科学研究費補助金研究成果報告書

平成22年5月28日現在

研究種目:基盤研究(B) 研究期間:2007~2009

課題番号:19300228

研究課題名(和文) 高齢者における免疫機能の低下に対する運動効果に関する研究

研究課題名 (英文) The effects of exercise on immune senescence in elderly

研究代表者

河野 一郎 (KONO ICHIRO)

筑波大学・大学院人間総合科学研究科・教授

研究者番号:00132994

研究成果の概要 (和文):本研究は加齢による免疫機能の低下に対する運動の効果について検討することを目的とした. 中等度の運動トレーニングにより、高齢者の T 細胞の活性経路が亢進することを示した. また運動トレーニングにより高齢ラットの脾臓中の T 細胞活性経路の亢進が認められた. さらに乳酸菌摂取と運動トレーニングの組み合わせにより、高齢者の粘膜免疫能の亢進が認められた. 以上より、運動トレーニングによって高齢者の免疫機能が高まる可能性が示された.

研究成果の概要(英文): The purpose of this study was to examine the effects of exercise training on immune function in elderly individuals. Moderate exercise training might up-regulate T-cell activation in elderly. In older rat, moderate exercise training might increase splenic lymphocyte-subsets in relation to T-cell activation. Moreover, combined lactobacillus intake and moderate exercise training might bolster mucosal immune function in elderly subjects. Consequently, exercise training might enhance immune function in elderly people.

交付決定額

(金額単位:円)

	直接経費	間接経費	合 計
2007年度	5, 800, 000	1, 740, 000	7, 540, 000
2008年度	3, 900, 000	1, 170, 000	5, 070, 000
2009年度	4, 600, 000	1, 380, 000	5, 980, 000
年度			
年度			
総計	14, 300, 000	4, 290, 000	18, 590, 000

研究分野:総合領域

科研費の分科・細目:健康・スポーツ科学、応用健康科学

キーワード:運動、免疫機能、加齢

1. 研究開始当初の背景

加齢は,免疫系の機能不全を招き,感染症や自己免疫疾患への罹患が増加する.また,肺炎やインフルエンザなどの感染症による

死亡者数は、70歳以上の高齢者において急増すると報告されている.従って、加齢による免疫機能の低下を改善することは、高齢者において重要な課題である.しかしながら、未

だ有効な手段は開発されていない.

運動は免疫系に強度依存的な影響を与えることが知られており、近年、加齢に伴う免疫機能の低下を中等度運動によって改善しようとする試みがなされている.

これまで我々は、口腔内の粘膜免疫能において重要な役割を果たす唾液分泌型免疫グロブリンA(SIgA)と、全身免疫の中心的役割を果たすT細胞に着目し、高齢者を対象として、日常の身体活動および積極的な運動トレーニングと免疫機能の関係について検討してきた。しかしながら、運動トレーニングに対する免疫応答のメカニズムは不明である

食習慣は免疫機能に影響を与える因子の ひとつである.乳酸菌は、粘膜免疫能の亢進 や抗炎症作用を示すと報告されている.しか しながら、乳酸菌が運動由来の免疫応答に及 ぼす影響について検討した研究は無い.

2. 研究の目的

本研究では、高齢者における運動トレーニ ングに対する免疫機能の応答や適応変化の メカニズムを検討するため、①運動トレーニ ングがT細胞活性経路に与える影響について 明らかにする. ②運動が組織における T 細胞 活性経路に及ぼす影響について検討する. ③ 乳酸菌が運動由来の免疫応答に与える影響 について明らかにするため, 乳酸菌と運動の 組み合わせが免疫機能に及ぼす影響につい て検討する. 本研究は, 免疫系において重要 な役割を果たす SIgA および T 細胞に着目し, 運動による SIgA の産生過程の亢進が SIgA 分 泌の増加に寄与すること, 運動による T 細胞 活性経路の亢進がT細胞数の増加と機能亢進 に寄与すること, さらに乳酸菌と運動との組 み合わせによって, 免疫機能の亢進がより高 まるという仮説の立証を目的とした.

3. 研究の方法

(1) 継続的な運動トレーニングが高齢 者の T 細胞活性経路に及ぼす影響に関す る検討

単球は、Toll-like receptor-4(TLR-4)によって抗原を感知して貪食し、抗原提示細胞として、T 細胞と結合する. 抗原提示細胞上の CD80 受容体は、T 細胞上の CD28 受容体と結合し、補助刺激シグナルを送ることで、T 細胞を活性化させる. しかし、加齢と共に TLR-4 と CD28 の発現が減少することが報告されており、結果として T 細胞の活性能が低下すると考えられる. 本課題では、運動による T 細胞の増加が T 細胞活性経路の亢進による影響かどうかについて検討した.

① 運動習慣のない健康な高齢者 48 名を対象 とし、運動群 (*n* = 28)および非運動群 (*n* = 20)に分けた.運動群は,週5回の自重付加トレーニングおよび持久性トレーニングを6ヶ月間実施した.運動開始前および開始6ヶ月後に測定を行った.測定項目は,血中 T 細胞サブセット(ヘルパーT 細胞: Th, ヘルパーT 細胞 1 型: Th1, ヘルパーT 細胞 2 型: Th2 および CD28 発現ヘルパーT 細胞: CD28+Th1) について蛍光発色セルソーター (FACS) を用いて測定した.

② 運動習慣のない健康な高齢者 24 名を対象 とし, 運動群 (n = 12)および非運動群 (n = 12)に分けた. 運動群は, 週2回のマシントレ ーニング (レッグエクステンション, レッグプレス, ヒップアダクションおよびヒップアブダクション)と 持久性トレーニングおよび週5回の自重付加 トレーニングを 12 週間実施した. 運動開始 前および開始 12 週間後に測定を行った. 測 定項目は, 唾液分泌型免疫グロブリン A (SIgA) 分泌量について酵素免疫測定法 (ELISA法)を用いて測定した.血液を採取 し、T細胞サブセット(Th細胞,細胞傷害性 T 細胞: Tc, CD28+Th 細胞および CD28 発現 細胞傷害性 T 細胞: CD28+Tc) および単球 (TLR-4 発現単球および CD80 発現単球) に ついて蛍光発色セルソーター (FACS) を用い て測定した. さらに運動効果テスト (レッグ エクステンション, レッグプレス, ヒップアダクショ ンおよびヒップアブダクションの各種目の最大拳 上重量測定)を実施した.

(2) 運動が組織における T 細胞活性経 路に及ぼす影響につ関する検討

SIgA は唾液や涙, 腸間膜においても分泌さ れ、病原体の粘膜下への侵入を防ぐ役割を持 つことから, 粘膜免疫系における主要なエフ ェクターとされている. 成熟した B 細胞より IgA は分泌され、上皮細胞の基底膜に発現す る pIgR と結合し、SIgA となり分泌される. 本課題では、SIgA分泌過程において、運動に よる変化がどのポイントで生じているのか を検討することで運動による SIgA 分泌の変 動のメカニズムを探る. そこで, 運動が脾臓 および腸間膜リンパ節におけるリンパ球に 与える影響について検討することを目的と した. 20ヶ月齢の高齢ラット (n = 27) を 対象とし、運動群 (n = 18) および非運動群 (n=9) に分けた. 運動群は, トレッドミル による走運動を1日30分,週5回を10週間 継続して実施した. 速度は15 m/min から開始 し, 10 週間後では 22 m/min まで達した. な お、傾斜は0°とし、電気刺激は用いなかっ た. 各群ともに運動期間終了後にと殺し、脾 臓および腸管膜リンパ節を摘出し, T細胞, Th 細胞, Tc 細胞, CD28 発現 T 細胞, B 細胞 および IgA 発現 B 細胞の割合について FACS を用いて測定した.

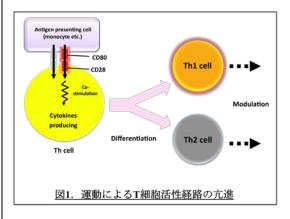
(3) 乳酸菌と運動の組み合わせが免疫 機能に及ぼす影響に関する検討

乳酸菌は、粘膜免疫能の亢進や抗炎症作用 を示すと報告されている. しかしながら、乳 酸菌が運動由来の免疫応答に及ぼす影響に ついて検討した研究は無い. そこで本研究で は、乳酸菌が運動由来の免疫応答に与える影 響について明らかにするため、乳酸菌と運動 の組み合わせが免疫機能に及ぼす影響につ いて検討することを検討した. 高齢者を対象 とし,乳酸菌摂取+運動実施群およびプラセ ボ摂取+運動実施群の2群に分けた.乳酸菌 飲料またはプラセボ飲料の摂取およびウェ イトトレーニングを12週間継続して行った. 介入前、開始4、8、12週後に唾液を採取し、 ELISA 法にて SIgA 分泌量を測定した. また, 介入間および開始 12 週間後において,血液 を採取し、ナチュラルキラー細胞活性、好感 度 C-reacted protein(CRP)および体力テスト (握力、上体おこし、長座体前屈、開眼片足 立ち、10 m 障害物歩行時間)を実施した.身 体活動量は簡易活動量測定器により1日の歩 行量を測定した.

4. 研究成果

(1) 継続的な運動トレーニングが高齢 者の T 細胞活性経路に及ぼす影響に関す る検討

本課題では、高齢者を対象として継続的な中等度運動トレーニングが T 細胞活性経路に及ぼす影響について検討した.


① 6ヶ月の複合トレーニングが Th 細胞サブセットに及ぼす影響について検討した. その結果, Th 細胞数, Th1 および CD28+Th 細胞数が増加した. Th2 細胞は変わらなかった.

②12週間の複合トレーニングが T 細胞および単球に及ぼす影響について検討した. その結果, Th 細胞数, Tc 細胞数および CD28+Th 細胞数は変わらなかったが, CD28+Tc 細胞数は増加した. また, TLR-4+CD14 細胞数は変動しなかったが, CD80+CD14 細胞は増加した. また運動トレーニングによって唾液 SIgA 分泌量は増加した. さらに, レッグエクステンション, レッグプレス, ヒップアダクションおよびヒップアブダクションの最大挙上重量も増加した.

3ヶ月のトレーニングでは CD28+Th 細胞は変動しなかったが、6ヶ月の運動では増加した.運動トレーニングを継続的に行うことにより、CD28 発現は中等度運動トレーニングによって増加する可能性が示唆された.また、3ヶ月の運度によって CD28+Th 細胞は変動しなかったが、CD28+Tc 細胞は増加した.このことから、CD28 発現の応答性は Tc 細胞の方か Th 細胞に比べ

て高い可能性が考えられた. 6ヶ月間の運動で Th1 細胞は増加し、Th2 細胞は変動しなかった. 先行研究より、高齢者は Th1/Th2 のバランスが崩れ、Th2にシフトすることが疾患を招く原因の ひとつと考えられている. 運動によって Th1 が増えることから、Th1/Th2 バランスを改善し、疾患の予防につながる可能性が示唆された.

単球上のCD80はT細胞上のCD28と結合し、補助刺激シグナルをT細胞に通す役割がある.補助刺激シグナルとT細胞レセプターを通る刺激シグナルによりT細胞は活性化され、Th1やTh2分化する.本課題では、運動トレーニングによりCD80+CD14、CD28発現T細胞の増加およびTh1細胞の増加が認められたことから、運動によりT細胞活性経路が亢進する可能性が示唆された(図1).このことから、トレーニングによって、加齢に伴い低下するT細胞の活性能が維持もしくは高まる可能性が考えられた.

(2) 運動が組織における T 細胞活性経 路に及ぼす影響につ関する検討

本課題では、高齢ラットを対象として継続的な中等度運動トレーニングが脾臓および腸間膜リンパ節中のリンパ球に及ぼす影響について検討した. その結果、腸間膜リンパ節の T 細胞、Th 細胞、Tc 細胞、CD28+T 細胞、B 細胞および IgA+B 細胞について、両群間に統計的な有意差は認められなかった. 腸間膜リンパ節中のリンパ球を変動させるには、10週間の運動では短かった可能性が考えられる.

脾臓のTh 細胞, Tc 細胞および CD28+ T 細胞は非運動群に比べて運動群において有意に高かった. また B 細胞については, 統計的に有意な差は認められなかった. このことから, 運動トレーニングによる反応性は, B 細胞に比べてT細胞の方が高く, SIgA 産生経路の観点では, B 細胞よりも T 細胞による調節経路が亢進する可能性が考えられた.

(3) 乳酸菌と運動の組み合わせが免疫 機能に及ぼす影響に関する検討

本課題では、高齢者を対象として、乳酸菌摂取と運動トレーニングの組み合わせが唾液 SIgA に及ぼす影響について検討した。その結果、唾

液 SIgA 分泌量は, 摂取期間において乳酸菌群が有意に高かった. また, リンパ球および単球において, 有意な群間差は無く, 有意な変動は両群とも認められなかった. ナチュラルキラー細胞活性は, 有意な群間差は認められなかったが, 12 週間後において両群とも有意に増加した. 高感度 CRP について, 有意な群間差は認められなかった, また両群とも有意な変動は認められなかった. 一日の平均歩行量は, 両群ともに有意に増加した. 以上の結果から, 高齢者に適度な運動トレーニングを実施してもらった場合, 乳酸菌の摂取は唾液 SIgA 分泌量を高める可能性が示唆された. また, 乳酸菌によるリンパ球の活性効果は認められなかった.

加齢による免疫機能の低下は、感染症や自 己免疫疾患, アレルギーの罹患を増大させる 要因となりうる. 近年の研究において、習慣 的な運動が免疫機能を高めることが報告さ れているが、その応答の詳細やメカニズムに ついては解明されていない. さらに、食事と 運動との組み合わせが免疫機能にどのよう な影響を与えるのかも不明な点が多い. 本研 究では、特に SIgA と T 細胞に着目して、運 動による SIgA の分泌調節の機序の検討と、 T細胞活性に関わるレセプターを発現する 細胞の運動応答について検討した. 運動によ る粘膜免疫および全身免疫の両免疫系の応 答メカニズムについて検討し、さらに乳酸菌 摂取と運動の組み合わせが免疫系に及ぼす 影響を検討した点が特色であり、これまで国 内外を通じて検討されていない. 運動によっ て、SIgA 分泌や T 細胞活性に関わる T 細胞 上の CD28 受容体や抗原提示細胞上の CD80 受容体の発現が増加することで, 粘膜免疫お よび全身免疫機能の亢進につながると考え られる. 今後は、SIgA 産生過程や T 細胞活 性経路において,運動の影響を受けるポイン トをさらに詳細に明らかにすることで, 免疫 機能の亢進に有効な運動メニューの設定や サプリメント摂取などの免疫機能亢進プロ グラムの開発につながり, 高齢者における感 染症や自己免疫などの疾患予防に役立つ可 能性が考えられる.

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計1件)

① Shimizu K, Kimura F, <u>Akimoto T</u>, <u>Akama T</u>, Tanabe K, Nishijima T, Kuno S, <u>Kono I</u>. Effect of moderate exercise training on T-helper cell subpopulations in elderly people. *Exercise Immunology Review*, 查読有, 14, 2008, 24–37

〔学会発表〕(計4件)

- ① 清水和弘, 佐藤広徳, 菅 洋子, 山平聡子, 戸羽正道, 甲田哲之, <u>河野一郎</u>, 赤間高雄, 久野譜也. 乳酸菌b240 摂取と適度な運動の実施が低身体活動量の高齢者の唾液分泌型免疫グロブリンAに及ぼす影響. 第64回日本体力医学会, 2009 年9月20日, 新潟
- ② Shimizu K., Suzuki N, Imai T, Aizawa K, Nanba H, Akimoto T, Kuno S, Mesaki N, Kono I, Akama T. Effect of resistive training on immune function in elderly people. European College of Sport Science 14th annual meeting, 2009.6.25, Oslo, Norway
- ③ 清水和弘,相澤勝治,鈴木なつ未,難波秀 行,今井智子,<u>秋本崇之</u>,久野譜也,目崎 登,<u>河野一郎</u>,赤間高雄.高齢者における 免疫機能の低下に対する運動効果.第63回 日本体力医学会,2008年9月18日,大分
- ④ 野倉圭輔,清水和弘,木村文律,鈴木智弓, 荘雅筑,枝伸彦,亀井雄太,<u>河野一郎</u>,<u>赤</u> 間高雄.継続性運動による高齢ラットのリンパ球数の変動.第63回日本体力医学会大会,2008年9月18日,大分

6. 研究組織

(1)研究代表者

河野 一郎 (KONO ICHIRO)

筑波大学・大学院人間総合科学研究科・教 授

研究者番号:00132994

(2)研究分担者

赤間 高雄 (AKAMA TAKAO)

早稲田大学・スポーツ科学学術院・教授

研究者番号:60212411 (H20:連携研究者)

秋本 崇之(AKIMOTO TAKAYUKI)

東京大学大学院・医科学系研究科・講師

研究者番号:00323460 (H20:連携研究者)