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There are two types of master equations in describing nonequilibrium phenomena with memory
effect: (i) the memory function type and (ii) the nonstationary type. A generalized Polya process is
studied within the framework of a non-stationary type master equation approach. For a transition-
rate with an arbitrary time-dependent relaxation function, the exact solution of a generalized Polya
process is obtained. The characteristic features of temporal variation of the solution are displayed
for some typical time-dependent relaxation functions reflecting memory in the systems.

1. Introduction

The generalized master equation of memory function type [1] is a useful basis for analyzing
non-equilibrium phenomena in open systems as

d

dt
P(n, t) =

∫ t
0
dτ
∑
j

[
Knj(t − τ)P

(
j, τ
) −Kjn(t − τ)P(n, τ)

]
, (1.1)

where the kernelKnj(t) is conventionally assumed to have the product of a memory function
φ(t) with a transition rate w(n, j) as Knj(t) = φ(t)w(n, j). The transition rate w(n, j) has the
constraint with

∑
j w(j, n) = 1. This generalized master equation approach corresponds to

the generalized Langevin equation of the memory function type [2, 3]. One can see many
successful applications with long memory along the line of traditional formulation [1].
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Looking around recent studies in complex open systems, there is an alternative
approach based on a generalized non-stationary master equation [4] as

d

dt
P(n, t) =

∑
j

[
Lnj(t)P

(
j, t
) − Ljn(t)P(n, t)]. (1.2)

The master equation in this form corresponds to the generalized Langevin equation of
the convolutionless type, which is derived with the aid of projection operator method
by Tokuyama and Mori [5]. The time-dependent coefficient Ljk(t) may be written in the
following form: Lnj(t) = φc(t)w(n, j). It is expected from the projection operator method [5]
that the time-dependent function φc(t) reflects the memory effect from varying environment
in a different way associated with the memory function (cf. also Hänggi and Talkner [6]).
The memory function (MF) formalism has been utilized in anomalous diffusion like Lévy
type diffusion in atmospheric pollution, diffusion impurities in amorphous materials, and
so on. The alternative convolution-less, non-stationary (NS) formalism gives only a small
number of applications. The paper intends to exhibit a potential ability of the NS formalism
by taking an arbitrary time-dependent function φc(t) which is representing memory effect.

The paper is organized as follows. Section 2 reviews the non-stationary Poisson
process. Section 3 shows a generalized Polya process wherein it is involved a generalized
non-stationary transition rate λ(n, t) = κ(t)(αn + β) with an arbitrary function κ(t) of time.
The exact solution and the expression mean and variance are displayed as a function of κ(t).
Some important remarks are given for a generalized non-stationary Yule-Furrey process with
λ(n, t) = κ(t)(αn). Section 4 discusses (i) the solvability condition of the generalized Polya
model and (ii) the relation to the memory function approach. The last section is devoted to
concluding remarks.

2. Nonstationary Poisson Process

The simplest example of the generalized master equation in the form of (1.2) is a non-
stationary Poisson process (an inhomogeneous Poisson process) described by

d

dt
p(n, t) = λ(t)p(n − 1, t) − λ(t)p(n, t) (n ≥ 1),

d

dt
p(0, t) = −λ(t)p(0, t) (n = 0),

(2.1)

where λ(t) is the time-dependent rate of occurrence of an event [λ(t) ≡ φc(t)w(n − 1, n)]. The
function λ(t) is an arbitrary function of time. The solution is readily obtained, with the aid of
the generating function, in the following form:

p(n, t) =
(Λ(t))n

n!
exp(−Λ(t)), (2.2)
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Table 1: Some typical examples of λ(t) and Λ(t).

λ(t) 〈n(t)〉 = σ2
n(t) = Λ(t) constraint

(i) λ0 exp(−γ0t) λ0
γ0

(1 − exp(−γ0t)) γ0 > 0

(ii)
λ0

1 + γ0t
λ0
γ0

ln(1 + γ0t) γ0 > 0

(iii) λ0t
γ0−1 λ0

γ0
tγ0 0 < γ0 < 1
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Figure 1: Time dependence of p(n, t) in (2.2) for three relaxation functions of λ(t) in Table 1: (i) an
exponential function, (ii) an inverse power function, and (iii) a fractional power function; the values of
parameters are λ0 = 1, γ0 = 0.85. The pdf profiles are depicted for t = 1 (solid line), t = 3 (dotted line), t = 5
(dashed line), t = 7 (dash-dotted line), and t = 9 (dash-dotted line).

where Λ(t) =
∫ t
0 dτλ(τ). It is easy to show that the mean and the variance take the same

value 〈n(t)〉 = σ2
n(t) = Λ(t). Namely, the Fano factor F(= σ2

n(t)/〈n(t)〉) takes 1 for any time-
dependent function λ(t). The process gives rise to only the Poissonian (P) statistics at any
time.

Three typical examples of λ(t) are shown in Table 1. All of them are relaxation
functions λ(t) → 0 as the time t goes to infinity. It is shown in the same table that Λ(t) ≡∫ t
0 λ(s)ds is the increasing function as the time goes to infinity. The temporal development of
the probability density p(n, t) in (2.2) for these three examples is depicted in Figure 1.

In seismology, λ(t) = λ0/(1+αt) (Ohmori formula) [7] is frequently used in analyzing
and predicting aftershocks. Many applications are also found in environmental, insurance,
and financial problems [8]. Further, various engineering problems involve many potential
applications especially in the probabilistic risk analysis [9]. However, the applicability of the
non-stationary Poisson process is quite limited since 〈n(t)〉 = σ2

n(t).
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3. Generalized Polya Process

3.1. Model Equation

Now let us consider a generalized Polya process within the class of generalized birth
processes

d

dt
p(n, t) = λ(n − 1, t)p(n − 1, t) − λ(n, t)p(n, t) (n ≥ 1), (3.1)

d

dt
p(0, t) = −λ(0, t)p(0, t) (n = 0), (3.2)

where λ(n, t) takes into account the n-dependence up to the first order and a memory effect
with an arbitrary relaxation function κ(t) as

λ(n, t) = κ(t)
(
αn + β

)
. (3.3)

When κ(t) = 1/(1 + αt) and β = 1, the model reduces to a Polya process [10]. When κ(t) =
κ0/(1 + γ0t), the model reduces to an extended Polya process [11].

3.2. Exact Solution

Themethod of characteristic curves is used to get the exact solution under the initial condition
p(n, 0) = δn,n0 (cf., the recursion method with variable transformations [11]). The generating
function is defined by g(z, t) =

∑∞
n=0 z

np(n, t). The equation for g(z, t) corresponding to (3.1)
becomes

d

dt
g(z, t) = κ(t)(z − 1)

{
αz

∂

∂z
g(z, t) + βg(z, t)

}
. (3.4)

From the initial condition, one obtains g(z, 0) = zn0 . To eliminate the second term in the right
hand side of (3.4), let us assume that

g(z, t) = C(z)G(z, t), (3.5)

when αz(d/dz)C(z) + βC(z) = 0, one obtains C(z) = C0z
−β/α. Without the loss of generality,

C0 = 1. So the equation for G(z, t) becomes

∂

∂t
G(z, t) = κ(t)αz(z − 1)

∂

∂z
G(z, t). (3.6)

Then, a variable transformation,

ξ =
1
α

∫
1

z(z − 1)
dz =

1
α
ln
(
z − 1
z

)
, (3.7)
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leads (3.6) to the simple wave equation,

∂

∂t
G(ξ, t) = κ(t)

∂

∂ξ
G(ξ, t). (3.8)

The solution of the wave equation in (3.8) is given by

G(ξ, t) = f(ξ +K(t)), (3.9)

where K(t) =
∫ t
0 κ(τ)dτ . From the initial condition p(n, 0) = δn,n0 , one obtains

g(z, 0) = z−β/αf
(
1
α
ln
z − 1
z

)
= zn0 . (3.10)

Therefore, f(x) is expressed as

f(x) =
(

1
1 − exp(αx)

)β/α+n0
. (3.11)

Thus, we have

g(z, t) = z−β/αG(z, t), (3.12)

where

G(z, t) =

(
z exp(−Λ(t))

1 − z(1 − exp(−Λ(t))
)
)β/α+n0

, (3.13)

and Λ(t) = αK(t). When n0 = 0, the exact analytic expression of the probability density
function p(n, t) is given by

p(n, t) =
(
exp(−Λ(t))

)β/α
⎛
⎝−β

α
n

⎞
⎠(−1)n(1 − exp(−Λ(t))

)n (3.14)

=
(
exp(−Λ(t))

)β/α
⎛
⎝n +

β

α
− 1

n

⎞
⎠(1 − exp(−Λ(t))

)n
. (3.15)
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Table 2: Some examples of κ(t), and corresponding Λ(t) and exp(Λ(t)).

κ(t) Λ(t) F ≡ exp(Λ(t)) constraint

(i) κ exp(−γt) ακ

γ
(1 − exp(−γt)) exp

(
ακ

γ
(1 − exp(−γt))

)
γ > 0

(ii)
κ

1 + γt
ακ

γ
ln(1 + γt) (1 + γt)ακ/γ γ > 0

(iii) κtγ−1
ακ

γ
tγ exp

(
ακ

γ
tγ
)

0 < γ < 1

3.3. Mean and Variance

The probability density function in (3.15) is the Pascal distribution f(θ) (the negative
binomial distribution)

f(θ) =

(
n + r − 1

n

)
θr(1 − θ)n, (3.16)

with the parameters (r, θ)with r = β/α and θ = exp(−Λ(t)). Thus, the mean and the variance
are obtained in the following form:

〈n(t)〉 =
β

α

[
exp(Λ(t)) − 1

]
, V (t) ≡ σ2

n(t) =
β

α
exp(Λ(t))

[
exp(Λ(t)) − 1

]
. (3.17)

The variance is generally greater than the mean, that is, the Fano factor is larger than 1 as
follows:

F(t) =
V (t)
〈n(t)〉 = exp(Λ(t)) > 1. (3.18)

It is shown that the generalized Polya process with α/= 0 and β /= 0 is subjected to the super-
Poissonian (SUPP) statistics (F > 1).

Three examples of the relaxation function κ(t) are given in Table 2. They are decreasing
function (i.e., κ(t) → 0) as the time goes infinity. In the case of an exponential relaxation
(i), the Fano factor F(t) becomes a double exponential function as shown in the table. In
the case of inverse power function (ii), the Fano factor takes the form tε in the time region
t → ∞: (a) subdiffusion for ε = 2ακ/γ < 1 and (b) superdiffusion for ε = 2ακ/γ > 1.
On the other hand, in the case of the power relaxation (iii), the Fano factor F(t) becomes
the fractional power exponential function of time. To understand the feature of temporal
variation, numerical examples are depicted in Figures 2(a) and 2(b) as well as Figures 3(a)
and 3(b).
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Figure 2: Time dependence of three relaxation functions for κ(t) in Table 2: (i) an exponential function
(solid line), (ii) an inverse power function (dotted line), and (iii) a fractional power function (dashed
line); the values of parameters are κ = 1, γ = 0.85, α = 1, and β = 1.

3.4. Nonstationary Yule-Furrey Process

When β = 0, λ(0, t) = 0 in (3.3). So one must omit (3.2) (i.e., one must redefine the range of
variation) for the case of a generalized non-stationary Yule-Furrey process as follows:

d

dt
p(n, t) = λ(n − 1, t)p(n − 1, t) − λ(n, t)p(n, t) (n ≥ 1). (3.19)

The solution of g(z, t) under the initial condition p(n, 0) = δn,1 becomes

g(z, t) =

(
z exp(−Λ(t))

1 − z[1 − exp(−Λ(t))
]
)

=
[
z exp(−Λ(t))

] ∞∑
n=0

[
1 − exp(−Λ(t))

]n
zn.

(3.20)
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Figure 3: Time-dependence of the mean and the variance of three relaxation functions for κ(t) in Table 2: (i)
an exponential relaxation (solid line), (ii) an inverse power function (dotted line), (iii) a fractional power
function (dashed line); the values of parameters are κ = 1, γ = 0.85, α = 1, and β = 1.

The corresponding probability density p(n, t) is obtained as

p(n, t) = exp(−Λ(t))
(
1 − exp(−Λ(t))

)n−1
. (3.21)

This is the geometric distribution

f(θ) = θ(1 − θ)n−1, (3.22)

with the parameter θ = exp(−Λ(t)), which is a special case of the Pascal (the negative
binomial) distribution in (3.16). The mean and the variance are obtained as

〈n(t)〉 = exp(Λ(t)), V (t) ≡ σ2
n(t) = exp(Λ(t))

[
exp(Λ(t)) − 1

]
. (3.23)

The Fano factor becomes

F =
V (t)
〈n(t)〉 = exp(Λ(t)) − 1 > 0. (3.24)
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Figure 4: Time dependence of p(n, t) in (3.15) for three relaxation functions for κ(t) in Table 2: (i) an
exponential function, and (ii) an inverse power function, (iii) a fractional power function; the values of
parameters are α = 1, κ = 1, and γ = 0.85. The pdf profiles are depicted for t = 0.4 (solid line), t = 1.2
(dotted line), t = 2.0 (dashed line), t = 2.8 (dash-dotted line) and t = 3.6 (dash-dotted line).
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Figure 5: Time-dependence of p(n, t) in (3.21) for three relaxation functions for κ(t) in Table 2: (i) an
exponential function, (ii) an inverse power function, (iii) a fractional power function; the values of
parameters are α = 1, κ = 1, and γ = 0.85. The pdf profiles are depicted for t = 0.4 (solid line), t = 1.2
(dotted line), t = 2.0 (dashed line), t = 2.8 (dash-dotted line), and t = 3.6 (dash-dotted line).

This means that the nature of statistics (Sub-Poissonian (SUBP, F < 1), Poissonian (P, F = 1),
and Super-Poissonian (SUPP, F > 1)) changes depending on the functional form of λ(t) and
its parameter values involved. It is important to make notice of the fact that the variability of
F(t) changes in the two cases for β /= 0 and β = 0. They are summarized in Table 3.
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Table 3: Summary of the generalized Polya and non-stationary Yule-Furrey process.

Parameters P(θ) 〈n(t)〉 V (t) F

(i) α/= 0, β /= 0, n0 = 0
(
n+r+1

n

)
θr(1 − θ)n r(θ−1 − 1) rθ−1(θ−1 − 1) F > 1

(ii) α/= 0, β = 0, n0 = 1 θ(1 − θ)n−1 θ−1 θ−1(θ−1 − 1) F > 0

In Table 3, θ, r, and F are defined by

θ = exp(−Λ(t)), r =
β

α
, Λ(t) = α

∫ t
0
κ(τ)dτ, F =

V (t)
〈n(t)〉 . (3.25)

The temporal development of the probability density p(n, t) for the generalized Polya
process in (3.15) and the generalized Yule-Furry process in (3.21) for these three examples is
depicted in Figures 4 and 5.

4. Discussions

4.1. Solvability Condition

We have studied the generalized Polya process with the transition rate in (3.3). How is the
solvability if the transition rate is a more general one than that of (3.3) as

λ(n, t) = α(t)n + β(t), (4.1)

with α(t) and β(t) being arbitrary functions with time, how is the solvability. In this case, the
exact analytic solution is not obtained. The solvability condition is equivalent to the fact that
g(z, t) is written in the form of (3.5); g(z, t) = C(z)G(z, t). For the transition rate in (4.1), the
time-independent function C(z) reduces to

C(z) = C0z
−β(t)/α(t). (4.2)

This means that α(t) and β(t) must have the same time-dependent scaling function κ(t) with
α(t) = κ(t)α and β(t) = κ(t)β (i.e., λ(t) = κ(t)(αn+β) in (3.3)) to get the exact analytic solution.

4.2. Master Equation in Memory Function Formalism

An alternative master equation in the memory function (MF) formalism for the generalized
Polya process in (3.1) and (3.2) may be written as

d

dt
p(n, t) =

∫ t
0
φ(t − τ)[α(n − 1) + β

]
p(n − 1, τ)dτ −

∫ t
0
φ(t − τ)[αn + β

]
p(n, τ)dτ (n ≥ 1),

d

dt
p(0, t) = −

∫ t
0
φ(t − τ)βp(0, τ)dτ (n = 0),

(4.3)
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where α and β are constants (α/= 0 and β /= 0). The Laplace transform of the memory function
is defined by φ[s] =

∫∞
0 φ(t) exp(−st)ds. For n ≥ 1, the recursion relation is obtained for the

Laplace transform p[n, s] of p(n, t) as

{
s +
(
αn + β

)
φ[s]

}
p[n, s] = φ[s]

{
α(n − 1) + β

}
p[n − 1, s] (n ≥ 1). (4.4)

The general formal solution is given under the initial condition p(n, 0) = δn,0 in terms of the
inverse Laplace transform as

p(n, t) =
1

2πi

∫ c+i∞
c−i∞

∏n−1
k=0
{(
αk + β

)
φ[s]

}
∏n

k=0
{
s +
(
αk + β

)
φ[s]

} exp(st)ds. (4.5)

When the memory function φ(t) or the pausing time distribution ψ(t) is given (i.e., the
Laplace transform of ψ(t) is related to φ[s] as ψ[s] = φ[s]/(s+φ[s])), the probability density
in (4.5) can be evaluated numerically. The explicit analytic expressions are obtained only for
a few special cases [1] with α = 0. The two formalisms have different features complement
with each other (cf. Montroll and Shlesinger [1], Tokuyama and Mori [5], and Hänggi and
Talkner [6]).

5. Concluding Remarks

In this paper, it is shown that there are two types of generalized master equation: (i) the
memory function (MF) formalism in (1.1) and (ii) the convolution-less, non-stationary (NS)
formalism in (1.2). Then, we propose a new model in the NS formalism: a generalized Polya
process in (3.1) and (3.2) with the transition rate λ(t) = κ(t)(αn + β) having an arbitrary
time-varying function κ(t) in (3.3). Further, we exhibit the exact analytic solutions of the
probability density p(n, t) and the mean 〈n(t)〉 and variance σ2

n(t) for an arbitrary function
κ(t) of time. For some typical examples of κ(t), the temporal variations of the mean and the
variance are numerically exhibited.

There are many potential applications of the master equation in the NS formalism to
non-equilibrium phenomena. In biological systems, the human EEG response to light flashes
[12] (i.e., microscopic molecular transport associated with transient visual evoked potential
(VEP)) and the transition phenomenon from spiral wave to spiral turbulence in human
heart [13] can be formulated by the master equation in the NS formalism. In considering
a stochastic model of infectious disease like a stochastic SIR model [14], the introduction of
temporal variation of infection rate on account of various environmental changes leads to the
master equation in the NS formalism.

In auditory-nerve spike trains, there are interesting observations [15, 16] that (i)
the Fano factor F(t) exhibits temporal variation F(t) < 1 in the intermediate time region
and (ii) F(t) also shows fractional power dependence tε in the time region t → ∞ (ε =
noninteger number). In the generalized Polya process, time variation of the Fano factor F(t)
(i.e., SUBP(F < 1), P (F = 1), and SUPP (F < 1)) changes depending on the choice of the
relaxation function κ(t) and the values of α and β (cf. Tables 2 and 3). The related discussions
in detail will be reported elsewhere.
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