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Summary. The Avatamsaka game is investigated both analytically and using com-
puter simulations. The Avatamsaka game is a dependent game in which each agent’s
payoff depends completely not on her own decision but on the other players’. Con-
sequently, any combination of mixed strategies is a Nash equilibrium.

Analysis and evolutionary simulations show that the socially optimal state be-
comes evolutionarily stable by a Pavlovian strategy in the repeated Avatamsaka
game, and also in any kind of dependent game. The mechanism of the evolutionary
process is investigated from the viewpoint of the agent’s memory and mutation of
strategies.

1 The Avatamsaka Game as a dependent game

1.1 Robinson Crusoe economy and multiple-person games

In our daily life, we must sometimes make decisions to improve our cur-
rent situation. If utilities for the results depend only upon our own deci-
sion, the problem is usually called an optimization problem, which a soli-
tary person, such as Robinson Crusoe (or a person whose payoff is un-
related to the decisions of other people) meets (“Robinson Crusoe econ-
omy” [Neumann and Morgenstern 1944]). What matters first in this kind of
situation is the possibility of constructing the function itself. Once the function
is constructed, solving for the optimal behavior is a computational problem
to determine the strategy that optimizes the function. As von Neumann and
Morgenstern pointed out in their book “Theory of Games and Economic Be-
havior,” the difficulty in solving for the optimal strategy in one-person games,
such as the Traveling Salesman Problem, is a technical rather than conceptual
one.

In multiple person problems, however, the result for each one will depend
in general not merely upon his decision but on those of the others as well.
Moreover, all participants desire maxima simultaneously. Consequently, it is
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usually not possible for a player to decide his best behavior without consid-
ering others’ decision-making processes. Such a situation in general is called
a game1.

1.2 independent / dependent game

Let us refer to the Robinson Crusoe problem, in which decisions of others do
not have any effect on his utility, as an independent game; Robinson Crusoe’s
effort can be termed independent optimization. (In the context of the evolu-
tionary model, it will be called an independent adaptation.) In this paper, we
consider a class of games that is opposite of the independent game: dependent
games.

In a dependent game, the result for each agent will depend merely on the
decisions of others, but not at all on his own decision. Every player’s effort
to increase his profit in a dependent game is called a dependent optimization.
(In the context of the evolutionary model, it will be called a dependent adap-
tation.) Any multiple-person problem is representable as a formulation that
lies between the independent game and the dependent game, in principle.

By definition, any change of a player’s action in a dependent game does
not directly improve her utility. However, if the game is repeated there is a
chance her current action might serve as a signal to induce beneficial behaviors
from others in the future.

For an example of dependent games, let us consider internet auction sites.
Many internet auction sites adopt a “user rating system,” with which each
buyer rates his experiences with sellers, in order to prevent dishonesty among
sellers. In this case, rating sellers high or low does not affect the current utility
of the buyers at all, which exemplifies the dependent game situation. Note that
not a few members of auction sites repeatedly participate in auctions there.
As a result, the rating behaviors are repeated for the future, which usually
motivates the buyers to give honest ratings. If their participation were not
repeated, it would not matter for a player, for example, to rate a good seller
“low” without any consideration (and forever leave the auction site).

1.3 The Avatamsaka game

As the simplest example of dependent games, let us consider the Avatamsaka
Game2[Aruka 2001]. Its payoff matrix is shown in Table 1. In this game, a

1In the theory of games, von Neumann and Morgenstern had an insight into
the fact that this problem is not an ordinary maximization problem and that the
formalization of this type of problem should take the form of a matrix. As a result,
they succeeded in formalizing the problem as one in which every individual “can
determine the variables which describe his own actions, but not those of the others.”
In addition, “those alien variables cannot, from his point of view, be described by
statistical assumptions.”



Evolution of Reciprocal Cooperation in the Avatamsaka Game 3

Table 1. Payoff matrix for the Avatamsaka game: Two matrices below show the
points gained by Player 1 (left) and Player 2 (right). The columns indicate the
actions that Player 1 would choose and the rows indicate those for Player 2. Because
we only deal with symmetric games (i.e. the payoff structures from the viewpoints
of Player 1 and of Player 2 are identical), such as the game in this table, we will
show the payoff matrices only for Player 1 in the remainder of this paper.

Payoff for player 1 Payoff for player 2

D C

D 1 2
C 1 2

D C

D 1 1
C 2 2

player’s points depend only on the other agent’s behavior. If player 2 chooses
behavior D (defect), the point player 1 can gain is only 1.0, no matter what
behavior player 1 chooses. If player 2 chooses behavior C (cooperation), player
1 is bound to receive 2.0.

In this game, any combination of both players’ mixed strategies is a Nash
equilibrium because neither player has an incentive to change their strategy. In
addition, any mixed-strategy is a neutrally stable strategy from the viewpoint
of evolutionary game theory.

1.4 Repeated interactions in a society, players’ cognitive abilities,
and mistakes

Let us imagine that we are actually under circumstances similar to the
Avatamsaka game. In this case, various thoughts might come to mind such as
“Should I be satisfied with his defection, even though we are in a Nash equi-
librium state?” “Can I somehow induce his cooperation?” “Can I somehow
use my behavior as a signal to him?” etc. The reason we may not be satisfied
with our current game play is that, if we actually encounter a situation like

2Avatamsaka is a well-known Mahayana Buddhist Sutra. The late Shigeo Ka-
mata, Professor Emeritus, University of Tokyo, who was working under the field of
Buddhist philosophy, skillfully illustrated the situation of Heaven and Hell in view
of Avatamsaka. (See Kamata [Kamata 1988], pp.167-168.)

Suppose that two men are seated across from each other at a table. They are
bound with ropes except for one arm. Each is given an overly long spoon. Thereby,
they cannot serve themselves because of the awkwardness of the long spoon, but
there is sufficient food for both of them on the table. If they cooperate in concert to
provide each other with a meal, they can both be happy. This defines the Heaven, or
Paradise. Alternatively, one will be kind enough to provide the other with a meal,
but the other might not have the same feeling of cooperation. This case pays the
other, which must give rise to a feeling of hate for the inconsiderate opponent. This
describes a situation denoted as Hell. (See [Aruka 2001] for the philosophical and
sociological significance of this game.)
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this game, something other than the activity of “analyzing the Table 1 in
the way of traditional game theory” appears in our mind, which might cause
mutual cooperation under Avatamsaka game interactions.

For example, we usually interact not only with a certain individual, but
also with other community members in the real world. Therefore, it is neces-
sary for us to consider, comprehensively, relationships with various types of
individuals (various interactions in a society). In addition, we sometimes, or
often, consider not only current, but also future relationships with the per-
son (repeated interactions). In this case, although my current action has no
meaning for me now, but it might have some meaning as a “signal” to derive
cooperation of the opponent in the future. Whether or not repeated interaction
works as a signal to derive mutual cooperation depends on the perceptions and
cognition of both players. Note that, in the course of repeated interactions,
we must also consider the fact that we are beings who cannot be free from
mistakes in the real world. And so, cognitive abilities to deal with players’
mistakes are crucial for formation of cooperation (players’ cognitive abilities
and mistakes). Furthermore, we do not fix our strategy. We sometimes change
our strategy to adapt to our current situation (mutation / modification of the
strategies).

This paper investigates the following points to study the evolution of co-
operation under a dependent game: the Avatamsaka game.

1. How can we derive cooperative behavior of the opponents in Avatamsaka
situations, when we live in a society in which we interact repeatedly with
various players who might sometimes make mistakes? Players surely need
cognitive abilities to induce another’s cooperation. To what extent are
such abilities required for deriving cooperation?

2. How do social phenomena change with players’ cognitive abilities? For
example, an agent who remembers only the previous actions of the oppo-
nents, such as so-called “Tit-For-Tat strategy” in the Prisoner’s Dilemma
game, may bring about completely different social phenomena from agents
who remember the previous behaviors of themselves and of their oppo-
nents.

3. Do capricious changes of strategies (mutation) have a fundamental effect
on the evolutionary phenomena?

2 The model

This study addresses a multi-stage (or repeated, iterated) Avatamsaka game;
we refer to one iteration in the game as a stage game. Furthermore, we re-
fer to C or D in a stage game as an action, while a complete plan in a
multi-stage game for a player to decide his action based on the past infor-
mation as a strategy. We investigate evolutionary phenomena in the Avatam-
saka game using an evolutionary model whose formulation was presented by
[Nowak and Sigmund 1993a] for the study of the Prisoner’s Dilemma game.
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2.1 Evolutionary dynamics with mutational effect

Suppose that there are infinitely many agents in a population (a game world).
All agents in the population play a round-robin tournament with each other
in a generation. In each match, an infinitely iterated Avatamsaka game is
played between two agents. Suppose that the total population of the agents
in the game world is 1.0 and that the fraction of the agents having strategy
i (i = 0, 1, . . . , n− 1) in a generation t is xi, where

∑
i xi = 1.0.

The fitness fi of strategy i is defined as the expected value of the pay-
offs in all games in which strategy i is involved in the population. Because
the expected payoff of strategy i depends on the probability of meeting with
strategies against whom he can gain high (or low) payoffs, fi depends on the
strategy distribution x = (x0, x1, . . . , xn−1) ∈ ∆ over the population, where
∆ = {x : ∀i xi ≥ 0 and

∑
i xi = 1.0}

Assume that the population share of a strategy either increases or de-
creases according to the fitness of the strategy and that a small fraction of
newborn agents appear as mutants of other strategies. Considering the fact
that the average fitness of all agents is xifi∑

i
xifi

, the population share x′
i of

strategy i in the next generation t+ 1 would be the following.

x′
i =

(
fi∑
i xifi

xi + u

)
/(1 + nu), i = 0, . . . , n− 1,

where u is the constant term representing the effect of the uniform and
time-independent mutation: the mutation rate. For computer simulations, we
choose two cases u = 0 (no mutation) and u = 0.0004 (with mutation) to il-
lustrate the effects of mutation. The change of u does not substantially affect
the results if 0 < u << 1.

2.2 Iterated game with action-noise and the strategies with past
memory

In the repeated Avatamsaka game, each agent uses a strategy to determine
her action in the next stage game based on the memory of actions that she
and the opponent made in previous rounds. We investigate the following three
cases in this paper: (1) Each agent continues the initial action without any
consideration of past information. This condition is denoted herein as the
“m = 0 (no memory)” case. (2) Each agent chooses her action referring to
the previous action of the opponent (“m = 1”) (3) Each agent determines
her action referring to the previous actions of herself and of the opponent
(“m = 2”). As shown below, the number of possible pure strategies in this
repeated game depends on the agents’ memory size. Let us denote the nth
strategy with memory size of m by Sm

n .
In the case of no memory (m = 0), only two possible pure strategies exist:

“Always D (which we denote as AllD or S0
0)” and “Always C (AllC or S0

1).”
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In the case of m = 1, we denote a strategy of an agent as p0p1 (p0, p1 ∈ [0, 1]),
where p0(p1) is the probability to play “C” when the opponent’s last move
was “C” (“D”). For example, the strategy “00” (i.e. p0 = 0, p1 = 0) always
plays “D.” Four possible pure strategies exist for m = 1. They are 00, 01, 10,
11, which we denote respectively as S1

0 , S
1
1 , S

1
2 , and S1

3 . Note that 00=S1
0 and

11=S1
3 are equivalent to AllD and AllC. 10=S1

2 means that the agent acts in
the same manner as the opponent did previously: the so-called Tit-For-Tat
(TFT) strategy. 01=S1

1 means that the agent chooses the opposite action of
the opponent’s previous action: the Anti-TFT (ATFT) strategy.

The strategy in the case of m = 2 can also be described as p0p1p2p3
(pi ∈ [0, 1]), where p0, p1, p2 and p3 represent the probabilities to play “C”
when, in the previous round, (the agent’s move, the opponent’s move) = (C,
C), (C, D), (D, C) and (D, D), respectively. There are 16 possible pure
strategies, such as 0000, . . . , 1111 = S2

0 …S2
15. Similarly, the total number of

possible pure strategies is 22
m

for the memory size of m.
For simplicity, we assume that each game would be repeated ad infini-

tum between two agents chosen from the population. Moreover, agents are
assumed to make mistakes with probability p during the repetition. (e.g. The
agent with the strategy to play “C” may sometimes play “D” by mistake
against his will.) This means that uncertainty (action-noise) exists in agents’
cognitive functioning. Taking into account the fact that the transition of the
probability distribution for the 2m states above is a Markov process, the tran-
sition matrix can be defined uniquely depending on the two agents’ strategies.
The probability distribution in the steady state corresponds to the normalized
eigenvector with eigenvalue 1 of the transition matrix as long as p > 0. The
average payoff in an infinitely iterated game can be given from the probabil-
ity distribution of the steady state and the stage game payoff matrix. (See
[Nowak and Sigmund 1993a].) A slight change of p does not substantially af-
fect the analysis result introduced in the next section as long as p << 1.
(Basically we assume 0 < p << 1. Theoretical values found in the next sec-
tion such as the equilibria of game dynamics are the values gained at p → 0
limit. For computer simulations, we use p = 0.01.)

As a short note for strategies with m = 2, S2
0=0000, and S2

15=1111
mean AllD, AllC and S2

10=1010 correspond to TFT, and S2
5=0101 to ATFT.

Moreover, S2
8=1000 is “GRIM” (that plays “C” only when the previous

choices of the both players were “C”), S2
9=1001 is so-called “PAVLOV”

[Nowak and Sigmund 1993b]. The last two strategies can be formed only if
m = 2. Note that the nomenclature used in the above is the one usually used
in “Prisoner’s Dilemma” studies. For that reason, it might be sometimes mis-
leading to use the above strategy names in other games, but we use those
names in this paper for simplicity.
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3 Analysis and simulation results

In this section, we show both the analytical results and the results of computer
simulations of the evolutionary Avatamsaka game. To capture the nature of
evolutionary phenomena, we especially investigate (i) the dynamics of the
population share of the strategies, and (ii) the dynamics of agents’ actions in
each iterated Avatamsaka games.

3.1 Agents without any memory of past actions (m = 0)

When agents have no memory of past actions (m = 0), only two possi-
ble pure strategies exist: AllD (S0

0) and AllC (S0
1). The payoff matrix for

m = 0 case is given in Table 2. Obviously, any combination of both play-
ers’ mixed strategies is a Nash equilibrium. Therefore, the subset of strate-
gies x ∈ ∆ that are in Nash equilibrium with themselves, ∆NE = {x ∈
∆ : (x, x) is a Nash equilibrium}, is equivalent with the whole mixed-strategy
space ∆.

Furthermore, any mixed strategy can be a Neutrally Stable Strategy
(NSS), but there is no Evolutionary Stable Strategy (ESS) in this game. (The
set of NSS, ∆NSS = ∆, and the set of ESS, ∆ESS = ∅.)

Table 2. Payoff matrix of the iterated Avatamsaka game for m = 0 strategies: The
procedure to derive this matrix is given in Section 2.2. Because m = 0 matrix is
simple, we can understand its intuitive meaning. If the opponent is AllD, a player’s
payoff is (1− p) + 2p = 1+ p because the opponent’s action is “D” with probability
1 − p and “C” with probability p, where p is the probability of agent’s making
mistake.

AllD AllC

AllD (S0
0) 1 + p 2 - p

AllC (S0
1) 1 + p 2 - p

An example of population dynamics in the case where the agents have no
memory (m = 0) and no mutation occurs (u = 0) is shown in Fig. 1(a). Fre-
quencies of the strategies remain exactly the same as in the initial generation.
In the Avatamsaka game, an agent always obtains an identical payoff whether
he chooses C or D unless the other acts differently. Because we cannot change
the future actions of the strategies AllD and AllC (S0

0 and S0
1) that play

“D” and “C” forever by their definition, the fitness of either AllD or AllC
is determined only by the distribution of AllD and AllC over the population.
Therefore, the respective fitness values of AllD and AllC are identical: f0 = f1.
Consequently, the population share of AllC or of AllD does not change with
generations. This population dynamics corresponds to the fact that ∆NSS of
this game is identical to ∆.
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Fig. 1. Population dynamics in the Avatamsaka game world in which agents have
no memory of past actions, m = 0: The fraction of the strategies in the population is
shown as a function of generation. (a) When the mutation rate u = 0, the population
share of each of the two strategies does not change with generations. (b) When
u = 0.0004, both converge to 0.5.

If the mutation process is introduced (u = 0.0004) in this m = 0 Avatam-
saka game world, the observed phenomenon is altered completely. In this case,
the frequencies (x0, x1) of the strategies (AllD, AllC) converge to the equal
population share, (1/2, 1/2), with generations (Fig. 1(b)), and the entropy of
the configuration of the population is maximized.

3.2 Considering the opponent’s previous action (m = 1)

Payoff structure

When agents have a memory of the opponent’s previous action (m = 1), they
can implement four kinds of pure strategies, AllD, ATFT, TFT and AllC,
which are denoted respectively as S1

0 , S
1
1 , S

1
2 , and S1

3 . The payoff matrix for
m = 1 case is given in Table 3.

In this case, ∆NE = {(u(1 − v), v/2, v/2, (1 − u)(1 − v)) : u, v ∈ [0, 1]}
because the expected payoff for any mixed strategy x ∈ ∆ against x∗ ∈ ∆NE

is always 3v/2 + (1 − v)(1 − u − p), which is independent of the value of x.
Furthermore, the set of NSS, ∆NSS = {((1 − v)/2, v/2, v/2, (1 − v)/2) : v ∈
[0, 1]}. However, there is no ESS.

Table 3. Payoff matrix of the iterated Avatamsaka game for m = 1 strategies: The
procedure to derive this matrix is given in Section 2.2.

AllD ATFT TFT AllC

AllD (S1
0) 1 + p 2− 2p− 2p2 1 + 2p− 2p2 2− p

ATFT (S1
1) 1 + p 3/2 3/2 2− p

TFT (S1
2) 1 + p 3/2 3/2 2− p

AllC (S1
3) 1 + p 1 + 2p− 2p2 2− 2p− 2p2 2− p
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Fig. 2. Avatamsaka game: m = 1, mutation rate = 0

Population dynamics

The initial strategy distribution has no influence on the future population
dynamics in the case of m = 0, but it does in the case of m = 1 with no
strategic mutation, in most cases.

In this game world, where each agent may have a memory of the previous
move of the other, the population share x = (x0, x1, x2, x3) converges either
to (1, 0, 0, 0) or (0, 0, 0, 1) (the dominance by AllD (S1

0) or by AllC (S1
3)) with

generations in most cases other than the knife-edge cases, for which x is exactly
in ∆NE in the initial generation. (x ∈ ∆NE , of course, does not change with
generations.) Convergence depends on the initial distributions of ATFT(S1

1)
and TFT(S1

2) (Fig. 2). AllC continues to increase when the frequency of TFT
is greater than that of ATFT (x2 > x1); the AllD population continues to
increase when x1 > x2.

Because AllD always chooses D regardless of past actions, the average
payoff of any opponent of AllD is always 1 in the Avatamsaka game, while
that of the opponent of AllC is always 2. Consequently, the effect of the
strategy distribution of AllD/AllC on the fitness of any strategy is always the
same: it does not affect the population dynamics.

It is ATFT or TFT that may affect the population dynamics. When meet-
ing with AllC, TFT always chooses “C” in response to AllC’s previous “C,”
while ATFT always chooses “D” (except for the change of the action by noise.)
That is, TFT benefits AllC and, in the same way, ATFT benefits AllC.

As shown above, the appearance of strategies with m = 1 gives rise to
population dynamics that are dependent on the strategy distribution in the
initial generation. Note that the relation x2 > x1 or x1 > x2 will not change
with generations because the expected payoff of TFT and that of ATFT are
identical, which can be known by Table 3. Consequently, if x2 > x1 in the
initial generation, the fraction of AllC continues to increase while that of AllD
continues to decrease.

Effect of mutation

The power of the convergence to the AllD/AllC society observed in the above
is not so strong because it results solely from the difference between the rel-
ative fraction of TFT to ATFT, not on the interaction within AllD (AllC)
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Fig. 3. Avatamsaka game: m = 1, mutation rate u = 0.0004

agents. When the mutation is introduced to the evolutionary process, x con-
verges to (1/4, 1/4, 1/4, 1/4) with generations (Fig. 3). What happens here
is the triumph of the mutational effect that increases the entropy of the pop-
ulational configuration over the adaptation power, which is also observed in
the m = 0 case.

The world of m = 1 shares the same nature with that of m = 0 in the sense
that all existing strategies cannot conduct independent optimization because
the increase of the fitness of AllC (AllD) depends completely on TFT(ATFT).
Consequently, the fitness of AllC also approaches that of AllD with generations
because the fraction of TFT, whose fitness is always identical to ATFT’s,
approaches that of ATFT by mutational effect.

The mutation mechanism in principle has the capability of increasing the
entropy of the population structure. On the other hand, there usually exists in
a game the power that comes from players’ adaptation to the payoff matrix.
We can say that the Avatamsaka game at m = 0 or m = 1 is one of the
games where the effect of the adaptation is overshadowed by the mutational
effect that increases the entropy. In other words, dependent adaptation (See
section 1.2) by itself is insufficient to overcome the mutational effect.

3.3 Considering the player’s and the opponent’s actions (m=2)

Let us consider the case of m = 2, in which an agent can refer to both her
own and the opponent’s previous action to decide the next action. The salient
difference is that, while the fitness of each of m = 0, 1 strategies depends
completely on the population shares of the other strategies, several m = 2
strategies exist whose fitness depends on the shares of all strategies including
that of the strategies themselves.

The payoff matrix for m = 2 strategies is a little complicated function of p;
because we have insufficient space for describing the entire matrix (and doing
it does not seem so informative), we visualize the payoff structure in Fig. 4 by
computing payoffs for p = 0.01 and by drawing them as a figure and a graph.
It can be confirmed analytically that the “PAVLOV3 (1001=S2

9)” is the ESS
of this game. That fact can also be confirmed with Fig. 4.

3As in the study of the iterated Prisoner’s Dilemma game
[Nowak and Sigmund 1993b], PAVLOV is a good strategy to form and main-
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Population dynamics of the m = 2 Avatamsaka game without mutation
are shown in Fig. 5. In this setting, the game world converges to the exclusive
winning of PAVLOV. Note that the result does not substantially differ even
if there is mutation.

Dominance by PAVLOV is realized for any initial condition as long as
the initial population share corresponds to the interior of the mixed strategy
space∆. In other words, “independent adaptation” through the use of am = 2
strategy, PAVLOV, overshadows the effect of mutation.

Let us consider why PAVLOV is strong in this game. The PAVLOV policies
are as follows: (1) If I feel good (the opponent’s action is C), keep doing the
current action, whether C or D. (2) Never comply with the situation if I
feel uneasy (the opponent’s action is D) by sending a signal to the opponent
by changing my action4. With these two features, PAVLOV can maintain a
reciprocal relationship once it is formed because a Pavlovian player continues
C as long as he feels good.

Furthermore, two PAVLOVs interacting with each other can quickly re-
cover from betrayal relationships caused by action noise. Assume that two
PAVLOVs play a repeated Avatamsaka game, as shown below. PAVLOV’s
action should be C if both cooperated (CC) in the previous round.

PAVLOV | C C D* D C C C ...

PAVLOV | C C C D C C C ...

In this figure, the mark “*” denotes the betrayal of the upper player by mistake
(noise) that is supposed to happen with probability p in this study. While the
upper player continues D, the lower Pavlovian player, who feels uneasy, sends
a signal to the upper player by changing her action into D in the next round
(DD), thereby engendering the recovery of mutual cooperation CC two rounds
later.

Analysis of the m = 2 payoff matrix shows that PAVLOV is the ESS for
m ≤ 2. Furthermore, some additional consideration allows us to know that
PAVLOV is also evolutionarily stable in the whole pure-strategy space including
the longer-memory case if w < 1, in which w is a constant probability to
another round of repetition5.

tain mutual cooperation under the circumstances with action noise. However,
PAVLOV is not an evolutionarily stable strategy in the Prisoner’s Dilemma with
noise because the best response to PAVLOV is AllD in the Prisoner’s Dilemma.

4Choosing C or D functions only as a “signal” in the Avatamsaka game because
the choice does not affect the player’s own payoff.

5The only thing players in the Avatamsaka game should do is to derive the
other’s C as frequently as possible. In so doing, the best response to PAVLOV’s D
that happens by mistake should beD in the next step, which will stop the PAVLOV’s
continuing D as quickly as possible. Therefore, the best response should have a code
((a) CD → D ). The best-response strategy that has fallen into mutual defection
with PAVLOV would recover from the tragic state toward the mutual cooperation
in the next step ((b) DD → C). The best response strategy, of course, would retain
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Fig. 4. (a) An illustration of the payoff matrix of the m = 2 Avatamsaka game: The
vertical axis shows the pure strategy of player 1 and the horizontal axis shows that
of player 2. The figures 0, 9, 15 on the vertical and horizontal axes correspond to
pure strategies S2

0 , S
2
9 , S

2
15, respectively. The shade on the tiles represents the payoff

for the iterated Avatamsaka game with p = 0.01. The higher the payoff, the whiter
the color on the correspondent tile. We can visually know the best-response relations
among m = 2 pure strategies in this figure. (b) The payoff when facing PAVLOV
(S2

9); p = 0.01 is plotted as a function of the strategy number. Both (b) and the
arrow in (a) indicate that the only best response for PAVLOV is PAVLOV itself.
(The payoff for PAVLOV against PAVLOV is 2− 3p+ 6p2 − 4p3.)
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Fig. 5. Population dynamics with m = 2 and u = 0.

4 Discussion

This paper shows evolutionary phenomena in a dependent game, the Avatam-
saka game. Let us sum up the results.

mutual cooperation ((c) CC → C) If the best-response strategy has produced a
mistake, it would defect again ((d)DC → D) to revert quickly to mutual cooperation
with PAVLOV. (Otherwise, PAVLOV would continue D.) (a)–(d) as a whole shows
that the only strategy that can derive most frequent cooperation from PAVLOV is
PAVLOV itself, provided w < 1. (If w = 1 (infinite repetition), a strategy that differs
only in his first, say, 100 rounds from PAVLOV can have exactly the same payoff
as PAVLOV, on average.) Consequently, if all players’ strategies are PAVLOV, they
are in a strong perfect equilibrium [Boyd 1989], and so PAVLOV is the ESS.
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4.1 Memory size, mutation and social phenomena

First, the memory size generally has a large effect on evolutionary dynamics.
For a memory size of m = 0, strategic interactions do not have any effect on
the population dynamics. Consequently, the population shares of the strate-
gies do not change from the initial generation. When m = 1, a strategic
interaction becomes more influential than in the case of m = 0. As a result,
the population converges to either AllC or AllD state, but the convergence
depends strongly on the initial configuration of population. If the population
consists of agents who consider the previous actions of both themselves and
the opponent (m = 2), the cooperative society is self-organized in the popula-
tion by PAVLOV for any initial distribution of strategies that corresponds to a
mixed strategy in the interior of ∆. However, further extension of memory size
(m ≥ 2) has no substantial effect on evolutionary phenomena: PAVLOV or
its analog always dominates the population. Particularly, if w < 1, PAVLOV
alone dominates the population. In this sense, an effective memory-size of 2
exists in the Avatamsaka game.

Second, the effect of mutation is remarkable in cases of the Avatamsaka
game with m = 0, 1, in which only dependent adaptation is possible. However,
in the case of m = 2, the mutational effect is overshadowed by the indepen-
dent adaptation by PAVLOV, so that the introduction of mutation cannot
have a strong effect on evolutionary phenomena. Summing up, investigation
of the Avatamsaka game shows clearly that the entropy of a populational con-
figuration is maximized by mutation if there is only dependent adaptation,
while the entropy can be decreased when there is an independent adaptation
for which a certain size of memory is required for agents in the Avatamsaka
game.

4.2 Efficiency in the dependent game, and the origin of inefficiency

Third, PAVLOV is the only ESS in the Avatamsaka game with m ≤ 2. In
addition, PAVLOV is the only ESS in the Avatamsaka game for any m if
w < 1, where w is a constant probability of another repetition.

Note that, in any kind of dependent game with any number of players and
with any number of strategies, a socially optimal state in which everybody
mutually cooperates is achievable as an evolutionarily stable state through
PAVLOV-like strategies. Let us consider a Pavlovian strategy used by an
agent who continually changes his action until all others each chooses the
most beneficial action for him; that is, the Pavlovian strategy keeps sending
signals by changing his action to the others until he feels comfortable. It can be
easily understood that all players’ mutual cooperation is the only stable state.
Furthermore, it is the Pavlovian strategy that derive most frequent coopera-
tion of opponent Pavlovians, which means that the best response to Pavlovian
strategies is the Pavlovian strategy itself, and that Pavlovian strategy is ESS
(See footnote 5 in Section 3.3)
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Summing up, the world of the dependent game will eventually engender
a stable state that is socially optimal. The world of the independent game,
in which players each independently confront an optimization problem, will
also lead to a socially optimal state wherein the only thing that agents should
do is to choose their own optimal strategies, if we disregard computational
complexity of the problem. Although players in dependent games should have
memories of previous actions and players in independent games do not, both
the dependent and the independent games should engender socially optimal
states through adaptation.

Seen from another perspective, the origin of social inefficiency that we
observe in reality arises from both technical and conceptual difficulties: Tech-
nical difficulty lies in computational problems for players to calculate optima,
while conceptual difficulty comes from the existence of the entanglement of
dependent and independent game structures (e.g. the Prisoner’s Dilemma)
but neither from the structure of completely dependent games nor from that
of completely independent games.
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