
2182
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.8 AUGUST 2010

PAPER

A Case Study of Requirements Elicitation Process with Changes

Takako NAKATANI†a), Member, Shouzo HORI††, Nonmember, Naoyasu UBAYASHI†††, Keiichi KATAMINE††††,
and Masaaki HASHIMOTO††††, Members

SUMMARY Requirements changes sometimes cause a project to fail.
A lot of projects now follow incremental development processes so that
new requirements and requirements changes can be incorporated as soon
as possible. These processes are called integrated requirements processes,
which function to integrate requirements processes with other developmen-
tal processes. We have quantitatively and qualitatively investigated the re-
quirements processes of a specific project from beginning to end. Our focus
is to clarify the types of necessary requirements based on the components
contained within a certain portion of the software architecture. Further,
each type reveals its typical requirements processes through its own ratio-
nale. This case study is a system to manage the orders and services of a
restaurant. In this paper, we introduce the case and categorize its require-
ments processes based on the components of the system and the qualitative
characteristics of ISO-9126. We could identify seven categories of the typ-
ical requirements process to be managed and/or controlled. Each category
reveals its typical requirements processes and their characteristics. The
case study is our first step of practical integrated requirements engineering.
key words: requirements engineering, requirements elicitation process,
case study

1. Introduction

Requirements changes are considered detrimental to the
success of a development project, though, requirements are
often changed. However, various solutions do exist to cope
with this problem resulting from requirements changes. For
example, Trawling in Volere [1] is a method for require-
ments elicitation without possible omissions. Goal-oriented
analysis methods explore the “why” aspect of requirements
in order to find alternative requirements and forecast vari-
ability of requirements [2], [3]. Theory-W [4] tells us the
risks of projects and ways to negotiate with stakeholders. In
a practical sense, it is hard to elicit requirements completely
in the early stage of software development.

There are several development process models de-
signed to cope with requirements changes in the waterfall

Manuscript received February 5, 2009.
Manuscript revised October 24, 2009.
†The author is with the Graduate School of Systems Manage-

ment, the University of Tsukuba, Tokyo, 112–0012 Japan.
††The author is with Quality Assurance Dept. Yaskawa Infor-

mation Systems Corporation, Kawasaki-shi, 215–0004 Japan.
†††The author is with the Faculty of Information Science and

Electrical Engineering, Kyushu University, Fukuoka-shi, 819–
0395 Japan.
††††The authors are with the Graduate School of Computer Sci-

ence and Systems Engineering, the Kyushu Institute of Technol-
ogy, Iizuka-shi, 820–8502 Japan.

a) E-mail: nakatani@gssm.otsuka.stukuba.ac.jp
DOI: 10.1587/transinf.E93.D.2182

model place. The agile development process [5] recom-
mends incremental development in short durations, in which
case engineers define test specifications when they elicit re-
quirements. If the development duration is short, the project
may be free from requirements changes caused by business
environmental changes. Therefore, the problem of require-
ments changes is beyond the scope of this technique. The
Unified Process [6] proposes a four-stage development. It
focuses on a framework that takes measures to meet the fu-
ture requirements changes.

We need a design technique and/or framework for cop-
ing with requirements changes quickly. In component-based
development, web services and SOA (Service Oriented Ar-
chitecture), there are techniques with frameworks aimed
at loose coupling and dynamic binding between modules.
These concepts are effective in coping with requirements
changes by replacing components even during a run time
and, are techniques that can be considered as a method for
protecting a project from requirements changes during the
software evolution stage.

To deal with the volatility of requirements, it has been
proposed that requirements processes should be integrated
with other development processes, such as design, imple-
mentation, and testing processes [7]. This idea or concept is
referred to as integrated requirements engineering. Though
we agree with this idea or concept, before initiating inte-
grated requirements engineering, we have to manage re-
quirements changes in order to save our projects. In an ad-
equate triage for requirements changes, we negotiate with
stakeholders on quality, cost and delivery by using quantita-
tive development data [8]. The focus of our research is to ob-
serve requirements changes quantitatively, and to visualize
them for the planning of the future requirements processes
as well. We must learn as much as possible from past work
in order to maximize our efforts for the future.

Our case study aims to learn the real requirements
changes processes following the requirements analysis
phase. Therefore, we analyze the requirements process after
the requirements analysis phase has been completed. The
requirements changes need to be categorized in order to
have applicable uses on the future projects. It means that if a
manager can identify a set of requirements within the devel-
oping system as the members of a category, he/she can man-
age and/or control the requirements elicitation processes ac-
cording to the process of the category. “Control” means that
requirements engineers explain the requirements elicitation

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers



NAKATANI et al.: A CASE STUDY OF REQUIREMENTS ELICITATION PROCESS WITH CHANGES
2183

process of each category to their customers and elicit re-
quirements with their customers’ cooperation to follow the
ideal process of the category.

After studying project records both quantitatively and
qualitatively, we have categorized the requirements process
according to the components contained within a certain por-
tion of the software architecture. Each category reveals its
typical requirements processes and their characteristics.

This paper introduces the case study as the first step of
practical integrated requirements engineering. In Sect. 2 we
give an overview of the project. Section 3 illustrates the re-
sults of our study and provides the requirements processes of
the target project. In Sect. 4, we categorize the requirements
processes into seven categories, followed by a discussion of
the characteristics of each. In Sect. 5, we introduce related
work. In the final section, we present our conclusions.

2. Overview of the Project

The target project was initiated to develop a restaurant ser-
vice and order management system, named RESORT. RE-
SORT can accept orders from the hand held terminals of
staff members and from table terminals. The table termi-
nals are situated on guests’ tables to provide the food menu,
recipes, knowledge of liquor and sake and, entertainment
information via a wireless network from the application
server. A previous system was developed by a certain com-
pany several years ago and, the client of this project decided
to re-develop the system to improve its installation load and
extensibility. The system was required to be able to replace
its Order Entry System (OES) component with one of those
provided by various companies.

The project was carried out by one client with three
developer companies. One of the developer companies pro-
vided table terminals with an OS and a browser for HTML.
The second company developed contents for the table termi-
nals. The third company, the YSKcom, developed an appli-
cation server that could communicate with the other com-
ponents. The client provided a shared repository for the
project to manage the schedule and problems. The devel-
opers communicated with each other via the repository and
solved any problems that occurred during the development.
OES providers were not members of the project, as the spec-
ifications of the OESs were made available to the project via
the client.

Before starting the project, the YSKcom proposed the
software architecture illustrated in Fig. 1 to solve the prob-
lems of the previous system. In the figure, the white icons
represent components developed by the YSKcom, the dot-
ted line rectangle represents the OES, and the gray colored
icons represent the components developed by other develop-
ers. Our research focuses on the components in white. This
architecture was elaborate and shared with the developers in
order to understand the functions of the components.

The RESORT project was completed in four and a half
months, although five months were originally budgeted. De-
velopment data were collected in 117 days, from the exter-

Fig. 1 The architecture of RESORT .

Table 1 The duration and starting date (relative to the project start) of
each phase.

Phase Day (relative to
start date)

Duration

External Design 0 55 days
Internal Design 47th 40 days
Implementation 64th 45 days
Integration Test 93rd 7 days
System Test 106th 11 days
Project completion 117th -

nal design phase to completion of the project. The duration
of each phase was accomplished as shown in Table 1. We
calculated the duration beginning with the start of the ex-
ternal design phase. The duration of the integration testing
phase was actually 27 days according to the recorded data.
However, we counted it as seven days, since only four re-
quirements were elicited in the first seven days of the phase.
Thus, the project was completed on the 117th day.

3. Requirements Process

3.1 A Case Study Method

The YSKcom provided us with their development data. The
engineers from the YSKcom used traditional interview tech-
niques in multiple non-scheduled reviews with their client.
They managed issue records, question and answer records
and decision records for each phase. From the records we
can see the content of each requirement, its priority, the date
of contact/recording/completion, the name of a client/an en-
gineer in charge/the manager, agreement of stakeholders,
and the reason for the change/addition/deletion of a require-
ment.

The requirements specification of the RESORT system
was composed with use cases. A requirement change had
been proposed to the use case defined in the initial require-
ments specification. If a new requirement was brought up
to the system, it was regarded as a new use case. Therefore,
we could observe the requirements changes of the system
based on the use cases. Each use case is a bag that receives
requirements changes, which by the end of the project has
matured. Recently, the use case model has been applied to



2184
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.8 AUGUST 2010

Fig. 2 Requirements process for quality characteristics.

projects and managed as a base of requirements. Therefore,
counting requirements changes based on the number of use
cases is a practical application for a lot of projects.

From the estimation viewpoint, the granularity of each
use case should be challenged. However, from the require-
ments changing observation viewpoint, the granularity of
each use case is out of the scope of our research, since we
only want to know how many the use case receives require-
ments changes during its development. In order to observe
requirements changes for each use case, its characteristics
for categorization and/or background for future measures
are more essential than its granularity.

We analyzed these documents and counted the number
of additional requirements, changed/adjusted requirements,
and deleted requirements. Thus, if a newly added require-
ment was deleted after being changed, we counted it three
times.

The quantitative data were analyzed in two ways: first,
on a quality characteristics basis, and second, on an archi-
tectural basis. Furthermore, we interviewed both the project
manager and the quality control manager of the project to
understand the background of the records and their ratio-
nale.

3.2 From a Quality Characteristics View

Figure 2 shows the requirements processes from a quality
characteristics [9] view. The x-axis represents the elapsed
days of the project, while the y-axis represents the cumu-
lative number of elicited requirements. From this graph,
we can see that the requirements of 1. functionality and 3.
usability were elicited continuously throughout the project,
while other requirements were frozen midway through the
project schedule.

The continuous process of developing the functional-
ity requirements represents the learning curve of the engi-
neers, as they did not have sufficient knowledge to under-
stand the domain of RESORT. They had to develop the sys-
tem as they acquired the knowledge in a step by step man-
ner. For example, the requirements of managing a group

Fig. 3 Cumulative number of requirements for each component.

of tables for which one bill was required, was elicited after
the requirements analysis phase. Furthermore, there was an-
other reason of the continuous requirements elicitation: the
OES providers did not make their specifications available to
the project in the early phase of development. The major
provider only released his specification to the project after
the implementation phase had started, i.e., on the 64th day
of the project schedule.

The continuous process for the usability requirements
represents not only a process of trial and error to achieve
better usability, but also a process of eliciting undefined re-
quirements by evaluating the system adequacy. In fact, al-
though the project was preceded by the waterfall model, the
part relating to the usability or user interfaces was repeatedly
developed and validated. If a usability specialist or domain
specialist had been available to join or advise the project,
the process might be represented by a different curve. The
requirements elicited in the system testing phase were trans-
ferred to the next version of the system.

Regarding the non-functional requirements, these were
defined as a solution to the problems of the previous system.
The client recognized the quality problems of the previous
system based on their business objectives. Therefore, these
processes could be frozen before the internal design started.

3.3 From the Component View

The functionality and usability requirements depend on
components. Figure 3 illustrates a requirements process for
each component. In the figure, the x-axis represents elapsed
days of the project, while the y-axis represents the cumu-
lative number of elicited requirements. The results show
that, 1. the Table Terminal Communicator (TT C) and 2.
the System Monitor (Sys M) received many requirements
throughout the project. These components are situated in
the user interface area. 8. the OES Communicator (OES C)



NAKATANI et al.: A CASE STUDY OF REQUIREMENTS ELICITATION PROCESS WITH CHANGES
2185

Fig. 4 Requirements elicitation ratio.

also shows changes to its requirements in the latter part of
the development. This component depends on the specifi-
cations of OESs. The system was required to connect to
multiple vendors’ OESs, the specifications of which were,
in fact, provided after the implementation had started. Un-
til then, the engineers had collected product information on
OESs informally.

We focused on the requirements elicitation ratio ac-
cording to the project schedule. It provided us with valuable
information, such as when and which requirements were
frozen, in other words, that one hundred percent of the re-
quirements of the developing system had been reached. Let
ri be the number of elicited requirements on project day i.
Thus, the sum of a set of elicited requirements in n days
can be written

∑n
i=0 ri. The ratio of the accumulated require-

ments Ri on the ith day can be defined as

Ri =

i∑

j=0

r j/N

Here, N is the sum of the number of requirements elicited
throughout the project. Hence, R0 is equal to 0% and Rend is
equal to 100%.

Figure 4 shows the ratio of elicited requirements Ri ver-
sus the project schedule. The project schedule in this fig-
ure represents total days. For example, the internal design
phase was planned after the external design phase, which
took 40 days. Its process appears after the external design

phase in Fig. 4. As a result, the total number of days of
the project is shown as 154 days, rather than the actual de-
velopment duration of 117 days. The vertical line in Fig. 4
represents the end of each phase.

To clarify the reason and rationale of the requirements
processes, we conducted interviews with both the project
manager and quality control manager. Then, we analyzed
the rationale of the requirements processes according to the
components. The numbers in the following list correspond
to the numbers shown in Fig. 4.

• 1. Table Terminal Communicator (TT C) and 2. Sys-
tem Monitor (Sys M)
The requirements have been elicited continuously from
an early phase to the end of the project. These compo-
nents are in the user interface area. For example, the
TT C depended on the Table Terminal (TT) used by
guests of the restaurant.
The TT was equipment that provided a lot of informa-
tion to the customers of the restaurant and, which sent
customers’ requests to the TT C. It means that the func-
tionalities of the TT C to manipulate and comply with
the customers’ requests were the keys to making RE-
SORT a competitive system.
The Sys M is for use by the manager of a restaurant.
It provides information on the active or inactive status
of the other equipment of the system, which decreases
the manager’s labor involvement in the system. There-



2186
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.8 AUGUST 2010

fore, its functionality and usability were the keys in en-
abling RESORT to compete with similar products of
other companies.
Figure 4 represents that the engineers have elicited
requirements for these components repeatedly to im-
prove its functionality and usability.
• 3. Installation Support (Inst S)

The previous system of RESORT required users to
make a lot of effort to install it in a restaurant. The ma-
jor goal of RESORT was to lighten the installation ef-
fort. This requirement was essential for RESORT, from
a product business view. Therefore, the client could
clearly define their requirements for the Inst S early in
the development.
Figure 4 represents that the engineers have elicited re-
quirements for the component completely in the exter-
nal design phase.
• 4. Table Terminal Monitor (TT M) and 5. Center Com-

municator (Cent C)
These components depend on external interfaces pro-
vided by the co-developers. Figure 4 represents that
the engineers have elicited requirements for the com-
ponent completely by the end of the external design
phase.
Its requirements elicitation process was similar to the
process of the Inst S, however, its context was differ-
ent. The members of the development team highly pri-
oritized the review of these specifications to discover
incomplete requirements and, could thus freeze the re-
quirements in the early phase. They were able to col-
laborate well by sharing the problems of the project via
the shared repository. The process represents that, the
members have cooperated on the project to keep the
interface specifications.
• 7. DB

The requirements elicitation ratio could have reached
100% by the end of the external design phase. Figure 4
represents a similar shape as the TT M or the Inst S.
However, its context was not the same as others.
The project reused the specifications of the former sys-
tem with some minor changes, since the engineers were
able to identify the insufficient schema of the existent
database when the project was initiated.
• 6. OES Monitor (OES M) and 8. OES Communicator

(OES C)
These components depend on other components pro-
vided by outside companies. Furthermore, two devel-
opers with insufficient knowledge of OESs were as-
signed the task of managing the integration of the sys-
tem with respect to multiple OESs. Given this situa-
tion, the developers needed to study the OES domain
based on the most popular OES product. After de-
signing the component to fulfill these specifications,
they then proceeded to adopt other OES products and
change the design. Because of resource problems, it
was difficult for them to fulfill every OES specification
at one time.

Figure 4 shows that the requirements have been elicited
continuously from an early phase to the end of the unit
testing phase.
The OES M was a hazardous component. Figure 4
shows that its requirements have been elicited acci-
dentally in the implementation and unit testing phase.
The developers realized that several interfaces were
not available for one of the target OESs. They had
to change the requirements of the OES M. Such re-
quirements changes can be detrimental to the project
schedule. Fortunately, the OES M had fewer functions
and the changes to the requirements were the deletions
of functions developed for the most popular OES, al-
though the changes could possibly cause several incon-
sistencies in the system. The accidental requirements
changes were caused by the non-cooperative company
which did not provide the proper specifications of the
OES to the project. It tells us that we cannot always
expect the cooperation of other organizations, and thus
we must always be prepared to deal with such situa-
tions.

In the real world, a requirements process expresses
mixed processes, since a requirement is constrained by an
architectural aspect, as well as the context of the project.
The OES C and OES M are examples of this. They are af-
fected by the level of cooperation of the OES companies,
the engineers’ knowledge, and the limitation of project re-
sources, as well as the client’s business strategy. The client
believed that RESORT should be able to integrate with most
available OESs in order to compete with similar products.

In the next section, we build a requirements process
model based on our case study.

4. Discussion

In defining the requirements process model, we decom-
pose the requirements process characteristics into seven cat-
egories and simplify realistic situations. If a manager can
identify a set of requirements of the developing system as
the member of a category, he/she can control and/or man-
age the requirements elicitation processes according to the
process model of the category. Of course, the model needs
more case studies in order to apply it to an actual project.
The method and the complete process model will result from
our future work. However, the model derived from this case
study offers implications in controlling and/or managing re-
quirements changes.

Figure 5 depicts graphs showing each category of the
requirements process. The x-axis represents the elapsed
time of the project, while the y-axis represents the require-
ments elicitation ratio. We define each category as follows:

• Reused type (TypeRu)
An example of this type as observed in the case study
is DB. The component was reused from the previous
system, as the developers identified its reusability in
the early stage of the development. This is the reason



NAKATANI et al.: A CASE STUDY OF REQUIREMENTS ELICITATION PROCESS WITH CHANGES
2187

Fig. 5 Types of requirements and their observed processes.

why its requirements elicitation ratio can reach 100%
by the end of the external design phase.
Therefore, when the project is able to identify the suffi-
cient and insufficient requirements of an existent com-
ponent, the project can decide to reuse the component
with clearly defined changes. Thus, based on our case,
the requirements of components belonging to TypeRu
should be elicited in the early development phase.
• External interface dependent type (TypeXi and TypeXi’)

This type is for those components that depend on ex-
ternal components. The TT M and Cent C are exam-
ples of this type. The developer teams successfully
procured their specifications in the early development
phase through cooperative work.
On the other hand, OES M and OES C are also compo-
nents that depend on external components. Their spec-
ifications were not available until the implementation
had started, because the vendors of these components
did not cooperate with the project.
Thus, if the vendor of an external component coop-
erates with the project, those requirements should be
frozen in the early development phases. It is modeled
as TypeXi in Fig. 5. Basically, external interfaces can
be defined in the early development phase if their spec-
ifications are available.
If a vendor does not cooperate with the project, the sit-
uation can be made worse. A manager should negoti-
ate with vendors to get their cooperation. When it is
not possible, the manager should ensure the project’s
resources to cope with the accidental requirements
changes of external interfaces of uncooperative ven-
dors. Such a case is shown as TypeXi’ in Fig. 5. This
type is a problematic type.
• Diversity type (TypeDiv)

An example of this type can be observed in the
case study as OES C. The requirements for this were
elicited continuously, because of the lack of knowledge
of the developers.
This type needs an appropriate design to deal with the
variability of components. Developers can design ad-
equately if, and only if, they have enough knowledge
of the variations [10]. Therefore, if developers do not

have an adequate knowledge to allow them to design
the internal system for the external design phase, the
manager should decide to select incremental develop-
ment and/or trial and error based development. When
the incremental development is selected, the project
can elicit requirements according to the development
targets. On the other hand, if developers can have
enough knowledge to understand the diverse external
interfaces, they should acquire information of every ex-
ternal interface in the early development phase.
• User interface dependent type (TypeUi)

Examples of this type as observed in the case study
are the Sys M, TT C, TT M. These components de-
pend on user interfaces. According to the case, we
could clearly observe that the components’ require-
ments tend to be added and/or changed even in the val-
idation testing phase. For such a component, therefore,
the project should plan incremental requirements elici-
tation and also apply incremental development by pro-
totyping [11], [12], if the project cannot employ a us-
ability specialist.
• Business requirements dependent type (TypeBz)

There were two kinds of components related to busi-
ness requirements. One is observed in Inst S. Require-
ments of this component were elicited completely by
the end of the external design phase, since its require-
ments motivate the client to initiate the project. The
other is observed in Sys M and TT C. Requirements of
these components were elicited continuously through-
out the end of the project, since the project had to im-
prove the requirements in order to compete with similar
products provided by other companies.
Therefore, we have to divide TypeBz into two subtypes.
TypeBz 1 relates to business improvement. Require-
ments for this type should be clearly defined before
the development starts. To define the requirements for
TypeBz 2, prototypes are useful tools to validate the re-
quirements in order to compete with other products.
The project should require their clients to cooperate
closely with the developers [13].

New requirements or requirements changes sometimes
delay the project schedule. To save our project, we must
identify the influential components that form the architec-
ture, as well as plan and monitor the requirements processes
of these components carefully. In our future work, we in-
tend studying other cases to evaluate the adequacy and/or
inadequacies of these types.

5. Related Work

Lehman mentioned that “there is no room in program-
ming for imprecision, no malleability to accommodate un-
certainty or error” in his Low of Program Evolution [14].
Therefore, we must focus on requirements processes. The
problem is that it sometimes causes difficulties when soft-
ware is changed in order to fulfill the requirements changes.



2188
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.8 AUGUST 2010

The requirements process during development has
been extensively researched in various literatures. Aoyama
and his colleagues have studied the kinds of requirements
that were changed and/or added after the requirements anal-
ysis phase. They then introduced an interview guide to clar-
ify unstable requirements, and further, evaluated the guide to
elicit those requirements completely before the design phase
begins [15]. We do not think that it is possible to elicit re-
quirements completely in the requirements phase, because
our clients sometimes do not know their requirements. Our
approach is that the engineers should ascertain requirements
together with their clients during the system development.
To do this, we must manage the requirements process ac-
cording to the type of each component and the project situ-
ation.

Arkley and his colleagues described an application of
traceability by a company. They classified the project re-
quirements and showed requirements changes in the devel-
opment processes. In their article, the specification and
requirements were frozen before the software design re-
view [16]. Sankar and Venkat focused on a way to control
requirements by showing the percentage of requirements
frozen in the development processes. According to the arti-
cle, 70% of all requirements were frozen during the require-
ments gathering [17]. If most requirements could be frozen
in the early development phase, we would be happy. One
of the real problems is that many requirements sometimes
remain undefined until the design phase. We studied a case
in which the engineers elicited requirements throughout the
development to clarify the practical situation. In practice,
the client cannot show all the requirements before the de-
sign phase has started.

Houdek and Pohl studied the requirements engineering
process of Daimler Chrysler. They mentioned that 50% to
60% of requirements changes are in the interface area [18].
We categorized this type of component as TypeUi. They
also mentioned that the requirements engineering activities
are heavily intertwined. Sommerville referred to the inter-
twined requirements engineering process as integrated re-
quirements engineering [7]. From our study, we can con-
clude that an integrated requirements engineering process
needs requirements elicitation scheduling techniques, as
well as elicited requirements management.

6. Conclusions

We studied the requirements processes of RESORT. From its
development records, we could categorize the requirements
processes into seven types. These types have been observed
from a type-specific requirements process view. Our aim
was to identify the type of each component in order to plan
the requirements processes in the project. The results in-
dicate that we would be able to schedule the requirements
process according to the type of each component and the
project situation.

Acknowledgments

This work was funded by the Joint Forum for Strategic Soft-
ware Research (SSR). We would like to thank our colleagues
at SSR. We would also like to thank Mr. Masao Shimoji and
his colleagues at the Yaskawa Information Systems Corpo-
ration who cooperated on our study as interviewees.

References

[1] S. Robertson and J. Robertson, Mastering the Requirements Process,
Addison-Wesley, 1999.

[2] A.I. Anton, “Goal-based requirements analysis,” Proc. ICRE’96,
pp.136–144, IEEE, 1996.

[3] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-directed re-
quirements acquisition,” Science of Computer Programming, vol.20,
pp.3–50, 1993.

[4] B. Boehm, P. Bose, E. Horowitz, and M.J. Lee, “Software require-
ments negotiation and renegotiation aides: A theory-w based spiral
approach,” Proc. ICSE’95, pp.243–253, ACM, 1995.

[5] K. Beck, et al., “Manifesto for agile software development
(http://agilemanifesto.org/),” 2001.

[6] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software De-
velopment Process, Addison-Wesley, 1999.

[7] I. Sommerville, “Integrated requirements engineering: A tutorial,”
IEEE Softw., vol.22, no.1, pp.16–23, IEEE, Jan./Feb. 2005.

[8] A.M. Davis, Just Enough Requirements Management: Where Soft-
ware Development Meets Marketing, Dorset House, 2005.

[9] ISO/IEC, “9126: Software engineering–product quality,” 2001.
[10] M. Jarke, “Requirements tracing,” Commun. ACM, vol.41, no.12,

pp.32–36, 1998.
[11] N. Deshmukh and S. Wadhwa, “A meta model for iterative develop-

ment of requirements leveraging dynamically associated prototyping
and specification artifacts,” Proc. 15th IEEE International Require-
ments Engineering Conference (RE’07), pp.343–349, IEEE, 2007.

[12] A.K. Thurimella and B. Bruegge, “Evolution in product line require-
ments engineering: A rationale management approach,” Proc. 15th
IEEE International Requirements Engineering Conference, pp.254–
257, IEEE, 2007.

[13] M. Haglind, L. Johansson, and M. Rantzer, “Experiences integrating
requirements engineering and business analysis,” Proc. IEEE Third
International Conference on Requirements Engineering, pp.108–
117, IEEE, 1998.

[14] M. Lehman, “Programs, life cycles, and laws of software evolution,”
Proc. IEEE, pp.1060–1076, IEEE, 1980.

[15] K. Aoyama, T. Ugai, S. Yamada, and A. Obata, “Extraction of view-
points for eliciting customer’s requirements based on analysis of
specification change records,” APSEC, pp.33–40, 2007.

[16] P. Arkley and S. Riddle, “Tailoring traceability information to busi-
ness needs,” Proc. 14th IEEE International Requirements Engineer-
ing Conference (RE’06), pp.239–244, IEEE, 2006.

[17] K. Sankar R and R. Venkat, “Total requirements control at every
stage of product development,” Proc. 15th IEEE International Re-
quirements Engineering Conference, pp.337–342, IEEE, 2007.

[18] F. Houdek and K. Pohl, “Analyzing requirements engineering pro-
cesses: A case study,” Proc. 11th International Workshop on
Database and Expert Systems Applications (DEXA’00), pp.983–
987, IEEE, 2000.



NAKATANI et al.: A CASE STUDY OF REQUIREMENTS ELICITATION PROCESS WITH CHANGES
2189

Takako Nakatani graduated from Tokyo
University of Science, she worked for several
software development companies. She received
her Ph.D from the University of Tokyo in 1998.
She has been a board member of S-Lagoon
since 1995, and an associate professor at the
Graduate School of Business Sciences, Univer-
sity of Tsukuba since 2006. Her interest area
is software engineering, requirements engineer-
ing, and modeling techniques. She is a member
of ISS, IPSJ, IEEE CS, ACM, and the Society of

Project Management.

Shouzo Hori graduated from the Kyushu
Institute of Technology Information Engineer-
ing in 1980, he began working for the Yaskawa
Information Systems Corporation. He has per-
formed management duties and undertaken em-
bedded software development for 20 years. He
has been engaged in the process improvement of
organizations using ISO9001 and/or CMM since
1998. His interest area is software engineering,
requirements engineering, and project manage-
ment.

Naoyasu Ubayashi is a professor at Kyushu
University. He received his Ph.D. from the Uni-
versity of Tokyo in 1999. He is a member of
ACM SIGPLAN, IEEE CS, and IPSJ. His cur-
rent research interests include aspect-oriented
programming, extensible languages, and model-
driven development.

Keiichi Katamine received the Ph.D de-
gree in engineering from Kyushu Institute of
Technology, Japan. He is now an assistant pro-
fessor of computer science and systems engi-
neering at Kyushu Institute of Technology. He
is a PSP instructor of SEI of CMU, and a trainer
of S-DBR and CCPM of Goldratt School. His
research interests include software engineering,
software and knowledge modeling techniques,
and project management. He is a member of the
Information Processing Society of Japan and the

Society of Project Management.

Masaaki Hashimoto graduated from
Kyushu University, he worked for NTT (Nippon
Telegraph and Telephone Corporation) for 23
years and for Kyushu Institute of Technology
for 16 years. He received Doctorate Degree of
Engineering from Kyushu University in 1987.
He has been a professor of Kyushu Institute of
Technology since 1993. His interest area is soft-
ware engineering, modeling technique, project
management, and TOC (Theory of Constraint).
He is an instructor of PSP and a trainer of TOC.


