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Spontaneous and induced dynamic fluctuations in glass formers. |.
General results and dependence on ensemble and dynamics
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We study theoretically and numerically a family of multipoint dynamic susceptibilities that quantify
the strength and characteristic length scales of dynamic heterogeneities in glass-forming materials.
We use general theoretical arguments (fluctuation-dissipation relations and symmetries of relevant
dynamical field theories) to relate the sensitivity of averaged two-time correlators to temperature
and density to spontaneous fluctuations of the local dynamics. Our theoretical results are then
compared to molecular dynamics simulations of the Newtonian, Brownian, and Monte Carlo
dynamics of two representative glass-forming liquids, a fragile binary Lennard-Jones mixture, and
a model for the strong glass-former silica. We justify in detail the claim made by Berthier et al.
[Science 310, 1797 (2005)] that the temperature dependence of correlation functions allows one to
extract useful information on dynamic length scales in glassy systems. We also discuss some subtle
issues associated with the choice of microscopic dynamics and of statistical ensemble through
conserved quantities, which are found to play an important role in determining dynamic
correlations. © 2007 American Institute of Physics. [DOI: 10.1063/1.2721554]

I. INTRODUCTION

Diverse materials, ranging from molten mixtures of me-
tallic atoms, molecular and polymeric liquids, and colloidal
suspensions, may form glasses if sufficient undercooling or
densification occurs.'” A glass may be characterized me-
chanically as a solid, but microscopically lacks the long-
range order of a crystal. Close to vitrification, the viscosity
of glass-forming systems increases dramatically and sensi-
tively as the thermodynamic control variables are changed.
Furthermore, some degree of universality is observed in the
thermal and temporal behaviors of systems close to the glass
transition, even though the material properties of such sys-
tems may be vastly different." Despite decades of intense
theoretical and experimental works, the underlying causes of
this interesting behavior are not well understood.

The observed quasiuniversal behavior of glassy systems
might be related to the existence of a growing length scale as
the glass transition is approached. The search for such a cor-
relation length scale has led to intense activity in recent
years. Static structural indicators have repeatedly failed to
show any evidence of collective behavior. Indeed, the static
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structure of a supercooled liquid hardly differs from that of
the same liquid at relatively high temperatures. Clearly all
simple structural correlations remain short ranged as the
glass transition is applroached.4 It has become manifest in the
last decade that an interesting behavior is revealed by spa-
tially correlated dynamics. As a whole, such effects are re-
ferred to as “dynamical heterogeneity.”s_9

The investigation, via theory,l(H7 simulation, and
experiment,zz’27 of various aspects of dynamic heterogeneity
has greatly advanced our understanding of the behavior of
systems close to the glass transition. In particular, multipoint
susceptibilities have been devised to quantify the behavior
and magnitude of the putative growing dynamical length
scale,&ls’16’18’20’28_34 and experimental studies have, for sev-
eral materials, directly determined the number of molecular
units that move cooperatively near the glass
transition,?%%32>-26-35-37 Despite recent breakthroughs, much
more work needs to be done to fully characterize such a
behavior both experimentally and theoretically.

In the present work, contained here and in a companion
paper,38 we make a step towards this goal by investigating in
detail different susceptibilities that may be categorized ac-
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cording to the induced or spontaneous nature of the mea-
sured fluctuations.”’ Spontaneous dynamic fluctuations can
be characterized by four-point functions, as proposed and
studied earlier,s’ls’16’18’20’28_34 or three-point functions, as in
Refs. 37 and 39. Instead, fluctuations can be induced by
monitoring the change of dynamical correlators that follows
a change of an external control parameter, e.g.,
temperature.”’39 As we shall show, it is possible to relate
induced and spontaneous dynamical fluctuations via
fluctuation-dissipation relations as proposed in Ref. 37. This
provides a very valuable experimental tool to measure dy-
namic fluctuations since, as usual, induced fluctuations are
much easier to measure than spontaneous ones.

Using molecular dynamics simulations of different ar-
chetypal glass-forming liquids (e.g., “strong” materials that
exhibit an Arrhenius temperature dependence of the viscos-
ity, and “fragile” ones, whose viscosity displays a super-
Arrhenius temperature dependence), we shall show that in
the slow dynamical regime a considerable fraction of spon-
taneous fluctuations can be attributed to energy fluctuations:
since the dynamics is spatially correlated, a local energy
fluctuation induces a change in the dynamics over a much
larger range.

Our analysis will, however, reveal that global four-point
correlations describing the fluctuations of intensive dynami-
cal correlators may depend both on the statistical ensemble
and on the underlying microscopic dynamics. Local four-
point correlations measuring the correlation between the re-
laxation dynamics at a finite distance apart, of course, do not
depend on the statistical ensemble, but they do depend on the
underlying microscopic dynamics. This is striking because it
is known that correlators measuring the average dynamics do
not depend in the relevant glassy regime on the microscopic
dynamics (Newtonian or stochastic40’41). We address this
problem both theoretically and numerically, and conclude
that, although the underlying physical mechanisms are the
same, dynamical correlations depend quantitatively on the
conserved physical quantities (and global four-point correla-
tions even on the statistical ensemble). For example, the ab-
solute magnitude of global spontaneous dynamical fluctua-
tions in a Lennard-Jones system in the NVT ensemble
obtained from Brownian dynamics (BD) or Monte Carlo
(MC) dynamics are very similar, but are considerably smaller
than that obtained with Newtonian dynamics (ND) in the
same NVT ensemble, whereas ND simulations performed in
the NVE ensemble yield results that are close to the BD and
MC results in the NVT ensemble. However, we stress that all
our results point toward the conclusion that the behavior of
all these quantities as the glass transition is approached is
governed by the growth of a unique dynamic correlation
length, at least in the numerically accessible regime.

The aim of the present paper is to provide the reader
with the physical picture underlying the dynamical suscepti-
bilities introduced in Ref. 37, along with more technical el-
ements based on general field-theoretical considerations and
detailed numerical investigations of different realistic glass-
forming liquids. In a companion paper,38 we present some
quantitative predictions for these susceptibilities, obtained
within different theoretical models: mean-field spin glass
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models,* mode-coupling theory,43 and kinetically con-
strained models,44 which we again confront with the results
from molecular dynamics simulations. The present paper is
arranged in four sections. In Sec. II we present the physical
motivations, definitions, and physical content of several mul-
tipoint dynamic susceptibilities. We derive, in particular,
general results for the ensemble dependence of dynamic fluc-
tuations, fluctuation-dissipation relations, and bounds be-
tween induced and spontaneous dynamic fluctuations. In Sec.
IIT we present a field-theoretic derivation of the behavior of
dynamic fluctuations for various types of microscopic dy-
namics. This is particularly useful in identifying the precise
physical mechanism leading to the growth of dynamic corre-
lations and the dependence of multipoint susceptibilities on
the microscopic dynamics. In Sec. IV we summarize our
various theoretical predictions and extract some important
consequences, relevant to experiments, that need to be tested
numerically. In Sec. V we present the results of detailed mo-
lecular dynamics simulations of two model glass-forming
liquids, a fragile binary Lennard-Jones mixture, and the
strong Beest-Kramer-van Santen (BKS) model for silica. We
compare spontaneous and induced fluctuations and show
that, as predicted theoretically, dynamic correlations strongly
depend on the choice of microscopic dynamics and statistical
ensemble. Our results suggest, however, that a unique dy-
namical length scale governs the growth of dynamical sus-
ceptibilities in all cases. In Sec. VI we give the conclusions
of our study. Although very natural in spin systems, four-
point correlators in liquids mix dynamical heterogeneities
with different physical effects (in particular, energy and den-
sity conservation) and might therefore not be the most effec-
tive object to work with. On the other hand, we fully confirm
the claim made in Ref. 37 that the temperature dependence
of correlation functions allows one to extract rich and useful
information on dynamic length scales in glassy systems.45

Il. MULTIPOINT DYNAMIC CORRELATORS AND NEW
LINEAR SUSCEPTIBILITIES

A. Why four-point correlators? The spin glass case

No static correlation has yet been found to reveal any
notable feature upon approaching the glass transition.**° Any
length scale associated with the slowing down of the system
must therefore be hidden in some dynamic correlation func-
tion. This issue is, in fact, deeply related to one of the most
important question pertaining to the physics of disordered
systems: How can one define long-range amorphous order in
such systems?

We know from the theory of spin glasses that the above
oxymoron has, in fact, a precise answer: some hidden long-
range order indeed develops at the spin glass transition.”” In
order to reveal this long-range order, conventional two-point
functions are useless. Even if spins sy and sy,, have nonzero
static correlations (sysy,y) in the spin glass phase, the aver-
age over space for a given distance y vanishes because the
pairwise correlations randomly change sign whenever x
changes. The insight of Edwards and Anderson is that one
should first square (sysy,y) before averaging over space.48 In
this case, the resulting (four-spin) correlation function indeed
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develops long-range tails in the spin glass phase. This corre-
lation, in fact, decays so slowly that its volume integral, re-
lated to the nonlinear magnetic susceptibility of the material,
diverges in the whole spin glass phase.49

The Edwards-Anderson idea can, in fact, be understood
from a dynamical point of view, which is important for un-
derstanding both the physics of the spin glass just above the
transition and its generalization to structural glasses. Con-
sider, in the language of spins, the following four-point cor-
relation function:

S4(YJ) = [<Sx(t = O)Sx+y(t = O)sx(t)sx+y(t)>]xa (1)

where the brackets [---], indicate a spatial average. Suppose
that spins sy and sy,, develop static correlations (sySy.y)
within the glass phase. In this case, Sy(y,z— ) will clearly
converge to the spin glass correlation [(sysy,y)*],. More gen-
erally, S4(y,#) for finite ¢ is able to detect fransient tenden-
cies to spin glass order, for example, slightly above the spin
glass transition temperature 7. Close to the spin glass tran-
sition, both the persistence time and the dynamic length di-
verge in a critical way:

S4(y’t) zyz_d_nS‘(X’E)’ (2)
&

where £~ (T-T,)™” and 7~ (T-T,)"**. As mentioned above,

the static nonlinear susceptibility diverges as [dyS,(y,r

— )~ &7 More generally, one can define a time-

dependent dynamic susceptibility as

X4(I)Efdys4()’»l), (3)

which defines, provided S,(0,7) ~1, a correlation volume,
i.e., the typical number of spins correlated in dynamic events
taking place over the time scale 7. As we shall discuss below,
x4(7) can also be interpreted as a quantitative measure of the
dynamic fluctuations. Note, however, that the precise relation
between y, and & depends on the value of the exponent 7,
which is physically controlled by the detailed spatial struc-
ture of Sy:

Xalt=7) o &7, (4)

Therefore, spin glasses offer a precise example of a sys-
tem which gets slower and slower upon approaching 7,, but
without any detectable long-range order appearing in two-
point correlation functions. Only more complicated four-
point functions are sensitive to the genuine amorphous long-
range order that sets in at 7, and give nontrivial information
even above T.. In the case of spin glasses, it is well estab-
lished that the transition is related to the emergence of a low
temperature spin glass phase. In the case of the glass transi-
tion of viscous liquids, the situation is much less clear. There
might be no true phase transition toward a low temperature
amorphous phase. It is still reasonable to expect that the
dramatic increase of the relaxation time is due to a transient
amorphous order that sets in and whose range grows when
approaching the glass transition. Growing time scales should
be somehow related to growing length scales.”® A good can-
didate to unveil the existence of this phenomenon is the
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function S4(y,?) introduced previously, since nothing in the
above arguments was specific to systems with quenched dis-
order. The only difference is that although transient order is
detected in S,(y,?) or its volume integral x,(¢) for times of
the order of the relaxation time, in the long time limit these
two functions may not, and indeed do not in the case of
supercooled liquids, show long-range amorphous order. This
roots back to the different natures of the glass and spin glass
transitions (see the discussion in Ref. 49).

B. Supercooled liquids and more multipoint
correlations

In the case of liquids, we may consider a certain space
dependent observable o(x,) such as, for example, the local
excess density Sp(x,1)=p(x,1)—p,y, where p, is the average
density of the liquid, or the local dipole moment, the excess
energy, etc. We will assume in the following that the average
of o(x,1) is equal to zero and the variance of o(x,7) is nor-
malized to unity. The dynamic two-point correlation is de-
fined as

C,(r,t) =[o(x,r=0)o(x +1,1)],, (5)

where the normalization ensures that C,(r=0,r=0)=1. The
Fourier transform of C,(r,7) defines a generalized dynamic
structure factor S,(k, 0> All experimental and numerical re-
sults known to date suggest that as the glass transition is
approached, no spatial anomaly of any kind appears in
C,(r,1) [or in S,(k,7)] although, of course, there could still
be some signal which is perhaps too small to be measurable.
The only remarkable feature is that the slowing down of the
two-point correlation functions often obeys, to a good ap-
proximation, ‘“time-temperature superposition” in the
a-relaxation regime ¢t~ 7,, i.e.,

t
Ta(r)>’ ©
where ¢, is often called the nonergodicity (or Edwards-
Anderson) parameter, and the scaling function f(x) depends
only weakly on temperature. This property will be used to
simplify the following discussions, but it is not a crucial
ingredient.

Whereas C,(r,7) measures how, on average, the dynam-
ics decorrelates the observable o(x,t), it is natural to ask
whether this decorrelation process is homogeneous in space
and in time. Can the correlation last much longer than aver-
age? In other words, what is the distribution (over possible
dynamical histories) of the correlation C,(r,7)? Clearly,
since C,(r,t) is defined as an average over some large vol-
ume V, the variance Eé of C,(r,t) is expected to be of order
&7V, where £ is the length scale over which C,(r,?) is
significantly correlated. More precisely we define

Colr.1) = qo(r)f<

dx dx’
s2- f VX%O(X,O)O(X+r,t)0(x',0)0(x’+I',t)

- C,(r, 07, (7)

which, using translational invariance, can be transformed
into the space integral of a four-point correlation:
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s2 = f %54(y,r), (8)

where
Su(y,t) ={[o(x,0)o(x +r,1)o(x +y,0)0(x +y +1,1)],
—[o(x,t=0)o(x +r,0)]*}. 9)

The variance of C,(r,¢) can thus be expressed as an integral
over space of a four-point correlation function, which mea-
sures the spatial correlation of the temporal correlation. This
integral over space is also the Fourier transform of S,(y,?)
with respect to y at the wave vector q equal to zero. We want
to insist at this stage that r and y in the above equations play
very different roles: the former enters the very definition of
the correlator that we are interested in Eq. (5), whereas the
latter is associated with the scale over which the dynamics is
potentially correlated. Correspondingly, great care will be
devoted in the following to distinguish the wave vector Kk,
conjugate to r, and q conjugate to y.

Specializing to the case r=0 (local dynamics), one fi-
nally obtains™

Xa(0)

22
c N

(10)

The analogy with spin glasses developed above suggests that
this quantity reveals the emergence of amorphous long-range
order; it is, in fact, the natural diverging susceptibility in the
context of p-spin descriptions of supercooled liquids, where
a true dynamical phase transition occurs at a certain critical
temperature.17’28‘38’39’53 Since in real systems no true phase
transition is observed, one expects x4(f) to grow until r= 7,
and decay back to zero thereafter. Until 7, is reached there
cannot be strong differences between a system with
quenched disorder and a system where disorder is dynami-
cally self-induced.

However, contrary to spin glasses, for which an under-
lying lattice structure exists, viscous liquids consist of mol-
ecules or atoms having continuum positions. As a conse-
quence, one has to coarse-grain space in order to measure the
fluctuations of the local relaxation dynamics. Local now
means on a region of the order of the interparticle distance.
Therefore, generically, x,(¢)=V37 correspond either to the
fluctuations of the Fourier transform of C,(r,?) evaluated at a
wave vector k, of the order of the first peak in the structure
factor™ or to a spatial average [drC,(r,t)w(r), where w(r) is
an overlap function equal to 1 for lengths of the order of
2m/ky and zero otherwise.® The dependence of dynamical
correlations on the coarse-graining length has been recently
studied in Ref. 54 and is also discussed in the companion
paper.*®

Although readily accessible in numerical simulations,
EZC is, in general, very small and impossible to measure di-
rectly in experiments, except when the range of the dynamic
correlation is macroscopic, as in granular materials™® or in
soft glassy materials where it can reach the micrometer and
even millimeter rang.ge.35’55 The central idea of this work is
that induced dynamic fluctuations are more easily accessible
than spontaneous ones and can be related to one another by
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fluctuation-dissipation theorems. The physical motivation is
that while four-point correlations offer a direct probe of the
dynamic heterogeneities, other multipoint correlation func-
tions give very useful information about the microscopic
mechanisms leading to these heterogeneities. For example,
one expects that the slow part of a local enthalpy (or energy,
density) fluctuation per unit volume &h at x and time =0
triggers or eases the dynamics in its surroundings, leading to
a systematic correlation between &h(x,r=0) and o(x’,t
=0)o(x'+r,7,). This defines a family of three-point correla-
tion functions that relate thermodynamic or structural fluc-
tuations to dynamics. Interestingly, some of these three-point
correlations are both experimentally accessible and give
bounds or approximations to the four-point dynamic correla-
tions. The reason is as follows. In the same way that the
space integral of the four-point correlation function is the
variance of the two-point correlation, the space integral of
the above three-point correlation is the covariance of the dy-
namic correlation with the energy fluctuations:°®

1
Scn= N f dxdx'o(x' +r,t)o(x’,0)5h(x,0)

= ]%, J dylo(x+y +r,no(x+y,0)5h(x,0)],. (11)
Hence, using the fact that the enthalpy fluctuations per par-
ticle are of order \'FPkBT (where cp is the specific heat in kg
units), the quantity N2 o/ \cpkpT defines the number of par-
ticles over which enthalpy and dynamics are correlated. Of
course, analogous identities can be derived for the covari-
ance with density (and energy) fluctuations.

Now, on very general grounds, the covariance obeys the
Cauchy-Schwarz bound: 37, <3232 where 37, is the vari-
ance of the enthalpy fluctuations, equal to ¢p(kzT)?/N in the
NPT ensemble, N=p,V being the total number of particles.
Therefore, the dynamic susceptibility x4(¢) is bounded from
below by

Xa(t) = N3¢.= (12)

N2y (
W
where, as we will show below, the right-hand side can be
accessed experimentally. We then discuss in Sec. I E how
the above bound can be interpreted as an approximation,
with corrections that can be physically estimated. Note that
we chose here y,(f) to define a number of particles; one can,
of course, convert it into a volume by multiplying y, with
vo=1/py, the average volume per particle. Note also that
here and in the following, we will work in the NPT en-
semble, which is the relevant ensemble for experiments on
molecular liquids. We will discuss later the generalization to
different ensembles.

N3 )2
VeplkgT) )

C. A dynamic fluctuation-dissipation theorem
and growing length scales

Consider a system in the grand-canonical NPT en-
semble. The probability of a given configuration C is given
by the Boltzmann weight exp(-BH[C])/Z, where B=1/kgT
and Z is the grand-partition function. Suppose one studies an
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observable O with the following properties: (i) O only de-
pends on the current microscopic configuration C of the sys-
tem and (ii) O can be written as a sum of local contributions:

=‘l/fdxo(x). (13)

In this case, a well-known static fluctuation-dissipation theo-
rem holds:”'

#0)
B

where we decomposed the enthalpy in a sum of local contri-
butions as well.>!

Interestingly, in the case of deterministic Hamiltonian
dynamics, the value of any local observable o(x,1) is, in fact,
a highly complicated function of the initial configuration at
time r=0. Therefore, the correlation function, now averaged
over both space and initial conditions, can be written as a
thermodynamical average:

=— J dX<()(X)5h(0)> = _NEOH’ (14)

> f dxo(x +r,)o(x,t=0)

C(r,t;T)=—"—
( ) Z(B) Viinitial conditions

Xexp{—ﬂfdx’h(x’,t:O)] (15)

Hence, the derivative of the correlation with respect to tem-
perature (at fixed volume) directly leads, in the case of
purely conservative Hamiltonian dynamics, to the covariance
between initial energy fluctuations and the dynamical corre-

lation. Defining Sy(x,7)=(o(x+r,t)o(x,0)5h(0,0)), one
finds
AC,(r,1;T) 1 B
T = kBT2 dXST(X,t) = XT(rsl)' (16)

Hence, the sensitivity of the dynamics to temperature y; is
directly related to a dynamic correlation. This last equality,
although in a sense trivial, is one of the central result of this
work. It has an immediate deep physical consequence, which
is the growth of a dynamical length upon cooling in glassy
systems, as we show now.

Define 7,(T) such that C,(0,t=7,;T)=e"! (say). Differ-
entiating this definition with respect to 7' gives

0 d1,dC,(0,1=7,;T) . IC,(0,t=7,;T)
©dr o oT ‘

(17)

Since C,(0,¢;T) decays from 1 to zero over a time scale 7,
one finds that, generically, using Eq. (16):

f (o(x,t=7,)0(x,0)51(0,0)) 1 dnr,
dx ~—F= .
poVep dinT

poNcpkgT

Now, 6h is of order pO\'FPkBT and (0%) is normalized to
unity, and the quantity x =S40, 7,)/ pO\'FPkBT cannot ap-
preciably exceed unity. The above integral can be written as
Xour, which defines a volume vy over which enthalpy fluc-
tuations and dynamics are appreciably correlated. Note that
the interpretation of vy as a true correlation volume requires
that y, be of order 1, and its increase is only significant if
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is essentially temperature independent. If this is not the case,
then the integral defined in Eq. (18) could grow due to a
growing x, and not a growing length, which would obviate
the notion that v is a correlation volume. For now, we will
assume that these properties hold, and we will return to this
crucial point theoretically in more detail in Sec. IV and with
direct numerical evidence in Sec. V.

Assuming x,=1, a divergence of the right hand side of
the equality (16) necessarily requires the growth of v;. More
precisely, as soon as 7, increases faster than any inverse
power of temperature, the slowing down of a Hamiltonian
system is necessarily accompanied by the growth of a dy-
namic correlation length. However, as already mentioned
above, the precise relation between dC/dIn T and an actual
length scale ¢ depends on the value and structure of the
spatial correlation function (for example, the value of y, and
the exponent 7). In the simplest case of an exponentially
decaying S7(x,7), one finds

dC,(r,t;T
T o(r,1:7)

Ja 87VepXopoE'- (19)

It is instructive to study the case of a strong glass former
for which the slowing down is purely Arrhenius, i.e., 7,
=79 exp[A/(kgT)], where A is some activation barrier. The
volume vy is then given by

A

dinz,| A
kT’

20
dinT (20)

Ur—~

which increases as the temperature is decreased and diverges
as T—0. This is, at first sight, contrary to intuition since a
simple barrier activation seems to be a purely local process.
However, one should remember that the dynamics strictly
conserves energy, so that the energy used to cross a barrier
must be released from other parts of the system. This release
necessarily induces dynamic correlations between the Arrhe-
niusly relaxing objects. We conclude that even in a strong
glass, the Arrhenius slowing down is necessarily accompa-
nied by the growth of a dynamic length scale. Note again
that this conclusion relies on subsidiary conditions that must
be met. Indeed, it is not difficult to find examples of model
Newtonian systems for which |d In 7,/d In T| grows substan-
tially even though the physics is entirely local. In such cases,
however, it is expected that the spatial structure of Sp(x,?)
will be trivial and the condition x,<1 (independent of tem-
perature) will be violated. In computer simulations, these
conditions may be checked, as we do in Sec. V.

When the relaxation time diverges in a Vogel-Fulcher
manner, i.e., 7,= 7, exp[DTy/(T—T,)], one finds that the cor-
responding dynamic correlation volume also diverges at T
as

T,

m o (In Ta)z, (21)

v T( Ta) -~

where the last estimate holds sufficiently close to 7.

More generally, one can study the behavior of y(0,7)
~dC,(0,1,T)/JT as a function of time. Since at all tempera-
ture C,(0,7=0;7)=1 and C,(0,%;7)=0, it is clear that
x7(0,¢) is zero at short and long times. We illustrate in Fig. 1
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FIG. 1. (a) and (b), respectively, show the self-intermediate scattering func-
tions F(k,?) as a function of time for various temperatures in a binary
Lennard-Jones mixture and the BKS model for silica, obtained from the
molecular dynamics numerical simulations discussed in Sec. V. (a) T=2.1,
2.0, 1.05, 1.0, 0.75, 0.72, 0.61, 0.6, 0.51, 0.5, 0.47, 0.46, 0.435, and 0.43
from left to right. (b) T=6100, 5900, 4700, 4600, 4000, 3920, 3580, 3520,
3250, 3200, 3000, 2960, 2750, and 2715 K from left to right. The arrows
illustrate how yx;=dF,/dT is obtained by finite difference for each pair of
temperatures. (c) and (d) show the resulting x(¢) for both models, normal-
ized by the strength of energy fluctuations. We show the absolute value since
Xr 1s a negative quantity. In both liquids, the dynamic susceptibility presents
a peak for t= 7,, whose height increases as temperature decreases, revealing
increasingly heterogeneous and spatially correlated dynamics.

the shape of x7(0,7) for two glass formers studied by mo-
lecular dynamics simulations and described in Sec. V. It has
a peak at =~ 7,. It is a useful exercise to study the example
where the correlation function is a stretched exponential with
exponent B [not to be confused with 1/kgT], in which case
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9C,(0.1:7) dlnr, (L) { (Lﬂ (22)
ot~ amrP\7 )P 7\7) |

This function behaves as a power law, B, at small times and
reaches a maximum for =7, before decaying to zero. The
power law at small times appears in the context of many
different models, as discussed for the time behavior of
)(4(t).34 Note also that for t=7, and T=T,, one has

dC,(0,7,:;T)

= In 10, 23
dlnT pm In (23)

T,

where m= Td log,, 7,/dT|; is the steepness index, which
characterizes the fragility of the glass. Note that in many
cases, the resulting numerical value of v y turns out to be
already large in the late S relaxation regime, meaning that
the concept of a cage is misleading because caging, in fact,
involves the correlated motion of many particles.%’39
Using the inequality in Eq. (12) with the results of the
present section, we finally obtain a lower bound on the dy-
namical susceptibility y,(z) for Newtonian systems in the
NPT ensemble, which is experimentally accessible:
Txyr,0) 1 (ac,,(r,z;T))2

r)=——==
Xalr ) cp cp dlnT

(24)
P
This bound implies that as soon as 7 increases faster than
T-! at low temperatures, x, will eventually exceed unity;
since x, is the space integral of a quantity bounded from
above, this again means that the length scale over which the
four-point correlation S,(y,7,) extends has to grow as the
system gets slower and slower. More quantitative statements
require information on the amplitude and shape of Sy(y,7,),
which general field-theoretical and numerical results provide.
The above result in Eq. (24) is extremely general and
applies to different situations discussed in the next section.
It, however, does not apply when the dynamics is not New-
tonian, as, for instance, for Brownian particles or in Monte
Carlo numerical simulations.'®*">" The reason is that in
these cases, not only the initial probability but also the tran-
sition probability from the initial to final configuration itself
explicitly depends on temperature. In Brownian dynamics,
for example, the noise in the Langevin equation depends on
temperature.57 Hence, dC,(r,t;T)/JT receives extra contri-
butions from the whole trajectory that depend on the explicit
choice of dynamics. We will argue below that when a dy-
namical critical point exists or is narrowly avoided, a system
with Brownian dynamics should display dynamical correla-
tions of the form y, ~ xr rather than the scaling x, ~ X% sug-
gested by the above bound [Eq. (24)].

D. Several generalizations
1. Density rather than temperature

In the previous section, we have shown that the response
of the correlator to a change of temperature is related to
dynamic correlations. Other perturbing fields may also be
relevant, such as density, pressure, concentration of species
in the case of mixtures, etc. For example, for hard-sphere
colloids, temperature plays very small role, whereas small
changes of density can lead to enormous changes in relax-
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ation times.”® Using the expression for the probability of
initial configurations in the NPT ensemble and the fact that
the dynamics only depends on the initial condition, one now
derives the following equality:

dC,(r,t;P)
JP

Tz_ %fdx<o(x+r,t)0(X,0)5U(0,0)>,

(25)

which can again be used to define a dynamic correlation
volume x,. Introducing the isothermal compressibility «;
= (dp/ dP)|;/ py and noting that the total variance of volume
fluctuations per particle is given by kzTky/ py, we find

N2y =pg J dx{o(x+1,0)0(x,t=0)5v(0,=0)) =

&Co(r’ I P)

_kBTKT JIn o

; (26)
T

from which we deduce a second bound on the dynamic cor-
relation volume x,4(1):
JC,(r,t; 2

Xa(r,1) = pOkBTKT(
dlnp

T
Again, the right hand side of this expression is accessible to
experiments.37 Very importantly, and contrarily to the case of
temperature, this inequality holds even for Brownian dynam-
ics since the statistics of trajectories have no explicit depen-
dence on pressure or density. Finally, a similar inequality
holds for binary mixtures, relating x4(¢) to the dependence of
the correlation function on the mixture composition.

2. Correlation and response in frequency space

We have considered up to now the variance of the cor-
relation function for a given time ¢, related to the four-point
susceptibility x,(z), but this can be generalized to the cova-
riance of the correlation in frequency space.

Defining é(,(r,w):fgdt cos(wt)C,(r,1), the fluctuations
of C‘O(r, w) define a four-point susceptibility in Fourier space
x4(r, ) given by

Xa(r,w) =NXée. (28)

Repeating the same argument developed for correlations in
time space, one finds

(t.0) 1 <(9C(,(r,w;T))2
row=—\———m———"—1 .
X4 Cp &IHT

(29)

We have up to now considered correlation functions, but the
very same string of arguments also applies to linear response
functions, which can, in the context of Newtonian dynamics,
be written solely as functions of the initial condition. For
example, the susceptibility of the observable o to an external
field X is

J. Chem. Phys. 126, 184503 (2007)

.9 1 do(X +r,1t)

rf)=——— X——————

Xo Z(ﬁ) Viinitial conditions oX(x,t=0)
Xexp[—ﬁfdx’h(x’,t:O)], (30)

from which all the above results, transposed to response
functions, can be derived. This is an important remark, since
response functions, such as frequency dependent dielectric
response or elastic moduli, are routinely measured in glassy
materials. Their temperature or density dependence is there-
fore a direct probe of the dynamic correlation in these
materials.”’

3. Higher derivatives

One can, of course, study higher derivatives of the cor-
relation functions with respect to temperature, which lead to
higher order multipoint correlations between dynamics and
energy or density fluctuations. For example, the second de-
rivative gives a connected four-point correlation function as
follows:

#C,(0,;7)

b [ axastotnom 0ty 01800

(31)

The right hand side now defines a squared correlation vol-
ume, where the left hand side, computed for =17, contains
terms  proportional to  d*In7,/dInT*> and to
(dIn 7,/dIn T)?. In most cases where In 7, diverges as an
inverse power of temperature, or in a Vogel-Fulcher-type
manner, one finds that the latter term dominates over the
former. This means that this squared correlation volume, in
fact, behaves like x%. The same argument also holds for
higher derivatives.

E. Fluctuations and ensembles
1. Constrained versus unconstrained fluctuations

The above upper bounds in Eq. (24) can, in fact, be
given a much more precise meaning by realizing that fluc-
tuations of thermodynamic quantities are Gaussian in the
large volume limit,” except at a critical point. This allows
one to show the following general result. Consider an ob-
servable O that depends on M Gaussian random variables
21,225 ---,2y- We want to compare the ensemble where all
the z;’s are free to fluctuate with the ensemble where one
constrains a subset of z;, say z,,, ...,Zy, to take fixed values,
with no fluctuations. In the limit of small fluctuations, the
variances of O in the two ensembles are related through

2%) = <02|Zma e 7ZM>C

M
‘9<0|Zm7 see ’ZM> ‘9<0|Zm, e ,ZM>
+ 2
&Za 19Zﬁ

(ZaZgdes

a,B=m
(32)

where the average in the ensemble where z,,,, ... ,z), are fixed
is denoted by (-|z,,, ...,zy). The subscript ¢ means that we
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consider connected averages, and we use Greek indices for
the (M —m+1) constrained variables.

Because this result is important throughout this paper,
we sketch here its proof, using ideas and a notation which
should make clear the analogy with a similar result derived
in Sec. III using a field-theoretical representation for the dy-
namics of supercooled liquids. Without loss of generality, we
can choose the mean of all z;’s to be zero. The unconstrained
joint distribution of the z;’s can be written as

\'% 1
P({z;}) = 2m) eXp<— 5% ZiDiij)a (33)

where D is a certain M X M symmetric positive definite ma-
trix. The unconstrained covariance between z; and z; is well
known to be given by

(zizj) = (D_l)ij~ (34)

Let us now write D as blocks corresponding to the (m—1)
fluctuating variables and the (M —m+1) fixed variables:

A B
D=[BT C], (35)

where A is (m—1) X (m—1), Bis (m—1) X (M-m+1), and C
is (M-m+1)X(M-m+1). When the variables z,,,...,2)
are fixed, the unconstrained variables acquire nonzero aver-
age values which are easily found to be given by

M
z= 2 (A7'B)juze. (36)

a=m

To establish the relation between constrained and uncon-
strained covariances, we note the following block matrix in-
version rule D™'=:

{A-BC'B'}!
- C'B{A-BC'BT}!

—{A-BC'B'}'BC!

R (37)

{c-B'A"'B}

together with the matrix identity:

{A-BC'BY'=A"1+ (A7'B){C-B'A'BY"{(A"'B)".

(38)

The constrained covariance <z,~z]~|zm, - Zae 18 clearly given

by (A™!);;. Using the above identities, we directly obtain

Mo - —
0z; 0z;

(ZiZj> = <ZiZj|Zm7 syt E _I—L<Zazﬁ>~ (39)
a,B=m aza 1923

Now, the final result Eq. (32) above can be established sim-
ply by considering, to lowest order in the fluctuations, the
observable O as an (M +1)th Gaussian variable correlated
with all the z;’s and by applying the above equality to i=j
=M+1.

2. From NPH to NPT

Let us apply the general result Eq. (32) to the case of
interest here; first, to the case M=1, with z;=H and the
number of particles fixed. The two ensembles correspond to
NPH and NPT, respectively. The above formula can be used
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with the correlation C, as an observable provided the dynam-
ics is conservative, as argued above. Therefore,

. 2
(e = X0 e1) + i( M) , (40)
cp\ dInT /p

where we have replaced in the second term in the right-hand
side d/dH by (1/Ncpkg)dl T, /\/A‘VPH(r,t) is the variance of
the correlation function in the NPH ensemble where en-
thalpy does not fluctuate, a manifestly non-negative quantity.
Therefore, the above equation recovers the lower bound Eq.
(24) with a physically explicit expression for the missing
piece. The relative contribution of the two terms determining
xiFT will be discussed in concrete cases in Secs. III and V.

3. Local versus global fluctuations

The above discussion may appear puzzling for the fol-
lowing reason: we have seen that the susceptibility x,(¢) is
the space integral of a four-point correlation function S4(y,1),
which, although developing some spatial correlations on ap-
proaching the glass transition, remains relatively short range
in the supercooled liquid phase and should rnot depend on far
away boundary conditions that ultimately decide whether en-
ergy is conserved or not. Since S4(y,?) does not depend, in
the thermodynamic limit, on the ensemble, how can its inte-
gral over space, x,(t), be affected by the choice of ensemble?
The answer is that while the finite volume corrections to
S,(y.t) for a given y tend to zero when V— oo, the integral
over space of these corrections remains finite in that limit™
and explains the difference between x)*” and x}*". We un-
derstand that the physical correlation volume is given by
Xfp T the long-range nature of the fixed energy constraint
leads to an underestimate of y, in the NPH ensemble, which
is irrelevant in describing local correlations. This is particu-
larly important in numerical simulations:™ the study of
S4(q,?) [the Fourier transform of S,(y,?)] in the microca-
nonical ensemble will lead to a singular behavior associated
to the fact that lim,_S4(q,?) # S4(q=0,7), whereas the two
coincide only in the ensemble where all conserved quantities
are free to fluctuate (NPH for monoatomic liquids). The
former quantity is the physical quantity independent of the
ensemble and will be denoted lim,_.,S4(q,1)= X, in the fol-
lowing, whereas the latter depends on the macroscopic con-
straint. We summarize this important discussion in Sec. I'V.

4. Various sources of fluctuations

Equation (32) makes precise the intuition that dynamic
fluctuations are partly induced by the fluctuations of quanti-
ties that physically affect the dynamic behavior."* Among
these quantities, some are conserved thermodynamic quanti-
ties, such as the energy or density, and the dependence of the
dynamics on those quantities are simply measured by the
derivatives of the correlation function. The contribution of
the local fluctuations of these quantities can therefore be es-
timated and leads to a lower bound to the total dynamic
fluctuations. In a supercooled liquid, one expects on general
grounds that energy and density should play major roles in
the dynamics. From the thermodynamic theory of
ﬂuctuations,61 we know that, in fact, temperature (seen for-
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mally as a function of energy and density) and density are
independent random variables, with variance (&T?%)
=T?/(Ncy) and (Sv?y=kgTky/(Npy). Therefore Eq. (32)
gives for the “true” dynamic susceptibility,

. 1 ac \? ac, >2 VE
X4_CV(&ln T)V+p0kBTKT(&lnp +xi" (41)
The question of whether other “hidden” variables also con-
tribute to the dynamic fluctuations is tantamount to compar-
ing ,\/4\’ VE with XZ- This question is very difficult to resolve
theoretically, in general. The rest of this paper and the com-
panion paper38 are devoted to theoretical arguments and nu-
merical simulations which attempt to clarify this issue. Our
numerical results suggest that x}"* < x;, at least close to the
glass transition, but that both Xﬁ’ VE and xi are, in fact, gov-
erned by the very same physical mechanism and define the
same dynamical correlation length.

Whether energy or density fluctuation is the dominant
factor can be assessed by comparing the two explicit terms
appearing in the right-hand side of Eq. (41). Assuming time-
temperature superposition, the ratio r of the two terms for 7
=7, reads

T

(d1n 7,/d In p)|T)2. @)

= pocvksT
"= Pocvis KT( (dIn 7dInT)|,

Following Ref. 62, and noting that pycykgTk7<<1 in usual
liquids, we conclude that for most glass formers, r is signifi-
cantly less than 1, which means that density effects are
weaker than temperature effects and, consequently, contrib-
ute little to dynamic fluctuations. The situation is, of course,
completely the opposite in hard-sphere colloidal glasses,
where dIn7,/dInT|,—0 and r>1.

F. Summary

After motivating the use of multipoint correlation func-
tions to detect nontrivial dynamic correlations in amorphous
materials, we discussed the idea that induced fluctuations are
more easily accessible experimentally than spontaneous
ones, and can be related to one another by fluctuation-
dissipation theorems. Elaborating on this idea, we have
shown that the derivative of the correlation function with
respect to temperature or density directly gives access to the
volume integral of the correlation between local energy (or
density fluctuations) and dynamics. This relation can be used
to show on very general grounds that a sufficiently abrupt
slowing down of the dynamics must be accompanied by the
growth of a correlation volume. The detailed relation be-
tween these susceptibilities and a correlation length scale,
however, depends on the amplitude and spatial structure of
the multipoint correlation functions.

We have then shown that the dynamic four-point suscep-
tibility at g=0, which corresponds to the fluctuation of global
intensive dynamical correlators, depends, in general, on the
chosen statistical ensemble. In the case where conserved
variables are allowed to fluctuate, we showed that the dy-
namic four-point susceptibility is bounded from below by
terms that capture the contribution of energy and density
fluctuations to dynamic heterogeneities. Our central results,
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suggesting a way to estimate a dynamic correlation volume
from experiments, are given in Egs. (24) and (41). Whereas
we expect that for most supercooled liquids the contribution
of temperature is the dominant effect, the quality of our
bounds as quantitative estimators of y,, and their physical
relevance, is at this stage of the discussion, an open question
which we carefully address below, in particular, in Sec. IV
and in the companion paper.38 The following section is de-
voted to a quantitative study of this question within a field-
theory formalism. A surprising outcome of this analysis is
that the dynamic four-point susceptibility at g=0 correlations
depends not only on the chosen statistical ensemble, as
shown above, but also on the choice of microscopic dynam-
ics, whether Newtonian or stochastic. Of course, the dynamic
four-point susceptibility at nonzero g depends only on the
choice of microscopic dynamics.

lll. CORRELATION OF DYNAMICAL FLUCTUATIONS:
A FIELD-THEORETICAL PERSPECTIVE

In the following, we develop in detail an approach to
dynamical fluctuations in supercooled liquids based on gen-
eral field-theory techniques and discuss how a nontrivial
length scale can be generated by interactions and manifest
itself in quantities like x, or y;. We identify precisely the
“susceptibility” (called A~! below) responsible for all inter-
esting dynamic correlations. We discuss the origin of the
ensemble dependence of dynamic fluctuations described
above from a diagrammatic point of view. This is important
since any self-consistent resummation or approximation
scheme must be compatible with the bounds derived above.
This formalism furthermore predicts that, contrary to the be-
havior of correlators measuring the average dynamics, the
details of dynamic fluctuations depend on the dynamics in a
remarkable way. However, since in all cases the object re-
sponsible for the increase of these dynamic correlations is
the very same susceptibility A~!, the physics revealed by the
correlations is independent both of the ensemble and of the
dynamics, and genuinely reflects the collective nature of
glassy dynamics.

In the companion paper,38 we will point out how simpli-
fications can occur if a true dynamical critical point exists, as
within mode-coupling theory, in particular, a self-consistent
resummation scheme. In the following, we aim instead at
keeping the discussion more general than the confines of
mode-coupling theory or any other particular theoretical ap-
proach. This is important since mode-coupling theory is not
expected to apply close to the glass transition temperature,
whereas the present physical conclusions do.

A. The dynamic field theory
1. A reminder of the usual static case

The dynamic field-theory strategy is analogous to the
one used for ordinary static critical phenomena which we
now recall, focusing on the ferromagnetic, Ising transition as
a pedagogical example.63 The starting point is the Legendre
functional transform I'(m(x)) of the free energy BF(h(x)),
itself defined as a functional of the magnetic field i(x):
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F(M(X))=/3F(h(X))—de’h(X’)m(X'), (43)

where h(x) on the right hand side is the field that leads to the
magnetization profile m(x). The magnetization is determined
via the equation

OBF

m(x) = % . (44)

Two important properties of the functional I'(m(x)) that can
be directly derived using the previous relation are

oI
Smt) = h(x),

8T Sh(x)

om(x) dm(x") = sm(x') = [(s(x)s(x" )] (45)

The last exact identity indicates that the operator obtained by
differentiating the functional I' twice is the inverse of the
spin-spin correlation function (considered as an operator).
Note that these are simple generalizations of usual thermo-
dynamic relations.

In general, one cannot compute I' exactly, but one can
guess its form using symmetry arguments and compute it
approximately in a perturbative (diagrammatic) expansion in
some parameter. Using the above identities, no further ap-
proximation is needed to obtain correlation functions. In its
simplest version, I' corresponds to the Ginzburg-Landau
free-energy functional. The saddle point equation for the
magnetization then leads to the mean-field description of the
transition, whereas the second derivative term gives the
mean-field result for the spin-spin correlation function, valid
when the space dimensionality is sufficiently large.

In the following, we will present a theory of dynamic
fluctuations within a field-theoretic framework similar to the
above static formalism. The main difference is that in the
context of glassy dynamics, the relevant order parameter is
no longer a one-point function like the magnetization but is
instead a two-point dynamic function which has to be intro-
duced as an effective degree of freedom in the dynamic free-
energy functional.

2. Dynamic free-energy functionals and fluctuations

Different dynamic field theories have been used in the
literature to analyze the dynamics of dense liquids. The com-
mon strategy is to write down exact or phenomenological
stochastic equations for the evolution of the slow conserved
degrees of freedom. For instance, for Brownian dynamics the
only conserved quantity is the local density (energy and mo-
mentum are not conserved). The equation for the local den-
sity 1is, in that case, the so-called Dean-Kawasaki
equation,M’65 which can be derived exactly for Langevin par-
ticles (see Refs. 66 and 67 for a discussion of different field
theories associated with such dynamics). In general, the field
theory associated with a given stochastic dynamics is ob-
tained through the Martin-Siggia-Rose-deDominicis-Janssen
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method, where one first introduces response fields enforcing
the correct time evolution and then averages over the sto-
chastic noise.®*

We will use a general notation that will allow us to treat
all field theories proposed in the literature®®®’ on the same
footing. In all those field theories, one has a set of slow
conserved fields, ¢; (i=1,...,m), and the corresponding re-
sponse fields, ¢, arising from the Martin-Siggia-Rose
plrocedure.68 It will also be useful to put ¢;, <2>,- into a single
2m dimensional vector ®,, a=1,...,2m. The average over
the dynamic action of ®, will be denoted ¥ ,: (®,)=V,. As
in the static case, the starting point of the analysis is a Leg-
endre functional (also called the generator of two-particle
irreducible diagrams or Baym-Kadanoff functional).***7 1t
is equal to

F(‘IfavGa,b) =-In J D(I)u €Xp<— S({q)a})

2n
- f ddx >, hy(x,1)[®,(x,1) = ¥ (x,1)]
a=1
2n

1
—Efdtdt’dxdx’ > Kop(x,15x,1")
a,b=1

X[P,(x,0)D,(x",1") =V, (x,))V,(x",1)
- Ga,h(x’t;xr’t,)]> B (46)

where S is the action of the field theory, 4,’s are such that
(®,)=",, and K, imposes a certain value for the two-point
functions: (P, P,)-V¥,¥,=G,,. The properties of
I'(¥,,G,;) are the same as in the static case, because for-
mally it is the same mathematical object. The only difference
is that the dynamical functional depends on a larger number
of variables. The difficulty is to devise an approximate ex-
pression for the functional I'. Once this is done, one should
differentiate the functional once to obtain self-consistent
equations for the order parameters ¥,, G,, and twice to
obtain (after inversion) an expression for their fluctuations.
More precisely, we introduce the following matrix of second
derivatives:

oT18G,,,6G., oT15G, 5V, A B
&ZF ,b ,d ’b ] - [ },

| sryew,86,, STIsv.sv, | BT C

where we have introduced three block matrices A,B,C, in
full correspondence with those introduced above in Sec.
ITE 1. The inversion of #I" allows one to obtain the objects
of interest in this paper. For example, inversion in the “GG

sector” defines the four-point space-time correlation func-
tions:

(1) e = (D, NDy(X',1") = W, (x, )W, (x, 1))
XDy, 8)Py(y'.s")
=Wy, )Wy, (47)

where (-), means that we are focusing on the connected com-
ponent. Similarly, inversion in the “GW sector” defines the
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three-point functions, such as the energy-correlation cor-
relator defined in the previous section, whereas inversion in
the “WW sector” leads to the exact propagators of the con-
served quantity. For example, when W is the energy, one
obtains the exact energy propagator (dressed by interactions),
which is expected to be diffusive in the hydrodynamic limit.
At this stage, it is important to recall that the dynamical
functional I has a direct diagrammatic expression as®®

I'(V,G) =~ 1Trlog G + 3 Tr G;'[G + W]
= Dop(V,G), (48)

where @,p (W, G) is the sum of all two particle irreducible
Feynman diagrams (that cannot be decomposed into two dis-
joint pieces by cutting two lines) constructed with the verti-
ces of the theory and using the full propagator G as lines and
¥ as sources.”® Both the internal indices and spatio-
temporal arguments were skipped for simplicity. The first
derivatives lead to the self-consistent equations for the order
parameter. Since in dynamical field theories for liquids the
slow physical fields are, in fact, conserved quantities, the
equation 6"/ 8¥,=0 does not fix the values of the physical
fields that have to be fixed by the initial conditions. On the
other hand, they set to zero the average of the response fields
and enforce translational invariance.”'

The derivatives 6I'/6G=0 lead to formally exact self-
consistent equations for the two-point correlation functions.
These equations can be written as a Schwinger-Dyson matrix
equation:

é\CI)2PI

e _
G'=Gy'-3(6). 3(6)="1

where 2, is the self-energy. A given approximation consists in
retaining a given set of diagrams in ®,p; or, alternatively, in
2.(G). For example, mode-coupling theories generically con-
sist in only retaining the “bubble” diagram for 2(G), see
Refs. 12, 66, and 72 for detailed discussions and Ref. 38 for
the present context.

B. Three-point correlation: Dynamic susceptibility
and hydrodynamic contributions

From the above general inversion formulas for block
matrices [Eq. (37)], one can obtain an expression of the in-
verse of ¢*I" in the GV sector in a form transparent both
from physical and diagrammatic standpoints. The off-
diagonal block element of Eq. (37) gives, in particular, the
energy-dynamics correlator [see Eq. (16)] and can be rewrit-
ten exactly as

Sp=(T) 0 =~ A7 B(PW), (49)

where we have used (WW)=(2')""Y¥. Now, the equation
determining the two-point correlators is 8I'/ 6G=0. There-
fore the variation of the value of G due to a small variation
of W, all other parameters being kept fixed, is given by
oG ST |7t 8T
—W=-| —— | ———8¥=-A"'B5V, 50
34 { 5G5G] 6G v (50)
showing that the operator yy=—A"'B is the response of two-
point correlators to a change in conserved quantities. Gath-
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n

FIG. 2. Diagrammatic representation of the parquet diagrams obtained by
expanding Eq. (52): (1-952GG)™'=2 (952 GG)".

ering these results, three-point functions read.”
Sr=xw(¥V), (51)

providing an exact decomposition with a simple physical
meaning. The correlation between energy at one point in
space-time and dynamics elsewhere is governed by the sen-
sitivity of the dynamics to energy changes, as encapsulated
by xw, which contains all genuine collective effects in the
dynamics induced by interactions. This correlation is medi-
ated by energy transport, (W'W), which has a trivial hydro-
dynamic structure.

In order to see this more clearly, let us now explore the
diagrammatic content of yy=A"'B. The three-leg vertex
contribution B=&T'/8GSY is generically expected to be
nonsingular. The A~! term, on the other hand, can be rewrit-
ten using the general expression of I as

ST SE(G)}‘I
-1 _ _ —1 =1 _
A "[mac] "[G G 5G ’

where the objects in the above expression are four-index ma-
trices. This term can be rearranged as follows:

= G, .Gy | 6.1 Op
5GSG wbed 2 a,c'b,d c'.cd d

c'd
520’ d’(G) -
- ,—Gcrr L.G " . 52
L%,, 5GC”,d” o dhd ( )

One can now formally expand the term in parentheses as
(1-952GG)™'=2,(;2GG)" to recover the so-called par-
quet diagrams70 that give a formally exact representation of
the four-point function (see Fig. 2). This infinite series can
provide a divergent contribution [as is the case within mode-
coupling theory (MCT) at the critical point'’], signaling the
existence of a growing dynamical correlation length and
nontrivial collective effects.

The important conclusion of this section is that the three-
point function contains both a long-ranged hydrodynamical
contribution (W) related to energy conservation and an in-
teraction specific contribution—the dynamical susceptibility
xw- When specializing to the integral over space of the three-
point function, as in Eq. (16), the contribution of (W¥'W) fac-
tors out and gives thermodynamic prefactors. This shows

Downloaded 15 Dec 2010 to 130.158.56.102. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



184503-12  Berthier et al.

that dC/dT gives, in fact, a direct access to the dynamical
susceptibility yy at g=0. Therefore, the length scale ex-
tracted from JdC/JT reveals the existence of collective dy-
namics and is not related to any thermal diffusion or other
hydrodynamical length.

C. Four-point correlation functions and ensemble
dependence

Let us now turn to a similar analysis of the four-point
correlations. We start again from the above general inversion
formulas for block matrices [Eqs. (37) and (38)]. In the
simple case where the W ,’s are identically zero by symmetry,
as happens, for instance, in the p-spin model for which a
gauge symmetry implies that the average value of the spins
is always zero, the block matrix B is also zero. Equation (37)

then simplifies to
5T -

)L = | ——— | =a"l. 53

( )a,b,c,d 5Ga,b5GC,d ( )

In general, this symmetry does not hold, in particular, for
liquids for which the analysis is more involved. However, it
turns out that A~! remains the fundamental object. By using
Eq. (38) and the bottom right part of the matrix inversion
relation [Eq. (37)], the four-point correlation functions can
be written in a physically transparent way:

sr |
(PT)abiia= {—56, poe ]
a,b c,d
5Gah 6ch !
e.f 5\1,6 . &Pf

This expression parallels Eq. (41) in Sec. II, and the last term
corresponds to the dynamic fluctuations induced by the fluc-
tuations of conserved quantities. This formula is, however,
much more general because it applies not only to y,(¢) but
also to S4(g,7). Indeed, in Fourier space, the terms contrib-
uting to S,(g,1) read

(8P, (1) 1,44 (0) Sp_y (1) Opy - (0)). (55)

Therefore the extra contribution from conserved quantities,
namely, the last term in Eq. (54), reads

K091, (1)80s0s(0))
2 oy )
S0, (1) 9o (O)
ﬂq]f(_ w,— (])

<q,e(w’ Q)‘I’f(— w,— q)>c

(56)

Now, one should notice that all terms corresponding to indi-
ces in the response field sector of W (i.e., e, > m) identically
vanish at g=0. The reason is that the response fields always
appear in the vertices of the field theory in the form VW. As
a consequence, terms like 6°I'/ GV, (w,q), for e>m, are
proportional to g at small g.

In the case ¢g=0, the value of conserved fields such as
V,(w,q) for e<m are, by definition, constant over time and
set by initial conditions (¥ ,(w,q)¥ (-w,-¢)).=Vaw)Z,,
where 2., are the correlators of thermodynamic fluctuations
of all conserved quantities W, determined by the probability
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FIG. 3. “Squared-parquet” representation of the contribution of conserved
quantity fluctuations to y4. They correspond to the second term in Eq. (54).

distribution of initial conditions. As a consequence, the term
in Eq. (56) at g=0 precisely reduces to the form discussed in
the previous section on general grounds for y,(f)=S4(g
=0,1):

% KOp_t,(1)0pi,(0))  Kpy, (1) Opy,(0)) 57
e.f=1 J‘I'e o Oﬁ[’f

For Brownian dynamics, density is the only conserved quan-
tity and, thus, only one term, m=1, contributes to the sum in
Eq. (57). In the case of Newtonian dynamics, there are, in
principle, 2+d conserved quantities: density, momentum,
and energy. However, by symmetry, the contribution of the
momentum fluctuations is zero, and only density and energy
should be considered. In p-spin disordered systems, on the
other hand, this extra term is absent and m=0.

The conclusion is, once again, that the choice of statis-
tical ensemble matters in determining fluctuations of inten-
sive dynamical correlators which correspond to ¢=0. For ¢
# 0, the extra terms in Eq. (56) are, in general, always non-
zero and contribute to S4(q,f). On the other hand, if one
focuses on the case where g=0 exactly, the initial distribu-
tion is crucial. As an example, in the case of Newtonian
dynamics in the NVE ensemble, all the extra contributions
vanish since in that ensemble all conserved quantities are
strictly fixed and EZVE =0. Thus, we find again within this
formalism that the equality lim,_,S4(q,1)=54(0,7) is valid
only in the ensemble where all conserved quantities fluctu-
ate. In other ensembles, such as NVE, the limit is singular.

Let us now explore the diagrammatic content of Eq.
(54). The first term was already discussed in the previous
section and can be expressed as a sum of parquet diagrams
(see Fig. 2). The second term in Eq. (54) also has a direct
diagrammatic interpretation (shown in Fig. 3). It consists of
two parquets closed by three-leg vertices and joined by a
correlation function of conserved variables. The wave vector
q in S4(q,1) is, in the diagrams, the wave vector flowing into
the parquets and in the middle “link” corresponding to
(W, ¥)),.. as it appears explicitly in Eq. (56). A detailed
analysis of the structure of the diagrams shows that hydro-
dynamic scaling between time and length is present only in
the middle link corresponding to (W', W))...

As discussed in Ref. 17, MCT provides a simple ap-
proximation in which the self-energy 3 is approximated by
the bubble diagram (see Ref. 38). Within this approximation,
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the parquet diagrams simplify into the ladder diagrams ana-
lyzed in Ref. 17, which diverge at the mode-coupling critical
point. In Ref. 17, however, only the ladder diagrams were
analyzed. The contribution to S, of Eq. (56) corresponding to
the “squared ladders” was overlooked. As a consequence, the
MCT results in Ref. 17 for y,(1)=S4(¢=0,7) only apply close
to the critical point in the following cases (see also Ref. 38
for further discussion):

* NVE ensemble for Newtonian dynamics;
e NVT ensemble for Brownian dynamics;

e p-spin models.

On the other hand, whenever conserved quantities are
allowed to fluctuate, or when considering S4(g,#) at nonzero
values of g, the contribution of Eq. (56) may be important.
For example, within the context of MCT where yy diverges
as €' (where € is the reduced distance from the critical
point), the contribution of Eq. (57), in fact, becomes domi-
nant and y, for Newtonian dynamics diverges much faster, as
€2 However, see Ref. 38 for a discussion of the application
of these MCT results to real systems, where the MCT tran-
sition is avoided.

D. A direct measure of dynamical susceptibility

The analysis of the above sections show that, in general,
S.(q,t) and y4(¢) receive contributions of different physical
origins with possibly different temperature dependencies and
whose relative amplitude might even depend on the chosen
microscopic dynamics (Brownian or Newtonian). On the
other hand, we have seen that all the interesting physics is
contained in the fundamental operator A=[&T/8GS8G],
which governs the growth of dynamic correlations. Therefore
it is both of theoretical and practical importance to introduce
an observable with a physical content similar to that of
S4(g,1) but is unaffected by the presence of global conserva-
tion laws and therefore by the choice of statistical ensemble.
Such an observable was discussed recently.39 It corresponds
to the response of the intermediate scattering function (the
two-point correlator G) to a small inhomogeneous external
potential V.. Within the previous formalism, one writes

5T 5G| ST . ST sv
5GS8G 8V, 8GOV, OGSV SV,

i

and therefore
5G _1< 5T 5T 5\1’)

= +
Vit 8GOV, OGOV 8V,

Since the source term on which the operator A~! acts is ex-
pected to be only weakly temperature and density dependent,
one sees that this quantity gives an almost direct measure of
the critical behavior of the dynamic correlations encoded in
the operator A. When the external potential is homogeneous
in space, one finds a quantity proportional to xy above,”
while for an inhomogeneous external potential, one can
probe the full spatial structure of dynamic fluctuations. In-
deed, when one differentiates with respect to the Fourier
component V., (g), the wave vector g plays the same role as
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for S4.39 This can be seen at the diagrammatic level because
q is the wave vector entering into the ladders in Fig. 3.

IV. PHYSICAL CONSEQUENCES AND ISSUES

At this stage, it is important to summarize the conclu-
sions drawn from the rather dense theoretical analysis pre-
sented above. This will allow us to identify clearly the ques-
tions that need to be tested numerically before possibly
extrapolating these conclusions to real glass-forming sys-
tems.

We established in the previous section that all nontrivial
collective dynamical effects are encoded into a certain opera-
tor A~!, which could, in principle, be reached by measuring
the sensitivity of the local dynamics to an external
potential.3 ® More easily accessible quantities are derivatives
of two-point correlations with respect to temperature or den-
sity. We have shown in detail how these are indeed propor-
tional to A~! and provide lower bounds on y,, and are there-
fore of direct interest to probe the growth of a dynamic
length scale in glasses, as claimed in Ref. 37. However, the
assumption that growing susceptibilities imply growing
length scales needs to be discussed more thoroughly.

A. Growing susceptibilities versus growing
length scales

The first important remark is that the lower bound on y,
obtained in the previous sections is useful only when y, is
significantly larger than 1, because y, is of the order 1 even
in an ideal gas.34 The second remark is that one has to be
sure that the growth of the susceptibility is due to a growing
length and not due to growing local fluctuations. For simplic-
ity, suppose that the energy-dynamics correlator Sy(y, 7,) can
be written as S(0) X y>~“7f(y/&). Its space integral y; is
then given by

xr="S7(0)&" f duu® 7 (u). (58)

This shows that the origin of an increase in y;=dC/dT as T
decreases is due to either an increase in ¢ with a roughly
constant S7(0) or to the fact that S7(0) increases whereas ¢ is
trivial, or, of course, through a combination of both. In order
to be confident that the first scenario is the correct one, and
that yr can be used to estimate a correlation volume, one
needs to be sure that S7(0) is of order 1 and basically tem-
perature independent. This requires, in principle, some extra
information, for example, on the full spatial dependence of
S(y,7,). This will be checked in numerical simulations be-
low. We note also that MCT precisely realizes the first sce-
nario above.

From a physical point of view, one expects the enthalpy
fluctuations Sh to contain a fast (kinetic) part and a slow
(configurational) part of similar order of magnitude (kgT).
While it is clear that the fast part should have very small
correlations with the local correlation on time scale 7,, there
is no reason to think that {o(x, 7,)0(x,7=0) Shgew(x,2=0)) is
particularly small. Quite the contrary, we expect that this is
of order kzT in glassy systems. But interestingly, this sug-
gests that the specific heat cp that should enter the relation
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between y7 and & should be the so-called excess specific heat
Acp, restricted to slow (glassy) degrees of freedom, as sur-
mised in Ref. 37.

B. Statistical ensemble and dynamics dependence of
dynamic fluctuations

A rather bizarre conclusion of the previous section is that
global four-point correlators, corresponding to the fluctua-
tions of intensive dynamical correlators, depend not only on
the statistical ensemble (for g=0) but, remarkably and per-
haps unexpectedly, also on the choice of dynamics for any q.
This is to be contrasted with the case of two-point correla-
tors, which are independent of the chosen ensemble and are
known numerically to be independent of the dynamics, at
least in the relevant “slow” regilne.‘m"“’74 This shows that
four-point correlators, although containing some useful infor-
mation on dynamical heterogeneities, mix it with other, less
interesting physical effects. Clear-cut statements with four-
point quantities can, however, be made when the dynamic
length scale grows substantially at some finite temperature or
density, as, for example, within MCT where the operator A~!
develops a zero mode that leads to a divergence of the dy-
namic length scale & When the dynamic length scale be-
comes very large, these statements may be summarized as
follows:

* x4(7,) for NVT Newtonian dynamics diverges more
strongly than y,(7,) for NVT stochastic dynamics;

* xu(7,) for NVE Newtonian dynamics diverges like
Xa(7,) for NVT stochastic dynamics;

* xu(7,) for NVE Newtonian dynamics and NVT stochas-
tic dynamics diverge like x7(7,) [or x,(7,)].

We will test these statements numerically in the next
section and will indeed establish that x7, x}', and x5 in-
crease in exactly the same way with 7, (the superscript B
stands for Brownian dynamics). The full time dependence of
these (}éfferent correlators will be discussed in the companion
paper.”

C. A unique dynamic correlation length

Let us emphasize again that although y,(7,) for NVT
Newtonian dynamics and stochastic dynamics diverge differ-
ently, our results strongly suggest that these quantities, in
fact, reflect the same underlying physics, which is the growth
of a unique length scale & in all of these cases. Only the
relation between y,(7,) or x7(7,) and & changes: dynamic
fluctuations are amplified because of conserved variables.
This becomes clear when one considers the (ensemble-
independent) function S,(q,7,) for ¢g#0. In all of these
cases, S4(¢q,7,) can be written as a scaling function g,(¢é)
with the same £ but different functional forms. For example,
g)(gé) for Newtonian dynamics can be written as g5(gé€)
+cq[gf(q§)]2, where c, is a coefficient and 23(qé) ~ g1(qé) is
the scaling function for Brownian dynamics or governing
S+(q,7,). Note that the relation between y,(7,) for NVE
Newtonian dynamics, y4(7,) for NVT Brownian dynamics,
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and y7(7,) may not be accurate when far from any critical
point, since these quantities are affected by different, non-
critical prefactors.

D. Response versus correlation functions

Four-point correlators were originally hoped to be suit-
able to quantify precisely dynamical heterogeneities in glass
formers, as motivated in Sec. II. The conclusion of the pre-
vious section and the numerical results of the following ones
show that although they contain, indeed, crucial information,
it is mixed up with less interesting physical effects. Never-
theless, a unique dynamic correlation length seems to govern
the slowing down independently of the dynamics; global dy-
namic fluctuations depend on the dynamics and on the en-
semble. As discussed formally in the previous section, re-
sponse functions measuring the response of the dynamics to
local perturbations do not present these difficulties. They
should be independent of the microscopic dynamics, as is the
case for two-point correlators, and probe directly the dy-
namic correlations without mixing them up with other effects
due to conservation laws.

In the following, we give some numerical evidence for
the most important claims made in this paper: the existence
of unique length scale & governing the growth of y, and xr,
and the ensemble and dynamics dependence of the four-point
correlators.

V. NUMERICAL RESULTS FOR TWO MOLECULAR
GLASS FORMERS

We now present our numerical calculations of the dy-
namic susceptibility x7(7), its relation to y,(f), and the be-
havior of spatial correlations S; and S, in two well-studied
models of molecular glass formers: a binary Lennard-Jones
(LJ) mixture,” considered as a simple model system for
fragile supercooled liquids,9 and the BKS model, which is a
simple description of the strong glass-former silica.”®"" A
first motivation for these simulations is that all terms contrib-
uting to the dynamic fluctuations can be separately evaluated
and quantitatively compared. Spatial correlators and dynamic
length scales can be directly evaluated in the simulations to
confirm the link between dynamic susceptibilities and dy-
namical length scales. Therefore, the claim made in Ref. 37
that x;(r) yields direct experimental access to a dynamical
length scale can be quantitatively established. A second in-
teresting feature is that the influence of the microscopic dy-
namics and statistical ensemble can be quantified in the
simulations by keeping the pair potential unchanged, but
switching from the energy conserving Newtonian dynamics
to some stochastic dynamics which locally supplies energy to
the particles.

A. Models and technical details

The binary LJ system simulated in this work is an 80:20
mixture of Ny=800 and Nz=200 Lennard-Jones particles of
types A and B, with interactions
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where «,Be[A,B] and r is the distance between the par-
ticles of type a and B. Interaction parameters €,z and o,
are chosen to prevent crystallization and can be found in Ref.
75. The length, energy, and time units are the standard
Lennard-Jones units o, (particle diameter), €4, (interaction
energy), and 7y= 1m0,/ (48€4,), where m,=my is the par-
ticle mass and the subscript A refers to the majority species.
Equilibrium properties of the system have been fully
characterized.” At the reduced density py=1.2, where all our
simulations are carried out, the MCT transition has been con-
jectured to be in the vicinity of T020.435.75 The slowing
down of the dynamics, 7=0.47, can be correctly described
by mode-coupling theory, but this description eventually
breaks down when lowering the temperature further, T
=<047.7

To check the generality of our results, we have also in-
vestigated the behavior of a second glass former, character-
ized by a very different fragility. To this end, we simulate a
material with an Arrhenius dependence of its relaxation time,
namely, silica. Various simulations have shown that a reliable
pair potential to simulate silica is the one proposed by
BKS.”®”” The functional form of the BKS potential is

HBES 9.4 Q C_é

5 (1) = + A pexp(=B,gr) — (60)
where «, 8 [Si,O] and r is the distance between the ions of
type @ and B. The values of the constants q,, g Aup Bugs
and C,g can be found in Ref. 76. For the sake of computa-
tional efficiency, the short-range part of the potential was
truncated and shifted at 5.5 A. This truncation also has the
benefit of improving the agreement between simulation and
experiment with regard to the density of the amorphous glass
at low temperatures. The system investigated has Ng;=336
and Np=672 ions in a cubic box with fixed size L
=24.23 A. The Coulombic part of the potential has been
evaluated by means of the Ewald sum using a constant «L
=10.177.

For both LJ and BKS models, we have numerically in-
tegrated Newton’s equations of motion using the velocity
Verlet algorithm®’ using time steps A~=0.017, and ABXS
=1.6 fs, respectively. Doing so, we can measure spontaneous
dynamic fluctuations in the microcanonical NVE ensemble.
Before these microcanonical production runs, all systems are
equilibrated using a stochastic heat bath for a duration sig-
nificantly longer than the typical relaxation time, 7,, imply-
ing that particles move over several times their own diameter
during equilibration. Production runs were at least larger
than 307,, and statistical convergence for dynamic fluctua-
tions was further improved by simulating ten independent
samples of each system at each temperature. Repeating this
strategy for many temperatures in two molecular systems
obviously represents a substantial numerical effort.

To check the influence of the microscopic dynamics, and
in particular, the role of the energy conservation, we have
also performed stochastic simulations of the LJ system using
two different techniques. Following Ref. 40, we have simu-
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lated Brownian dynamics where Newton’s equations are
supplemented by a random force and a viscous friction
whose amplitudes are related by the fluctuation-dissipation
theorem. The numerical algorithm used to integrate these
Brownian equations of motion is described in Refs. 40 and
57 using the time step of h5,=0.0167, and a friction coeffi-
cient {=10mt,. We use the equilibrium configurations ob-
tained by MD simulations as starting point for our produc-
tion runs in Brownian simulations. Finally, we have
implemented a second stochastic dynamics, a standard
Monte Carlo dynamics, with the LJ potential.41 At time ¢, the
particle i, located at the position r;(z), is chosen at random.
The energy cost AE to move it to the new position r;(r) + & is
evaluated, & being a random vector in a cube of lateral size
Omax=0.15. The  Metropolis  acceptance rate, p
=min(1,e P*F), is then used to decide whether the move is
acceptable.57 One Monte Carlo time step represents N=N,
+Np attempts to make such a move.

For BKS, we only present results for ND because BD
simulations at low enough temperature would be numerically
too costly in this system. The reason is that a very large
friction coefficient is needed to have a truly damped
dynamics,78 making the overall relaxation much too slow to
be studied numerically at low temperature. Monte Carlo
simulations are similarly slow because of the long-range
character of the Coulomb term in the BKS potential. Very
recently, we have developed a short-range approximation of
the BKS potential that allows much faster Monte Carlo simu-
lations, and we shall mention some preliminary results ob-
tained for dynamic susceptibilities using this method.”

B. Physical observables

Following previous work,'®*** we monitor the dynami-
cal behavior of the molecular liquids through the self-
intermediate scattering function,

E ezk [r (t)—r 0)] , (61)

(1’]1

Fyk,1) =

where the sum in Eq. (61) runs over one of the species of the
considered liquid (A or B in the LJ, and Si or O for silica).
We denote by f,(k,z) the real part of the instantaneous value
of this quantity, so that we have F (k,?)=(f,(k,?)).

The four-point susceptibility, x.(z), quantifies the
strength of the spontaneous fluctuations around the average
dynamics by the variance,

Xa(1) = N J(fo(k, 1) - F2(K,1)]. (62)

In principle, y4(¢) in Eq. (62) retains a dependence on the
scattering vector k. Since the system is isotropic, we circu-
larly average Egs. (61) and (62) over wave vectors of fixed
modulus. Note that the value of dynamical correlations de-
pend on |k| as shown in Refs. 32 and 36. A detailed analysis
of this dependence has been performed in Ref. 54 and will be
further discussed in Ref. 38. In the following, we will focus
only on the value of |k| for which the dynamical correlations
are more pronounced and which measures the correlation of
the local dynamics. For the LJ system, we will mainly con-
sider results for |k|=7.21 and, for the BKS one, K|
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=1.7 A~". These values, respectively, represent the typical
distance between A particles and the size of the SiO, tetra-
hedra. As discussed above, we expect x4(7) to depend on the
chosen statistical ensemble, e.g., NVE or NVT, for Newton-
ian dynamics and to depend also on which microscopic dy-
namics is chosen, stochastic or energy conserving.

To evaluate the temperature derivatives involved in

() = —F(k.1) (63)
XT\l) = T s\ L)

we perform simulations at nearby temperatures, 7 and T
+ 6T, and estimate y,{(¢) through finite differencing, x;(r)
=~ OF (k,t)/ OT, as illustrated by arrows in Fig. 1. For this
procedure to be effective, temperature differences must be
small enough such that linear response holds. Taking 6T too
small leads, however, to poor statistics. The smallest 6T
which might be used can be estimated by comparing the
statistical noise of Fy(k,7) to the expected response y;X ST.
This leads, in our case, to the typical lower bound oT/T
>0.005. We have typically used 67/7=~0.01, which is not
far from the lower bound. For some selected temperatures,
we have explicitly checked that linear response is satisfied by
comparing results for 267, 6T, and 6T/2.

It might be worth recalling that the value of x;(r) does
not depend on whether one works in NVE or NVT, since
ensemble equivalence obviously holds for this local
observable.®” Much less trivial is the numerical finding that
x7(t) is also found to be the same for Newtonian, Brownian,
and Monte Carlo dynamics for times pertaining to the struc-
tural relaxation. This directly follows from the nontrivial nu-
merical observation that the average structural relaxation dy-
namics of the binary LJ system has no dependence on its
microscopic dynamics, apart from an overall time rescaling.
On the other hand, the short-time dynamics is different in the
three cases. Our findings then confirm for Brownian dynam-
ics, and extend for Monte Carlo dynamics,41 the results of
Refs. 40 and 74 about the independence of the average
glassy dynamics on the microscopic dynamics. We will see
below that clear differences emerge at the level of the dy-
namic fluctuations.

C. Amplitude of the dynamic fluctuations

In this paper, we restrict our analysis of the dynamic
susceptibilities to the amplitude of the peaks observed in Fig.
1, meaning that we study dynamic fluctuations on a time
scale t=7,. The time dependence of the fluctuations are
studied in the companion paper.38

Furthermore, as discussed in Sec. II E 4, the contribution
to )(z due to density fluctuations in Eq. (41) is significantly
less than the one corresponding to energy fluctuations for
most molecular liquids. Therefore, we will neglect the role of
density fluctuations in the following and focus only on x}""
since we expect that x)*7=x)"". As a more quantitative
check, we have used the data in Ref. 81 to estimate that the
contribution of density fluctuations to y, is about ten times
smaller than the temperature contribution for the LJ system
at pp=1.2.
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FIG. 4. Peak amplitude of various dynamic susceptibilities measured in the
Newtonian dynamics in the binary LJ mixture obtained from the A particle
dynamics (top) and the BKS model for silica from the Si ion dynamics
(bottom). Open triangles in the LJ system represent XQVVE measured in a
smaller system with N=256 instead of the N=1000 used everywhere else in
the paper. In both cases, T2X2T/ cy is smaller than )(ﬁ}' VE at high temperature,
but increases faster and becomes eventually the dominant contribution to
X" in the relevant low temperature glassy regime. Note that the crossing
occurs much earlier for BKS.

1. Ensemble dependence of dynamical correlations

Our results are summarized in Fig. 4, where we present
our numerical data for Tlxs|/Vey, x}VE, T2x3/cy, and the
sum x)" = x3"VE+T2x7/ cy, all quantities obtained from New-
tonian dynamics simulations of both the LJ and BKS models.
Recall that we define cy in units of kg throughout the paper.
When temperature decreases, all peaks shift to larger times
and track the a relaxation. Simultaneously, their height in-
creases, revealing increasingly stronger dynamic correlations
as the glass transition is approached.

The main observation from the data displayed in Fig. 4,
already announced in Ref. 37, is that in both LJ and BKS
systems, the term Tz)(%/ cy while being small, ~O(107"),
above the onset temperature of slow dynamics, grows much
faster than Xf VE when the glassy regime is entered. As a
consequence, there exists a temperature below which the
temperature derivative contribution to the four-point suscep-
tibility x}'"” dominates over that of x}"%, or is at least com-
parable. This crossover is located at 7=~0.45 in the LJ sys-
tem; T=~4500 K for BKS silica. The conclusion that T2X2T/ cy
becomes larger than )(ﬁ’ VE at low temperatures holds for both
strong and fragile glass formers, but for different reasons. In
the LJ systems, yr increases very fast because time scales
grow in a super-Arrhenius manner, which makes the tem-
perature derivative larger and larger, while XQV VE saturates at
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FIG. 5. Amplitude of four-point susceptibilities x,(7,) obtained from the A
particle dynamics in the LJ system for Newtonian canonical (XQ’VT) and
microcanonical (x}'"¥) dynamics and stochastic Monte Carlo (Xﬁ’lc) and
Brownian (XED) dynamics. Stochastic dynamics measurements follow the
results obtained from microcanonical Newtonian dynamics, while the am-
plitudes obtained in the canonical ensemble for Newtonian dynamics are
much larger, as predicted in Sec. III.

low T. In the BKS system, although the temperature deriva-
tive is not very large because of the simple Arrhenius growth
of relaxation time scales, )(Q' VE is even smaller,82 i.e., much
smaller than in the fragile LJ system. It is interesting to note
that the common value of XQ’ VE and 77 X2T/ cy when they cross
is substantially larger for the LJ system (~10) than for BKS
(~1). It would be interesting to see, more generally, how
Xﬁ’ VE and fragility are correlated.

It is important to remark that finite size effects could
play a role in the present study: when measured in a system
which is too small, dynamic fluctuations are
underestimated.®® Therefore it could be that using too small a
system, we have underestimated A/IVE, and therefore, ob-
served a fictitious saturation of the inequality (24). To inves-
tigate this possibility, we have included in Fig. 4 data for
)(2] VE obtained in a system comprising about four times less
particles, N=256, with essentially similar results. We have
checked that also the average dynamics is unchanged when
N=256, so that y; is not affected by finite size effects either
for the range of parameters chosen. We are therefore confi-
dent that the main conclusion drawn from Fig. 4 is not an
artifact due to finite size effects.

We can therefore safely conclude that 72 X%/ cy is a good
approximation to )(iv VT for relaxation times larger than 7,
~10* in the LJ system, and for 7,~ 10 ps in BKS silica. Our
results indicate that this becomes an even better approxima-
tion as temperature is lowered, at least in the numerically
accessible regime. As reported in Ref. 37, this suggests a
direct experimental determination of y; close to the glass
transition temperature, T,. Our data indicate, however, that
care must be taken when analyzing the first few decades of
the dynamical slowing down, where all terms contribute
differently to Xﬁl YI' and have different temperature
depe:ndf:ncif:s.37’54’84 We now show that despite their different
temperature behaviors, )(Q’ VT )(2’ VE and X7 contain the same
physics, as predicted theoretically in previous sections.

2. Dynamics dependence of dynamical correlations

We conclude this section with a discussion of the data
for dynamic fluctuations obtained through our stochastic
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FIG. 6. Four-point susceptibilities at x,(¢) at 7=0.45 obtained from the A
particle dynamics in the LJ system for Newtonian canonical (shown as a
thicker line) and microcanonical dynamics and stochastic Monte Carlo and
Brownian dynamics as a function of a rescaled time chosen so that all y,’s
overlap near the alpha relation. We chose 7=7 for NVE Newtonian dynamics,
7=t/24 for Brownian dynamics, and 7=¢/100 for Monte Carlo dynamics.
The Newtonian )/4\’ YI(1) is larger than the others, which are all nearly iden-
tical in both beta and alpha regimes.

simulations. The temperature evolution of the dynamic sus-
ceptibilities y4(,) obtained with Monte Carlo and Brownian
dynamics is shown in Fig. 5, where it is compared to the data
obtained in both canonical and microcanonical ensembles
with Newtonian dynamics. Our data unambiguously show
that dynamic fluctuations with stochastic dynamics are dif-
ferent from the ones obtained with Newtonian dynamics in
the NVT ensemble. They are, however, very similar to the
microcanonical ones. This result is not immediately intuitive,
because one could have imagined that stochastic simulations
are a good approximation to the dynamics of liquids in the
canonical ensemble. However, we have shown in Sec. III
that this naive expectation is, in fact, incorrect. The absence
of the energy conservation in the stochastic dynamics (MD
or BD) removes the contribution of the “squared parquets,”
which corresponds to the enhancement of dynamic fluctua-
tions due to energy fluctuations, and leads to x}"*~ x5
~ yc. This is in excellent agreement with our numerical
data.

Another confirmation of our theoretical expectations is
presented in Fig. 6, in which we show the time dependence
of x4 for NVE Newtonian dynamics, NVT Brownian, Monte
Carlo, and Newtonian dynamics. The first three curves are
essentially identical apart at microscopic times, whereas the
last one is clearly larger. This dependence on the microscopic
dynamics is a general result obtained from the previous dia-
grammatic discussion.

A further crucial prediction of our diagrammatic analysis
is that y7 and /\/4\’ VE should have a similar critical scaling in
temperature and time. This is again a general result if the
three-leg vertex does not introduce any additional singular
behavior. In fact, as discussed in the previous sections, xr
consists of a parquet diagram closed by a three-leg vertex,
whereas XQV VE is given by single parquet diagrams. In Fig. 4
we confirm numerically that the peaks of y; and Xﬁv VE scale
in the same way with temperature, both in the LJ and BKS
systems. This similarity should, in fact, extend to the whole
time dependence, but the results are somewhat less satisfac-
tory, as discussed in the companion paper.38
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For BKS we do not have numerical results for Brownian
dynamics for reasons mentioned above. However, our pre-
liminary results from Monte Carlo simulations of a slightly
modified version of the BKS potential79 agree with the con-
clusions drawn from the LJ data; that is, XZ/IC seems to follow
more closely A/4V VE as in Fig. 5, with similar time depen-
dences for the dynamic susceptibilities, as in Fig. 6.

D. Spatial correlations

We now discuss the spatial correlations associated with
the global fluctuations measured through x,(¢) and y,(¢). To
this end, we define the local fluctuations of the dynamics
through the spatial fluctuations of the instantaneous value of
the self-intermediate scattering function,

ofi(x,1) = 2 8(x — r;(0))[cos[k - (r;(z) - r;(0))]

- Fy(k,1)]. (64)

In the following, we will drop the k dependence of the dy-
namic structure factors to simplify notations. Local fluctua-
tions of the energy at time ¢ are defined as usual,

de(x.1) = 2, 8(x — r/(n)[ed0) ~ e, (65)

where e,»(t):[mviz(t)/ 2]+ V(r;(1r)) is the instantaneous
value of the energy of particle i, and e=(N"'S,e;) is the
average energy per particle.

Spontaneous fluctuations of the dynamics can be de-
tected through the “four-point” dynamic structure factor,

Su(@) = %(5.f(q,t) 5F(- 0.1, (66)

while correlation between dynamics and energy are quanti-
fied by the three-point function,

$1(0.0 = (07(0,1)3e(- 4.1=0)). 67

In Egs. (66) and (67), 5f(q,1) and de(q, ) denote the Fourier
transforms with respect to x of §f(x,f) and de(x,1), respec-
tively. We will show data for fixed |k|, as for the dynamic
susceptibilities above. In our numerical simulations, we have
also performed a circular averaging over wave vectors of
fixed moduli |q|, although the relative orientations of q and k
play a role.'®%

It should be remarked that the spatial correlations quan-
tified through Egs. (66) and (67) can be measured in any
statistical ensemble, because they are local quantities not
sensitive to far away boundary conditions. Therefore, their
q—0 limits are related to the dynamic susceptibilities mea-
sured in the ensemble, where all conserved quantities fluctu-
ate.

We present our numerical results for the temperature de-
pendence of four-point and three-point structure factors in
Fig. 7. Similar four-point dynamic structure factors have
been discussed before.>!>16:20-31-34 They present at low g a
peak whose height increases while the peak position shifts to
lower ¢ when T decreases. This peak is unrelated to static
density fluctuations, which are small and featureless in this
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FIG. 7. Top: Four-point dynamic structure factors from Eq. (66) for Monte
Carlo (MC) and Newtonian (N) dynamics, and three-point structure factor
[Eq. (67)] for Newtonian dynamics. For comparison, we show the power
law 1/ as a dashed line. Note that S is a negative quantity, so we present
its absolute value. S; and SﬂAC have been vertically shifted for graphical
convenience. Bottom: Rescaled dynamic structure factor for Newtonian dy-
namics using Eq. (68) with a=2.4 for S, (top data) and @=3.5 for S;{(bottom
data). The same dynamic length scale &=¢&,= ¢ is used in both cases, and
the temperature evolution of ¢ is shown in the inset.

regirne.75 This growing peak is a direct evidence of a grow-
ing dynamic length scale, &(7), associated with dynamic
heterogeneity as temperature is decreased. The dynamic
length scale &, should then be extracted from these data by
fitting the ¢ dependence of S,(¢,7) to a specific form. An
Ornstein-Zernike form has often been used,32’33 and we have
presented its 1/¢* large ¢ behavior in Fig. 7. Since our pri-
mary aim is to measure dynamic susceptibilities on a wide
range of temperatures, we have used a relatively small num-
ber of particles, N=1000. At density p,=1.2, the largest dis-
tance we can access in spatial correlators is L/2=5, which
makes an absolute determination of &, somewhat ambiguous.
Similarly, the range of wave vectors shown in Fig. 7 is too
small to assign a precise value, even to the exponent charac-
terizing the large ¢ behavior of S,(¢,7) ~1/¢®. Our data are
compatible with a value a=2.4. To extract &, we therefore
fix @=2.4 and determine &, by assuming the following scal-
ing behavior:**

S4(f] = O’t)
L+ (q&)*

using S4(0,7) and &, as free parameters. The results of such
an analysis are shown in the bottom panel of Fig. 7. This
procedure leads to values for &, which are in good agreement
with previous determinations using different procedur%s.B In

particular, we find that a power law relationship &, ~ 7, with

Sa(g.1) = (68)
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z=4.5 describes our data well, as reported in Ref. 16 for this
system.

Since dynamic structure factors probe local spatial cor-
relations, they do not depend on the statistical ensemble cho-
sen for their calculation, at least in the thermodynamic limit.
However, as predicted in Sec. III, dynamic correlations are
expected to retain a dependence on the microscopic dynam-
ics of the particles; our prediction being that correlations
should be stronger for Newtonian dynamics than for stochas-
tic dynamics. This prediction is directly confirmed in Fig. 7,
where we show S%C(q,t) obtained from our Monte Carlo
simulations. Clearly the temperature evolution of Slec is
slower than that of STD, in agreement with the slower tem-
perature evolution of Xﬂdc already observed in Fig. 5.

An important new result contained in Fig. 7 involves the
presence and development of a similar low-g peak in the
three-point structure factor S;(¢,7). Note that, as for y;(),
we find S;(¢g,7) a negative quantity. This means that a local
positive fluctuation of the energy is correlated to a local
negative fluctuation of the two-time dynamics, i.e., to a lo-
cally faster than average dynamics. Therefore the (negative)
peak in S;(g,?) is a direct microscopic demonstration that
dynamic heterogeneity is strongly correlated to the fluctua-
tions of at least one local structural quantity, namely, the
energy.37 When temperature decreases, the height of the peak
in |S;(g.t)| increases and shrinks towards lower g. This is
again the sign of the presence of a second growing dynamic
length scale, &7, which reflects the extent of the spatial cor-
relations between energy and dynamical fluctuations. Again
an absolute determination of &; is very hard due to system
size limitations. Since we expect & and &, to carry equiva-
lent physical content, we have checked that our data are
compatible with both length scales being equal. In Fig. 7, we
rescale the three-point dynamic structure factor using Eq.
(68), with @=3.5, and constraining &7=§&,. The scaling is of
similar quality (see the bottom panel in Fig. 7). Clearly, the
nontrivial ¢ dependence of S;(g,?) with a scaling collapse of
reasonable quality and a length scale consistent with that
extracted from S,(¢,7) is a strong indicator that the integrated
susceptibility y7 grows as a result of a unique growing length
scale characteristic of dynamic heterogeneity. A further nu-
merical confirmation of the fact that the growth of the sus-
ceptibilities x4(rf) and y,{t) cannot be attributed to an in-
crease in the strength of the correlations rather than their
range stems from the direct measurement of g,(r,f) and
g7(r,1), the Fourier transforms of S4(¢q,7) and S;(g,1). The
large distance decay of both functions can be well fitted,
within the statistical noise, by an exponential form'® with a
growing dynamic length scale but a temperature independent
strength. Attributing all of the temperature dependence of the
susceptibilities to a growing amplitude leads to poor fits of
the spatial correlators. This indicates that a scenario whereby
the growth of y7 can be ascribed to the growth of a prefactor
with no growing length scale characteristic of dynamic het-
erogeneity can be ruled out, at least for the LJ case. Collec-
tively, these findings indicate that the bound for y,, as first
discussed in Ref. 37, correctly estimates a correlation vol-
ume associated with dynamic heterogeneity.

We have carried out a similar analysis for the BKS
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model of silica.” Here, the analysis is far more difficult for
several reasons. First, the system is harder to simulate than
the LJ system due to the long-ranged nature of the interac-
tions. Second, strong features associated with static structure
make a resolution of the low-¢g behavior in S(q,) somewhat
more challenging in this system. Lastly, the overall scale of
dynamical fluctuations at the lowest temperatures studied is
much smaller than in the LJ system (see Fig. 4). Regardless,
we do find results consistent with a scaling scenario for
S(q.t), and, as we will see in the following paper, the
growth of 7 tracks that of Xiv VE These facts give support to
the notion that the scenario for the BKS model of silica is the
same as for the LJ system although the direct supporting
evidence for this is, at this stage, not quite as strong.

The local correlation between energy fluctuations and
dynamic heterogeneity is broadly consistent with several the-
oretical predictions; see the companion paper38 for further
discussion. As mentioned in Sec. III, the equality between &,
and &, is a natural prediction, in particular, close to the MCT
transition. This is also very natural from the point of view of
kinetically constrained models.** Spin facilitated models, in
particular, postulate such a correlation through the concept of
dynamic facilitation: mobile sites carry positive energy fluc-
tuations and, through activated diffusion, trigger the relax-
ation of neighboring sites.® In this picture, a localized en-
ergy fluctuation affects the dynamics of a large nearby region
so that there is no one-to-one correspondence between slow
and low-energy sites. There is therefore no contradiction be-
tween our results and the lack of correlation between “dy-
namic propensity” and local potential energy recently re-
ported in Ref. 87. They qualitatively agree, however, with
recent numerical results obtained for water, where a correla-
tion between ‘“dynamic” and “energetic” propensities is
re:ported.88 A recent work® has also suggested a relation be-
tween energy fluctuations and finite size effects, leading to a
growing length at low temperature.

E. SUMMARY

In this section, we have discussed in detail the results of
molecular dynamics simulations of a strong and a fragile
glass-forming liquid. Our main contribution is the simulta-
neous measurement of spontaneous and induced dynamic
fluctuations, and the quantitative confirmation in two realis-
tic liquids of the central claim announced in Ref. 37: it is
possible to obtain a quantitative estimate of the amplitude
of dynamic fluctuations in superco&led liquids through the
measurement of the quantity T/ \cp, which (once squared)
gives the major contribution to Xﬁ’ "I"in the low temperature
regime and is proportional to x}'* (see Fig. 4).

We have directly measured in the Lennard-Jones system
three- and four-point dynamic structure factors that display
slightly different wave vector dependencies but lead, never-
theless, to consistent quantitative estimates of a dynamic cor-
relation length scale, compatible with that obtained from y,
and 7. This last result is very important since this is a direct
confirmation that an experimental estimate of a dynamic
length scale, as performed in Ref. 37, is meaningful. Finally,
we have found that, as predicted theoretically, global four-

Downloaded 15 Dec 2010 to 130.158.56.102. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



184503-20  Berthier et al.

point dynamic correlations corresponding to spontaneous
fluctuations of two-time correlators are strongly dependent
on the microscopic dynamics, at variance with usual two-
point correlations.

VI. PERSPECTIVES AND CONCLUSIONS

We conclude this rather long article, to be followed by a
companion paper,38 with brief comments only. Four-point
correlators were originally introduced to define the length
scale of dynamical heterogeneities in glass formers. Our re-
sults, in that respect, are double sided. We showed that global
four-point functions, corresponding to the fluctuations of in-
tensive dynamical correlators, depend not only on the statis-
tical ensemble but also on the choice of dynamics. The de-
pendence on the statistical ensemble is useful in obtaining
lower bounds for experimentally relevant situations. How-
ever, on a more general ground, these dependencies unveil
that four-point correlators are more complicated than what
was originally thought and their quantitative interpretation is
somewhat flummoxed. We found that dynamical response
functions, proxied by the temperature or density derivatives
of two-time correlators, provide a clearer and direct probe of
genuine collective dynamical effects.

We have given strong theoretical and numerical evidence
for the most important claim made in this paper: the exis-
tence of unique dynamical length scale & governing the
growth of all the relevant dynamical susceptibilities, inde-
pendently of dynamics (and, of course, ensemble!). This re-
sult can be proved within the MCT of glasses, as we elabo-
rate further in the companion paper,3 ® but is expected more
generally as soon as & becomes somewhat large compared to
the interatomic spacing. Our numerical results show that this
is true both in the fragile LJ system and in the strong BKS
system: all dynamical susceptibilities (x7, Xf VE) behave
similarly, at least in the weakly supercooled region acces-
sible to numerical simulations.

One rather striking result of our analysis is that even
Arrhenius dynamics in Newtonian systems must involve
some amount of dynamical correlations. This is confirmed by
our numerical simulations on the BKS system, but the result
holds more generally. Even a dilute assembly of Arrheniusly
relaxing entities, e.g., two-level systems, should develop
nontrivial dynamical correlations at sufficiently low tempera-
tures, provided they interact with the same Newtonian ther-
mal bath. This is obviously the case for strong glass formers,
where a particle is both a relaxing entity and is a part of its
neighbors’ bath.

As for the perspective in the future, we hope that our
work will trigger more experimental and numerical investi-
gations of supercooled liquids and jamming systems, extend-
ing our results both from a quantitative and a qualitative
point of view.* In particular, the distinction between dy-
namical correlations (explored here) and cooperativity, if
any, should be clarified. The relation between the two no-
tions might be very different in strong and fragile systems,
and the distinction between the MCT and the deeply super-
cooled regimes might also be relevant. Is & as defined in the
present paper related to the Adam-Gibbs or the mosaic length
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scale?'® In this respect, the full understanding of deceiv-

ingly simple Arrhenius systems should be of great help.
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