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Abstract

We study six-point gluon scattering amplitudes in N = 4 super Yang–Mills the-

ory at strong coupling by investigating the thermodynamic Bethe ansatz equations

of the underlying Z4-symmetric integrable model both analytically and numerically.

By the conformal field theory (CFT) perturbation, we compute the free energy part

of the remainder function with generic chemical potential near the CFT/small mass

limit. Combining this with the expansion of the Y-functions, we obtain the remain-

der function near the small mass limit up to a function of the chemical potential,

which can be evaluated numerically. We also find the leading corrections to the re-

mainder function near the large mass limit. We confirm that these results are in

good agreement with numerical computations.
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1. Introduction

Recently there has been much progress in computing the area of minimal surfaces

in AdS space, whose boundary is made of light-like segments [1–7]. The surface

area corresponds to the expectation value of the Wilson loop along the same contour

and is dual to the gluon scattering amplitude in planar N = 4 super Yang–Mills

theory at strong coupling. The minimal surface area has deviation from the Bern–

Dixon–Smirnov (BDS) conjecture [8] by an amount of the remainder function, which

is shown to exist for the n(≥ 6)-point amplitudes [9, 10]. Determination of the

remainder function is a key step toward establishing the correct analytic formula of

the gluon scattering amplitude.

In [3], the equations for determining the minimal surface in AdS5 space are shown

to be the SU(4) Hitchin equations with certain constraints and boundary conditions.

The area is characterized by the Stokes data of the asymptotic solutions of the

associated linear system. The Stokes data obey certain functional equations and the

minimal surface area is evaluated by solving the integral equations associated with

them. For the 6-point gluon scattering amplitudes, the functional equations and the

integral equations turn out to be the Y-system [11] and the thermodynamic Bethe

ansatz (TBA) equations [12] of the Z4-symmetric (or A3) integrable model [13–15],

respectively. The minimal surface area is evaluated by the free energy of the model.

This solution has been generalized to the minimal surface with an n-sided light-

like polygonal boundary in AdS5 [5] and in AdS3 [5,6]. In particular, Alday, Malda-

cena, Sever and Vieira proposed the Y-system and the TBA equations for the n-sided

polygonal solution and expressed the area in terms of the TBA system. In [6], the

present authors noticed that the TBA system is that of the homogeneous sine-Gordon

model [16].

The free energy for a two-dimensional integrable model with purely elastic S-

matrix is obtained by solving the TBA system. It is very difficult to solve the TBA

system exactly but one can investigate its solutions in two limits. In the UV (or high

temperature or small mass) limit, it is described by a certain conformal field theory

(CFT). In the IR (or low temperature or large mass) limit, on the other hand, it

becomes a system of a free massive theory. In the UV limit, the free energy turns

out to be the central charge of the CFT. In the case of the homogeneous sine-Gordon

model, the relevant CFTs are the generalized parafermion CFTs [17]. A particularly

interesting feature of the TBA system is that it contains chemical potential which

arises from the monodromy of the asymptotic solution of the linear system. Its
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solution with chemical potential near the CFT point has not been well studied.

While analysis in the above described limits reveals several principal characters

of the amplitude, evaluation of the remainder function apart from the limits is also

of great significance in studying how the amplitude depends on the gluon momenta.

The purpose of this paper is to analyze such momenta dependence of the remainder

function. To do this, we investigate the TBA system perturbatively both near the

UV and IR limits. In the present work we will focus on the 6-point amplitude

for simplicity, where the relevant CFT is the Z4-parafermion CFT. The solution of

the TBA system without chemical potential around the CFT point was studied by

Klassen and Melzer [18]. In this paper we will investigate the perturbative solution

around the CFT point including chemical potential. We also study the TBA system

near the IR limit and present the first correction to the remainder function.

Our results provide an analytic form of the remainder function for the 6-point

scattering amplitude at strong coupling away from the CFT and the IR point.

This paper also demonstrates that the unexpected connection between the four-

dimensional super Yang–Mills theory and the two-dimensional integrable models

discovered in [3,6] enables one to compute the amplitude at strong coupling in two-

dimensional approaches. From a point of view of the study of integrable models, our

discussion provides a concrete example of an analysis of TBA systems with chemical

potential.

This paper is organized as follows. In sect. 2, we review the construction of the

Hitchin equations of the minimal surface with a 6-sided polygonal boundary in AdS5

and the related Y-system and TBA equations. In sect. 3, we study the CFT limit of

the TBA system and evaluate the free energy perturbatively. In sect. 4, we study the

remainder function around the CFT limit. In sect. 5, we examine the large mass limit

and obtain the correction to the remainder function. We conclude with a discussion

in sect. 6.

2. Review of TBA system for six-point amplitudes

In this section we review the TBA system for the six-point gluon scattering ampli-

tudes. We basically follow the references [3, 5].

2.1. Classical string solutions with a null polygonal boundary

Alday and Maldacena proposed a method of computing gluon scattering amplitudes

in N = 4 super Yang–Mills using AdS/CFT correspondence [1]. According to their
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proposal, scalar magnitude of n-gluon MHV scattering amplitudes can be evaluated

in the strong coupling limit by computing the area of corresponding classical open

string solutions. The string solutions are minimal surfaces whose boundary is a

polygon located on the boundary of AdS5. The polygon consists of n null edges

given by the n momenta of incoming gluons.

To be concrete, classical string solutions under consideration are realized as a map

from their world-sheet to AdS5. We consider Euclidean world-sheet parametrized by

z, z̄. In terms of the global coordinates, AdS5 is expressed as a hypersurface

~X · ~X ≡ −(X−1)2 − (X0)2 + (X1)2 + (X2)2 + (X3)2 + (X4)2 = −1 (2.1)

in R2,4. Classical string solutions ~X(z, z̄) satisfy the equations of motion

∂∂̄ ~X − (∂ ~X · ∂̄ ~X) ~X = 0 (2.2)

and the Virasoro constraints

∂ ~X · ∂ ~X = ∂̄ ~X · ∂̄ ~X = 0. (2.3)

The boundary condition is expressed in terms of the Poincaré coordinates (r, xµ)

given by

Xµ =
xµ

r
, µ = 0, 1, 2, 3, (2.4)

X−1 + X4 =
1

r
X−1 − X4 =

r2 + xµxµ

r
. (2.5)

The solutions which correspond to n-gluon amplitudes end on an n-sided polygon at

the AdS boundary r = 0. The vertices x1, . . . , xn of the polygon are separated by

the gluon momenta k1, . . . , kn as

xµ
j − xµ

j+1 = kµ
j . (2.6)

This type of boundary condition is neatly characterized in terms of the generalized

sinh-Gordon potential [19]. Let us introduce the following notation

eα(z,z̄) = ∂ ~X · ∂̄ ~X, (2.7)

P (z) = ∂2 ~X · ∂2 ~X, P̄ (z) = ∂̄2 ~X · ∂̄2 ~X, (2.8)

α̂(z, z̄) = α(z, z̄) − 1

4
log P (z)P̄ (z̄), (2.9)

where α, α̂ are real and P (z) is shown to be analytic in z. For the simplest four-cusp

solution, P (z) = 1 and α̂ = 0 on the whole z-plane. For n-cusp solutions, P (z) is
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a polynomial of degree n − 4 and α̂ → 0 for |z| → ∞. The latter condition reflects

the fact that n-cusp solutions have the same asymptotics with the four-cusp solution

around each cusp.

In this paper we will concentrate on the case of n = 6, where P (z) is quadratic.

One can choose a gauge

P (z) = z2 − U, U ∈ C (2.10)

by a suitable redefinition of the world-sheet coordinate.

2.2. Hitchin system

The equations of motion (2.2) and the Virasoro constraints (2.3) can be rephrased

as SU(4) Hitchin equations [3]. To see this, let us consider a moving-frame basis

spanned by ~q0 = ~X, ~q4 = e−α/2∂ ~X, ~q5 = e−α/2∂̄ ~X and the other three complementary

orthonormal vectors ~qI , I = 1, 2, 3. The evolution of the basis q = (~q0, . . . , ~q5) is

described by a set of linear differential equations

∂q = −Azq, ∂̄q = −Az̄q. (2.11)

One can decompose the connection into two parts A = A + Φ, in such a way that A

rotates (~q0, ~q1, ~q2, ~q3) and (~q4, ~q5) separately among themselves while Φ mixes them.

The flatness condition of (2.11) then takes the form of the Hitchin equations

DzΦz̄ = 0, Dz̄Φz = 0, (2.12)

[Dz, Dz̄] + [Φz, Φz̄] = 0, (2.13)

where Dz = ∂ + [Az, ], Dz̄ = ∂̄ + [Az̄, ]. These equations are equivalent to the

equations of motion (2.2) and the Virasoro constraints (2.3). One can write down

the same equations in the spinor basis, where Az, Az̄, Φz, Φz̄ now represent 4 × 4

matrices. We do not need their explicit form [3] here, but an important fact is that

these A and Φ corresponding to string solutions satisfy additional constraints

CATC−1 = −A, CΦTC−1 = iΦ, (2.14)

with a certain constant matrix C. This leads to a Z4 automorphism in the present

Hitchin system. This Z4 automorphism is not inherent in general Hitchin systems

but is peculiar to the one describing the classical strings in AdS5. The system also

exhibits Z2 automorphism that corresponds to the reality of the string solutions.
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As argued above, n-cusp solutions are characterized by the condition that α̂ → 0

for |z| → ∞. This is equivalent to the statement that one can always diagonalize Φ

and A at large |z| by a suitable gauge transformation into the following form

h−1Φzh → 1√
2


P (z)1/4

−iP (z)1/4

−P (z)1/4

iP (z)1/4

 , (2.15)

h−1Azh + h−1∂h → m

z

(
σ3 0
0 σ3

)
, h−1Az̄h + h−1∂̄h → −m̄

z̄

(
σ3 0
0 σ3

)
,

(2.16)

where m and m̄ are constants.

2.3. Auxiliary linear problem and small solutions

The system under consideration is classically integrable. This means that the con-

nections appeared in the linear equations can be promoted to a set of one-parameter

family of flat connections. That is to say, one can write down an auxiliary linear

problem

∇ζ
zq(z, z̄; ζ) = 0, ∇ζ

z̄q(z, z̄; ζ) = 0, (2.17)

with

∇ζ
z = Dz + ζ−1Φz, ∇ζ

z̄ = Dz̄ + ζΦz̄, (2.18)

where the Hitchin equations (2.12), (2.13) are obtained as the compatibility condition

[∇ζ
z,∇

ζ
z̄] = 0. (2.19)

One can estimate the asymptotic form of the solutions q(z, z̄; ζ) for large |z|.
There are four independent solutions, whose asymptotic forms are respectively given

by

~e1z
mz̄−m̄e

1√
2
(ζ−1w+ζw̄)

, ~e2z
−mz̄m̄e

− i√
2
(ζ−1w−ζw̄)

,

~e3z
mz̄−m̄e

− 1√
2
(ζ−1w+ζw̄)

, ~e4z
−mz̄m̄e

i√
2
(ζ−1w−ζw̄)

, (2.20)

where w =
∫ z

P (z)1/4dz ∼ zn/4 and ~ei are constant vectors. One can determine

which of the four solutions shows the fastest decay for |z| → ∞ in each sector

Wk :
π(2k − 3)

n
+

4

n
arg ζ < arg z <

π(2k − 1)

n
+

4

n
arg ζ. (2.21)
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We call such solution the small solution sk(z, z̄; ζ) in the sector Wk. Small solutions

form a set of redundant basis of the solutions to the equations (2.17). We normalize

the solutions so that

〈sj, sj+1, sj+2, sj+3〉 = 1, (2.22)

where 〈si, sj, sk, sl〉 ≡ det(sisjsksl). As the differential operators are regular every-

where in |z| < ∞, the sectors Wj and Wj+n are identified. Hence

sj+n ∝ sj. (2.23)

One can determine the proportionality coefficient case by case whether n = 2k − 1,

n = 4k − 2 or n = 4k for k ∈ Z>0. In the case of n = 6,

sj+6 = µ(−1)j

sj (2.24)

where

µ = ±e2πi(m+m̄). (2.25)

Note that µ is a pure phase factor for solutions in the usual (3, 1) signature. For

later use, let us also introduce the notation

µ = eiφ (2.26)

with φ being a real parameter.

2.4. Y-system

Making use of integrability, one can compute conserved quantities without knowing

the explicit form of solutions. Instead, the fundamental building blocks are the Stokes

data 〈si, sj, sk, sl〉(ζ). Let us first recall some important identities concerning them.

In addition to the normalization condition (2.22), there hold the following identities

〈sk, sk+1, sj, sj+1〉(ζ) = 〈sk−1, sk, sj−1, sj〉(iζ), (2.27)

〈sj, sk, sk+1, sk+2〉(ζ) = 〈sj, sj−1, sj−2, sk〉(iζ), (2.28)

which follow from the Z4 automorphism.

In [5] Alday, Maldacena, Sever and Vieira formulated the T-system and the Y-

system associated to the general n-cusp solutions in AdS5. There, some particular

Stokes data are chosen as T-functions and subsequently Y-functions are defined as
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ratios of the form Y = TT/TT . Similar formulation of T- and Y-system was ob-

tained from the spectral theory of ordinary differential equations [20]. By restricting

ourselves to the n = 6 case, which is the simplest nontrivial case in their formulation,

general formulas partly get simplified due to the relation (2.22). Y-functions are then

defined by1

Y1(θ) = −〈s2, s3, s5, s6〉(eθ), (2.29)

Y2(θ) = 〈s1, s2, s3, s5〉〈s2, s4, s5, s6〉(eθ+πi/4), (2.30)

Y3(θ) = Y1(θ). (2.31)

These Y-functions are not entirely independent, but satisfy functional relations. By

using Hirota bilinear identities (or Plücker relations) among determinants and (2.24)

(2.27), (2.28), one can show that

Y1

(
θ +

πi

4

)
Y1

(
θ − πi

4

)
= 1 + Y2(θ), (2.32)

Y2

(
θ +

πi

4

)
Y2

(
θ − πi

4

)
=

(
1 + µY1(θ)

)(
1 + µ−1Y1(θ)

)
. (2.33)

Another important property of the Y-functions is the periodicity

Ya

(
θ +

3πi

2

)
= Ya(θ), (2.34)

which also follows from (2.24), (2.27), (2.28). They also satisfy

Ya(θ) = Ya(−θ̄), (2.35)

which follows from the reality of string solutions.

In fact, the Y-system obtained here is identified with that [11] of ZN -symmetric

integrable models [13–15] with N = 4. Ya correspond to the fundamental representa-

tions labeled by a = 1, 2, 3 of the A3 Lie algebra. The present Y-system corresponds

to the model with a chemical potential µ turned on. Note that the periodicity (2.34)

holds in the presence of µ.

The cross-ratios of gluon momenta are given by special values of the Y-functions,

bk = Y1

(
(k − 1)πi

2

)
, Uk = 1 + Y2

(
(2k + 1)πi

4

)
, (2.36)

1Y-functions introduced here are identified with those in [5] as Y1(θ) = µ−1[Y AMSV
1,1 (ieθ)]−1,

Y2(θ) = [Y AMSV
2,1 (ieθ)]−1, Y3(θ) = µ[Y AMSV

3,1 (ieθ)]−1.
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for k = 1, 2, 3, where

U1 = b2b3 =
x2

14x
2
36

x2
13x

2
46

, U2 = b3b1 =
x2

25x
2
14

x2
24x

2
15

, U3 = b1b2 =
x2

36x
2
25

x2
35x

2
26

. (2.37)

From the Y-system relations (2.32), (2.33) one can verify that bj’s are not entirely

independent but obey the constraint

b1b2b3 = b1 + b2 + b3 + µ + µ−1. (2.38)

2.5. TBA equations

The functional relations described above constrain the form of Y-functions mostly,

but not entirely. To fully determine the Y-functions, we need an additional informa-

tion such as the asymptotic behavior and the singularity structure. The asymptotic

behavior of the Y-functions can be evaluated by the WKB analysis [21]. It can be

shown that the Y-functions defined by (2.29)–(2.31) exhibit the following asymptotics

log Y1(θ) → |Z|e±(θ−iϕ), log Y2(θ) →
√

2|Z|e±(θ−iϕ)

for Re θ → ±∞, ϕ − π

4
< Im θ < ϕ +

π

4
, (2.39)

where Z is related to the moduli parameter U in (2.10) as

Z ≡ |Z|eiϕ = U
3
4

∫ 1

−1

(1 − t2)
1
4 dt =

√
πΓ(1

4
)

3Γ(3
4
)

U
3
4 . (2.40)

As for the singularity structure, one can take Y-functions regular everywhere except

at Re θ = ±∞. This is consistent with the functional relations (2.32), (2.33). One

could also consider Y-functions with singularities at finite θ. These correspond to

excited states. Since we are interested in minimal area surfaces which correspond to

the ground state, we restrict ourselves to the Y-functions regular at finite θ.

Taking these into account, one can write down a set of integral equations which

fully determine the form of Y-functions. By introducing the following notations

ε(θ) = log Y1(θ + iϕ), ε̃(θ) = log Y2(θ + iϕ), (2.41)

the integral equations can be written in the form of TBA equations

ε = 2|Z| cosh θ + K2 ∗ log
(
1 + e−ε̃

)
+ K1 ∗ log

(
1 + µe−ε

)(
1 + µ−1e−ε

)
, (2.42)

ε̃ = 2
√

2|Z| cosh θ + 2K1 ∗ log
(
1 + e−ε̃

)
+ K2 ∗ log

(
1 + µe−ε

)(
1 + µ−1e−ε

)
, (2.43)
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where

K1(θ) =
1

2π cosh θ
, K2(θ) =

√
2 cosh θ

π cosh 2θ
, (2.44)

and f ∗ g =
∫ ∞
−∞ dθ′f(θ − θ′)g(θ′). Note that these equations are valid in the strip

region −π/4 < Im θ < π/4. From these equations it is clear that ε(θ), ε̃(θ) are even,

real functions

ε(−θ) = ε(θ), ε̃(−θ) = ε̃(θ), (2.45)

ε(θ) = ε(θ̄), ε̃(θ) = ε̃(θ̄). (2.46)

In terms of Y-functions, these properties are expressed as

Ya(−θ + iϕ) = Ya(θ + iϕ) (2.47)

and (2.35).

Historically, the above TBA equations were first constructed for the Z4-symmetric

integrable model. Indeed, the integral kernels can be obtained as derivatives of

logarithm of the S-matrix elements in the ZN model [13] with N = 4.

By using (2.36), the cross-ratios (2.37) are expressed in terms of ε(θ), ε̃(θ). If one

wants to keep ε, ε̃ evaluated within the above strip region, the appropriate choice of

formulas are

bk+1 = exp

[
ε

(
kπi

2
− iϕ

)]
, Uk−1 = 1 + exp

[
ε̃

(
(2k − 1)πi

4
− iϕ

)]
(2.48)

for (2k − 1)π/4 < ϕ < kπ/2, and

bk+1 = exp

[
ε

(
kπi

2
− iϕ

)]
, Uk = 1 + exp

[
ε̃

(
(2k + 1)πi

4
− iϕ

)]
(2.49)

for kπ/2 < ϕ < (2k + 1)π/4, where k = 1, 2, 3 mod 3. The other cross-ratios are

obtained by solving the relations (2.37) and (2.38).

Solving the TBA equations numerically, we can calculate the cross-ratios as func-

tions of |Z|, ϕ and φ. In Figure 1, we plot 1/Uk for various φ at fixed ϕ = −π/48 as

an example.2

2ϕ = −π/48 is merely a generic value and does not have particular meaning.
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Figure 1: (a) The |Z|-dependence of the function 1/U1 for different values of φ at
ϕ = −π/48. (b) 1/U2. (c) 1/U3.

10



2.6. Area and remainder function

As explained in [3,5] in detail, the area of general n-cusp solutions with n 6= 4k (k ∈
Z>0) can be written as3

A = Adiv + ABDS-like + Aperiods + Afree + const. (2.50)

Adiv and ABDS-like are contributions from the region inside the AdS radial coordinate

cut-off and can be evaluated for general n. Aperiods is given by a period integral over

the Riemann surface of the w-coordinate defined by dw = P (z)1/4dz. Afree is shown

to be identified with (minus) the free energy of the TBA system.

On the other hand, there is known an all-order ansatz for the MHV gluon scatter-

ing amplitudes proposed by Bern, Dixon and Smirnov [8]. It was shown (assuming

the dual conformal symmetry) that BDS ansatz is correct for n = 4, 5, but deviates

from the string theory computation for n ≥ 6 [9]. The function which complements

the ansatz to produce the full gluon scattering amplitude is called the remainder

function R. In the strong coupling limit, scalar magnitude of gluon scattering am-

plitudes is then expressed as

−A = −Adiv − ABDS + R. (2.51)

Adiv is identical to that in the string theory computation, with appropriate identifi-

cation of the cut-off parameters. ABDS can be computed from one-loop perturbation

and is known for general n.

Taken altogether, the remainder function in the strong coupling limit is expressed

as

R = ABDS − ABDS-like − Aperiods − Afree + const.

= R1 − Aperiods − Afree + const., (2.52)

where

R1 ≡ ABDS − ABDS-like. (2.53)

Below we drop the constant term in (2.52).

3For n = 4k (k ∈ Z>0) one needs extra terms [5, 7].
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In the case of n = 6, terms in (2.52) are explicitly given by4

R1 = −1

4

3∑
k=1

Li2 (1 − Uk) , (2.54)

Aperiods = |Z|2, (2.55)

−F = Afree =
1

2π

∫ ∞

−∞
dθ

(
2|Z| cosh θ log

(
1 + µe−ε(θ)

)(
1 + µ−1e−ε(θ)

)
+ 2

√
2|Z| cosh θ log

(
1 + e−ε̃(θ)

))
. (2.56)

Figure 2 and 3 show numerical results of the free energy and the remainder function at

ϕ = −π/48 respectively, where the value of ϕ is the same as in Figure 1. From Figure

1 and 3(b), we can read off the value of the remainder functions as the functions of

the cross-ratios Uk.
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Figure 2: (a) 3D plots of free energy Afree as a function of |Z| and φ (0 ≤ |Z| ≤
5, 0 ≤ φ ≤ 3π/2) at ϕ = −π/48. (b) |Z|-Afree graphs for various values of φ at
ϕ = −π/48.

Let us comment on choice of variables. General n-point gluon scattering ampli-

tudes have 3n − 15 real moduli degrees of freedom. Correspondingly in the present

case, the remainder function R for six-point amplitudes is a function of three inde-

pendent real parameters. One can express R, either as a function of the momentum

cross-ratios Uk or as a function of the moduli parameters |Z|, ϕ, φ. The former choice

respects the point of view of the four-dimensional N = 4 gauge theory while the lat-

ter fit well with the two-dimensional description. In the following sections we mainly

4In [3] R1 is expressed as R1 =
∑3

k=1

(
1
8 log2 uk + 1

4 Li2(1 − uk)
)

with uk = U−1
k . This can be

rewritten as in (2.54) for uk /∈ (−∞, 0) by using a dilogarithm identity.
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Figure 3: (a) 3D plots of numerical data of remainder function R as a function of
|Z| and φ at ϕ = −π/48. (b) |Z|-R graphs for various values of φ at ϕ = −π/48.

adopt the latter picture and study functional properties of R as well as its con-

stituents Afree and R1, in particular in the two extreme regions |Z| � 1 and |Z| � 1.

The former picture in terms of the cross-ratios is also discussed.

3. Free energy around CFT point

The TBA equations describing the six-point gluon scattering amplitudes (2.42)–

(2.43) result from minimizing the free energy of the two-dimensional Z4-symmetric

integrable field theory [18], which is obtained by deforming the Z4 parafermion CFT

[17] by the first energy operator [14, 15]. The model contains three particles with

mass m,
√

2m and m, respectively. The third one is the anti-particle of the first. The

free energy of the model on a space of length L � 1 with temperature 1/R gives the

ground state energy of the model on a space of length R [12]. The TBA equations

(2.42)–(2.43) tell us that the scale R is related to |Z| as mR = 2|Z|. In [3], the free

energy and the regularized area in the CFT limit mR → 0 are analyzed. In this

limit, the cross-ratios take the values on the locus U1 = U2 = U3. In this section, we

discuss the corrections to the free energy around the CFT point.

We begin by noting that the action of the integrable model takes the form

S = SPF + λ

∫
d2x ε(x). (3.1)

Here, SPF is the action of the Z4 parafermion CFT, and ε is the canonically normal-

ized first energy operator with conformal dimension Dε = D̄ε = 1/3. The coupling

13



constant λ > 0 is related to the mass m as [22]

(2πλ)2 =
[
m
√

π γ
(3

4

)] 8
3
γ
(1

6

)
, (3.2)

where γ(x) ≡ Γ(x)/Γ(1 − x).

The free energy around the CFT point is then given by the ground state energy

E(R) of the perturbed CFT on a cylinder of circumference R with small λ in (3.1)

[12]:5

F = RE(R) − R2B(λ), (3.3)

where E(R) is expanded by the connected CFT correlators as

E(R) = E0 − R

∞∑
n=1

(−λ)n

n!

(2π

R

)2(Dε−1)n+2

(3.4)

×
∫ 〈

V (∞) ε(zn, z̄n) · · · ε(z1, z̄1) V (0)
〉

connected

n∏
i=2

(ziz̄i)
Dε−1dz2

i .

In the above, E0 is the unperturbed ground state energy, V is the operator corre-

sponding to the vacuum, and the correlators are evaluated on the complex plane

after a conformal transformation from the cylinder. We have also set z1 = z̄1 = 1.

Substituting λ in (3.2), one finds that the ground state energy has an expansion in

(mR)
4
3
n. Due to the Z2 symmetry ε → −ε, only the terms with even n remain in

the expansion [18].

The second term in (3.3) subtracts the bulk contribution to E(R), so that the

free energy per unit length vanishes at zero temperature R → ∞ as implied by (2.56)

and the TBA equations. This term is evaluated as [18]

B(λ) = −1

4
m2. (3.5)

Although the derivation in [18] is given for µ = 1, the asymptotics needed there may

hold also for µ 6= 1 to give the same result. We will confirm that (3.5) is in agreement

with the numerical results for both µ = 1 and µ 6= 1.

Without the chemical potential, namely, for µ = 1, the vacuum operator V is

the identity, and thus the expansion is straightforward. To proceed in the case with

general µ, we recall the connection between the Z4 parafermion model and the spin-1
2

XXZ (XXZ1/2) model, the Hamiltonian of which is

HXXZ =
N∑

j=1

[
Sx

j Sx
j+1 + Sy

j Sy
j+1 + cos α Sz

j S
z
j+1

]
. (3.6)

5We have rescaled the free energy as R2F/L → F in accord with (2.56).
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In the continuum limit, the spin variables are represented by a free boson Φ(τ, σ) [23]:

Sz
j ∼ 1

2πr
∂σΦ + (−1)jc1 cos(Φ/r),

S−
j ∼ e

i
2
rΦ̃

[
c2 cos(Φ/r) + (−1)jc3

]
, (3.7)

where S±
j ≡ Sx

j ± iSy
j , ca are constants, Φ̃ is the dual boson, and (τ, σ) are the two-

dimensional coordinates. r is the compactification radius, i.e., Φ ∼ Φ + 2πr, and is

related to the coupling constant by r =
√

2(1 − α
π
) [24] in the unit where the selfdual

radius is rsd =
√

2. Since the Z4 parafermion theory is described by a free boson

compactified on the S1/Z2 orbifold with rPF =
√

2/3 [25], the continuum limit of

the XXZ1/2 model with αPF = 2
3
π gives the Z4 parafermions.

In terms of the XXZ1/2 model, the chemical potential µ = eiφ in the TBA equa-

tions is understood as the twist parameter of the boundary conditions [26–28],

Sz
N+1 = Sz

1 , S±
N+1 = e±

2
3
iφS±

1 . (3.8)

The bosonization formula (3.7) means that these are equivalent to the winding con-

dition on the dual boson [5, 29], Φ̃(τ, σ + R) ∼ Φ̃(τ, σ) − 4
3r

φ, where R is the length

of the space. For the original boson Φ, this induces the shift of the momenta,

n

R
→ 1

R
(n − φ

3πr
) (n ∈ Z). (3.9)

One can check that the ground state energy is also changed to (see also [30])

EΦ = − π

6R

(
1 − 2φ2

3π(π − α)

)
, (3.10)

due to the momentum shift, and that the TBA result in [3] is indeed reproduced for

α = αPF:

E0 = EΦ

∣∣
α=αPF

= − π

6R

(
1 − 2φ2

π2

)
. (3.11)

The above discussion shows that the vacuum operator V for general µ is identified

with the momentum shift operator,

V = e−i φ
3πr

Φ = e−i
√

1
6

φ
π

Φ, (3.12)

when the parafermions are bosonized. The energy operator ε is also given simply by

the vertex operators of Φ, since it is in the untwisted sector of the S1/Z2 orbifold

compactification. The conformal dimension then determines its bosonized form,

ε = a+ ei
√

2
3
Φ + a−e−i

√
2
3
Φ, (3.13)
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where a± are some coefficients including cocycle factors. Their explicit forms can be

found in [31] but, here, we only note that the products a±a∓ are c-numbers.

Now, we are ready to evaluate the expansion of the ground state energy E(R).

The first non-trivial term in (3.4) comes from the two-point function. Since ε is

canonically normalized as 〈 ε(z)ε(0) 〉|φ=0 = |z|−4/3, one has for general φ〈
ε(z2)ε(z1)

〉
φ

=
〈
ei
√

1
6

φ
π

Φ(∞)ei
√

2
3
Φ(z2)e

−i
√

2
3
Φ(z1)e

−i
√

1
6

φ
π

Φ(0)
〉

= |1 − z2|−
4
3 |z2|

2
3π

φ, (3.14)

with z1 = 1. The integral of this term is evaluated in (3.4) by the formula,∫
d2u |u|2a|1 − u|2b = πγ(1 + a)γ(1 + b)γ(−1 − a − b). (3.15)

Collecting the results so far, we find the free energy near the CFT point to be

F = RE0 + |Z|2 − C 8
3
γ
(1

3
+

φ

3π

)
γ
(1

3
− φ

3π

)
|Z|

8
3 + O(|Z|

16
3 ), (3.16)

where

C 8
3

=
π

2

[ 1√
π

γ
(3

4

)] 8
3
γ
(1

6

)
γ
(1

3

)
≈ 0.18461. (3.17)

At φ = π the coefficient of |Z| 83 diverges, which implies that the CFT perturbation

breaks down there. The expansions to higher orders are straightforward. Figure

4 and 5 show Afree = −F from the above CFT perturbation and the numerical

computation. The results in (3.14) and (3.16) may be continued to imaginary φ.

While real φ is physical in the context of the XXZ spin-chain, so is imaginary φ

in the context of thermodynamics. Note that imaginary φ corresponds to minimal

surfaces in (2, 2) signature [3].

4. Remainder function around CFT point

The remainder function (2.52) essentially consists of two non-trivial functions, Afree

and R1. We studied the structure of Afree for |Z| � 1 in the last section. Here let us

see how R1 behaves as a function of |Z|, ϕ, φ in the region |Z| � 1.

We know the form of R1 as a function of Uk (2.54). Using (2.36), one can express

it in terms of Y-functions as

R1 = −1

4

3∑
k=1

Li2

(
−Y2

(
(2k + 1)πi

4

))
. (4.1)
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What we need is the information of how |Z|, ϕ, φ enters in the function Y2(θ). From

(2.41)–(2.43) we see that θ and ϕ appear in the Y-functions only through the combi-

nation θ + iϕ. The Y-functions are periodic in θ (2.34) and also exhibit Z2 symme-

tries (2.35), (2.47). Also they are regular everywhere except at Re θ = ±∞, as we

mentioned in section 2.5. Combining all these properties together, we see that the

Y-functions admit the following Laurent expansion [11]

Ya(θ) = Y (0)
a (|Z|, φ) +

∞∑
n=1

Y (n)
a (|Z|, φ)(tn + t−n), t = e

4
3
(θ−iϕ), (4.2)

where Y
(n)
a ∈ R. By substituting this into the expression (4.1), one obtains the

following Fourier expansion for R1

R1 =
∞∑

m=0

R
(m)
1 (|Z|, φ) cos 4mϕ. (4.3)

Note that in deriving this expression, there occur cancellations among powers of

tn evaluated at θ = (2k + 1)πi/4, k = 1, 2, 3, whenever n is not a multiple of 3.

By construction the coefficients R
(m)
1 are real. Therefore R1 has shown to be real-

valued, even, periodic function in ϕ with periodicity π/2. Our numerical results

indeed exhibit this periodicity.

Let us now analyze the form of R1 for |Z| � 1. It is seen from (2.42)–(2.43) that

the Y-functions grow dramatically at large θ but do not vary so much in the region

− log(1/|Z|) � θ � log(1/|Z|). In other words, Y-functions draw a plateau over the

region, which is wide when |Z| is small. In order for the Y-functions to be so, the

coefficients Y
(n)
a in the expansion (4.2) have to be sufficiently small and at most

Y (n)
a (|Z|, φ) ∼ |Z|

4
3
n + (higher order terms). (4.4)

The appearance of powers of |Z|4/3 = |U | is not totally unexpected, as we have

already seen in the last section that the CFT result for Afree is obtained in powers of

|Z| 83 . This suggests us that the Y-functions, and thus their descendants Uk and R1,

may well be expanded in powers of |Z|4/3 = |U |. Below we assume that this is the

case. Let us then express Y2 as

Y2(θ) =
∞∑

n=0

Ỹ
(n)
2 (ϕ + iθ, φ)|Z|

4
3
n. (4.5)

The first coefficient is the value of Y2 evaluated at Z = 0 and is known [3] as

Ỹ
(0)
2 (ϕ, φ) = 1 + µ2/3 + µ−2/3 = 1 + 2 cos

2φ

3
. (4.6)
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(4.4) tells us that only the terms with n = 0, 1 in (4.2) contribute to the next

coefficient Ỹ
(1)
2 . Therefore Ỹ

(1)
2 , as a function of ϕ, is at most the sum of a term

independent of ϕ and a term proportional to t + t−1 = 2 cos[4(ϕ + iθ)/3]. As a

matter of fact, the former term is not allowed by the Y-system relations (2.32),

(2.33). Hence Ỹ
(1)
2 has to be of the form

Ỹ
(1)
2 (ϕ, φ) = y(1)(φ) cos

4(ϕ + iθ)

3
. (4.7)

This form is also confirmed by numerical computations. At present we do not know

the analytic expression for the function y(1)(φ), but it can be evaluated numerically

as in Figure 6. Similarly, Ỹ
(2)
2 depends on ϕ only through cos[4(ϕ + iθ)/3] and

cos[8(ϕ + iθ)/3], but actually we do not need the precise form here. By using the

above data and the Y-system relations (2.32)–(2.33), one can determine the behavior

of R1 for |Z| � 1. If we express R1 in the form

R1 =
∞∑

n=0

R̃
(n)
1 (ϕ, φ)|Z|

4
3
n, (4.8)

the first few coefficients are obtained as

R̃
(0)
1 (ϕ, φ) = −3

4
Li2(1 − 4β2), (4.9)

R̃
(1)
1 (ϕ, φ) = 0, (4.10)

R̃
(2)
1 (ϕ, φ) =

3(4β2 − 1 + log(4β2))

64β2(4β2 − 1)2
y(1)(φ)2, (4.11)

with β = cos(φ/3). Note that these three coefficients are ϕ-independent. This is

consistent with the argument below (4.3) that Fourier modes cos(4nϕ/3) with n not

being a multiple of 3 cancel out in R1. The ϕ-dependence could start appearing at

the order of |Z|4. The above result agrees with numerical computation with high ac-

curacy. Figure 7 shows a comparison between the above perturbative approximation

with numerical plots.

Collecting the results so far, the remainder function is expanded around |Z| = 0

as

R = −
[
π

6

(
1 − 2φ2

π2

)
+

3

4
Li2(1 − 4β2)

]
+

[
−C 8

3
γ

(
1

3
+

φ

3π

)
γ

(
1

3
− φ

3π

)
+

3(4β2 − 1 + log(4β2))

64β2(4β2 − 1)2
y(1)(φ)2

]
|Z|

8
3

+O
(
|Z|4

)
. (4.12)
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Note that |Z|2 terms in Aperiods and in Afree cancel each other. Figure 8 shows a

comparison between the perturbative approximation with numerical plots.

One can also express the cross-ratios Uk (k = 1, 2, 3) as

Uk = 4β2 + y(1)(φ)

(
cos

4ϕ − (2k + 1)π

3

)
|Z|

4
3 + O

(
|Z|

8
3

)
. (4.13)

These are inverted to express |Z|, ϕ, φ as functions of Uk:

β2 = cos2 φ

3
=

1

12
(U1 + U2 + U3), (4.14)

tan
4

3
ϕ =

√
3(U2 − U3)

2U1 − U2 − U3

, (4.15)

|Z|
4
3 =

−2U1 + U2 + U3

3y(1)(φ) cos 4
3
ϕ

. (4.16)

With help of numerical fitting, y(1) is also evaluated, e.g., as (see Figure 6)

y(1)(φ) ≈ 5.47669 − 0.484171φ2 + 0.0119471φ2

≈ 1.31367 + 2.61136 cos
φ

3
+ 1.55402 cos

2φ

3
. (4.17)

Substituting these into (4.12) gives an analytic expansion of R in terms of Uk, which

can be directly compared with weak coupling results. This expansion describes the

behavior of R around the locus U1 = U2 = U3.

One can check that the Jacobian of the above change of variables is proportional

to (y(1))2|Z| 53 sin(2
3
φ) and the transformation is one-to-one for |Z| 6= 0, 0 ≤ ϕ < 3π/2

and 0 < φ < 3π/2. The range of ϕ comes from that of the phase of U as seen in (2.40),

while the range of φ corresponds to the region where minimal surfaces are in (1, 3) and

usual (3, 1) signatures [3]. From (4.13), one also finds that all (|Z|, ϕ, φ) near the CFT

point correspond to real cross-ratios. In the above approximation, each of |Z|, ϕ, φ

has the following geometrical meaning in the parameter space (U1, U2, U3): (4.14)

implies that constant φ spans a plane perpendicular to the locus U1 = U2 = U3. φ

specifies the distance between the plane and the origin. On this plane, ϕ parametrizes

a circle around the center U1 = U2 = U3 = 4β2 with a radius of
√

3/2 y(1)(φ)|Z|4/3.

Thus, in terms of the cross-ratios, the weak dependence of R on ϕ for small |Z|
observed above is translated into that on the rotation around the locus U1 = U2 = U3.

5. Remainder function in large mass region

So far, we have studied the remainder function when the mass scale |Z| is small. In

this section, following [12] we consider the large mass region, i.e., |Z| � 1, which
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corresponds to the kinematical region around collinear limits. In this region, we can

solve the TBA equations approximately. Throughout this section, we consider the

case that −π/4 < ϕ < 0. Other cases can be analyzed similarly by using (2.48),

(2.49).

Let us first consider the free energy. For large |Z|, the pseudo-energies, ε, ε̃,

behave as ε(θ) ≈ 2|Z| cosh θ and ε̃(θ) ≈ 2
√

2|Z| cosh θ. The convolution terms in the

TBA equations are suppressed exponentially. Thus the free energy is evaluated by

Afree ≈
∫ ∞

−∞

dθ

2π

[(
µ + µ−1

)
2|Z| cosh θ e−2|Z| cosh θ + 2

√
2|Z| cosh θ e−2

√
2|Z| cosh θ

]
.

(5.1)

One can easily find that the free energy is expressed in terms of the modified Bessel

function of the second kind,

Afree ≈
2|Z|
π

[(
µ + µ−1

)
K1(2|Z|) +

√
2K1(2

√
2|Z|)

]
. (5.2)

From the asymptotics of the modified Bessel function we see that Afree decays expo-

nentially as |Z| goes to ∞.

Next, let us consider the large |Z| behavior of R1. The leading correction of b1 is

given by

b1 = eε(−iϕ) ≈ e2|Z| cos(ϕ̂−π/4)(1 + δ1), (5.3)
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where ϕ̂ ≡ ϕ + π/4 and

δ1 ≡∫ ∞

−∞
dθ

[
K2

(
iϕ̂ − πi

4
+ θ

)
e−2

√
2|Z| cosh θ +

(
µ + µ−1

)
K1

(
iϕ̂ − πi

4
+ θ

)
e−2|Z| cosh θ

]
.

(5.4)

The kernels are defined in (2.44). Similarly,

U2 − 1 = eε̃(−iϕ̂) ≈ e2
√

2|Z| cos ϕ̂(1 + δ2) (5.5)

with

δ2 ≡
∫ ∞

−∞
dθ

[
2K1 (iϕ̂ + θ) e−2

√
2|Z| cosh θ +

(
µ + µ−1

)
K2 (iϕ̂ + θ) e−2|Z| cosh θ

]
. (5.6)

From these and (2.37), (2.38), we can compute b2 and b3,

b3 =
U2

b1

= e2|Z| cos(ϕ̂+π/4)(1 + δ3), b2 =
b1 + b3 + µ + µ−1

b1b3 − 1
, (5.7)

where

δ3 ≡
δ2 − δ1 + e−2

√
2|Z| cos ϕ̂

1 + δ1

. (5.8)

Thus the other cross-ratios U1 and U3 are given by

1 − U1 = 1 − b2b3 = −e−2
√

2|Z| sin ϕ̂(1 + ∆1), (5.9)

1 − U3 = 1 − b1b2 = −e2
√

2|Z| sin ϕ̂(1 + ∆3), (5.10)

with

∆1 ≡
(1 + δ3 + µe−2|Z| cos(ϕ̂+π/4))(1 + δ3 + µ−1e−2|Z| cos(ϕ̂+π/4)))

1 + δ2

− 1, (5.11)

∆3 ≡
(1 + δ1 + µe−2|Z| cos(ϕ̂−π/4))(1 + δ1 + µ−1e−2|Z| cos(ϕ̂−π/4)))

1 + δ2

− 1. (5.12)

Note that all δi and ∆i decay exponentially as |Z| goes to ∞.

Here let us give a comment on the large |Z| behaviors of the cross-ratios. When ϕ̂

is far from zero, the cross-ratios show the asymptotic behavior (u1, u2, u3) → (1, 0, 0)

as |Z| → ∞ where uk ≡ 1/Uk (k = 1, 2, 3). However if ϕ̂ approaches zero, (u1, u2, u3)

can reach an arbitrary point on the segment (1 − c, 0, c) (0 < c < 1/2). To see this,

we need to take the double scaling limit ϕ̂ → +0, |Z| → ∞ with |Z| sin ϕ̂ = a(> 0)

held fixed. In this limit the cross-ratios go to the point (see Figure 9)

(u1, u2, u3) → (1/(1 + e−2
√

2a), 0, 1/(1 + e2
√

2a)). (5.13)
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Figure 9: We take a large value |Z| = 9.0 and plot the value of uk( = 1/Uk) for
various ϕ at fixed φ = 0. Dashed lines correspond to the formula (5.13) obtained by
taking the collinear limit.

In order to invert the relation between (|Z|, ϕ, φ) and the cross-ratios for large |Z|,
one has to evaluate the integrals in (5.4) and (5.6) in more detail.

To analyze the large |Z| behavior of R1, the following asymptotic expansion is

useful:

Li2(−ex(1 + δ)) = −x2

2
− π2

6
− xδ + e−x + O(δ2, e−xδ, e−2x) (x � 1 and δ � 1).

(5.14)

Therefore the asymptotic behavior of R1 is given by

R1 ≈ |Z|2 +
π2

12

+
1

4
(2
√

2|Z| cos ϕ̂ δ2 + 2
√

2|Z| sin ϕ̂ ∆3 − e−2
√

2|Z| cos ϕ̂ + e−2
√

2|Z| sin ϕ̂∆1).

(5.15)

The first term is divergent in the large |Z| limit, but this term is canceled by the

second term in (2.52). Combining all the above results, we finally arrive at the large

mass behavior of the remainder function

R ≈ π2

12
− 2|Z|

π

[(
µ + µ−1

)
K1(2|Z|) +

√
2K1(2

√
2|Z|)

]
(5.16)

+
1

4
(2
√

2|Z| cos ϕ̂ δ2 + 2
√

2|Z| sin ϕ̂ ∆3 − e−2
√

2|Z| cos ϕ̂ + e−2
√

2|Z| sin ϕ̂∆1).
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Figure 10: (a) Large |Z| behavior of the remainder function for various φ at ϕ̂ =
5π/24. Dashed lines show the asymptotic expansion obtained by (5.2) and (5.15).
Points show the numerical results. (b) The |Z|-dependence of the remainder function
vs the small (dashed line) and the large (dotted line) |Z| expansions at φ = 0 and
ϕ = −π/48. The two expansions cover the whole region in |Z| except a small region
around |Z| = 1.0.

where δ2, ∆1 and ∆3 are given by (5.6), (5.11) and (5.12) respectively. Since the

second and the third terms decay exponentially to zero in the large mass limit, the

remainder function approaches the constant π2/12.

Figure 10 shows the behavior of the remainder function in the large |Z| limit.

For the large |Z|, the asymptotic expansion of the remainder function (5.16) is in

good agreement with the numerical data. Figure 11 shows the ϕ̂-dependence of the

remainder function for the large |Z|. We observe that ϕ̂-dependence is weak. This

can also be seen in the analytic form (5.16) where the ϕ̂-dependence is suppressed

exponentially in |Z|.

6. Conclusions

In this paper we have studied the remainder function of 6-point gluon scattering

amplitudes in N = 4 super Yang–Mills theory by analyzing the TBA equations

perturbatively and numerically. We have examined perturbative solution near the

UV and IR limits and found that results are consistent with the numerical results.

The remainder function is made of the free energy of the Z4-symmetric integrable

model and the difference between the BDS part and the BDS-like part. The free

energy near the CFT point can be obtained by the correlation functions with the

chemical potential background. It is an interesting problem to generalize this result
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Figure 11: ϕ̂-dependence of the remainder function (a) at |Z| = 2.0 and φ = 0 and
(b) at |Z| = 5.0 and φ = 0. The dashed line and points correspond to the asymptotic
expansion and the numerical results, respectively. We see that R does not depend
very much on ϕ̂. (R varies only up to 0.6% at |Z| = 2.0 and 0.05% at |Z| = 5.0.)

to the case of n-point amplitudes corresponding to the generalized parafermions.

The other part of the remainder function R1 is written as the sum of the dilogarithm

function including Y-functions as arguments. In the present work, we could not

completely determine its analytic form near the CFT point, but the undermined

function of the chemical potential has been evaluated by numerical fitting. It is also

an interesting problem to determine the series expansions of the Y-functions in order

to know analytical properties of the remainder functions. In the large mass limit,

we have obtained the first order correction to the remainder function. It would be

useful to apply nonlinear integral equation approach [32] to analyze the TBA system

further.

Our results provide an analytic form of the remainder function for the 6-point

amplitude at strong coupling away from the UV(CFT) and the IR(collinear) point.

Such an analytic form beyond numerical ones will be important for further studying

the super Yang–Mills theory at strong coupling. In particular, together with the

recent results of the analytic form at weak coupling [33, 34], which is still under

active investigation, our strong coupling result will give a clue to understand the

scattering amplitude to all order in the context of the AdS/CFT correspondence.

In this regard, comparisons with the perturbative (both analytic and numerical)

computations [10, 33–35] would be of interest. One can expect that the physical

picture of the amplitude to all order will emerge through further investigations both
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at weak and strong coupling. As shown in Figure 10, we also find that simple first

order expansions away from the UV and IR points give a good approximation to

the remainder function for all the scale |Z| as long as the expansions are valid.

In addition, our results demonstrate that the identification of the two-dimensional

integrable models underlying the four-dimensional super Yang–Mills theory [3, 6]

is useful, as well as interesting, for actual computations of the amplitude at strong

coupling. The discussion in this paper may also be generalized to other TBA systems

with chemical potential.

The free energy Afree is independent of ϕ, the phase of Z. From perturbative and

numerical analysis, we observe that the ϕ-dependence of the remainder function is

also weak: it starts appearing possibly at the order of |Z|4 for small |Z| and at the

order of e−c|Z| with c being some positive constant for large |Z|. In terms of the cross-

ratios Uk, the weak dependence for small |Z| is translated into that on the rotation

around the locus U1 = U2 = U3. It would be important to further investigate the

meaning of the ϕ-dependence to explore quantum corrections to the present analysis

as noted in [5].
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