext elm(a, u).
Thus, it suffices to delete the nodes in t that match the label
extracted by op.

Trans3(D, t, op)

1. For each node n labeled by a in t, do the following.

a. Let n1, · · · , nm be the children of n in t. If
l(n1) · · · l(nm) � L(d2(a)), do the following.

i. Find a superscripted word w′ such that w′ ∈
L(d1(a)#) and that (w′)� = l(n1) · · · l(nm).

ii. By definition (sub(d1(a), u))# is a single su-
perscripted label, say bu. For each ( j, j) ∈
match(w′, bu), extract the jth child n j of n
from t, i.e., remove n j from t and connect the
children of nj to the parent of n j.

2. Return t.

The transformation from t4 to t5 in Fig. 4 is an example of
Trans3.

Let us show Trans4. In this case, op =

agg elm(a, b, u). Thus, it suffices to insert a new parent node
labeled by b into t for each sequence of nodes that matches
sub(d1(a), u).

Trans4(D, t, op)

1. For each node n labeled by a in t, do the following.

a. Let n1, · · · , nm be the children of n in t. If
l(n1) · · · l(nm) � L(d2(a)), do the following.

i. Find a superscripted word w′ such that w′ ∈
L(d1(a)#) and that (w′)� = l(n1) · · · l(nm).

ii. For each ( j,k)∈match(w′, (sub(d1(a),u))#), in-
sert a new node labeled by b as the parent of
n j, · · · , nk into t.

2. Return t.

The transformation from t3 to t4 in Fig. 4 is an example of
Trans4.

Let us show Trans5. We have op = del opr(a, u) and

†We assume that the text values of such a new element are
empty since they can hardly be estimated.



SUZUKI: AN ALGORITHM FOR INFERRING K OPTIMUM TRANSFORMATIONS OF XML DOCUMENT FROM UPDATE SCRIPT TO DTD
2203

l(d1(a), u) ∈ {?, ∗, +}. Thus we have three cases to be con-
sidered: (i) l(d1(a), u) = ‘?’, (ii) l(d1(a), u) = ‘∗’, and (iii)
l(d1(a), u) = ‘+’. Let sub(d1(a), u1) = q. Consider first
the case of (i). In this case, sub(d1(a), u) = q? and this is
changed to q by op. Thus for each sequence of nodes match-
ing q?, if the sequence is ε, we have to insert a sequence of
elements matching q. This can be done similarly to the case
of (iv) of Trans6 shown later. Let us next consider the case
of (ii). Since q∗ is changed to q by op, for each sequence
seq matching q∗, (a) if seq = ε, we have to insert a se-
quence of elements matching q and (b) otherwise, seq must
be “shrunk” so that seq matches q instead of q∗. These can
be handled by a combination of similar ideas shown later;
(a) can be handled similarly to the case of (iv) of Trans6 and
(b) can be done similarly to the case of (iii) (since q∗ = q+|ε).
In the following, we consider the case of (iii). In this case,
sub(d1(a), u) = q+. Since q+ is changed to q by op, we have
to “shrink” each sequence of nodes in t that matches q+ so
that the resulting sequence matches q instead of q+. The q-
extraction de

1(a) of d1(a) is obtained from d1(a) by replacing
q+ with q∗qq∗. Clearly, de

1(a) is equivalent to d1(a). Let w′

be a superscripted word such that (w′)� ∈ L(de
1(a)). A shrink

w′′ of w′ w.r.t. (q+)# is obtained by deleting every sequence
matching sub(de

1(a), u1) or sub(de
1(a), u3).

Trans5(D, t, op)

1. For each node n in t labeled by a, do the following.

a. Let n1, · · · , nm be the children of n in t. If
l(n1) · · · l(nm) � L(d2(a)), do the following.

i. Find a superscripted word w′ such that w′ ∈
L(d1(a)#) and that (w′)� = l(n1) · · · l(nm).

ii. Find a shrink w′′ of w′ w.r.t. (q+)#, where
q+ = sub(d1(a), u). For each 1 ≤ j ≤ |w′|
such that w′[ j] disappears in w′′, delete the
subtree rooted at n j from t.

2. Return t.

Finally, let us show Trans6. We have op =

change opr(a, opr, u), and by Lemma 1 we have four cases
to be considered: (i) l(d1(a), u) = ‘∗’ and opr = ‘?’,
(ii) l(d1(a), u) = ‘+’ and opr = ‘?’, (iii) l(d1(a), u) = ‘?’
and opr = ‘+’, and (iv) l(d1(a), u) = ‘∗’ and opr = ‘+’.
Let sub(d1(a), u1) = q. In the cases of (i) and (ii), for
each sequence seq of nodes matching q∗ or q+, seq must be
“shrunk” so that seq matches q instead of q∗ or q+. This can
be treated similarly to the case of (iii) of Trans5. The case
of (iii) can be handled similarly to the case of (iv). In the fol-
lowing, we consider the case of (iv). Then sub(d1(a), u) = q∗
and q∗ is changed to q+ by op. Thus, for each position in t
matching q∗, if the matched sequence is ε, then we have
to insert a sequence of elements matching q. Let w′ ∈
L(d1(a)#) be a superscripted word. For an index 0 ≤ i ≤ |w′|,
i is a potential gap w.r.t. q# if neither w′[i] nor w′[i + 1] is
in sym(q#) (assuming that w′[0],w′[|w′|+ 1] � sym(q#)). An
extension of w′ w.r.t. q# is a superscripted word obtained by
inserting zero or more w′q’s between w′[i] and w′[i + 1] for

every potential gap i w.r.t. q#, where w′q is a word such that
w′q ∈ L(q#).

Trans6(D, t, op)

1. For each node n in t labeled by a, do the following.

a. Let n1, · · · , nm be the children of n in t. If
l(n1) · · · l(nm) � L(d2(a)), do the following.

i. Find a superscripted word w′ such that w′ ∈
L(d1(a)#) and that (w′)� = l(n1) · · · l(nm).

ii. Find an extension w′′ of w′ w.r.t. q# such that
w′′ ∈ L(d2(a)#). For each superscripted label
w′′[i] inserted into w′, create a tree ti valid
against (d2(a), (w′′[i])�) and insert ti as the ith
child of n.

2. Return t.

We write t2 ∈ TransOp(D, t1, op) if t2 can be the result
of TransOp(D, t1, op). It is clear that TransOp is correct.

Theorem 1: Let D be a DTD and op be an update op-
eration to D. For any tree t1 valid against D, every t2 ∈
TransOp(D, t1, op) is valid against op(D). �

5. NP-Hardness

In this section, we first define the problem of inferring K
optimum transformations of an XML document from an up-
date script. Then we show the NP-hardness of the problem.

5.1 Formal Definition of the Problem

Let D be a DTD, t1 be a tree valid against D, and op be an
update operation to D. For a tree t2 ∈ TransOp(D, t1, op),
the difference (or diff ) between t1 and t2, denoted d f (t1, t2),
is defined as follows. We have five cases according to op.

• d f (t1, t2) is defined as the set of root nodes of the sub-
trees inserted into t1 if

– op = ins elm(a, b, vi), or
– op = change opr(a, opr, u), l(d1(a), u) = ‘∗’, and

opr = ‘+’.

• d f (t1, t2) is defined as the set of root nodes of the sub-
trees deleted from t1 if

– op = del elm(a, vi),
– op = del opr(a, u) and l(d1(a), u) = ‘+’, or
– op = change opr(a, opr, u), l(d1(a), u) = ‘∗’, and

opr = ‘?’.

• d f (t1, t2) is defined as the set of nodes deleted from t1
if op = ext elm(a, u).

• d f (t1, t2) is defined as the set of nodes inserted into t1
if op = agg elm(a, b, u).

• Otherwise, d f (t1, t2) = ∅.



2204
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.8 AUGUST 2010

Let D be a DTD, s = op1 · · · opn be an update
script to D, and t be a tree valid against D. A sequence
TS = t0, t1, · · · , tn of trees is called transformation sequence
w.r.t. (t,D, s) if t0 = t and ti ∈ TransOp(Di−1, ti−1, opi)
for every 1 ≤ i ≤ n, where Di−1 = opi−1(· · · op1(D) · · · ).
The cost of a transformation sequence TS , denoted γ(TS ),
is defined as γ(TS ) =

∑
1≤i≤n |d f (ti−1, ti)|†. For a pos-

itive integer K, we say that K transformation sequences
TS 1, · · · ,TS K w.r.t. (t,D, s) are K optimum transforma-
tion sequences w.r.t. (t,D, s) if γ(TS i) ≤ γ(TS i+1) for any
1 ≤ i ≤ K − 1 and γ(TS K) ≤ γ(TS ) for any transformation
sequence TS w.r.t. (t,D, s) such that TS � {TS 1, · · · ,TS K}.
Now our problem is formulated as follows.

Instance: A DTD D, a tree t valid against D, an update
script s to D, and a positive integer K.

Question: Find K optimum transformation sequences
w.r.t. (t,D, s).

5.2 NP-Hardness of the Problem

In this subsection, we show that finding K optimum trans-
formation sequences w.r.t. (t,D, s) is NP-hard even if K = 1.
We consider the following decision problem, called trans-
formation decision problem.

Instance: A DTD D, a tree t valid against D, an update
script s = op1op2 · · · opn to D, and a positive integer
B.

Question: Is there a transformation sequence TS =

t0, t1, · · · , tn w.r.t. (t,D, s) such that γ(TS ) ≤ B?

We have the following theorem.

Theorem 2: The transformation decision problem is NP-
hard.

Proof: We use the following SAT problem.

Instance: A set X = {x1, · · · , xn} of variables and a collec-
tion C = {C1, · · · ,Cm} of clauses over X.

Question: Is there a satisfying truth assignment for C?

For an instance of the SAT problem, we construct an
instance of the transformation decision problem, as follows.

• Tree t = t0 is constructed as shown in Fig. 5 (top),
where Ti and Fi stand for sequences of labels defined
as follows (1 ≤ i ≤ n).

– Let Ci1 , · · · ,Cik be the clauses in C that contain
positive literal xi. Then Ti = ci1 · · · cik , where ci j

is a label corresponding to clause Cij . That is, Ti

consists of the clauses that are satisfied by setting
xi = true.

– Let Ci1 , · · · ,Cil be the clauses in C that contain
negative literal ¬xi. Then Fi = ci1 · · · cil . That
is, Fi consists of the clauses that are satisfied by
setting xi = false.

• D = (d, r), where d(r) = a+, d(a) = b+, d(b) =
T1|F1| · · · |Tn|Fn, and d(ci) = ε (1 ≤ i ≤ m).

• s = s1s2s3, where

s1 = del opr(a, λ)ext elm(a, λ)ext elm(r, 1),

s2 = ins opr(r, |, λ)ins subexpr(r, q, 2)

del subexpr(r, 1)del opr(r, λ),

s3 = ins elm(r, c1, 2)del elm(r, 2)
...

ins elm(r, cm, 2)del elm(r, 2),

and

q = (c1| · · · |cm)∗(c1| · · · |cm)∗.

In s2, (i) ins subexpr(r, q, 2) stands for a “macro”
that inserts q into d(r) at position 2 and (ii)
del subexpr(r, 1) is a macro that deletes the subexpres-
sion of d(r) at position 1. Thus s2 updates regular ex-
pression (T1|F1| · · · |Tn|Fn)+ into (c1| · · · |cm)∗(c1| · · · |cm)∗.

• B = 3n.

As shown below, s1 corresponds to a truth assignment for
x1, · · · , xn, s2 is the preliminary of s3, and s3 checks if the
truth assignment chosen by s1 satisfies C.

We show that there is a satisfying truth assignment for
C iff there is a transformation sequence TS = t0, t1, · · · , t|s|
w.r.t. (t,D, s) such that γ(TS ) ≤ B.

If part: Assume that there is a transformation sequence
TS = t0, t1, · · · , t|s| w.r.t. (t,D, s) such that

γ(TS ) ≤ B. (1)

Consider first s1 of s. By del opr(a, λ) one of tTi and tFi is
deleted from t0 for every 1 ≤ i ≤ n, then by ext elm(a, λ) n
nodes labeled by b are deleted from t1, and by ext elm(r, 1)
n nodes labeled by a are deleted from t2 (Fig. 5). It is easy
to see that t3 is not changed by s2, i.e., t3 = t4 = · · · = t|s1 s2 |.
Thus for transformation sequence TS ′ = t0, t1, · · · , t|s1 s2 |
w.r.t. (t,D, s1s2), γ(TS ′) = 3n = B. This and (1) imply that
by s3 no node is inserted into t|s1 s2 | and no node is deleted
from t|s1 s2 |. For each 1 ≤ i ≤ m, s3 repeatedly updates d(r)
as follows.

1. First, d(r) = (c1| · · · |cm)∗(c1| · · · |cm)∗ is updated to
(c1| · · · |cm)∗ci(c1| · · · |cm)∗ by ins elm(r, ci, 2),

2. Then (c1| · · · |cm)∗ci(c1| · · · |cm)∗ is updated to (c1| · · · |cm)∗
(c1| · · · |cm)∗ by del elm(r, 2).

Since t|s1 s2 | is not changed by s3, t|s1 s2 | must have a leaf node
labeled by ci for every 1 ≤ i ≤ m. Now consider the follow-
ing truth assignment α (1 ≤ i ≤ n).

α(xi) =

{
true if tFi is deleted by del opr(a, λ) of s1,
false if tTi is deleted by del opr(a, λ) of s1.

Since t|s1 s2 | has a leaf node labeled by ci for every 1 ≤ i ≤ m,
by the definitions of Ti and Fi it is easy to see that α is a
satisfying truth assignment for C.

Only if part: Assume that there is a satisfying truth
†γ(TS ) is greater or equal to the tree edit distance between t0

and tn, assuming that a subtree insertion/deletion can be done by
one edit operation.



SUZUKI: AN ALGORITHM FOR INFERRING K OPTIMUM TRANSFORMATIONS OF XML DOCUMENT FROM UPDATE SCRIPT TO DTD
2205

Fig. 5 Transformation sequence t0, t1, · · · , t|s|.

assignment α for C. Recall that by del opr(a, λ) of s1, one
of tTi and tFi is deleted from t0 for every 1 ≤ i ≤ n. Along
with the truth assignment α, t0 can be transformed into t1 so
that for every 1 ≤ i ≤ n,

• if α(xi) = true, then tFi is deleted, and
• if α(xi) = false, then tTi is deleted.

Since α is a satisfying truth assignment for C, it is easy to
verify that for every 1 ≤ i ≤ m, t|s1 s2 | has at least one leaf
node labeled by ci. This implies that t|s1 s2 | is not changed by
s3, i.e., t|s1 s2 | = t|s1 s2 |+1 = · · · = t|s|. Here, let TS = TS 1TS 2,
where TS 1 = t0, t1, · · · , t|s1 s2 | and TS 2 = t|s1 s2 |+1, · · · , t|s|.
Then we have γ(TS 1) = 3n and γ(TS 2) = 0. Hence
γ(TS ) = 3n ≤ B. �
Since an ins subexpr operation consists of ins elm and
ins opr operations and a del subexpr operation consists of
del elm and del opr operations, the above proof depends on
neither agg elm nor change opr operation. Thus ins elm,
del elm, ext elm, ins opr, and del opr operations suffice to
prove the NP-hardness.

Fig. 6 The product G(N, E) of Gd1(a) and CL(N′, E′).

By Theorem 2, in general it is unlikely that we can
find K optimum transformation sequences efficiently, even
if K = 1. In the following, we consider finding K optimum
transformation sequences assuming that an update script is
of length one.

6. Algorithm for Finding K Optimum Transformation
Sequences

In this section, we first define the Glushkov automaton [15]
of a regular expression, which is required to describe our
algorithm. We next show an algorithm for finding K opti-
mum transformation sequences w.r.t. (t,D, s), assuming that
|s| = 1.

The main difference between Glushkov automaton and
usual NFA is that for any regular expression r, there is a one
to one correspondence between the superscripted labels in
r# and the states of the Glushkov automaton of r (except the
initial state), but a usual NFA does not have this property.
For example, let r = d((c∗b)|(cb∗)) be a regular expression.
Then r# = d1(((c2111)∗b212)|(c221(b2221)∗)). The Glushkov
automaton of r is shown in Fig. 6 (c) (aI is the initial state).
Except the initial state aI , each superscripted label in r#

occurs exactly once in the Glushkov automaton, and vice
versa. For a DTD D and a tree t valid against D, when D
is updated, we have to identify the nodes in t that should
be deleted and/or the positions in t that new nodes should
be inserted into. The above property is useful to obtaining
such nodes and positions. For example, let D = (d, sl) be
a DTD, n be a node with l(n) = a in a tree, ch(n) be the
children of n, and Gd(a) be the Glushkov automaton of d(a).
If del elm(a, u) is applied to D, we have to find the nodes in
ch(n) that should be deleted according to del elm(a, u). This
can be done by finding the nodes to which bu is assigned
under a matching between ch(n) and d(a)#, where bu is the
state in Gd(a) corresponding to the label at u in d(a).

6.1 Glushkov Automaton

In this subsection, we define the Glushkov automaton of a



2206
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.8 AUGUST 2010

regular expression. Let r be a regular expression. We first
define the initial set Ir and the final set Fr, as follows.

• If r = ε, then Ir = Fr = {E}, where E is a label not
occurring in r (Ir and Fr contain E if ε ∈ L(r)).

• If r = a for some a ∈ Σ, then Ir = Fr = {ai}, where ai

is the superscripted label such that r# = ai.
• If r = r1| · · · |rn, then Ir = Ir1 ∪ · · · ∪ Irn and Fr =

Fr1 ∪ · · · ∪ Frn .
• If r = r1 · · · rn, then

Ir = (Ir1 − {E}) ∪ · · · ∪ (Iri−1 − {E}) ∪ Iri ,

Fr = Frj ∪ (Frj+1 − {E}) ∪ · · · ∪ (Frn − {E}),
where

i =

{
n if E ∈ Irk for every 1 ≤ k ≤ n,
min{k |E � Irk , 1 ≤ k ≤ n} otherwise,

j =

{
1 if E ∈ Frk for every 1 ≤ k ≤ n,
max{k |E � Frk , 1 ≤ k ≤ n} otherwise.

• If r = r∗1 or r = r1?, then Ir = Ir1 ∪ {E} and Fr =

Fr1 ∪ {E}.
• If r = r+1 , then Ir = Ir1 and Fr = Fr1 .

Let ai be a superscripted label occurring in r#. The set of
successors of ai in r#, denoted S ucc(ai, r#), is defined as
follows.

• If r# = ai, then S ucc(ai, r#) = ∅.
• If r# = r#

1 | · · · |r#
n and ai occurs in r#

k (1 ≤ k ≤ n), then
S ucc(ai, r#) = S ucc(ai, r#

k ).
• If r# = r#

1 · · · r#
n and ai occurs in r#

k (1 ≤ k ≤ n), then

S ucc(ai, r#) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

S ucc(ai, r#
k )

if k = n or ai � Frk ,
S ucc(ai, r#

k ) ∪ (Irk+1 − {E})∪
· · · ∪ (Ir j − {E})

if k < n and ai ∈ Frk ,

where

j =

{
n if E ∈ Iri for every k + 1 ≤ i ≤ n,
min{i | E � Iri , k + 1 ≤ i ≤ n} otherwise.

• If r# = (r#
1)∗ or r# = (r#

1)+, then

S ucc(ai, r#)

=

{
S ucc(ai, r#

1) if ai � Fr1 ,
S ucc(ai, r#

1) ∪ (Ir1 − {E}) otherwise.

• If r# = (r#
1)?, then S ucc(ai, r#) = S ucc(ai, r#

1).

The Glushkov automaton of r is a 5-tuple Gr =

(Q,Σ, δ, aI , F), where Q is the set of states, δ is the tran-
sition function, aI � sym(r#) is a new symbol denoting the
initial (or start) state of Gr, and F is the set of final states
defined as follows.

• Q = sym(r#) ∪ {aI},
• δ(aI , a) = {a j | a j ∈ Ir, (a j)� = a} for every a ∈ Σ, and
δ(a j, a) = {ak | ak ∈ S ucc(a j, r#), (ak)� = a},

• F =

{
Fr ∪ {aI} − {E} if ε ∈ L(r),
Fr otherwise.

It is easy to show that for any regular expression r, L(r) =
L(Gr), where Gr is the Glushkov automaton of r. Fig-
ure 6 (c) shows the Glushkov automaton of regular expres-
sion d((c∗b)|(cb∗)).

6.2 Algorithm

In this subsection, we show an algorithm for find-
ing K optimum transformation sequences TS 1, · · · ,TS K

w.r.t. (t,D, op).

Main Algorithm

The algorithm consists of the “main” algorithm and some
subroutines. Let us first show the “main” algorithm. Let
D = (d, sl) be a DTD, t be a tree valid against D, n be a
node in t, and op be an update operation to D. By tn we
mean the subtree of t rooted at n, and let D(n) = (d, l(n))
be a DTD. We say that d f1(n), · · · , d fK(n) are K optimum
diffs w.r.t. (tn,D(n), op) if for some K optimum transforma-
tion sequences TS 1, · · · ,TS K w.r.t. (tn,D(n), op), d fi(n) =
γ(TS i) for every 1 ≤ i ≤ K.

The following algorithm Main computes K optimum
diffs d f1(n), · · · , d fK(n) w.r.t. (tn,D(n), op) for each node n
in bottom-up manner. For each node n in t, the algorithm
does the following.

• If n is a leaf and no child needs to be added to n by op,
then d f1(n), · · · , d fK(n) are obtained in steps 2 and 3.
In step 2, we have (d2, sl) = op(D).

• Otherwise, d f1(n), · · · , d fK(n) are computed in steps 4
to 21. The subroutines in these steps are shown later.

– In steps 5 to 19, a graph G(N, E) and a weight
function w are obtained, where G(N, E) represents
the “product” of d1(a) and the children of n, and
w assigns a diff to each edge on G(N, E).

– In step 20, K optimum diffs d f1(n), · · · , d fK(n)
are computed by finding K “shortest” paths on
G(N, E).

Main(D, t, op,K)

Input: A DTD D = (d1, sl), a tree t valid against D,
an update operation op to D, and a positive integer K.
Output: K optimum diffs w.r.t. (t,D, op).

begin
1. for each node n in t (in bottom-up order) do
2. if n is a leaf and (l(n) � a or ε ∈ L(d2(a))) then
3. d f1(n)← ∅ and d fi(n)← nil for each 2≤ i≤ K;
4. else begin
5. if l(n) = a and l(n1) · · · l(nm) � L(d2(a)) then
6. if op = ins elm(a, b, vi) then
7. (G(N, E),w)← MkGraph1(D, t, n, op,K);
8. if op=del elm(a, vi) then
9. (G(N, E),w)← MkGraph2(D, t, n, op,K);
10. if op = ext elm(a, u) then
11. (G(N, E),w)← MkGraph3(D, t, n, op,K);
12. if op = agg elm(a, b, u) then
13. (G(N, E),w)← MkGraph4(D, t, n, op,K);



SUZUKI: AN ALGORITHM FOR INFERRING K OPTIMUM TRANSFORMATIONS OF XML DOCUMENT FROM UPDATE SCRIPT TO DTD
2207

14. if op = del opr(a, u) then
15. (G(N, E),w)← MkGraph5(D, t, n, op,K);
16. if op = change opr(a, opr, u) then
17. (G(N, E),w)← MkGraph6(D, t, n, op,K);
18. else // none of the children of n is changed
19. (G(N, E),w)← MkGraph7(D, t, n, op,K);
20. (d f1(n), · · · , d fK(n))← FindKDiffs(G(N, E),w);
21. end
22. Let n be the root of t. return d f1(n), · · · , d fK(n);

end

Outline of Subroutines

Among the subroutines in Main, we here explain Mk-
Graph2 and FindKDiffs (the others are shown later). We
first show outlines of MkGraph2 and FindKDiffs, then show
their formal definitions.

Let n be a node in t labeled by a, and let us consider
finding K optimum diffs d f1(n), · · · , d fK(n). Assuming that
d f1(ni), · · · , d fK(ni) have been obtained for each child ni of
n, we find d f1(n), · · · , d fK(n) as follows. Suppose that op =
del elm(a, vi).

1. We first make a “child list graph” CL(N′, E′) of n. Fig-
ure 6 (b) is an example assuming that K = 2. As shown

later, each edge n′i−1

l→ n′i is associated with the lth diff
d fl(ni) of ni.

2. We make the Glushkov automaton Gd1(a) of d1(a). For
example, Fig. 6 (c) shows the Glushkov automaton of
d1(a) = d((c∗b)|(cb∗)).

3. We make the “product graph” G(N, E) of Gd1(a) and
CL(N′, E′) as shown in Fig. 6 (d), then associate a
“weight” (actually, a diff) to each edge in E. G(N, E)
has the following properties.

a. Any path in G(N, E) from the source to a des-
tination represents the sequence of children that
matches d1(a)#. For example, path

(aI , n′0)
l1→ (d1, n′1)

l2→ (c221, n′2)
l3→ (b2221, n′3)

in Fig. 6 (d) represents the sequence of children
n1, n2, n3 that matches d1c221b2221 ∈ L(d1(a)#), for
any l1, l2, l3 ∈ {1, 2}.

b. Each edge e = (ai−1, n′j−1)
l→ (ai, n′j) ∈ E is

associated with the lth diff d fl(n j) of n j, but we
have one exception; if ai is the superscripted la-
bel deleted from d1(a) by op, then e is associated
with {n j} instead of d fl(n j), where {n j} represents
the diff when the subtree rooted at nj is deleted.

4. Find K “shortest” paths from the source to the destina-
tions. By (a) and (b) above, the diffs on these paths are
precisely K optimum diffs d f1(n), · · · , d fK(n).

Steps 1 to 3 above are done by MkGraph2 and step 4 is done
by FindKDiffs.

Let us show the formal definitions related to steps 1 to
3. Let n be a node in t with children n1, · · · , nm and K be a
positive integer. Then the child list graph of n (w.r.t. K) is a

graph CL(N′, E′), where

N′ = {n′0, · · · , n′m},
E′ = {n′i−1

l→ n′i | 1 ≤ i ≤ m, 1 ≤ l ≤ K},
and l(n′0) = aI and l(n′i) = l(ni) for 1 ≤ i ≤ m. Let Gr =

(Q,Σ, δ, aI , F) be the Glushkov automaton of r. Then the
product of Gr and CL(N′, E′) is defined as a graph G(N, E),
where

N = {(ai, n′j) | ai ∈ Q, n′j ∈ N′, (ai)� = l(n′j)},
E = {(ai, n′j−1)

l→ (ak, n′j) |
ak ∈ δ(ai, (ak)�), n′j−1

l→ n′j ∈ E′}.
We say that (aI , n′0) is the source of G(N, E) and (ah, n′m) is a
destination of G(N, E) if ah ∈ F. Now MkGraph2 is defined
as follows.

MkGraph2(D, t, n, op,K)

Input: A DTD D = (d1, sl), a tree t valid against D,
a node n in t, an update operation op = del elm(a, vi),
and a positive integer K.

Output: A graph G(N, E) and a function w.
begin

1. Construct the child list graph CL(N′, E′) of n.
2. Construct the Glushkov automaton Gd1(a) of d1(a).
3. ConstructtheproductG(N,E)ofGd1(a) andCL(N′,E′).

4. for each e = (ai, n′j−1)
l→ (ak, n′j) ∈ E let

5. w(e)←
⎧⎪⎪⎪⎨⎪⎪⎪⎩
{nj} if ak = bvi and l = 1,
nil if ak = bvi and l > 1,
d fl(nj) if ak � bvi,

where bvi is the superscripted label deleted from
d1(a)# by op.

6. return (G(N, E),w);
end

We next define FindKDiffs. This algorithm can be de-
fined similarly to usual algorithms for finding K shortest
paths (e.g. [16]) with a slight modification. Thus we first
show an algorithm for solving the K shortest paths problem
before showing FindKDiffs. Let H(NH , EH) be a weighted
acyclic graph having one source n0 and one or more desti-
nations, where a source is a node that no edge enters and a
destination is a node that no edge leaves. By wH(e) we mean
the weight (nonnegative real number) of edge e ∈ EH . We
show an algorithm for computing the weights of K short-
est paths from the source to the destinations in H(NH , EH).
In the algorithm shown below, Δni denotes the multiset of
weights of K shortest paths from n0 to ni, and the algorithm
computes Δni for each ni ∈ NH . In line 3, we write n j ≺ nk

if n j → nk ∈ EH . Thus the nodes in NH are visited in a
bottom-up manner due to lines 3 and 4. By Δni [k] we mean
the kth least weight in Δni .

KShortestPaths(H(NH , EH))

Input: A weighted acyclic graph H(NH , EH).
Output: A set of weights of K shortest paths.

begin
1. Let Δni be the multiset of K ∞’s for each ni ∈ NH ;
2. Δn0 [1]← 0;
3. Sort the nodes in NH w.r.t. ‘≺’ topologically.



2208
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.8 AUGUST 2010

Let ni1 , · · · , ni|NH | be the result.
4. for h = 1 to |NH | do
5. for each edge e ∈ EH leaving nih

with wH(e) � ∞ do
6. Let e = nih → nj.
7. for k = 1 to K do
8. d f ← Δnih

[k] + wH(e);
9. if d f < Δn j [K] then
10. Replace Δn j [K] by d f in Δn j .
11. Δ← ⋃ni is a destination Δni ;
12. return {Δ[1], · · · ,Δ[K]};

end

Let n be a node in t with children n1, · · · , nm,
CL(N′, E′) be the child list graph of n, Gd1(l(n)) be the
Glushkov automaton of d1(l(n)), and G(N, E) be the prod-
uct of Gd1(l(n)) and CL(N′, E′). Since FindKDiffs have to
find K optimum diffs instead of K weight values, we have to
modify KShortestPaths so that the diff on a path in G(N, E)
is handled appropriately. Let

p = (aI , n′0)
l1→ · · · lg→ (aig , n′g)︸��������������������������︷︷��������������������������︸

pg

lg+1→ · · · lm→ (aim , n′m)

be a path from the source to a destination in G(N, E) and
let pg be the prefix of p as shown above. Let w(pg) be the
weight (diff) on pg, that is,

w(pg) = w((aI , n′0)
l1→ (ai1 , n′1)) ∪ · · ·

∪ w((aig−1 , n′g−1)
lg→ (aig , n′g)).

Then w(pg) represents a diff for tn assuming that

1. diffs for tng+1 , · · · , tnm are ignored,
2. n′j is associated with ai j for every 1 ≤ j ≤ g, i.e., we

have w′[ j] = ai j due to step (1-a-i) of Trans2, and that
3. under Condition (2) above, tn j is transformed by the

l jth optimum diff w.r.t. (tn j ,D(n j), op) (1 ≤ j ≤ g).

Let Δ(aig ,n′g) be the collection of K optimum diffs of C(aig ,n′g),
where

C(aig ,n′g) = {w(pg) | pg is a path from (aI , n′0)

to (aig , n′g) in G(N, E).}.
FindKDiffs shown below computes Δ(aig ,n′g) for every
(aig , n′g) ∈ N. Similarly to KShortestPaths, we write

(ai, n′j) ≺ (ah, n′k) if (ai, n′j)
l→ (ah, n′k) ∈ E. Thus, the

nodes in N are visited in a bottom-up manner due to lines
3 and 4. Note that G(N, E) is acyclic since CL(N′, E′) is
acyclic. In lines 8 to 10, Δ(ai,n′j)[k] denotes the kth optimum
diff in Δ(ai,n′j), and we assume that if Δ(ai,n′j)[k] = nil, then
|Δ(ai,n′j)[k]| = ∞. In line 9, a condition to check if d f � Δ(ai,n′j)
is added since there may be more than one paths having the
same diff, i.e., paths p, p′ from (aI , n′0) to (ai, n′j) such that
w(p) = w(p′). Without this condition Δ(ai,n′j) might contain
duplicated diffs.

FindKDiffs(G(N, E),w)

Input: A product G(N, E) and a weight function w.
Output: K optimum diffs of n.

begin
1. Δ(ai ,n′j)←{nil, · · · ,nil} (K nil’s) for each (ai,n′j)∈N;
2. Δ(aI ,n′0)[1]← ∅;
3. Sort the nodes in N w.r.t. ‘≺’ topologically.

Let (ai1 , n′j1 ), · · · , (ai|N| , n′j|N| ) be the result.
4. for h = 1 to |N | do
5. for each edge e ∈ E leaving (aih , n′jh )

with w(e) � nil do

6. Let e = (aih , n′jh )
l→ (ai, n′j).

7. for each k=1 toK with Δ(aih ,n′jh )[k]�nil do
8. d f ← Δ(aih ,n′jh )[k] ∪ w(e);

9. if |d f |< |Δ(ai ,n′j)[K]| and d f �Δ(ai ,n′j) then
10. Delete Δ(ai ,n′j)[K] from Δ(ai ,n′j) and

add d f to Δ(ai ,n′j).
11. Δ← ⋃(ai ,n′m) is a destination Δ(ai ,n′m);
12. return K optimum distinct diffs in Δ;

end

Comparing FindKDiffs to KShortestPaths, FindKD-
iffs maintains a collection of K diffs instead of a set of K
weight values for each node in a graph, but it is easy to see
that FindKDiffs still runs in time polynomial of |D|, |t|, and
K.

Other Subroutines

First, MkGraph3 is defined exactly same as MkGraph2. In
the following, we show MkGraph1 and MkGraph7. The
rest MkGraph’s are shown in Appendix A.

First, MkGraph7 can be defined easily. Let D = (d1, sl)
be a DTD, n be a node in t, and G(N, E) be the product of
the Glushkov automaton of d1(a) and the child list graph
CL(N′, E′) of n. According to step 18 of Main, none of the
children of n is changed, thus it suffices to set w(e) = d fl(n j)

for each edge e = (ai, n′j−1)
l→ (ak, n′j) in G(N, E). There-

fore, MkGraph7 is defined similarly to MkGraph2 except
step 5.

MkGraph7(D, t, n, op,K)

Input: A DTD D = (d1, sl), a tree t valid against D,
a node n in t, an update operation op, and a positive
integer K.

Output: A graph G(N, E) and a function w.
begin

1. Construct the child list graph CL(N′, E′) of n.
2. Construct the Glushkov automaton Gd1(a) of d1(a).
3. ConstructtheproductG(N,E)ofGd1(a) andCL(N′,E′).

4. for each e = (ai, n′j−1)
l→ (ak, n′j) ∈ E let

5. w(e)← d fl(nj);
6. return (G(N, E),w);

end

We next show MkGraph1. We have op =

ins elm(a, b, vi). Let D = (d1, sl) be a DTD and n be a
node labeled by a with children n1, · · · , nm. Since op =
ins elm(a, b, vi), nodes labeled by b may be inserted into
n1, · · · , nm. Accordingly, we have to modify some defini-
tions. First, to handle node insertion after nm, we append a
dummy node nm+1 labeled by x as the last child of n, where



SUZUKI: AN ALGORITHM FOR INFERRING K OPTIMUM TRANSFORMATIONS OF XML DOCUMENT FROM UPDATE SCRIPT TO DTD
2209

Fig. 7 The product G(N, E) of Ga∗cbq and CL(N′, E′).

x is a new label not appearing in D (Fig. 7 (b)). We also
modify the product of a Glushkov automaton and a child
list graph. Let (d2, sl) = op(D). Since nm+1 is appended,
we use the Glushkov automaton of d2(a)x instead of d2(a)
(Fig. 7 (d–f)). Let Gd2(a)x = (Q,Σ, δ, aI , F) be the Glushkov
automaton of d2(a)x, CL(N′, E′) be the child list graph of n
modified as above, and bh be the superscripted label inserted
into d1(a)# by op. Taking the insertion of bh into account,
the product of Gd2(a)x and CL(N′, E′) is defined as a graph
G(N, E), where

N = {(ai, n′j) | ai ∈ Q, n′j ∈ N′, (ai)� = l(n′j)},
E = {(ai, n′j−1)

l→ (ak, n′j) | n′j−1
l→ n′j ∈ E′, and,

(i) bh ∈ δ(ai, b) and ak ∈ δ(bh, (ak)�) or

(ii) ak ∈ δ(ai, (ak)�)}.
This is defined similarly to the product graph in MkGraph2,
except Condition (i) of E. This condition handles the case
where a node matching bh is inserted between n j−1 and n j.
Figure 7 (g) is an example with K = 2. We have two edges
between (a11, n′1) and (b3, n′2) due to Condition (i), which
implies that a new node labeled by c is inserted between n1

and n2.
Now let us show MkGraph1. The weight (diff) of each

edge in E is computed in steps 5 to 16. Steps 7 and 8 com-
pute a collection of diffs for the edges satisfying Condition
(ii), and steps 9 to 13 compute a collection of diffs for the
edges satisfying Condition (i). Lines 10 and 11 handle the
case where one ore more bh’s can be inserted between n j−1

and n j, while lines 12 and 13 handle the case only one bh is
inserted between n j−1 and n j. Here, S (b, k) denotes a set of
k new nodes labeled by b, inserted between n j−1 and n j. Δ[l]
in step 16 denotes the lth optimum diff in Δ.

MkGraph1(D, t, n, op,K)

Input: A DTD D, a tree t valid against D, a node n in t,
an update operation op = ins elm(a, b, vi), and a

positive integer K.
Output: A graph G(N, E) and a function w.

begin
1. Append a dummy node nm+1 labeled by x as the last

child of n. Let d fl(nm+1)← ∅ for 1 ≤ l ≤ K.
2. Construct the child list graph CL′(N′, E′) of n.
3. Construct the Glushkov automaton Gd2(a)x =

(Q,Σ, δ, aI , F), where (d2, sl) = op(D).
4. Construct the product G(N, E) of Gd2(a)x and

CL(N′, E′).

5. for each edge (ai, n′j−1)
1→ (ak, n′j) ∈ E do

6. Δ1 ← ∅, Δ2 ← ∅;
7. if ak ∈ δ(ai, (ak)�) then
8. Δ1 ← {d fl(nj) | 1 ≤ l ≤ K};
9. if bh ∈ δ(ai, b) and ak ∈ δ(bh, (ak)�) then
10. if bh ∈ δ(bh, b) then
11. Δ2 ← {d fl(nj) ∪ S (b, k) | 1 ≤ l ≤ K, 1 ≤ k ≤ K};
12. else
13. Δ2 ← {d fl(nj) ∪ S (b, 1) | 1 ≤ l ≤ K};
14. Δ← Δ1 ∪ Δ2;
15. for l = 1 to K do

16. w((ai, n′j−1)
l→ (ak, n′j))← Δ[l]

17. return (G(N, E),w);
end

We show the correctness of the algorithm.

Theorem 3: For a DTD D, a tree t valid against D,
an update operation op to D, and a positive integer K,
Main(D, t, op,K) returns K optimum diffs w.r.t. (t,D, op).

Proof (sketch): Let a be the label specified as the first argu-
ment of op. We first define the level of a node n in t, denoted
lv(n), as follows.

• If n is a leaf, and, l(n) � a or ε ∈ L(d2(a)), then lv(n) =
0.

• If n is a leaf, l(n) = a, and ε � L(d2(a)), then lv(n) = 1.
• If n is an internal node with children n1, · · · , nm, then

lv(n) = 1 +max1≤i≤m lv(ni).

Let D = (d1, sl) and D(n) = (d1, l(n)). We show that for
every node n in t d f1(n), · · · , d fK(n) are K optimum diffs
w.r.t. (tn,D(n), op), by induction on lv(n).

Basis: Let n be a leaf in t such that lv(n) = 0. Since
l(n) � a or ε ∈ L(d2(a)), we do not have to add any child
to n. Thus, by steps 2 and 3 of Main d f1(n) = ∅ and
d fi(n) = nil for 2 ≤ i ≤ K, which are K optimum diffs
w.r.t. (tn,D(n), op).

Induction: Let n be a node in t with chil-
dren n1, · · · , nm. As an induction hypothesis, as-
sume that d f1(n j), · · · , d fK(n j) are K optimum diffs
w.r.t. (tn j ,D(n j), op) for every child n j of n. In the follow-
ing, we consider the case where l(n) = a, l(n1) · · · l(nm) �
L(d2(a)), and op = ins elm(a, b, vi) (the other cases can
be shown similarly). We have d fl(nm+1) = ∅ for ev-
ery 1 ≤ l ≤ K by line 1 of MkGraph1. Let bh be
the superscripted label in d2(a)# inserted by op, and let
(bh)(0) = ε and (bh)(k) = (bh)(k−1)bh. Moreover, we de-
fine that Δi(k, l) = S (b, k) ∪ d fl(ni) (1 ≤ i ≤ m + 1). Let
t′n ∈ TransOp(D(n), tn, op) be a tree such that δ(tn, t′n) is ith
optimum with i ≤ K. Then we have

δ(tn, t
′
n) = Δ1(k1, l1) ∪ · · · ∪ Δm+1(km+1, lm+1)



2210
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.8 AUGUST 2010

for some 1 ≤ l1, · · · , lm+1 ≤ K and some 0 ≤ k1, · · · , km+1 ≤
K such that

(bh)(k1)ai1 · · · (bh)(km)aim (bh)(km+1) ∈ L(d2(a)#),

where ai j is a superscripted label such that (ai j )� = l(n j)
(1 ≤ j ≤ m). Let G(N, E) be the product and w be the
weight function obtained by MkGraph1. Since δ(tn, t′n) is
ith optimum with i ≤ K, by lines 5 to 16 of MkGraph1 it is
easy to show that there is a path

(aI , n′0)
l′1→ (ai1 , n′1)

l′2→ · · · l′m+1→ (aim+1 , n′m+1)

in G(N, E) such that (aI , n′0) is the source, (aim+1 , n′m+1) is a

destination, and that w((ai j−1 , n′j−1)
l′j→ (ai j , n′j)) = Δ j(k j, l j)

for every 1 ≤ j ≤ m + 1. Hence G(N, E) covers any
paths having desirable diffs. Now it is easy to show that
d f1, · · · , d fK are K optimum diffs w.r.t. (tn,D(n), op) iff
there is a path pi from the source to a destination in G(N, E)
such that w(pi) = d fi and that pi is the ith “shortest” path for
every 1 ≤ i ≤ K. Thus, FindKDiffs(G(N, E),w) in line 20 of
Main correctly returns K optimum diffs w.r.t. (tn,D(n), op).

�
It is easy to see that Main runs in time polynomial of |t|,

|D|, and K. The proof of the following theorem is sketched
in Appendix B.

Theorem 4: Let D = (d1, sl) be a DTD, t be a tree valid
against D, K be a positive integer, and a be the label such
that |d1(a)| ≥ |d1(b)| for any label b. Then Main(D, t, op,K)
runs in O(|t|2 · od(t)2 · |d1(a)|3 · K2) time, where od(t) is the
maximum outdegree in t. �

7. Conclusion

In this paper, we first showed that the problem of finding K
optimum transformation sequences w.r.t. (t,D, s) is NP-hard
even if K = 1. Then, assuming that |s| = 1, we proposed an
algorithm for finding K optimum transformation sequences
w.r.t. (t,D, s), which runs in time polynomial of |D|, |t|, and
K.

We used a diff between trees as the criterion of optimal-
ity of transformation. We have to further investigate whether
this criterion is appropriate. Moreover, this paper presented
no experimental result. As a future work, we need to exam-
ine (i) by experiment if our algorithm can present appropri-
ate transformations and (ii) the efficiency of our algorithm.

Acknowledgement

The author is deeply grateful for reviewers’ insightful com-
ments. This work is partially supported by the Grant-in-Aid
for Young Scientists (B) #20700077.

References

[1] M. Arenas and L. Libkin, “XML data exchange: Consistency and
query answering,” Proc. ACM PODS, pp.13–24, 2005.

[2] S. Amano, L. Libkin, and F. Murlak, “XML schema mappings,”
Proc. ACM PODS, pp.33–42, 2009.

[3] P. Bohannon, W. Fan, M. Flaster, and P.P.S. Narayan, “Informa-
tion preserving XML schema embedding,” Proc. VLDB, pp.85–96,
2005.

[4] E. Kuikka, P. Leinonen, and M. Penttonen, “Towards automating of
document structure transformations,” Proc. ACM DocEng, pp.103–
110, 2002.

[5] R. Miller, M.A. Hernandez, L. Hass, L. Yan, C. Ho, R. Fagin, and
L. Popa, “The clio project: Managing heterogeneity,” SIGMOD
Record, vol.30, no.1, pp.78–83, 2001.

[6] T. Milo and S. Zohar, “Using schema matching to simplify hetero-
geneous data translation,” Proc. VLDB, pp.122–133, 1998.

[7] A. Morishima, T. Okawara, J. Tanaka, and K. Ishikawa, “Smart: A
tool for semantic-driven creation of complex XML mappings,” Proc.
ACM SIGMOD, pp.909–911, 2005.

[8] E. Rahm and P.A. Bernstein, “A survey of approaches to automatic
schema matching,” VLDB Journal, vol.10, no.4, pp.334–350, 2001.

[9] E. Leonardi, T.T. Hoai, S.S. Bhowmick, and S. Madria, “DTD-diff:
A change detection algorithm for DTDs,” Proc. DASFAA, pp.817–
827, 2006.

[10] K. Hashimoto, Y. Ishihara, and T. Fujiwara, “A proposal of update
operations for schema evolution in XML databases and their prop-
erties on preservation of schema’s expressive power,” IEICE Trans.
Inf. & Syst. (Japanese Edition), vol.J90-D, no.4, pp.990–1004, April
2007.

[11] G. Guerrini, M. Mesiti, and D. Rossi, “Impact of XML schema evo-
lution on valid documents,” Proc. WIDM (in conjunction with ACM
CIKM), pp.39–44, 2005.

[12] B.V.N. Prashant and P.S. Kumar, “Managing XML data with evolv-
ing schema,” Proc. COMAD, 2006.

[13] N. Suzuki and Y. Fukushima, “An XML transformation algorithm
inferred from an update script between DTDs,” IEICE Trans. Inf. &
Syst., vol.E92-D, no.4, pp.594–607, April 2009.

[14] N. Suzuki, “On inferring k optimum transformations of XML doc-
ument from update script to DTD,” Proc. COMAD, pp.210–221,
April 2008.

[15] A. Brüggenmann-Klein and D. Wood, “One-unambiguous regular
languages,” Inf. Comput., vol.142, no.2, pp.182–206, 1998.

[16] E. Martins, “K-th shortest path problem,”
http://www.mat.uc.pt/˜eqvm/OPP/KSPP/KSPP.html

Appendix A: MkGraph Subroutines

Let us first consider MkGraph4. We have op =

agg elm(a, b, u). Let G(N, E) be the product of Gd1(a)

and CL(N′, E′), as defined in MkGraph2, and let q =
sub(d1(a), u). By op, for each sequence of nodes in t that
maximally match q, a node labeled by b is inserted into t as
the parent of the nodes. To represent such a node insertion,

for each path (ai0 , n′j0 )
l1→ · · · ln→ (ain , n′jn ) in G(N, E) that

“maximally matches” q, we add new edges from (ai0 , n′j0 )
to (ain , n′jn ) to G(N, E) that represent a newly inserted node.

Formally, we say that a path (ai0 , n′j0 )
l1→ · · · ln→ (ain , n′jn ) in

G(N, E) maximally matches q if

• (ai0 , n′j0 ) is the source of G(N, E) or ai1 � S ucc(ai0 , q#),
• aik+1 ∈ S ucc(aik , q#) for 1 ≤ k ≤ n − 1, and
• (ain , n′jn ) is a destination of G(N, E) or there is an edge

(ain , n′jn )
l→ (ah, n′k) such that ah � S ucc(ain , q#).



SUZUKI: AN ALGORITHM FOR INFERRING K OPTIMUM TRANSFORMATIONS OF XML DOCUMENT FROM UPDATE SCRIPT TO DTD
2211

Suppose that there is a path from (ai0 , n′j0 ) to (ain , n′jn ) maxi-
mally matching q. By G((ai0 , n′j0 ), (ain , n′jn ), q) we mean the
subgraph of G(N, E) consisting of the paths from (ai0 , n′j0 ) to
(ain , n′jn ) maximally matching q ((ai0 , n′j0 ) is the source and
(ain , n′jn ) is the destination of this subgraph). We create a

new edge e = (ai0 , n′j0 )
l→ (ain , n′jn ) representing a newly in-

serted node, say v, and compute w(e) by taking the union of
(i) {v} and (ii) the diff on the lth shortest path from (ai0 , n′j0 )
to (ain , n′jn ) in G((ai0 , n′j0 ), (ain , n′jn ), q). Now MkGraph4 is
defined as follows. Lines 4 and 5 compute the weight of
edges that are not on any paths maximally matching q. Lines
6 to 15 treat the edges representing newly inserted nodes;
for each pair ((ai, n′j), (a

h, n′k)) of nodes in G(N, E) such that
there is a path maximally matching q between the nodes,
a graph G((ai, n′j), (a

h, n′k), q) is constructed, then for each

1 ≤ l ≤ K, the weight of edge (ai, n′j)
l→ (ah, n′k) is obtained

as shown above and the edge is added to G(N, E).
MkGraph4(D, t, n, op,K)
Input: A DTD D = (d1, sl), a tree t valid against D,

a node n in t, an update operation op = agg elm(a,b,u),
and a positive integer K.

Output: A graph G(N, E) and a function w.
begin

1. Construct the child list graph CL(N′, E′) of n.
2. Construct the Glushkov automaton Gd1(a) of d1(a).
3. Constructtheproduct G(N,E)ofGd1(a) andCL(N′,E′).

4. for each e = (ai, n′j−1)
l→ (ak, n′j) ∈ E let

5. w(e)←
{

nil if ak ∈ sym(q#),
d fl(nj) otherwise.

6. P←{((ai,n′j), (a
h,n′k)) | there is a path from(ai,n′j)

to (ah, n′k) in G(N, E) that maximally matches q};
7. for each ((ai, n′j), (a

h, n′k)) ∈ P do
8. Construct a graph G′ = G((ai, n′j), (a

h, n′k), q).

9. for each edge e = (ai, n′j−1)
l→ (ak, n′j) in G′ let

10. w′(e)← d fl(nj);
11. (d f1, · · · , d fK)← FindKDiffs(G′,w′).
12. for each l = 1 to K do
13. Create a new node v labeled by b.

14. w((ai, n′j)
l→ (ah, n′k))← {v} ∪ d fl;

15. Add (ai, n′j)
l→ (ah, n′k) to E.

16. return (G(N, E),w);
end

Let us next show MkGraph5. We have op =

del opr(a, u) and l(d1(a), u) ∈ {?, ∗, +}. We have three cases
to be considered: (i) l(d1(a), u) = ‘?’, (ii) l(d1(a), u) = ‘∗’,
and (iii) l(d1(a), u) = ‘+’. Let sub(d1(a), u1) = q. Consider
first the case of (i). In this case, we have sub(d1(a), u) = q?
and this is changed to q by op. Thus for each sequence of
nodes matching q?, if the sequence is ε, we have to insert
a sequence of elements matching q. This can be done sim-
ilarly to the case of (iv) of MkGraph6 shown later. Let us
next consider the case of (ii). Since q∗ is changed to q by op,
for each sequence seq matching q∗, (a) if seq = ε, we have
to insert a sequence of elements matching q and (b) other-
wise, seq must be “shrunk” so that seq matches q instead
of q∗. These can be handled by a combination of similar
ideas shown later; (a) can be handled similarly to the case

of (iv) of MkGraph6 and (b) can be done similarly to the
case of (iii). In the following, let us consider the case of
(iii). In this case, sub(d1(a), u) = q+ for some regular ex-
pression q, and q+ is changed to q by op. Thus, for each
sequence seq of nodes that maximally matches q+, seq must
be “shrunk”. Recall that the q-extraction de

1(a) of d1(a) is
obtained from d1(a) by replacing q+ with q∗qq∗. MkGraph5
is defined so that the nodes matching the first/second q∗ in
q∗qq∗ are deleted. In step 5, sub(de

1(a), u1) (sub(de
1(a), u3))

is the first (resp., second) q∗ in q∗qq∗. {n j} in step 7 denotes
the diff to delete the subtree rooted at nj.

MkGraph5(D, t, n, op,K)

Input: A DTD D = (d1, sl), a tree t valid against D,
a node n in t, an update operation op = del opr(a, u),
and a positive integer K.

Output: A graph G(N, E) and a function w.
begin

1. Construct the child list graph CL(N′, E′) of n.
2. Construct the sub(d1(a), u)-extraction de

1(a) of d1(a).
3. Construct the Glushkov automaton Gde

1(a) of de
1(a).

4. ConstructtheproductG(N,E)ofGde
1(a) andCL(N′,E′).

5. LR← sym(sub(de
1(a), u1)) ∪ sym(sub(de

1(a), u3));

6. for each e = (ai, n′j−1)
l→ (ak, n′j) ∈ E let

7. w(e)←
⎧⎪⎪⎨⎪⎪⎩
{nj} if ak ∈ LR and l = 1,
nil if ak ∈ LR and l > 1,
d fl(nj) otherwise.

8. return (G(N, E),w);
end

Finally, let us show MkGraph6. In this case, op =
change opr(a, opr, u). We have four cases to be considered:
(i) l(d1(a), u) = ‘∗’ and opr = ‘?’, (ii) l(d1(a), u) = ‘+’ and
opr = ‘?’, (iii) l(d1(a), u) = ‘?’ and opr = ‘+’, and (iv)
l(d1(a), u) = ‘∗’ and opr = ‘+’. The cases of (i) and (ii) can
be treated similarly to the case of (iii) of MkGraph5. The
case of (iii) can be handled similarly to the case of (iv) be-
low. In the following, we consider the case of (iv). Then
sub(d1(a), u) = q∗ for some regular expression q. Since
q∗ is changed to q+ by op, for each sequence matching q∗,
if the sequence is ε, we have to insert a sequence of el-
ements matching q. Let Gd1(a) = (Q,Σ, δ1, aI , F) be the
Glushkov automaton of d1(a) and Gd2(a) = (Q,Σ, δ2, aI , F)
be the Glushkov automaton of d2(a), where (d2, sl) = op(D).
For states ai, ak � sym(q#), we say that the transition from
ai to ak is missing if ai ∈ δ1(ak, (ak)�) but ai � δ2(ak, (ak)�).
If nodes ni, ni+1 match ai and ak, respectively, and the tran-
sition from ai to ak is missing, then for a word w ∈ L(q),
it suffices to insert |w| elements matching w between ni and
ni+1 of t. Thus MkGraph6 is defined as follows.

MkGraph6(t, n,D, op,K)

Input: A DTD D = (d1, sl), a tree t valid against D,
a node n in t, an update operation op =
change opr(a, opr, u), and a positive integer K.

Output: A graph G(N, E) and a function w.
begin

1. Construct the child list graph CL(N′, E′) of n.
2. Construct the Glushkov automaton Gd1(a) of d1(a),

and construct the Glushkov automaton Gd2(a) of d2(a).
3. ConstructtheproductG(N,E)ofGd1(a) andCL(N′,E′).
4. Let w be a word in L(sub(d1(a), u1)).

5. for each e = (ai, n′j−1)
l→ (ak, n′j) ∈ E do



2212
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.8 AUGUST 2010

6. if the transition from ai to ak is missing then
7. Create new nodes v1, · · · , v|w| labeled by

w[1], · · · ,w[|w|], respectively.
8. w(e)← {v1, · · · , v|w|} ∪ d fl(nj);
9. else
10. w(e)← d fl(nj);
11. return (G(N, E),w);

end

Appendix B: The Sketch of Proof of Theorem 4

Proof (sketch): Let us first consider the running time of
FindKDiffs. In line 4, |N| ∈ O(od(t) · |d1(a)|), where od(t)
denotes the maximum outdegree of the nodes in t. In line
5, there are at most |d1(a)| edges leaving (aih , n′jh ). For
each k in line 7, lines 8 to 10 run in O(K · |t|). Thus,
FindKDiffs(G(N, E),w) runs in O(od(t) · |d1(a)|2 · K2 · |t|).

Among subroutines MkGraph1 to MkGraph7, Mk-
Graph4 is the most time consuming. Lines 7 to 11 of Mk-
Graph4 are the most time consuming part of the subroutine.
In line 7, the number of pairs in P is in O((od(t) · |d1(a)|)2)
time. In line 8, G′ can be obtained in O(od(t) · |d1(a)| · K)
time. In line 11, FindKDiffs(G′,w′) runs in O(od(t) ·
|d1(a)|2 · K2 · |t|). Thus, MkGraph4(G(N, E),w) runs in
O(od(t)3 · |d1(a)|4 · K2 · |t|) time.

Consequently, Main(D, t, op,K) runs in O(od(t)3 ·
|d1(a)|4 · K2 · |t|2) time. �

Nobutaka Suzuki received his B.E. de-
gree in information and computer sciences from
Osaka University in 1993, and his M.E. and
Ph.D. degrees in information science from Nara
Institute of Science and Technology in 1995 and
1998, respectively. He was with Okayama Pre-
fectural University as a Research Associate in
1998–2004. In 2004, he joined University of
Tsukuba as an Assistant Professor. Since 2009,
he has been an Associate Professor of Graduate
School of Library, Information and Media Stud-

ies, University of Tsukuba. His current research interests include database
theory and structured documents.


