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Abstract High dimension, low sample size (HDLSS) data are becoming common in various

fields such as genetic microarrays, medical imaging, text recognition, finance, chemometrics,

and so on. Such data have surprising and often counter-intuitive geometric structures because

of the high-dimensional noise that dominates and corrupts the local neighborhoods. In this

paper, we estimate the intrinsic dimension (ID) which allows one to distinguish between

deterministic chaos and random noise of HDLSS data. A new ID estimating methodology is

given and its properties are studied by using a d-asymptotic approach.

Key Words: Dual covariance matrix; Effective dimension; HDLSS; Large p small n; Maxi-

mum eigenvalue.

1. INTRODUCTION

Recently, a variety of methods have been developed to deal with nonlinear dimensional-

ity reduction such as Isometic Feature Mapping (ISOMAP) (Tenenbaum et al. 2000), Local

Linear Embedding (LLE) (Roweis and Saul 2000) and Hessian-based Locally Linear Em-

bedding (HLLE) (Donoho and Grimes 2003), and others. Those methods focus on finding a

low-dimensional curved manifold embedding of high-dimensional data. The dimensionality

of the embedding is a key parameter in those algorisms. However, there is no consensus on

how such dimensionality is determined and the dimensionality has often been chosen heuris-

tically from the curve of residual variance as a function of dimension. Constructing a reliable
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estimator of intrinsic dimension (ID) and understanding its statistical properties will clearly

improve the performance of manifold learning methods.

The existing approaches to estimating ID can roughly be divided into two groups: the

eigenvalue methods and the geometric methods. Eigenvalue methods are based on principal

component analysis (PCA). Details can be found in Fukunaga and Olsen (1971), Verveer

and Duin (1995), Bruske and Sommer (1998), and others. The geometric methods are

mostly based on fractal dimensions or nearest neighbor distances. Details can be found in

Grassberger and Procaccia (1983), Camastra and Vinciarelli (2002), Costa and Hero (2004),

Wang and Marron (2008), and others. The statistical properties of a maximum likelihood

estimator of ID were studied by Levina and Bickel (2005).

A currently very active area of data analysis is microarrays for measuring gene expres-

sion. A single measurement yields simultaneous expression levels for thousands to tens of

thousands of genes. Because the measurements tend to be very expensive, the sizes of most

datasets are in the tens, or maybe low hundreds, and so the dimension d of the data vectors

is much larger than the sample size n. The current ID estimating methods may be very dif-

ficult to apply to such high dimension, low sample size (HDLSS) data since those methods

naturally require very large samples in a high-dimensional space.

Related asymptotic studies assume that the dimension d increases, whereas the sample

size n can be fixed or increases along with d. Bai and Silverstein (1998), Johnstone (2001),

Baik et al. (2005), and Baik and Silverstein (2006) studied asymptotics where the ratio d/n

goes to a constant. On the other hand, Hall et al. (2005) and Ahn et al. (2007) studied

asymptotics specialized in the HDLSS case of d → ∞ with a fixed n, which is called the

d-asymptotics. They took a d-asymptotic approach and showed that, under some regularity

conditions, the geometrical structure of HDLSS data becomes deterministic as d increases

while n is fixed.

In this paper, we narrow down a target to the HDLSS case with Euclidean dimen-

sion and present a new ID estimating methodology with a d-asymptotic approach. Sup-

pose we have a d × n data matrix X(d) = [x1(d), ..., xn(d)] with d > n, where xj(d) =
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(x1j(d), ..., xdj(d))
T , j = 1, ..., n, are independent and identically distributed as a d-dimensional

multivariate distribution with mean zero and nonnegative definite covariance matrix Σd.

The eigenvalue decomposition of Σd is Σd = V dΛdV
T
d , where Λd is a diagonal matrix

of eigenvalues λ1(d) ≥ · · · ≥ λd(d) ≥ 0 and V d is an orthogonal matrix of corresponding

eigenvectors. Then, Z(d) = Λ
−1/2
d V T

d X(d) is considered as a d × n data matrix from a dis-

tribution with the identity covariance matrix. Here, we write ZT
(d) = [z1(d), ..., zd(d)] and

zT
i(d) = (zi1(d), ..., zin(d)), i = 1, ..., d. Hereafter, the subscript d will be omitted for the sake

of simplicity when it does not cause any confusion. We assume that the fourth moments of

each variable are uniformly bounded and ||zi|| 6= 0 for i = 1, ..., d, where || · || denotes the

Euclidean norm. We consider a general setting as follows:

λi = aid
αi (i = 1, ..., m) and λj = cj (j = m + 1, ..., d). (1)

Here, ai(> 0), cj(≥ 0) and αi(α1 ≥ · · · ≥ αm > 0) are unknown constants preserving the

ordering that λ1 ≥ · · · ≥ λd, and m is an unknown positive integer. The experimenter

determines the threshold level dγ with a fixed γ (> 0). Let k be the maximum integer

i (≤ m) such that αi > γ. We assume that γ 6= αi (i = 1, ..., m), so that αk > γ > αk+1 and

k is the number of the eigenvalues beyond the threshold level. In this paper, we consider k

as ID that is the target to estimate.

In Section 2, a new ID estimating methodology is given and its properties are studied

by using a d-asymptotic approach. In Section 3, we summarize the findings about the

efficiency of the proposed methodology with the help of computer simulations. In Section

4, we demonstrate how the new methodology estimates ID of HDLSS data by using a gene

expression dataset. We lay down lengthy proofs in the appendix.

2. ESTIMATION OF ID

The sample covariance matrix is S = n−1XXT , and the n × n dual sample covariance

matrix is defined by SD = n−1XT X. Note that SD has the same eigenvalues as S. Let us
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write that

nSD = ZTΛZ =
d∑

i=1

λiW i, (2)

where W i = ziz
T
i , i = 1, ..., d. Note that E{(n/

∑d
i=1 λi)SD} = In. Ahn et al. (2007)

claim that when the eigenvalues of Σ are sufficiently diffused in the sense that

d∑
i=1

λ̃2
i → 0 as d →∞, where λ̃i = λi/(

∑d
i=1 λi), (3)

the sample eigenvalues behave as if they are from an identity covariance matrix. If X is

Gaussian, the elements of Z are independent and standard univariate normal variables.

Hence, as they claimed, it follows that (n/
∑d

i=1 λi)SD → In w.p.1 as d → ∞ with a

fixed n under (3). If X is non-Gaussian, by Chebyshev’s inequality, for any τ > 0 and

the uniform bound M for the fourth moments condition, one has for each off-diagonal ele-

ment (i′ 6= j′) of (n/
∑d

i=1 λi)SD as d → ∞ with a fixed n that P (|∑d
i=1 λ̃izii′zij′ | > τ) ≤

τ−2var(
∑d

i=1 λ̃izii′zij′) ≤ τ−2
∑d

i=1 λ̃2
i → 0. Thus each off-diagonal element of (n/

∑d
i=1 λi)SD

converges to 0 in probability as d → ∞ with a fixed n under (3). However, one has for

each diagonal element (i′) of (n/
∑d

i=1 λi)SD as d → ∞ that P (|∑d
i=1 λ̃iz

2
ii′ − 1| > τ) ≤

τ−2var(
∑d

i=1 λ̃iz
2
ii′) = τ−2{∑d

i=1 λ̃2
i var(z2

ii′) +
∑

i6=j λ̃iλ̃jcov(z2
ii′ , z

2
ji′)} ≤ τ−2M 6= 0, so that

any diagonal element of (n/
∑d

i=1 λi)SD has Op(1) and may not converge to 1 under (3).

Hence, when X is non-Gaussian, we may claim that the matrix (n/
∑d

i=1 λi)SD converges

to a diagonal matrix with any diagonal element having Op(1) as d →∞ with a fixed n under

(3). Therefore, no matter whether X is Gaussian or non-Gaussian, it is difficult to find a

difference among the eigenvalues under (3) with a fixed n. We emphasize that the setting in

(1), provided that α1 < 1 and cd > 0, includes the case satisfying (3). Our new methodology

attempts estimating ID of HDLSS data in such a situation as well by detecting differences

among the eigenvalues clearly. Only when n is fixed, we suppose that the assumptions (A1)

and (A2) hold:

(A1) There exists a constant εj (> 0) such that ||n−1/2zj|| > εj w.p.1 as d → ∞ for each

j (= 1, ..., k);
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(A2) When k ≥ 2, there exists a constant ηj (> 0) such that

|Angle(zj, span{z1, ..., zj−1,zj+1, ..., zk})| > ηj

w.p.1 as d →∞ for each j (= 1, ..., k).

We suppose that the properties of Z still remain under (A1) and (A2). We first obtain

the following theorem.

Theorem 2.1. Assume that n ≥ k + 1. Let λ̂1 ≥ · · · ≥ λ̂n ≥ 0 be the eigenvalues of SD.

For γ > 1/2, consider the maximum integer i (= k̂1) such that d−γλ̂i ≥ 1 as an estimate of

ID, k. Then, we have that k̂1 → k in probability as

(I) d →∞ and d2−2γ/n → 0 when γ ∈ (1/2, 1];

(II) d →∞ and either n →∞ or n is a fixed number satisfying (A1)–(A2) when γ > 1.

Remark 1. Let us demonstrate how to specify the threshold level dγ. Let β = β(d) be the

noise level specified by the experimenter such that 0 < β(d) < 1 and β(d) → 0 as d →∞. We

consider that each noise effect is less than 100β% of the sum of all eigenvalues of Σ. Then, we

choose γ so as to satisfy the equation that dγ = βtr(Σ). Since Σ is unknown, we estimate γ

by solving the equation that dγ̂ = βtr(S) instead. We first consider the case when n is fixed.

We assume that there exists a constant εj (> 0) such that ||n−1/2zj|| > εj w.p.1 as d →∞
for j = 1, ..., d. From the assumption, one has that tr(S) = n−1

∑d
j=1 λj||zj||2 >

∑d
j=1 λjε

2
j .

Hence, there exists a constant ε (> 0) such that tr(S) > εtr(Σ) w.p.1. From the fourth

moments condition, we have that tr(S) = Op(tr(Σ)). Hence, there exists a random variable,

cs ∈ (0,∞), such that tr(S) = cstr(Σ). Then, it holds as d → ∞ with a fixed n that

γ̂ = logd(βtr(S)) = γ + logd(cs) = γ + op(1). For the case that n → ∞, since we have as

d →∞ and n →∞ that tr(S)/tr(Σ) = 1 + op(1), it holds that γ̂ = γ + op(1).

Corollary 2.1. Assume that α1 > α2 or m = 1 in (1). Recall that λ̂1 is the maximum

eigenvalue of SD. Then, we have that λ̂1/λ1 = 1 + op(1) either as d →∞ and d2−2α1/n → 0

for α1 ∈ (1/2, 1] or as d →∞ and n →∞ for α1 > 1.
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For γ ∈ (1/2, 1] with a fixed n, one can not apply Theorem 2.1 to estimation of ID. In

order to overcome this difficulty, we consider a new dual approach to attempt relaxing the

convergence condition with respect to n. Suppose we have two d × n data matrices X i =

[xi1, ..., xin], i = 1, 2, where xij = (xi1j, ..., xidj)
T , i = 1, 2; j = 1, ..., n, are independent

and identically distributed as a d-dimensional multivariate distribution stated before. We

systematically write S2 = n−2X1X
T
1 X2X

T
2 and define the n×n dual sample square matrix

as S2
D = n−2XT

1 X2X
T
2 X1. Note that S2

D has the same eigenvalues as S2. Let Zi =

Λ−1/2V T X i, i = 1, 2, and let us write that

n2S2
D = ZT

1 ΛZ2Z
T
2 ΛZ1 =

( d∑
i=1

λiY
T
i

)( d∑
i=1

λiY i

)
, (4)

where ZT
1 = [z11, ..., z1d], zT

1i = (z1i1, ..., z1in), ZT
2 = [z21, ..., z2d], zT

2i = (z2i1, ..., z2in) and

Y i = z2iz
T
1i, i = 1, ..., d. Note that E{(n/

∑d
i=1 λ2

i )S
2
D} = In. Let ˜̃λi = λ2

i /(
∑d

i=1 λ2
i ).

By using Chebyshev’s inequality, for any τ > 0 and the uniform bound M for the fourth

moments condition, one has for each off-diagonal element (i′ 6= j′) of (n/
∑d

i=1 λ2
i )S

2
D that

P (|∑i,j

√
˜̃λi

˜̃λj(z2i/
√

n)T (z2j/
√

n)z1ii′z1jj′| > τ) ≤ τ−2var(
∑

i,j

√
˜̃λi

˜̃λj(z2i/
√

n)T (z2j/
√

n)

z1ii′z1jj′) ≤ τ−2M
∑

i,j
˜̃λi

˜̃λj = τ−2M 6= o(1). Hence, we may not claim under (3) that any

off-diagonal element of (n/
∑d

i=1 λ2
i )S

2
D converges to 0, so that the matrix (n/

∑d
i=1 λ2

i )S
2
D

may not converge to even a diagonal matrix as d →∞ with a fixed n under (3). It gives us a

hint of another ID estimating methodology to detect differences among the eigenvalues of Σ

by using a d-asymptotic approach. Only when n is fixed, we suppose that the assumptions

(A1’) and (A2’) hold:

(A1’) There exists a constant εij (> 0) such that ||n−1/2zij|| > εij w.p.1 as d →∞ for each

i, j (i = 1, 2; j = 1, ..., k);

(A2’) When k ≥ 2, there exists a constant ηij (> 0) such that

|Angle(zij, span{zi1, ..., zij−1,zij+1, ..., zik})| > ηij

w.p.1 as d →∞ for each i, j (i = 1, 2; j = 1, ..., k).

We suppose that the properties of Zi, i = 1, 2, still remain under (A1’) and (A2’). Then,

we obtain the following theorem.
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Theorem 2.2. Assume that n ≥ k + 1. Let λ̂2
1 ≥ · · · ≥ λ̂2

n ≥ 0 be the eigenvalues of S2
D.

Consider the maximum integer i (= k̂2) such that d−2γλ̂2
i ≥ 1 as an estimate of ID, k. Then,

we have for γ > 1/2 that k̂2 → k in probability either as d → ∞ and n → ∞ or as d → ∞
while n is a fixed number satisfying (A1’)–(A2’).

Remark 2. Assume that X i, i = 1, 2, are Gaussian. Then, we can extend the range of

allowable γ thresholds to γ ∈ (1/4, 1/2] to claim the assertion in Theorem 2.2 as d → ∞
and d2−4γ/n → 0.

Remark 3. Suppose that we have a d×n data matrix, X = [x1, ..., xn] = [x11, ..., x1n1 ,x21,

...,x2n2 ], where n1 + n2 = n. One may define X1 and X2 as X i = [xi1, ..., xini
], i = 1, 2.

We suggest that one may take n1 = n2 (= n′) when n = 2n′ or n1 = n′+1 and n2 = n′ when

n = 2n′ + 1. Then, one may generally define S2
D = (n1n2)

−1XT
1 X2X

T
2 X1.

Corollary 2.2. When the population mean may not be zero, let X i = [x̄i1, ..., x̄id]
T (i = 1, 2)

having n-vector x̄ij = (x̄ij, ..., x̄ij)
T with x̄ij =

∑n
s=1 xijs/n for each j (= 1, ..., d). Let us

write that Λ−1/2V T (X i −X i) = [źi1, ..., źid]
T (i = 1, 2). Assume n ≥ k + 2 and define S2

D

after replacing X i with X i−X i. Then, the assertion in Theorem 2.2 is still justified under

the convergence condition given by replacing zij with źij in (A1’)–(A2’).

Corollary 2.3. Assume that α1 > α2 or m = 1 in (1). Recall that λ̂2
1 is the maximum

eigenvalue of S2
D. Then, we have that λ−1

1

√
λ̂2

1 = 1 + op(1) as d → ∞ and n → ∞ for

α1 > 1/2.

Remark 4. Earlier literature may not handle the case that α1 ≤ 1 when n/d → 0 for

estimating the maximum eigenvalue. One can use Corollaries 2.1 and 2.3 for the case.

We conducted computer simulations with the following setup: d = 1000; (λ1, λ2, λ3, λ4) =

(d2/3, d1/2, d1/3, d1/6) and λi = 1, i = 5, ..., d, so that λ1 = 10002/3 = 100. We considered

that (i) n = 20 in Corollary 2.1 (n = 10 in Corollary 2.3) and (ii) n = 40 in Corollary 2.1

(n = 20 in Corollary 2.3). By averaging the outcomes from 1000 replications, we obtained

from Corollary 2.1 that λ̂1 = 152.1 for (i) and λ̂1 = 126.7 for (ii). On the other hand, we
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obtained from Corollary 2.3 that

√
λ̂2

1 = 96.7 for (i) and

√
λ̂2

1 = 98.7 for (ii). We observed

superiority of

√
λ̂2

1 in average to λ̂1 for other parameter configurations as well. We emphasize

that Corollaries 2.1 and 2.3 are applicable for the case that α1 > 1 as well.

3. SIMULATION

In order to study the performance of the ID estimating methodologies, we resort to

computer simulations. We fixed ID at k = 4 and the sample size at n = 30 (= 15 + 15).

We set γ = 3/5, namely the threshold level is d3/5. We conducted numerous simulation

studies. However, we omit the details and present a case for brevity. We considered that

(λ1, λ2, λ3, λ4) = (d, d9/10, d4/5, d7/10), (λ5, λ6, λ7, λ8) = (d1/2, d2/5, d3/10, d1/5) and λi = 1, i =

9, ..., d. In Figs.1-3, we evaluated the performance of the ID estimating methodologies given

by Theorems 2.1 and 2.2 in terms of the average ID number and the probability of correct

decision. We used the whole sample of size n = 30 to define the data matrix X : d×30 for the

calculation of SD in Theorem 2.1, whereas we divided the whole sample into X1 : d×15 and

X2 : d×15 for the calculation of S2
D in Theorem 2.2. The findings were obtained by averaging

the outcomes from 1000 (= R, say) replications. Under a fixed scenario, suppose that the

rth replication ends with estimate kr (r = 1, ..., R), for the ID estimating methodology, k̂1

(or k̂2), given by Theorem 2.1 (or Theorem 2.2). Let us simply write k̂ = R−1
∑R

r=1 kr for

each ID estimating methodology. Fig.1 shows that k̂2 estimates ID (k = 4) better than k̂1

for a long span of d ∈ [500, 1500]. We also consider the Monte Carlo variability. Let us

write V (k̂) = R−1
∑R

r=1 k2
r − (R−1

∑R
r=1 kr)

2 for the sample variance of each ID estimation.

Fig.2 shows that k̂2 keeps variance V (k̂2) lower than k̂1. At the end of the rth replication,

we also checked whether it holds that kr = k (= 4), and defined pr = 1 (or 0) according as

kr = k (or kr 6= k), r = 1, ..., R. Then, p = R−1
∑R

r=1 pr estimates the probability of correct

decision, P (k̂1 = k) (or P (k̂2 = k)), for each ID estimating methodology. Fig.3 shows that

p1 estimating P (k̂1 = k) decreases as d increases, while p2 estimating P (k̂2 = k) increases as

d increases. As stated in Theorem 2.1, the experimenter needs to take samples depending on

d in the ID estimating methodology, k̂1. The sample size fixed at n = 30 is not large enough
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to use k̂1 efficiently. On the other hand, k̂2 estimates ID surprisingly well in such HDLSS

cases.

Fig.1. Average ID number Fig.2. Variance of ID estimation

Fig.3. Probability of correct decision

4. EXAMPLE

We analyzed gene expression data given by Chiaretti et al. (2004) in which dataset

consisted of 12625 (= d) genes and 128 (= 2n) microarrays from different patients. Note that

the expression measures have been obtained using the three-step robust multichip average

(RMA) preprocessing method. Refer to Pollard et al. (2005) as well for the details. Here,

we had data matrices X1 and X2 of each size 12625× 64. Let X : 12625× 128 = [X1, X2].

We first specified the threshold level dγ as follows. We considered that each noise effect

is less than 5% (or β = 0.05) of the sum of all eigenvalues of Σ. Then, with the help

of Remark 1, we chose γ = 0.524 so as to satisfy the equation that dγ = βtr(S), where
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S = (X − X)(X − X)T /128. Since γ > 1/2, we used the ID estimating methodology,

k̂2, given by Theorem 2.2. Here, S2
D was defined in view of Corollary 2.2. We calculated

the eigenvalues of d−2γS2
D as (d−2γλ̂2

1, d
−2γλ̂2

2, d
−2γλ̂2

3, d
−2γλ̂2

4, ...) = (7.17, 1.53, 1.34, 0.48, ...).

Hence, we obtained k̂2 = 3. So, we claimed that the ID of this HDLSS dataset is 3. In

addition, we observed that k̂2 = 2 for β = 0.06 and k̂2 = 3 for β = 0.04.

APPENDIX

Throughout this section, let us write Rn = {en ∈ Rn : ||en|| = 1}. Let U 1 = n−1
∑k

i=1 λiW i

and U 2 = n−1
∑d

i=k+1λiW i, where W i’s are defined in (2). Let V 1 = n−1
∑k

i=1 λiY
T
i and

V 2 = n−1
∑d

i=k+1 λiY
T
i , where Y i’s are defined in (4).

Lemma 1. Assume that n ≥ k + 1. Let δ̂1 ≥ · · · ≥ δ̂n ≥ 0 be the eigenvalues of U 1. Then,

it holds that lim inf d−γ δ̂k > 1 w.p.1 as d → ∞ either when n → ∞ or n is a fixed number

satisfying assumptions (A1)–(A2).

Proof. Let ẑj = (||n−1/2zj||)−1n−1/2zj for j = 1, ..., k. Then, let us write that d−αkU 1 =
∑k

j=1 ajd
αj−αk ||n−1/2zj||2ẑjẑ

T
j . We first consider the case when n is fixed. From (A1),

there exists a constant ωj (> 0) such that ajd
αj−αk ||n−1/2zj||2 > ωj w.p.1 as d → ∞ for

j = 1, ..., k. When k = 1, we can claim as d →∞ that there exists a constant ζ1 (> 0) such

that d−α1 δ̂1 > ζ1 w.p.1. We consider the case when k ≥ 2. Let us write Rn,j = {en ∈ Rn :

en =
∑k

i=1(\j) biẑi, bi ∈ R}, where (\j) excludes number j. From (A2), it holds as d → ∞
that ẑj, j = 1, ..., k, are linearly independent and there exists a constant ξj (> 0) such that

|ẑT
j enj| > ξj w.p.1 as d →∞ for j = 1, ..., k, where enj is an arbitrary element of Rn,j. Thus

we can claim as d →∞ that there exists a constant ζj (> 0) such that d−αk δ̂j > ζj w.p.1 for

j = 1, ..., k. Noting that dαk−γζi > 1 w.p.1 as d →∞, it holds that lim inf d−γ δ̂k > 1 w.p.1 as

d →∞. Next, we consider the case when n →∞. From the facts that ||n−1/2zi|| = 1+op(1)

and n−1zT
i zj = op(1) for i 6= j as n → ∞, we can claim (A1)–(A2) in the case. Thus, in a

way similar to above, it concludes the results. 2
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Proof of Theorem 2.1. Let us write SD = U 1 + U 2. We first consider the latter part, U 2.

When k < m, one has for all diagonal elements of d−γU 2 as (I) or (II) that

n∑

i′=1

P
(
(dγn)−1

∣∣∣
d∑

i=k+1

λiz
2
ii′

∣∣∣ > τ
)

≤ τ−2Md−2γn−1
(( m∑

i=k+1

λi

)2

+
( d∑

i=m+1

λi

)2

+ 2
( m∑

i=k+1

λi

)( d∑
i=m+1

λi

))

= O(d2αk+1−2γ/n) + O(d2−2γ/n) + O(d1+αk+1−2γ/n) = o(1)

by using Chebyshev’s inequality, for any τ > 0 and the uniform bound M for the fourth

moments condition. Thus all diagonal elements of d−γU 2 have op(1). Let us write ui′j′(=

(dγn)−1
∑d

i=k+1 λizii′zij′) for i′ 6= j′ as an off-diagonal element of d−γU 2. Then, by using

Markov’s inequality, we claim as d →∞ and either n →∞ or n is fixed that

P
( ∑

i′ 6=j′
u2

i′j′ > τ
)
≤ τ−1d−2γ

( d∑
i=m+1

λ2
i

)
+ O(d2αk+1−2γ) = O(d1−2γ) + o(1) = o(1) (5)

by noting that γ > 1/2. Thus we have
∑

i′ 6=j′ u
2
i′j′ = op(1). Let en = (e1, ..., en)T be an

arbitrary element of Rn. Since it holds that
∑

i′ 6=j′ e
2
i′e

2
j′ ≤ 1, we obtain that

∑

i′ 6=j′
ei′ej′ui′j′ = op(1). (6)

Hence, we can claim as (I) or (II) that d−γeT
nSDen = d−γeT

nU 1en + op(1). When k = m, we

can claim that d−γeT
nSDen = d−γeT

nU 1en + op(1) in a similar way. By applying Lemma 1

to the former part, U 1, we obtain the result. 2

Proof of Corollary 2.1. Let us write that λ−1
1 SD = B1+B2, where B1 = n−1W 1 = n−1z1z

T
1

and B2 = (nλ1)
−1

∑d
i=2 λiW i. Noting that α1 > α2 or m = 1, similarly to the proof of

Theorem 2.1, we have that eT
nB2en = op(1) for any en ∈ Rn either as d →∞ and d2−2α1/n →

0 when α1 ∈ (1/2, 1] or as d →∞ and n →∞ when α1 > 1. From the fact that ||n−1/2z1|| =
1+op(1) as n →∞, we claim either as d →∞ and d2−2α1/n → 0 for α1 ∈ (1/2, 1] or as d →∞
and n → ∞ for α1 > 1 that max(eT

nλ−1
1 SDen) = max(eT

nn−1z1z
T
1 en + op(1)) = 1 + op(1)

11



with respect to any en ∈ Rn. It concludes the result. 2

Lemma 2. Assume that n ≥ k + 1. Let δ̃1 ≥ · · · ≥ δ̃k ≥ 0 be singular values of V 1. Let

ũj(1) ∈ Rn be a left-singular vector and ũj(2) ∈ Rn be a right-singular vector corresponding

to δ̃j (j = 1, ..., k). Let us write the singular value decomposition as V 1 =
∑k

j=1 δ̃jũj(1)ũ
T
j(2).

Then, it holds that lim inf d−γ δ̃k > 1 w.p.1 as d → ∞ and either n → ∞ or n is a fixed

number satisfying (A1’)-(A2’).

Proof. Let ẑij = (||n−1/2zij||)−1n−1/2zij for j = 1, ..., k (i = 1, 2). Then, we have that

d−αkV 1 =
∑k

j=1 ajd
αj−αk(||n−1/2z1j||ẑ1j)(||n−1/2z2j||ẑ2j)

T . The result is obtained in similar

fashion to the proof of Lemma 1. 2

Lemma 3. We have for γ > 1/2 that d−γeT
1nV 2e2n = op(1) as d →∞ either when n →∞

or n is a fixed number, where e1n and e2n are arbitrary elements of Rn.

Proof. Let us write vi′j′ = n−1
∑d

i=k+1 λiz1ii′z2ij′ as an (i′, j′) element of V 2. We first consider

off-diagonal elements of V 2. We have that E{n2(d−γvi′j′)
2} = O(d1−2γ)+o(1) = o(1) for i′ 6=

j′. Thus in a way similar to (5)-(6), we claim that d−γeT
1n(V 2−diag(v11, ..., vnn))e2n = op(1).

Next, we consider diagonal elements of V 2. One has for all diagonal elements of d−γV 2 as

d →∞ that

n∑

i′=1

P
(
d−γ|vi′i′| > τ

)
=

n∑

i′=1

P
(
(dγn)−1

∣∣∣
d∑

i=k+1

λiz1ii′z2ii′

∣∣∣ > τ
)

≤ τ−2d−2γn−1
( d∑

i=k+1

λ2
i

)
= O(d1−2γ/n) + o(1) = o(1)

by using Chebyshev’s inequality, for any τ > 0. Thus all diagonal elements of d−γV 2 have

op(1). It concludes the result. 2

Proof of Theorem 2.2. Let us write that SD(1) = n−1
∑d

i=1 λiY
T
i = V 1 + V 2. Let

√
λ̂2

1 ≥
· · · ≥

√
λ̂2

n ≥ 0 be singular values of SD(1). Let ûj(1) ∈ Rn be a left-singular vector and

ûj(2) ∈ Rn be a right-singular vector corresponding to
√

λ̂2
j (j = 1, ..., n). Then, we have

the singular value decomposition as SD(1) =
∑n

j=1

√
λ̂2

j ûj(1)û
T
j(2). From Lemmas 2 and 3, it

12



holds for γ > 1/2 that lim inf d−γ

√
λ̂2

k > 1 w.p.1 and d−γ
√

λ̂2
j = op(1) for j = k + 1, ..., n,

as d → ∞ either when n → ∞ or n is a fixed number satisfying (A1’)–(A2’). Noting that

S2
D = SD(1)S

T
D(1) =

∑n
j=1 λ̂2

j ûj(1)û
T
j(1), it concludes the result. 2

Proof of Corollary 2.2. Let us write that Λ−1/2V T (X i − X i) = [źi1, ..., źid]
T and źij =

(źij1, ..., źijn)T for i = 1, 2 and j = 1, ..., d. Then, we have that źijl = zijl − z̄ij for l =

1, ..., n, where z̄ij =
∑n

l=1 zijl/n. Let E(zijl) = µj for j = 1, ..., d. We write that źijl =

z̃ijl + zoij, where z̃ijl = zijl − µj and zoij = µj − z̄ij (i = 1, 2; j = 1, ..., d; l = 1, ..., n).

Now, let us write that n-vectors z̃ij = (z̃ij1, ..., z̃ijn)T and zoij = (zoij, ..., zoij)
T for i =

1, 2 and j = 1, ..., d. Then, we can write that (X1 − X1)
T (X2 − X2) =

∑d
j=1 λj(z̃1j +

zo1j)(z̃2j + zo2j)
T . Let V o = n−1

∑d
j=k+1 λj(z̃1j + zo1j)(z̃2j + zo2j)

T . We first consider

the term n−1
∑d

j=k+1 λjz̃1jz
T
o2j. Let us write that voi′j′ = n−1

∑d
j=k+1 λj z̃1ji′zo2j as (i, j)

element of n−1
∑d

j=k+1 λjz̃1jz
T
o2j. Then, we have for γ > 1/2 that E{n2(d−γvoi′j′)

2} =

O(d1−2γ) + o(1) = o(1). Thus, in a way similar to the proof of Lemma 3, we claim for

γ > 1/2 that n−1d−γeT
1n

∑d
j=k+1 λjz̃1jz

T
o2je2n = op(1) as d → ∞ for any e1n, e2n ∈ Rn.

Similarly, we claim for γ > 1/2 that n−1d−γeT
1n

∑d
j=k+1 λjzo1jz

T
o2je2n = op(1) as d → ∞.

Thus we have for γ > 1/2 that n−1d−γeT
1nV oe2n = n−1d−γeT

1n

∑d
j=k+1 λjz̃1jz̃

T
2je2n + op(1) as

d → ∞. Here, let us write V o2 = n−1
∑d

j=k+1 λjz̃1jz̃
T
2j. Then, note that V o2 is essentially

equal to V 2. Hence, we can claim the assertion in Lemma 3 by replacing zijl with z̃ijl. Thus,

similarly to the proof of Theorem 2.2, we obtain the result in Theorem 2.2 given by replacing

both n ≥ k + 1 and zij in (A1’)–(A2’) with n ≥ k + 2 and źij respectively. 2

Proof of Corollary 2.3. Let SD(1) = n−1
∑d

i=1 λiY
T
i as before. Let us write λ−1

1 SD(1) =

M 1+M 2, where M 1 = n−1Y T
1 and M 2 = (nλ1)

−1
∑d

i=2 λiY
T
i . Note that α1 > α2 or m = 1.

In a way similar to the proof of Lemma 3, we have for α1 > 1/2 that eT
1nM 2e2n = op(1) for

any e1n, e2n ∈ Rn as d →∞ and n →∞. The result can be obtained similarly to the proof

of Corollary 2.1. 2
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