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1. Introduction

As Mangiarotti and Modugno [11] have amply demonstrated, the central part
of orthodox differential geometry based on principal connections can be de-
veloped within a more general framework of fibered manifolds (without any
distinguished additional structures), in which the graded Lie algebra of tangent-
vector-valued forms investigated by Frölicher and Nijenhuis [2] renders an ap-
propriate differential calculus. The present paper is concerned with this graded
Lie algebra, which plays a crucial role in their general differential geometry.
Our present approach as well as [16] is highly combinatorial or geometric, while
Frölicher and Nijenhuis’ original approach was tremendously algebraic.
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This paper consists of 4 sections, besides this introduction. The second
section is devoted to preliminaries including vector fields and (real-valued) dif-
ferential forms. Obviously tangent-vector-valued forms are a generalization of
differential forms and vector fields at the same time, while the graded Lie al-
gebra of tangent-vector-valued forms is a generaliztion of the Lie algebra of
vector fields. Section 3 gives two distinct but equivalent views of tangent-
vector-valued forms, just as we have given two distinct but equivalent views of
vector fields in [19]. Section 4 is divided into two subsections, the first of which is
mainly concerned with the graded Jacobi identity of entities much more general
than tangent-vector-valued forms (i.e., without homogeneity or the alternating
property assumed at all), while the second of which derives the graded Jacobi
identity of tangent-vector-valued forms from the highly general graded Jacobi
identity established in the first subsection. Our proof of the graded Jacobi iden-
tity in the first subsection is based upon the general Jacobi identity established
by the author [14] more than a decade ago. Section 5 is similarly divided into
two subsections, the first of which shows that the Lie derivation of differential
semiforms by tangent-vector-valued semiforms preserves the Lie bracket, while
the second of which demonstrates that the Lie derivation of differential forms
by tangent-vector-valued forms preserves the Frölicher-Nijenhuis bracket.

2. Preliminaries

In this paper, n, p, q, ... represent natural numbers. We assume that the reader
has already read our previous papers [19] and [20].

2.1. Frölicher Spaces

Frölicher and his followers have vigorously and consistently developed a general
theory of smooth spaces, often called Frölicher spaces for his celebrity, which
were intended to be the underlying set theory for infinite-dimensional differen-
tial geometry. A Frölicher space is an underlying set endowed with a class of
real-valued functions on it (simply called structure functions) and a class of
mappings from the set R of real numbers to the underlying set (called structure

curves) subject to the condition that structure curves and structure functions
should compose so as to yield smooth mappings from R to itself. It is required
that the class of structure functions and that of structure curves should de-
termine each other so that each of the two classes is maximal with respect to
the other as far as they abide by the above condition. What is most impor-
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tant among many nice properties about the category FS of Frölicher spaces
and smooth mappings is that it is cartesian closed, while neither the category
of finite-dimensional smooth manifolds nor that of infinite-dimensional smooth
manifolds modelled after any infinite-dimensional vector spaces such as Hilbert
spaces, Banach spaces, Fréchet spaces or the like is so at all. For a standard
reference on Frölicher spaces the reader is referred to [6].

2.2. Weil Algebras and Infinitesimal Objects

The notion of a Weil algebra was introduced by Weil himself in [23]. We de-
note by W the category of Weil algebras. Roughly speaking, each Weil algebra
corresponds to an infinitesimal object in the shade. By way of example, the
Weil algebra R[X]/(X2) (= the quotient ring of the polynomial ring R[X] of
an indeterminate X over R modulo the ideal (X2) generated by X2) corre-
sponds to the infinitesimal object of first-order nilpotent infinitesimals, while
the Weil algebra R[X]/(X3) corresponds to the infinitesimal object of second-
order nilpotent infinitesimals. Although an infinitesimal object is undoubtedly
imaginary in the real world, as has harassed both mathematicians and philoso-
phers of the 17-th and the 18-th centuries (because mathematicians at that
time preferred to talk infinitesimal objects as if they were real entities), each
Weil algebra yields its corresponding Weil functor on the category of smooth
manifolds of some kind to itself, which is no doubt a real entity. By way of
example, the Weil algebra R[X]/(X2) yields the tangent bundle functor as its
corresponding Weil functor. Intuitively speaking, the Weil functor correspond-
ing to a Weil algebra stands for the exponentiation by the infinitesimal object
corresponding to the Weil algebra at issue. For Weil functors on the category of
finite-dimensional smooth manifolds, the reader is referred to Section 35 of [8],
while the reader can find a readable treatment of Weil functors on the category
of smooth manifolds modelled on convenient vector spaces in Section 31 of [9].

Synthetic differential geometry (usually abbreviated to SDG), which is a
kind of differential geometry with a cornucopia of nilpotent infinitesimals, was
forced to invent its models, in which nilpotent infinitesimals were visible. For
a standard textbook on SDG, the reader is referred to [10], while he or she is
referred to [7] for the model theory of SDG constructed vigorously by Dubuc [1]
and others. Although we do not get involved in SDG herein, we will exploit lo-
cutions in terms of infinitesimal objects so as to make the paper highly readable.
Thus we prefer to write WD and WD2 in place of R[X]/(X2) and R[X]/(X3)
respectively, where D stands for the infinitesimal object of first-order nilpo-
tent infinitesimals, and D2 stands for the infinitesimal object of second-order
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nilpotent infinitesimals. To Newton and Leibniz, D stood for

{d ∈ R | d2 = 0}

while D2 stood for
{d ∈ R | d3 = 0}.

We will write Wd∈D2 7→d2∈D for the homomorphim of Weil algebras R[X]/(X2) →
R[X]/(X3) induced by the homomorphism X → X2 of the polynomial ring
R[X] to itself. Such locutions are justifiable, because the category W of Weil
algebras in the real world and the category of infinitesimal objects in the shade
are dual to each other in a sense. Thus we have a contravariant functor W
from the category of infinitesimal objects in the shade to the category of Weil
algebras in the real world. Its inverse contravariant functor from the category
of Weil algebras in the real world to the category of Weil algebras in the real
world is denoted by D. By way of example, DR[X]/(X2) and DR[X]/(X3) stand
for D and D2 respectively. To familiarize himself or herself with such locutions,
the reader is strongly encouraged to read the first two chapters of [10], even if
he or she is not interested in SDG at all.

In [17] we have discussed how to assign, to each pair (X,W ) of a Frölicher
space X and a Weil algebra W , another Frölicher space X ⊗W called the Weil

prolongation of X with respect to W , which is naturally extended to a bifunctor
FS×W → FS, and then to show that the functor ·⊗W : FS → FS is product-
preserving for any Weil algebra W . Weil prolongations are well-known as Weil

functors for finite-dimensional and infinite-dimensional smooth manifolds in
orthodox differential geometry, as we have already discussed above.

The central object of study in SDG is microlinear spaces. Although the no-
tion of a manifold (= a pasting of copies of a certain linear space) is defined on
the local level, the notion of microlinearity is defined on the genuinely infinites-
imal level. For the historical account of microlinearity, the reader is referred
to Subsection 2.4 of [10] or Appendix D of [7]. To get an adequately restricted
cartesian closed subcategory of Frölicher spaces, we have emancipated microlin-
earity from within a well-adapted model of SDG to Frölicher spaces in the real
world in [18]. Recall that a Frölicher space X is called microlinear providing
that any finite limit diagram D in W yields a limit diagram X⊗D in FS, where
X ⊗ D is obtained from D by putting X⊗ to the left of every object and every
morphism in D.

As we have discussed there, all convenient vector spaces are microlinear, so
that all C∞-manifolds in the sense of [9] (cf. Section 27) are also microlinear.

We have no reason to hold that all Frölicher spaces credit Weil prolongations
as exponentiation by infinitesimal objects in the shade. Therefore we need a
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notion which distinguishes Frölicher spaces that do so from those that do not.
A Frölicher space X is called Weil exponentiable if

(X ⊗ (W1 ⊗∞ W2))
Y = (X ⊗W1)

Y ⊗W2 (1)

holds naturally for any Frölicher space Y and any Weil algebras W1 and W2. If
Y = 1, then (1) degenerates into

X ⊗ (W1 ⊗∞ W2) = (X ⊗W1) ⊗W2. (2)

If W1 = R, then (1) degenerates into

(X ⊗W2)
Y = XY ⊗W2. (3)

We have shown in [17] that all convenient vector spaces are Weil exponen-
tiable, so that all C∞-manifolds in the sense of [9] (cf. Section 27) are Weil
exponentiable.

We have demonstrated in [18] that all Frölicher spaces that are microlinear
and Weil exponentiable form a Cartesian closed category. In the sequel, M
shall be assumed to be such a Frölicher space.

It is well known that the category W is left exact. In SDG, a finite diagram
D in D is called a quasi-colimit diagram provided that the contravariant functor
W transforms D into a limit diagram in W. By way of example, the following
diagram in D is a famous quasi-colimit diagram, for which the reader is referred
to pp. 92-93 of [10].

D(2)
i
→ D2

i ↓ ↓ ψ

D2 →
ϕ

D2 ⊕D

(4)

where i : D(2) → D2 is the canonical injection, D2 ⊕D is

D2 ⊕D = {(d1, d2, e) ∈ D
3 | d1e = d2e = 0},

ϕ : D2 → D2 ⊕D is
ϕ(d1, d2) = (d1, d2, 0)

for any (d1, d2) ∈ D2, and ψ : D2 → D2 ⊕D is

ψ(d1, d2) = (d1, d2, d1d2)

for any (d1, d2) ∈ D2.
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2.3. Vector Fields

Our two distinct but equivalent viewpoints of vector fields on M are simply
based upon the following exponential law:

[M →M ⊗WD]

= [M →M ] ⊗WD.

The first definition of a vector field on M goes as follows:

Definition 1. A vector field on M is a section of the tangent bundle
π : M ⊗WD →M .

The second definition of a vector field on M goes as follows:

Definition 2. A vector field on M is a tangent vector of the space
[M →M ] with foot point idM .

Generally speaking, we prefer the second definition of a vector field to the
first one. In our previous paper [19], we have shown that

Theorem 3. The totality of vector fields on M forms a Lie algebra.

In particular, our proof of the Jacobi identity of vector fields is based upon
the following general Jacobi identity.

Theorem 4. Let γ123, γ132, γ213, γ231, γ312, γ321 ∈ M ⊗WD3. As long as
the following three expressions are well defined, they sum up only to vanish:

(γ123

·

−
1
γ132)

·

− (γ231

·

−
1
γ321)

(γ231

·

−
2
γ213)

·

− (γ312

·

−
2
γ132)

(γ312

·

−
3
γ321)

·

− (γ123

·

−
3
γ213)

The above theorem was discovered by the author in [14] more than a decade
ago, and with due regard to its importance, it was provided with two other
proofs in [15] and [22].

2.4. Euclidean Vector Spaces

Frankly speaking, our exposition of a Euclidean vector space in [20] was a bit
confused. The exact definition of a Euclidean vector space goes as follows.
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Definition 5. A vector space E (over R) in the category FS is called
Euclidean provided that the canonical mapping i1

E
: E × E → E ⊗WD induced

by the mapping

(a,b) ∈ E × E 7→ (x ∈ R 7→ a+xb ∈ E) ∈ E
R

is bijective.

Notation 6. Let E be a Euclidean vector space. Given γ ∈ E ⊗WD, we
write D (γ) for b ∈ E in the above definition.

Notation 7. Let E be a Euclidean vector space. Given γ ∈ E ⊗ WDn

(n ≥ 2), we write Di (γ) ∈ E ⊗WDn−1 for the image of γ under the composite
of mappings

E ⊗WDn idE ⊗W(d1,...dn)∈Dn 7→(d1,...,di−1,di+1,...,dn,di)∈Dn

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
E ⊗WDn

= E ⊗ (WDn−1 ⊗∞ WD) = (E ⊗WDn−1) ⊗WD D−−−−→E ⊗WDn−1 .

Theorem 8. In a Euclidean vector space E, Taylor’s expansion theorem
holds in the sense that the canonical mapping i2

E
: E × E × E × E → E ⊗WD2

induced by the mapping

(a,b1,b2,b12) ∈ E × E × E × E 7→
(
(x1, x2) ∈ R

2 7→ a+x1b1 + x2b2 + x1x2b12 ∈ E
)
∈ E

R
2

is bijective, the canonical mapping i3
E

: E × E × E × E × E × E × E × E → E ⊗
WD3 induced by the mapping

(a,b1,b2,b3,b12,b13,b23,b123) ∈ E × E × E × E × E × E × E × E 7→

((x1, x2, x3) ∈ R
3 7→ a+x1b1 + x2b2 + x3b3

+ x1x2b12 + x1x3b13 + x2x3b23 + x1x2x3b123 ∈ E) ∈ E
R3

is bijective, and so on.

Proof. Here we deal only with the first case, leaving similar treatments of
the other cases to the reader. Schematically we have

E ⊗WD2 = E ⊗ (WD ⊗∞ WD)

= (E ⊗WD) ⊗WD

= (E × E) ⊗WD

= (E ⊗WD)× (E ⊗WD)
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[since the endofunctor · ⊗WD of the category FS preserves products]

= E × E × E × E.

Proposition 9. Let E be a Euclidean vector space. Given γ ∈ E ⊗WD2,
we have

D (D2 (γ)) = D (D1 (γ)) .

Proof. It is easy to see that both sides give rise to b12 in Theorem 8.

Here we will give a slight variant of Taylor’s Expansion Theorem.

Theorem 10. Let E be a Euclidean vector space, which is microlineaar.
The canonical mapping iD

2⊕D
E

: E × E × E × E × E → E ⊗WD2⊕D induced by
the mapping

(a,b1,b2,b12, c) ∈ E × E × E × E × E 7→
(
(x1, x2, x3) ∈ R

3 7→ a+x1b1 + x2b2 + x1x2b12 + x3c ∈ E
)
∈ E

R
3

is bijective.

Proof. This follows from Theorem 8 and the quasi-colimit diagram (4).

Proposition 11. Let E be a Euclidean vector space, which is microlineaar.
Let γ1, γ2 ∈ E ⊗WD2 with

(
idE ⊗W(d1,d2)∈D(2)7→(d1,d2)∈D2

)
(γ1) =

(
idE ⊗W(d1,d2)∈D(2)7→(d1,d2)∈D2

)
(γ2) .

Then we have

D
(
γ1

·

− γ2

)
= D (D2 (γ1)) −D (D2 (γ2)) .

Proof. Let the Taylor’s expansion of γ1 be

(x1, x2) ∈ R
2 7→ a+x1b1 + x2b2 + x1x2b12 ∈ E

with

(a,b1,b2,b12) ∈ E × E × E × E

and the Taylor’s expansion of γ2 be

(x1, x2) ∈ R
2 7→ a+x1b1 + x2b2 + x1x2b

′
12 ∈ E
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with b′
12 ∈ E and a,b1,b2 being the same as above. Then the Taylor’s ex-

pansion of γ ∈ E ⊗WD2⊕D with (idE ⊗Wϕ) (γ) = γ2 and (idE ⊗Wψ) (γ) = γ1

is

(x1, x2, x3) ∈ R
3 7→ a+x1b1 + x2b2 + x1x2b12 + x3

(
b12 − b′

12

)
∈ E,

so that
D
(
γ1

·

− γ2

)
= b12 − b′

12,

which completes the proof.

2.5. Differential Forms

We recall the familiar definition.

Definition 12. An element θ of the space [M ⊗WDn → R] is called a
(real-valued) differential n-form provided that

1. θ is n-homogeneous in the sense that

θ

(
α ·
i
θ

)
= αθ(γ)

for any γ ∈M ⊗WDn and any α ∈ R, where α ·
i
γ is defined by

α ·
i
γ =


idM ⊗W„

α·
i

«

Dn


 (γ)

with the putative mapping

(
α·
i

)

Dn

: Dn → Dn being

(d1, ..., dn) ∈ Dn 7→ (d1, ..., di−1, αdi, di+1, ..., dn) ∈ Dn.

2. θ is alternating in the sense that

ω(γσ) = ǫσω(γ)

for any σ ∈ Sn, where Sn is the group of permutations of 1, ..., n, ǫσ is the
sign of the permutation σ, and γσ is defined by

γσ = (idM ⊗WσDn )(γ)

with the putative mapping σDn : Dn → Dn being

(d1, ..., dn) ∈ Dn 7→ (dσ(1), ..., dσ(n)) ∈ D
n.
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Definition 13. By dropping the second condition in the above definition,
we get the notion of a differential n-semiform on M .

Notation 14. We denote by Ωn (M) and Ω̃n (M) the totality of differential
n-forms on M and that of differential n-semiforms on M , respectively. We
denote by Ω (M) and Ω̃ (M) the totality of differential forms on M and that of
differential semiforms on M , respectively.

Definition 15. Given θ1 ∈ [M ⊗WDp → R] and θ2 ∈ [M ⊗WDq → R],
we define θ1 ⊗ θ2 ∈ [M ⊗WDp+q → R] to be

(θ1 ⊗ θ2) (γ)

=θ1
(
W(d1,...,dp)∈Dp 7→(d1,...,dp,0,...,0)∈Dp+q (γ)

)

θ2
(
W(d1,...,dq)∈Dq 7→(0,...,0,d1,...,dq)∈Dp+q (γ)

)
.

It is easy to see the following.

Proposition 16. If θ1 is a differential p-semiform on M and θ2 is a
differential q-semiform on M , then θ1 ⊗ θ2 is a differential (p+ q)-semiform on
M .

Proposition 17. Given θ1 ∈ [M ⊗WDp → R], θ2 ∈ [M ⊗WDq → R] and
θ3 ∈ [M ⊗WDr → R], we have

(θ1 ⊗ θ2) ⊗ θ3 = θ1 ⊗ (θ2 ⊗ θ3) .

Remark 18. Therefore we can write θ1 ⊗ θ2 ⊗ θ3 without ambiguity.

Definition 19. Given θ ∈ [M ⊗WDp → R], we define

Aθ ∈ [M ⊗WDp → R]

to be
Aθ =

∑

σ∈Sp

εσθ
σ.

Notation 20. Given θ ∈ [M ⊗WDp+q → R], we write Ap,qθ for (1/p!q!)Aθ.
Given θ ∈ [M ⊗WDp+q+r → R], we write Ap,q,rθ for (1/p!q!r!)Aθ.

Definition 21. Given θ1 ∈ [M ⊗WDp → R] and θ2 ∈ [M ⊗WDq → R],
we define θ1 ∧ θ2 ∈ [M ⊗WDp+q → R] to be Ap,q (θ1 ⊗ θ2).

It is easy to see the following.

Proposition 22. If θ is a differential semiform on M , then Aθ is a
differential form.
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Proposition 23. Given θ1 ∈ [M ⊗WDp → R], θ2 ∈ [M ⊗WDq → R] and
θ3 ∈ [M ⊗WDr → R], we have

Ap,q+r (θ1 ⊗Aq,r (θ2 ⊗ θ3))

= Ap+q,r (Ap,q (θ1 ⊗ θ2) ⊗ θ3)

= Ap,q,r (θ1 ⊗ θ2 ⊗ θ3) .

Corollary 24. Given θ1 ∈ [M ⊗WDp → R], θ2 ∈ [M ⊗WDq → R] and
θ3 ∈ [M ⊗WDr → R], we have

(θ1 ∧ θ2) ∧ θ3 = θ1 ∧ (θ2 ∧ θ3) .

It is easy to see the following two propositions.

Proposition 25. Convenient vector spaces are Euclidean vector spaces
which are microlinear and Weil exponentiable.

Proposition 26. The spaces Ωn (M) and Ω̃n (M) are convenient vector
spaces.

Therefore we have

Proposition 27. The spaces Ωn (M) and Ω̃n (M) are Euclidean vector
spaces which are microlinear.

3. Tangent-Vector-Valued Differential Forms

Our two distinct but equivalent viewpoints of tangent-vector-valued differential
forms on M are based upon the following exponential law:

[M ⊗WDp →M ⊗WD] = [M ⊗WDp →M ] ⊗WD

If p = 0, the above law degenerates into the corresponding one in Subsection
2.1.

The first viewpoint, which is highly orthodox, goes as follows.

Definition 28. A tangent-vector-valued p-form on M is a mapping ξ :
M ⊗WDp →M ⊗WD subject to the following three conditions:

1. We have
πM⊗WDp

M (γ) = πM⊗WD

M (ξ(γ))

for any γ ∈M ⊗WDp .
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2. We have

ξ(α ·
i
γ) = αξ(γ)

for any α ∈ R, any γ ∈M⊗WDp and any natural number i with 1 ≤ i ≤ p.

3. We have

ξ(γσ) = εσξ(γ)

for any γ ∈M ⊗WDp and any σ ∈ Sp.

By dropping the third condition, we get the weaker notion of a tangent-
vector-valued p-semiform on M .

The other viewpoint, which is highly radical, goes as follows.

Definition 29. A tangent-vector-valued p-form on M is an element ξ ∈
[M ⊗WDp →M ] ⊗WD pursuant to the following three conditions:

1. We have

π
[M⊗WDp→M ]⊗WD

[M⊗WDp→M ] (ξ) = δpM ,

where π
[M⊗WDp→M ]⊗WD

[M⊗WDp→M ] : [M ⊗WDp →M ]⊗WD → [M ⊗WDp →M ] is

the canonical projection, and δpM , called a (p-dimensional) Dirac distribu-

tion on M , denotes the canonical projection πM⊗WDp

M : M ⊗WDp →M .

2. We have (((
α·
i

)

M⊗WDp

)∗

⊗ idWD

)
(ξ) = αξ.

3. We have ((
(·σ)M⊗WDp

)∗
⊗ idWD

)
(ξ) = εσξ.

By dropping the third condition, we get the weaker notion of a tangent-
vector-valued p-semiform on M .

The following proposition is simple but very important and highly useful.

Proposition 30. The addition for tangent-vector-valued p-semiforms on

M in the first sense (i.e., using the fiberwise addition of the vector bundle
M ⊗WD → M) and that in the second sense (i.e., as the addition of tangent
vectors to the space [M ⊗WDp →M ] at δpM ) coincide.
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Proof. This follows mainly from the following exponential law:

[M ⊗WDp →M ⊗WD(2)]

= [M ⊗WDp →M ] ⊗WD(2).

The details can safely be left to the reader.

Unless stated to the contrary, we will use the terms tangent-vector-valued

p-semiforms on M and tangent-vector-valued p-forms on M in the second sense.

4. The Frölicher-Nijenhuis Bracket

4.1. The Jacobi Identity for the Lie Bracket

Let us begin this subsection with the following definition.

Definition 31. Given η1 ∈ [M ⊗WDp →M ] and η2 ∈ [M ⊗WDq →M ],
two kinds of convolution, both of which belong to [M ⊗WDp+q →M ], are de-
fined. The first, to be denoted by η1 ∗ η2, is defined to be

M ⊗WDp+q = M ⊗ (WDp ⊗∞ WDq) = M ⊗ (WDq ⊗∞ WDp)

= (M ⊗WDq) ⊗WDp

η2 ⊗ idWDp

→ M ⊗WDp

η1

→ M.

The second, to be denoted by η1∗̃η2, is defined to be

M ⊗WDp+q = M ⊗ (WDp ⊗∞ WDq)

= (M ⊗WDp) ⊗WDq

η1 ⊗ idWDq

→ M ⊗WDq

η2

→ M.

Remark 32. 1. Our two convolutions are reminiscent of the familiar
ones in abstract harmonic analysis and the theory of Schwartz distribu-
tions.

2. If p = q = 0, then

M ⊗WDp = M ⊗WDq = M ⊗WDp+q = M,
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so that

[M ⊗WDp →M ] = [M ⊗WDq →M ] = [M ⊗WDp+q →M ] = [M →M ]

in which we have

η1 ∗ η2 = η1 ◦ η2,

η1∗̃η2 = η2 ◦ η1.

Notation 33. Given σ ∈ Sp and η ∈ [M ⊗WDp →M ], we let ησ denote

η ◦
(
idM ⊗W(d1,...,dp)∈Dp 7→(dσ(1),...,dσ(p))∈Dp

)
.

It should be obvious that

Proposition 34. Given η1 ∈ [M ⊗WDp →M ] and η2 ∈ [M ⊗WDq →M ],
we have

(η2 ∗ η1)
σp,q = η1∗̃η2,

(η2∗̃η1)
σp,q = η1 ∗ η2,

where σp,q is the permutation mapping the sequence 1, ..., q, q + 1, ..., p + q to
the sequence q + 1, ..., p + q, 1, ..., q, namely,

σp,q =

(
1 ... p p+ 1 ... p+ q

q + 1 ... p+ q 1 ... q

)
.

It should also be obvious that

Proposition 35. Given η1 ∈ [M ⊗WDp →M ], η2 ∈ [M ⊗WDq →M ]
and η3 ∈ [M ⊗WDr →M ], we have

(η1 ∗ η2) ∗ η3 = η1 ∗ (η2 ∗ η3),

(η1∗̃η2)∗̃η3 = η1∗̃(η2∗̃η3).

Remark 36. This proposition enables us to write, e.g., η1 ∗η2 ∗η3 without
parentheses in place of (η1 ∗ η2) ∗ η3 or η1 ∗ (η2 ∗ η3). Similarly for η1∗̃η2∗̃η3.

Definition 37. The canonical projection πM⊗WDp

M : M ⊗ WDp → M is
called a (p-dimensional) Dirac distribution on M , which is to be denoted by δpM

The following proposition should be obvious.



DIFFERENTIAL GEOMETRY OF... 113

Proposition 38. If one of η1 ∈ [M ⊗WDp →M ] and η2 ∈ [M ⊗WDq →
M ] is a Dirac distribution, then η1 ∗ η2 and η1∗̃η2 coincide. In particular, if
both of η1 and η2 are Dirac distributions, then η1 ∗ η2 = η1∗̃η2 is also a Dirac
distribution.

Definition 39. An element ξ ∈ [M ⊗WDp →M ] ⊗WDn with

π
[M⊗WDp→M ]⊗WDn

[M⊗WDp→M ] (ξ) = δpM

is called an (n, p)-icon on M .

Remark 40. By dropping the second and third conditions in the second
definition of a tangent-vector-valued p-form on M in the preceding section, we
rediscover the notion of a (1, p)-icon on M .

Definition 41. We define a binary mapping

⊛ : ([M ⊗WDp →M ] ⊗WDm) × ([M ⊗WDq →M ] ⊗WDn) →

[M ⊗WDp+q →M ] ⊗WDm+n

to be

([M ⊗WDp →M ] ⊗WDm) × ([M ⊗WDq →M ] ⊗WDn)(
id[M⊗WDp→M ] ⊗W(d1,...,dm,dm+1,...,dm+n)∈Dm+n 7→(d1,...,dm)∈Dm

)
×

(
id[M⊗WDq→M ] ⊗W(d1,...,dm,dm+1,...,dm+n)∈Dm+n 7→(dm+1,...,dm+n)∈Dn

)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
([M ⊗WDp →M ] ⊗WDm+n) × ([M ⊗WDq →M ] ⊗WDm+n)

= ([M ⊗WDp →M ] × [M ⊗WDq →M ]) ⊗WDm+n

∗ ⊗ idW
Dm+n

−−−−−−−−−→
[M ⊗WDp+q →M ] ⊗WDm+n .

Definition 42. We define a binary mapping

⊛̃ : ([M ⊗WDp →M ] ⊗WDm) × ([M ⊗WDq →M ] ⊗WDn) →

[M ⊗WDp+q →M ] ⊗WDm+n

to be

([M ⊗WDp →M ] ⊗WDm) × ([M ⊗WDq →M ] ⊗WDn)(
id[M⊗WDp→M ] ⊗W(d1,...,dm,dm+1,...,dm+n)∈Dm+n 7→(d1,...,dm)∈Dm

)
×

(
id[M⊗WDq→M ] ⊗W(d1,...,dm,dm+1,...,dm+n)∈Dm+n 7→(dm+1,...,dm+n)∈Dn

)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
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([M ⊗WDp →M ] ⊗WDm+n) × ([M ⊗WDq →M ] ⊗WDm+n)

= ([M ⊗WDp →M ] × [M ⊗WDq →M ]) ⊗WDm+n

∗̃ ⊗ idW
Dm+n

−−−−−−−−−→
[M ⊗WDp+q →M ] ⊗WDm+n .

Proposition 43. Given ξ1 ∈ [M ⊗WDp →M ]⊗WDl , ξ2 ∈ [M ⊗WDq →
M ] ⊗WDm and ξ3 ∈ [M ⊗WDr →M ] ⊗WDn , we have

(ξ1 ⊛ ξ2) ⊛ ξ3 = ξ1 ⊛ (ξ2 ⊛ ξ3),

(ξ1⊛̃ξ2)⊛̃ξ3 = ξ1⊛̃(ξ2⊛̃ξ3).

It should be obvious that

Lemma 44. For any (1, p)-icon ξ1 on M and any (1, q)-icon ξ2 on M , we
have

(
id[M⊗WDp→M ] ⊗W(d1,d2)∈D(2)7→(d1,d2)∈D2

)
(ξ1 ⊛ ξ2)

=
(
id[M⊗WDp→M ] ⊗W(d1,d2)∈D(2)7→(d1,d2)∈D2

) (
ξ1⊛̃ξ2

)
.

Therefore the following definition is meaningful.

Definition 45. For any (1, p)-icon ξ1 on M and any (1, q)-icon ξ2 on M ,
their Lie bracket [ξ1, ξ2]L ∈ [M ⊗WDp+q →M ] ⊗WD is defined to be

[ξ1, ξ2]L = ξ1⊛̃ξ2
·

− ξ1 ⊛ ξ2.

It is easy to see that

Lemma 46. In the above definition, [ξ1, ξ2]L is always a (1, p+ q)-icon on
M .

Proposition 47. If ξ1 is a tangent-vector-valued p-semiform on M and
ξ2 is a tangent-vector-valued q-semiform on M , then we have

(((
α·
i

)

M⊗W
Dp+q

)∗

⊗ idW
D2

)
(ξ1 ⊛ ξ2)

=
(
id[M⊗W

Dp+q→M] ⊗W(d1,d2)∈D2 7→(αd1,d2)∈D2

)
(ξ1 ⊛ ξ2)

(((
α·
i

)

M⊗W
Dp+q

)∗

⊗ idW
D2

)
(ξ1⊛̃ξ2)

=
(
id[M⊗W

Dp+q→M] ⊗W(d1,d2)∈D2 7→(αd1,d2)∈D2

)
(ξ1⊛̃ξ2)



DIFFERENTIAL GEOMETRY OF... 115

for any natural number i with 1 ≤ i ≤ p, while we have

(((
α·
i

)

M⊗W
Dp+q

)∗

⊗ idW
D2

)
(ξ1 ⊛ ξ2)

=
(
id[M⊗W

Dp+q→M] ⊗W(d1,d2)∈D2 7→(d1,αd2)∈D2

)
(ξ1 ⊛ ξ2)

(((
α·
i

)

M⊗W
Dp+q

)∗

⊗ idW
D2

)
(ξ1⊛̃ξ2)

=
(
id[M⊗W

Dp+q→M] ⊗W(d1,d2)∈D2 7→(d1,αd2)∈D2

)
(ξ1⊛̃ξ2)

for any natural number i with p+ 1 ≤ i ≤ p+ q.

Corollary 48. If ξ1 is a tangent-vector-valued p-semiform on M and ξ2
is a tangent-vector-valued q-semiform on M , then [ξ1, ξ2]L is a tangent-vector-
valued (p+ q)-semiform on M .

Proof. It suffices to see that

(((
α·
i

)

M⊗W
Dp+q

)∗

⊗ idWD

)
([ξ1, ξ2]L)

=
(
id[M⊗W

Dp+q→M] ⊗Wd∈D 7→αd∈D

)
([ξ1, ξ2]L)

for any α ∈ R and any natural number i with 1 ≤ i ≤ p+q, which follows easily
from the above Proposition and Proposition 5 in Subsection 3.4 of Lavend-
homme [10].

Proposition 49. If ξ1, ξ
′
1 are tangent-vector-valued p-semiforms on M

and ξ2, ξ
′
2 are tangent-vector-valued q-semiforms on M with α ∈ R, then we

have the following:

1.

[αξ1, ξ2]L = α [ξ1, ξ2]L .

2. [
ξ1 + ξ′1, ξ2

]
L

= [ξ1, ξ2]L +
[
ξ′1, ξ2

]
L
.

3.

[ξ1, αξ2]L = α [ξ1, ξ2]L .
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4. [
ξ1, ξ2 + ξ′2

]
L

= [ξ1, ξ2]L +
[
ξ1, ξ

′
2

]
L
.

Proof. The statements 1 and 3 follow from Proposition 5 in Subsection 3.4
of Lavendhomme [10], while the statements 2 and 4 follow from the statements
1 and 3 respectively.

Notation 50. Given ξ ∈ [M ⊗WDp →M ]⊗WDn and σ ∈ Sp, ξ
σ denotes

(
( )σ[M⊗WDp→M ] ⊗ idWDn

)
(ξ) ,

where ( )σ[M⊗WDp→M ] : [M ⊗WDp →M ] → [M ⊗WDp →M ] denotes the op-
eration

η ∈ [M ⊗WDp →M ] 7→ η ◦
(
idM ⊗W(d1,...,dp)∈Dp 7→(dσ(1),...,dσ(p))∈Dp

)
.

We will show that the Lie bracket [ ]L is antisymmetric.

Proposition 51. Let ξ1 be a (1, p)-icon on M and ξ2 a (1, q)-icon on M .
Then we have the following antisymmetry:

[ξ1, ξ2]L + ([ξ2, ξ1]L)σp,q = 0.

Proof. This follows from Propositions 4 and 6 in Subsection 3.4 of Lavend-
homme [10]. More specifically we have

[ξ1, ξ2]L + ([ξ2, ξ1]L)σp,q

= (ξ1⊛̃ξ2
·

− ξ1 ⊛ ξ2) + (
(
ξ2⊛̃ξ1

)σp,q
·

− (ξ2 ⊛ ξ1)
σp,q)

= (ξ1⊛̃ξ2
·

− ξ1 ⊛ ξ2) +
(
ξ1 ⊛ ξ2

·

− ξ1⊛̃ξ2

)

[By Proposition 34]

= 0.

Theorem 52. Let ξ1 be a (1, p)-icon on M , ξ2 a (1, q)-icon on M , and ξ3
a (1, r)-icon on M . Then we have the following Jacobi identity:

[ξ1, [ξ2, ξ3]L]L +
(
[ξ2, [ξ3, ξ1]L]L

)σp,q+r +
(
[ξ3, [ξ1, ξ2]L]L

)σr,p+q = 0.

In order to establish the above theorem, we need the following simple
lemma, which is a tiny generalization of Proposition 2.6 of [14].
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Lemma 53. Let ξ be an (1, p)-icon on M , and ξ1 and ξ2 (2, q)-icons on
M with

(
id[M⊗WDq→M ] ⊗W(d1,d2)∈D(2)7→(d1,d2)∈D2

)
(ξ1)

=
(
id[M⊗WDq→M ] ⊗W(d1,d2)∈D(2)7→(d1,d2)∈D2

)
(ξ2)

Then the following formulas are both meaningful and valid.

ξ ⊛ ξ1
·

−
1
ξ ⊛ ξ2 = ξ ⊛ (ξ1

·

− ξ2),

ξ⊛̃ξ1
·

−
1
ξ⊛̃ξ2 = ξ⊛̃(ξ1

·

− ξ2),

ξ1 ⊛ ξ
·

−
3
ξ2 ⊛ ξ = (ξ1

·

− ξ2) ⊛ ξ,

ξ1⊛̃ξ
·

−
3
ξ2⊛̃ξ = (ξ1

·

− ξ2)⊛̃ξ.

Proof of Theorem 52. Our present discussion is a tiny generalization of
Proposition 2.7 in [14]. We define six (3, p + q + r)-icons on M as follows:

ξ123 = ξ1 ⊛ ξ2 ⊛ ξ3,

ξ132 = ξ1 ⊛ (ξ2⊛̃ξ3),

ξ213 = (ξ1⊛̃ξ2) ⊛ ξ3,

ξ231 = ξ1⊛̃(ξ2 ⊛ ξ3),

ξ312 = (ξ1 ⊛ ξ2)⊛̃ξ3,

ξ321 = ξ1⊛̃ξ2⊛̃ξ3.

Then it is easy, by dint of Lemma 53, to see that

[ξ1, [ξ2, ξ3]L]L = (ξ123
·

−
1
ξ132)

·

− (ξ231
·

−
1
ξ321), (5)

(
[ξ2, [ξ3, ξ1]L]L

)σp,q+r = (ξ231
·

−
2
ξ213)

·

− (ξ312
·

−
2
ξ132), (6)

(
[ξ3, [ξ1, ξ2]L]L

)σr,p+q = (ξ312
·

−
3
ξ321)

·

− (ξ123
·

−
3
ξ213). (7)

Therefore the desired Jacobi identity follows directly from the general Jacobi
identity.

Remark 54. In order to see that the right-hand side of (5) is meaningful,
we have to check that all of

ξ123
·

−
1
ξ132,



118 H. Nishimura

ξ231
·

−
1
ξ321,

(ξ123
·

−
1
ξ132)

·

− (ξ231
·

−
1
ξ321)

are meaningful. Since ξ2 ⊛ ξ3
·

− ξ2⊛̃ξ3 is meaningful by Lemma 44, ξ123
·

−
1
ξ132

is also meaningful and we have

ξ123
·

−
1
ξ132 = ξ1 ⊛ (ξ2 ⊛ ξ3

·

− ξ2⊛̃ξ3)

by Lemma 53. Similarly ξ231
·

−
1
ξ321 is meaningful and we have

ξ231
·

−
1
ξ321 = ξ1⊛̃(ξ2 ⊛ ξ3

·

− ξ2⊛̃ξ3).

Therefore (ξ123
·

−
1
ξ132)

·

− (ξ231
·

−
1
ξ321) is meaningful by Lemma 44. Similar

considerations apply to (6) and (7).

4.2. The Jacobi Identity for the Frölicher-Nijenhuis Bracket

Definition 55. Given a (1, p)-icon ξ on M , we define another (1, p)-icon
Aξ on M to be

Aξ =
∑

σ∈Sp

εσξ
σ.

Notation 56. Given a (1, p+q)-icon ξ onM , we write Ap,qξ for (1/p!q!)Aξ.
Given a (1, p + q + r)-icon ξ on M , we write Ap,q,rξ for (1/p!q!r!)Aξ.

Lemma 57. If ξ1 is a tangent-vector-valued p-form on M , ξ2 is a tangent-
vector-valued q-form on M and ξ3 is a tangent-vector-valued r-form on M , then
we have

Ap,q+r([ξ1,Aq,r ([ξ2, ξ3]L)]L) = Ap,q,r([ξ1, [ξ2, ξ3]L]L).

Proof. By the same token as in establishing the familiar associativity of
wedge products in differential forms.

Definition 58. Given a tangent-vector-valued p-form ξ1 on M and a
tangent-vector-valued q-form ξ2 on M , we are going to define their Frölicher-

Nijenhuis bracket [ξ1, ξ2]FN to be

[ξ1, ξ2]FN = Ap,q( [ξ1, ξ2]L)

which is undoubtedly a tangent-vector-valued (p+ q)-form on M .
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Proposition 59. If ξ1 is a tangent-vector-valued p-form on M and ξ2
is a tangent-vector-valued q-form on M , then we have the following graded
antisymmetry:

[ξ1, ξ2]FN = −(−1)pq [ξ2, ξ1]FN .

Proof. We have

[ξ1, ξ2]FN = Ap,q( [ξ1, ξ2]L)

= −Ap,q( ([ξ2, ξ1]L)σp,q) [By Proposition 51]

= −
1

p!q!

∑

τ∈Sp+q

ετ (([ξ2, ξ1]L)σp,q)τ

= −
1

p!q!

∑

τ∈Sp+q

ετ ([ξ2, ξ1]L)τσp,q

= −
1

p!q!
εσp,q

∑

τ∈Sp+q

ετσp,q ([ξ2, ξ1]L)τσp,q

= −εσp,q [ξ2, ξ1]FN .

Since ερ = (−1)pq, the desired conclusion follows.

Theorem 60. If ξ1 is a tangent-vector-valued p-form onM , ξ2 is a tangent-
vector-valued q-form on M and ξ3 is a tangent-vector-valued r-form on M , then
the following graded Jacobi identity holds:

[ξ1, [ξ2, ξ3]FN ]FN+(−1)p(q+r) [ξ2, [ξ3, ξ1]FN ]FN+(−1)r(p+q) [ξ3, [ξ1, ξ2]FN ]FN = 0

Proof. We have

[ξ1, [ξ2, ξ3]FL]FL + (−1)p(q+r) [ξ2, [ξ3, ξ1]FL]FL + (−1)r(p+q) [ξ3, [ξ1, ξ2]FL]FL

= Ap,q+r([ξ1,Aq,r ([ξ2, ξ3]L)]L) + (−1)p(q+r)Aq,p+r([ξ2,Ap,r ([ξ3, ξ1]L)]L)+

(−1)r(p+q)Ar,p+q([ξ3,Ap,q ([ξ1, ξ2]L)]L)

= Ap,q,r

{
[ξ1, [ξ2, ξ3]L]L + (−1)p(q+r) [ξ2, [ξ3, ξ1]L]L + (−1)r(p+q) [ξ3, [ξ1, ξ2]L]L

}

[By Lemma 57]

= Ap,q,r

{
[ξ1, [ξ2, ξ3]L]L +

(
[ξ2, [ξ3, ξ1]L]L

)σp,q+r +
(
[ξ3, [ξ1, ξ2]L]L

)σr,p+q
}

= 0

[By Theorem 52]. �
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5. The Lie Derivation

5.1. The Lie Derivation of the First Type

Definition 61. Given η ∈ [M ⊗WDp →M ] and θ ∈ [M ⊗WDq → R],
their convolution η∗̃θ ∈ [M ⊗WDp+q → R] is defined to be the outcome of the
composition of mappings

M ⊗WDp+q = M ⊗ (WDp ⊗∞ WDq)

= (M ⊗WDp) ⊗WDq

η ⊗ idWDq

→ M ⊗WDq

θ
→ R.

It should be obvious that

Proposition 62. Given η1 ∈ [M ⊗WDp →M ], η2 ∈ [M ⊗WDq →M ]
and θ ∈ [M ⊗WDr → R], we have

(η1∗̃η2)∗̃θ = η1∗̃(η2∗̃θ).

Definition 63. We define a binary mapping

⊛̃ : ([M ⊗WDp →M ] ⊗WDm) × ([M ⊗WDq → R] ⊗WDn) →

[M ⊗WDp+q → R] ⊗WDm+n

to be the composition of mappings

([M ⊗WDp →M ] ⊗WDm) × ([M ⊗WDq → R] ⊗WDn)(
id[M⊗WDp→M ] ⊗W(d1,...,dm,dm+1,...,dm+n)∈Dm+n 7→(d1,...,dm)∈Dm

)
×

(
id[M⊗WDq→R] ⊗W(d1,...,dm,dm+1,...,dm+n)∈Dm+n 7→(dm+1,...,dm+n)∈Dn

)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
([M ⊗WDp →M ] ⊗WDm+n) × ([M ⊗WDq → R] ⊗WDm+n)

= ([M ⊗WDp →M ] × [M ⊗WDq → R]) ⊗WDm+n

∗̃ ⊗ idW
Dm+n

−−−−−−−−−→
[M ⊗WDp+q → R] ⊗WDm+n .

It should be obvious that

Proposition 64. Given

ξ1 ∈ [M ⊗WDp →M ] ⊗WDm,

ξ2 ∈ [M ⊗WDq →M ] ⊗WDn ,
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and θ ∈ [M ⊗WDr → R] ⊗WDl , we have

(ξ1⊛̃ξ2)⊛̃θ = ξ1⊛̃(ξ2⊛̃θ).

Definition 65. For any ξ ∈ [M ⊗WDp →M ] ⊗WD and any

θ ∈ [M ⊗WDq → R] ,

we define L̂ξθ to be

L̂ξθ = D
(
ξ⊗̃θ

)
.

It is easy to see that

Proposition 66. Given ξ ∈ [M ⊗WDp →M ]⊗WD, θ1 ∈ [M ⊗WDq → R]
and θ2 ∈ [M ⊗WDr → R], we have

L̂ξ (θ1 ⊗ θ2) =
(
L̂ξθ1

)
⊗ θ2 +

(
θ1 ⊗

(
L̂ξθ2

))σ+r
p,q

where σ+r
p,q is

(
1 ... p p+ 1 ... p+ q p+ q + 1 ... p+ q + r

q + 1 ... p+ q 1 ... q p+ q + 1 ... p+ q + r

)

It should be obvious that

Proposition 67. If ξ ∈ [M ⊗WDp →M ] ⊗ WD is a tangent-vector-
valued p-semiform and θ ∈ [M ⊗WDq → R] is a q-semiform, then L̂ξθ is a
(p+ q)-semiform.

Remark 68. Therefore, given a tangent-vector-valued p-semiform ξ on
M , L̂ξ is considered to be a graded mapping of degree p on the space Ω̃ (M).

Proposition 69. If ξ, ξ1, ξ2 ∈ [M ⊗WDp →M ]⊗WD are tangent-vector-
valued p-semiforms, θ, θ1, θ2 ∈ [M ⊗WDq → R] are q-semiforms and α ∈ R,
then we have the following:

1.
L̂ξ1+ξ2θ = L̂ξ1θ + L̂ξ2θ.

2.
L̂αξθ = α

(
L̂ξθ

)
.

3.
L̂ξ (θ1 + θ2) = L̂ξθ1 + L̂ξθ2.
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4.
L̂ξ (αθ) = α

(
L̂ξθ

)
.

Proof. The statements 2 and 4 follow from the definitions. The statement 1
follows from the statement 2, while the statement 3 follows from the statement
4.

Theorem 70. If ξ1 ∈ [M ⊗WDp →M ] ⊗WD is a tangent-vector-valued
p-semiform and ξ2 ∈ [M ⊗WDq →M ] ⊗ WD is a tangent-vector-valued q-
semiform, then we have

L̂[ξ1,ξ2]L
=
[
L̂ξ1 , L̂ξ2

]
= L̂ξ1 ◦ L̂ξ2 − (−1)pqL̂ξ2 ◦ L̂ξ1 .

Proof. If θ ∈ [M ⊗WDr → R] is a r-semiform, then we have

L̂[ξ1,ξ2]L
θ = D

(
[ξ1, ξ2]L ⊗̃θ

)

= D
((
ξ1⊗̃ξ2

·

− ξ1 ⊗ ξ2

)
⊛̃θ
)

= D
((
ξ1⊗̃ξ2

)
⊗̃θ

·

− (ξ1 ⊗ ξ2) ⊗̃θ
)

= D
((
ξ1⊗̃ξ2

)
⊗̃θ

·

−
(
ξ2⊗̃ξ1

)σp,q

τ
⊗̃θ
)

= D




ξ1⊗̃
(
ξ2⊗̃θ

) ·

−(
ideΩp+q+r(M) ⊗W(d1,d2)∈D2 7→(d2,d1)∈D2

)((
ξ2⊗̃

(
ξ1⊗̃θ

))σ+r
p,q

)



= D
(
D2

(
ξ1⊗̃

(
ξ2⊗̃θ

)))
− (−1)pqD

(
D1

(
ξ2⊗̃

(
ξ1⊗̃θ

)))

[By Proposition 11]

= D
(
ξ1⊗̃D

(
ξ2⊗̃θ

))
− (−1)pqD

(
ξ2⊗̃D

(
ξ1⊗̃θ

))

= L̂ξ1

(
L̂ξ2θ

)
− (−1)pqL̂ξ2

(
L̂ξ1θ

)
.

5.2. The Lie Derivation of the Second Type

Definition 71. For any ξ ∈ [M ⊗WDp →M ] ⊗WD and any

θ ∈ [M ⊗WDq → R] ,

we define Lξθ to be

Lξθ = Ap,q

(
L̂ξθ

)
.
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It should be obvious that

Proposition 72. If ξ ∈ [M ⊗WDp →M ]⊗WD is a tangent-vector-valued
p-form and θ ∈ [M ⊗WDq → R] is a q-form, then Lξθ is a (p+ q)-form.

Proposition 73. Given ξ ∈ [M ⊗WDp →M ]⊗WD, θ1 ∈ [M ⊗WDq → R]
and θ2 ∈ [M ⊗WDr → R], we have the following:

1.
Ap,q,r

((
L̂ξθ1

)
⊗ θ2

)
= Ap+q,r

(
Ap,q

(
L̂ξθ1

)
⊗ θ2

)
.

2.
Ap,q,r

(
θ1 ⊗

(
L̂ξθ2

))
= Aq,p+r

(
θ1 ⊗Ap,r

(
L̂ξθ2

))
.

Proof. By the same token as that in establishing the familiar associativity
of wedge products in differential forms.

Proposition 74. Given ξ ∈ [M ⊗WDp →M ]⊗WD, θ1 ∈ [M ⊗WDq → R]
and θ2 ∈ [M ⊗WDr → R], we have

Lξ (θ1 ∧ θ2) = (Lξθ1) ∧ θ2 + (−1)pqθ1 ∧ (Lξθ2) .

Proof. We proceed as follows:

Lξ (θ1 ∧ θ2) = Ap,q+r

(
L̂ξ (Aq,r (θ1 ⊗ θ2))

)

= Ap,q,r

(
L̂ξ (θ1 ⊗ θ2)

)

= Ap,q,r

((
L̂ξθ1

)
⊗ θ2 +

(
θ1 ⊗

(
L̂ξθ2

))σ+r
p,q

)

[By Proposition 66]

= Ap,q,r

((
L̂ξθ1

)
⊗ θ2

)
+ Ap,q,r

((
θ1 ⊗

(
L̂ξθ2

))σ+r
p,q

)

= Ap+q,r

(
Ap,q

(
L̂ξθ1

)
⊗ θ2

)
+ (−1)pqAq,p+r

(
θ1 ⊗Ap,r

(
L̂ξθ2

))

[By Proposition 73]

= (Lξθ1) ∧ θ2 + (−1)pqθ1 ∧ (Lξθ2) .

Remark 75. Therefore, given a tangent-vector-valued p-form ξ on M , Lξ
is considered to be a graded mapping of degree p on the space Ω (M).
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Proposition 76. For any ξ ∈ [M ⊗WDp+q →M ] ⊗ WD, any ξ1 ∈
[M ⊗WDp →M ] ⊗WD, any ξ2 ∈ [M ⊗WDq →M ] ⊗WD, and any

θ ∈ [M ⊗WDr → R] ,

we have the following:

1.
Ap,q,r

(
L̂ξθ

)
= Ap+q,r

(
L̂Ap,q(ξ)θ

)
.

2.
Ap,q,r

(
L̂ξ1

(
L̂ξ2θ

))
= Ap,q+r

(
L̂ξ1Aq,r

(
L̂ξ2θ

))
.

3.
Ap,q,r

(
L̂ξ2

(
L̂ξ1θ

))
= Aq,p+r

(
L̂ξ2Ap,r

(
L̂ξ1θ

))
.

Proof. By the same token as that in the familiar associativity of wedge
product in differential forms.

Theorem 77. If both ξ1 ∈ [M ⊗WDp →M ]⊗WD and ξ2 ∈ [M ⊗WDq →
M ] ⊗WD are tangent-vector-valued semiforms, then we have

L[ξ1,ξ2]F N
= [Lξ1 ,Lξ2 ] = Lξ1 ◦ Lξ2 − (−1)pqLξ2 ◦ Lξ1.

Proof. For any θ ∈ [M ⊗WDr → R] ⊗WD, we have

L[ξ1,ξ2]F N
θ = Ap+q,r

(
L̂
Ap,q([ξ1,ξ2]L)θ

)

= Ap,q,r

(
L̂[ξ1,ξ2]L

θ
)

[By the first statement of Proposition 76]

= Ap,q,r

(
L̂ξ1

(
L̂ξ2θ

)
− (−1)pqL̂ξ2

(
L̂ξ1θ

))

[By Theorem 69]

= Ap,q,r

(
L̂ξ1

(
L̂ξ2θ

))
− (−1)pqAp,q,r

(
L̂ξ2

(
L̂ξ1θ

))

= Ap,q+r

(
L̂ξ1Aq,r

(
L̂ξ2θ

))
− (−1)pqAq,p+r

(
L̂ξ2Ap,r

(
L̂ξ1θ

))

[By the second and third statements of Proposition 76]

= Lξ1 (Lξ2θ) − (−1)pqLξ2 (Lξ1θ) .
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[2] Alfred Frölicher, Albert Nijenhuis, Theory of vector-valued differential
forms, Part I, Indag. Math., 18 (1956), 338-359.
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