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ABSTRACT

Since the beginning of the 1960's [Bierman, Fograker, and
Jaedicke(1961)1, the studies of the decision making for cost
variance investigation have brought about the reconsidering of a
simple control chart which indicates whether or not a cost data is
contained within a certain control limit. These are models to
determine whether or not a process should be investigated with
respect to the costs and benefits of control actions when a cost
data is reported.

When control action is selected under considering opportunity
costs, or operating costs and investigating costs, the previous
literature can be classified into thrée types according to how
control variables will be established. The first type is the
Decision Theoretic Approach [BFJ(1961) and Dyckman(1969)1, and the
model in which the control variable is denoted as a Bayesian
posterior probability with respect to opportunity costs. The second
is the Bayesian Dynamic Programming Approach [Kaplan(1969) and
Hughes(1975)1 in which the control variable is denoted as a
Bayesian posterior probability, relating whether or not to
investigate the process with respect to operating costs and
investigating costs. Adding to the two approaches above, another
type is the Markovian Approach [Dittman and Prakash(1978)], a model

used to decide whether or not to investigate the process with



respect to the operating costs and investigating costs, in which
the control variable is denoted as a cost variance itself.

The purpose of this study is to develop another method (known
as the "Normal Form of Bayesian analysis") of Decision Theoretic
Approach employing Decision-Facilitating case defined by Demski and
Kreps(1982), in which the control variable is denoted as a cost
variance itself in place of Bayesiaﬁ posterior probability used in
the previous Decision Theoretic Approaches (Known as the "Extensive
Form of Bayesian analysis'"). The Normal Form starts by explicitly
considering every possible decision rule instead of first
determining the optimal act for every possible outcome. Thus, this
approach used in this study finds an investigation region which
minimizes the expected cost, based on Bayesian likelihood-ratio
test, and then control actions are determined within the sample
space. However, the Extensive Form of Bayesian analysis proceeds by
working backwards from the end of the decision tree to the initial
starting point, and then it has a condensed meaning because control
actions are discussed within a [0,1] probability space.

This study does not discuss the comparison between the
proposed model and the previous approaches, becéuse‘the simulation
results of Magee(1976) show that the differences between Dyckman's
(1969) and Kaplan's(1969) models may have little effect on the
incremental cost savings; and the Normal Form of this study and
Extensive Form of Dyckman are mathematically equivalent and lead to
identical results whether }he pre-experimental viewpoint of the

former or the post—experimental viewpoint of the latter is taken.
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The proposed model assumes that the cost-generating-process is
a two-states, discrete Markov process in which a cost report at the
end of each period provides information about current state of the
process.

Using the Normal Form of Bayesian analysis, different from the
previous approaches, the proposed model simply requires the
matching of a reported cost against a given investigation region
depending on the prior probability; and shows how to determine the
investigation region corresponding to the statistical variance
ratio; and seeks the lower or upper bound of the prior probability,
the critical value for determining when the process should be
always or never investigated.

This study develops a Exploratory Investigation model as an
extension of the Full Investigation model with respect to the
Normal Form of Bayesian analysis, and simulates the relation
between the Full and Exploratory Investigation cases in terms of
the average total cost over 1000 simulated 12-month periods in a
similar manner to Magee's(1976) study. The simulated results show
that the smallest values of the average total costs are almost
found in the Exploratory Investigation cases rather than iﬁ the
Full Investigation cases.

This study also shows how the optimal set of processes to be
investigated in any period can be selected in N-processes with each
cost process being treated independently of the others. This

differs from the model of N-processes by Dyckman(1969).
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CHAPTER ONE

INTRODUCTION

1) Motivation

All business planning, whether in terms of budgets or
standards, are based on estimates of prices, volumes costs, etc.,
and any outcome can only be expected to approximate these
estimates. However, outcomes will not necessarily equal the
original estimates since some variance around the estimate or
expected outcome is inevitable. Thus much of the decision making
for variance generate the problem of control type.

When information for variance is reported, the manager should
ask whether it represents a significant variance from the standard
or whether it is simply a random fluctuation around the expected
outcome. Thus the purpose of control action is, on the receipt of
an accounting report for variance, to ascertain whether the
agreed-upon actions were the ones taken, or whether the actual
states of nature differed from the expectations and, finally,
whether some corrective or adaptiVe action is appropriate.

The present work will concentrate on exploring how to assess
an accounting report to determine whether or not the investigating
action should be taken in a given cost variance system. The
situationvis probabilistic in that the disappointing performance

does not necessarily mean that corrective action should be taken,



since the disappointing performance may be caused by some
uncontrollable and nonrecurring factor.

To better understand tﬁe nature of decision focus in the Cost
Variance Investigation models, it is helpful to consider two polar
cases [Demski and Kreps{(1982)]. In some contexts, the accountiﬁg
report is produced in order to better make a particular decision.
In its purest form, such a report is obtained in a single-person
setting or in a setting where the fact that the report is obtained
does not change the opportunity set of the recipient. This is
called Decision-Facilitating Case. In other contexts, the
accounting report is produced in order to change the behavior of a
second party, normally because the compensation received by thé
second party depends on the report. In its purest form, this sort
of report Qould not be obtained until after the decision in
question is taken, so that it can have no direct effect on the
decision. This is called Decision-Influencing Case [Baiman and
Demski (1980a;1980b) and Lambert(1985)]. The present study will be
restricted within the Decision-Facilitating Case.

Since the beginning of the 1960's [Bierman, Fouraker and
Jaedicke(1961)1, the studies of the decision making for cost
variance have brought about the reconsidering of a simple control
chart which indicates whether or not a cost report is contained
within a certain control limit. These are models to determine
whether or not a Cost Process should be investigated with respect

to the cost and benefit of control action when a cost report is



submitted. When control action is selected under considering
opportunity costs, or operating costs and investigation costs, the
previous accounting literature can be classified into three types
according to how the control variablés are established. The first
type is the Decision Theoretic Approach [BFJ(1961); Duvall(1967),
Dyckman(1969)]1, and the model in which the control variable is
denoted as a Bayesian posterior probability with respect to
opportunity costs. The second is the Dynamic Programming Approach
[Kaplan(1969;1975), Hughes (1975;1977), Buckman and Miller(1982)],
and Bayesian-sequential analysis in which the control variable is
denoted as a Bayesian posterior probability, relating whether or
not to investigate the Cost Process with respect to operating
costs and investigation costs. Adding to the two approaches above,
another type is the Markovian Approach [Dittman and
Prakash(1978;1979)], a model used to decide whether or not to
investigate the Cost Process with respect to the operating costs
and investigation costs, in which the control variable is denoted
as a cost variance itself.

The present work, will concentrate on developing another
Decision Theoretic Approach model in which the control variable is
denoted as a cost variance itself, in place of Bayesian posterior
probability used in the previous Decision Theoretic Approach
models, and will be studied on the basis of assumption that the

cost-generating-process is a two-state, discrete-Markov process in



which a cost report at the end of each period provides information

about current status of the process.

2) Purpose of the Study

In the case of Decision Facilitating, three approaches, that
is, Decision Theoretic Approach, Bayesian Dynamic Programming
Approach and Markovian Approach, have been introduced. However,
these approaches may entail trade-offs with respect to the "best
policy". As pointed out by Kaplan(1982), starting with complex
models does not seem worthwhile when one considers the cost of the
information requirements and processing algorithms and the small
incremental benefits these models have yielded in simulation
studies. In other words, due to the relative high costs of solving
complex decision models, a more simple decision model in some
cases have cost effective.

Thus the author was motivated to develop a new method,
whereby even if the new method does not have cost savings against
the other previous models it is more convenient and can obtain
more technical advantages. |

The purposes of the present work can be described, therefore,
as follows:

1) to develop another method( known as the "Normal Form of

Bayesian analysis"), with respect to the Decision

Theoretic Approach, in which the control variable is



denoted as a cost variance itself in place of Bayesian
posterior probability used in the previous Decision
Theoretic Approach models( known as the "Extensive Form of
Bayesian analysis").

2) to extend the proposed model by considering the
Exploratory Investigation case.

3) to examine the proposed model as a problem in numerical
analysis.

4) to develop the N-Cost Processes Case as the extension of
One Cost Process problem.

5) comparison between the Full and Exploratory Investigation

models proposed in this study by performihg simulation.

3) Chapter Overview

In chapter II, the previous accounting literature about Cost
Variance queStfgation models, relevant other models and their
comparisons are reviewed. However, control chart approaches used
in industrial quality control techniques have been excluded;
because they do not formally incorporate the expected costs and
benefits from a variance investigation and/or the out-of-control
state into the model.

Chapter III shows how development of the basic assumptions in

each paper have been modified throughout all the previous models,



and how the assumptions of the present work should be modified
relatively to the previous.

Basic assumptions and the control procedure used in the
present work are described in chapter 1V. These assumptions can
~be classified into general assumptions similar to the previous
models and additional assumptions used only in the present work.

A new form of Decision Theoretic Approach is proposed in
chapter V. Furthermore, Investigation policies using statistical
hypothesis are established; and the new form is shown as a Bayes
test that turns out to be a Simple Likelihood-Ratio Test. In
addition to the One Cost Process case proposed above, Cost
lVariance Investigation Policies in N-Cost Processes are also
discussed. This case can be referred to as the Full Investigation
due to the assumption that the investigation of an out-of-control
process will always disclose its causes.

Chapter VI suggests a model that~enables an Exploratory
Investigation as opposed to the Full Investigation approach, by
considering the probability that the cause of an out-of-control
process will be discovered when it exists. This case being also
discussed according to the proposed method above. Similarly to the
previous chapter, the N-cost processes of the Exploratory
Investigation cases are discussed.

Chapter VII shows how alternative values of parameters affect
the proposed model by using alternative values of parameters

similar to those used in Dittman and Prakash's(1979) study.



Furthermore, the relation between the Full and Exploratory
Investigation cases is simulated with respect to the average total
cost.

Chapter VIII, will summarize the results and contributions of
the proposed model against the previous models, and will discuss

the limitations and extensions of the proposed model.



CHAPTER TWO

LITERATURE REVIEW

1) Overview

The previous accounting literature in the area of cost
variance analysis are reviewed in this chapter. However, the
developing of basic assumptions for each approach will be studied
in chapter three, because, in this chapter, connection between £he
previous literature throughout each approach is mainly reviewed.

The Decision Theoretic Approach models [Bierman, Fouraker and
Jaedicke(1961), Duvall(1967) and Dyckman(1969)] are reviewed in
section 2. The Bayesian Dynamic Programming Approach models
[Kaplan(1969;1975), Hughes(1975;1977), Buckman and Miller(1982)1,
according to their relationship with the Decision Theoretic
Approach models, are reviewed in section 3. A MarkovianrApproach
model [Dittman and Prakash(1978)] is reviewed in section 4.
Comparisons among three approach models [Magee(1976),
Jacobs(1978), Dittman and Prakash(1979)] are reviewed with respect
to expeéted costs, optimality, whether realistic or not, and some
other criteria in section 5. Section 6 reviews the Exploratory (or
Partial) Investigation models proposed by Dyckman's{(1969)
extensions, Kaplan(1975) and Kim(1983). In section 7, some other
cost-variance analysis models [Demski(1970), Hannum(1970), Ozan

and Dyckman(1971), Ronen(1974), Magee(1977) and Buckman and



Miller(1982)] with other viewpoints(e.g., multiorigin cost
variances, grouping of sources and reporting time etc.) are

reviewed.

2) Decision Theoretic Approach

The simple form of decision policy is the Control Chart
procedure in which the process is investigated if the observed
cost exceeds a critical value(or critical limit). However, this
Control Chart Approach was criticized due to the fact that it did
not consider the costs and benefits based on to investigation
policy. Thus BFJ(1961) were the first to introduce the costs and
benefits of an investigation into th investigation decision in
the accounting literature. They tried to derive the investigation
region by minimizing the expected cost, and proposed the cost-

benefit matrix by action-state as follows:

actions don't : investigate probability of
states investigate state
in-control 0 C P
out-of-control L Cc 1-P

expected costs
of actions (1-P)L C 1.00

where: C= the cost of investigating the unfavorable variance
L

the present value of the costs that will be incurred

in the future if an investigation is not made now

Figure 1: BFJ's Cost-Benefit Matrix by Action-State




When Pc is defined as P which setting the expected values of
the two action equal yields C = (1-P)L, an investigation is
signalled if P<Pc.

This model was criticized by Kaplan(1975) about the measure
of L as follows:

One problem with this formulation is the difficﬁlty of
estimating or even interpreting the benefit L. The benefits L
depends upon future actions, and models which do not specially
include the consequences of future actions will have a hard time
defining, much less estimating, what is the benefit from
current actions.(p.319)

This model also had an important defect which P[xiin-controll
was used in order to determine P[in-controlix] with respect to
forming Pc, so that Duvall(1967) proposed a new model.

Duvall suggested a procedure which showed how the
distribution of controllable variance y and the relevant cost
might be made a variables of the investigation policy in order to
see whether an investigation was expected to be worthwhile. He
assumed that an observed variance consisted of a non controllable
component w (with N(O,G%)) and a controllable component y. The
controllable component y was also assumed to be normally
distributed|and statistically independent of the noncontrollable
&mponent w. He developed a procedure which derived the
distribution of y to be estimated from the observed variances, and

derived the objective function associated with the expected profit

resulting from an investigation by that procedure as follows:

10



the objective function U(x) =J?w-(Ly+C)f(y!X)dy +Iz (Ky-C)f(yix)dy
where:!: x=each observed variance
y=a part due to controllable causes(out-of-control)
C=the average cost of an investigation
L=the present value of future savings resulting from
discovering a contrdllable variance y that is
proportional to the size of the variance
k=proportional constant
the profit resulting from an inve;tigation, P(y)= ky-C if y>0
-(Ly+C) if y=s0.
By the objective function above, the investigation region is

shown as in the following figure:

U{x)
i U{x)

investigate not investigate investigate

Figure 2: Duvall's Investigation Region

As a result, as compared with BFJ's model, there is a
distingushing mark that he developed procedures which allegedly
allowed the parameters of the distribution of y to be estimated

from the observed variances.

11



However, this model also was criticized by Kaplan(1975) as

the following three sides:

There is still a problem as to how to measure the savings
from an investigation since this model does not incorporate
the possibility of investigations in the future. The
computational processes of the u_ and d._ treat each
observation equally and symmetrigally aHd this can only be

done for a stationary process,

not shift over the course of the observed period. Duvall's
Problems arise because he failed to specify the stochastic

process which leads to changes

(pp.328-330)

in the distribution of y.

Dyckman(1969) extended the BFJ's and Duvall's model by

including the posterior probability to consider the information

from previous observations on the process and transition

probability g from an in-control state to the'in—control state

just before a cost report was submitted. He suggested the

following cost-benefit matrix by action-state in order to allow

the investigation region:

in

one in which the parameters do

tates in-control out-of-control expected costs
) 8, 8, of actions
transition
probability g 1-g
don't
investigate 0 L-C (L-C)PIB, I x]
action investigate 0 C P8, ix1]
posterior
probability PI6, ix] P[B, ix]

12



where: C= some constant investigating cost
L= the present value of the savings obtainable from an
investigation when the activity is out of control
X= a random variable which represents the reported costs
in a given period
P(=the transition probability

1
—
o

[—y
- I
(113
—

between two states)

Figure 3: Dyckman's Cost-Benefit Matrix by Action-State

He suggested the decision rule that if CPIOB, Ix1+(C-L)
(1—P[81%x])§0, then investigating the process was better than not.
He also suggestedrthe decision problem of a continuum of states by
revising Duvall's model (1967). He supposed the éavings S to be
different but proportional to the cost variances as follows:

S={b1(8c—8)—c for 8 = 6,
b, (8-8 )-C for 6 2 8.
where Bc is the expected éost when the process is in its optimal
control state and b, need not equal b, .

Therefore, foIIowing an observed cost of x, the expected

saving from an investigation is given by
ELS1= /55 [b,(8_-8)-C1f, (81x)d8 + fo

= [by+b, 110, (®)11f, (2 )~z F, (-2 ) 1+b,2 0, (8)-C.

[bz(B—GC)—C]fl(GIX)dG

where 2,= 1E,(8)-8_1/0,(8)
fz(zc)= standard normal density function

Fz(zc)= standard normal cumulative distribution function

13



E[{S]! investigation ! investigation | investigation

! profitable i not profitable | profitable

|

-
-

Figure 4: Expected Saving Conditional on a Single

Cost Observation

Note that Xi(i=1,2) of the above figure cannot be sought
because the normal cumulative function FZ(—zc) has not been Kknown
and then the inverse function of Fz(—zc) does not exist.

However, this model was criticized by Li(1970) about
estimating L, while Duvall's model also had the similar faults, as
follows:

L cannot be estimated until the optimal decision rules are

kKnown; but the optimal decision rules are supposed to be
output of the model.(p.283)

For examining and solving the above problem,‘Magee(1976)
formulated the following equation for L and used it for his

simulation model:

14



L = (up-u;)(expected time until the process goes out of control)

-1
=1

where: n= the number of periods left in the decision horizon

= &', -u+ DT gl -5 aun)

g= the probability that an in-control cost process will
remain in control next period

u,= the expected operating cost per period when the
process is under control

u,= the expected operating cost per period when the
process is under out-of-control.

His simulation results are discussed in section 5.

3) Bayesian Dynamic Programming Approach

Kaplan(1969), used the discrete dynamic programming to
find the optimal policy, and considered a two-states model used
transition probabilities between the two states in successive
periods for the first time.

The purpose of hisvmodel was to illustrate how the various
costs and probability distributions that arised in this situation
were able to be integrated to yield the optimal policy with
respect to the minimum expected costs. This approach overcomed the
difficulties of estimating L, namely, the benefits of
investigation, by using the actual costs when operating in or out
of control.

His model was developed on the basis of the same assumption

with Decision Theoretic Approach. However, as opposed to Decision
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Theoretic Approach, control actions are taken before the state
transition is generated. Thus the control process of Kaplan's

model is summarized as in the following process:

the end of period i

prior =the beginning of
probability period i+l
=fq;_,»1-q;_ 1 [O===------- >0q=========-mmmmmmme—mooomoooeooo- >
H 1 transition probability
\ : [g l-g]
cost report xi control action 0 1
the end of
period i+l
——————————————— >0
Pi+1[81:x 1= i!x

f(xlel)qi_1+f(x182)(1—qi_l)
T4

Figure 5: Kaplan's Control Process

i-1

Given that after the process is investigated once, if the
probability of being in control is one, the optimal equation is
given by

C,(2)= Min {K+I[x+aCn_l(Txg)][gf(xiel)+(1—g)f(x=82)]dx;
Six+aC (T @) [qf(x18;)+(1-a)f(x!B,)1dx}.
Here, K is assumed to be a cost of investigation and correction.

An extended version of Kaplan's(1969) model was treated by
Ross(1971). Under supposing that the state of the process at time
n is unknown and only becomes known when an item is sampled, he
provided a framework for handling the problem due to three action,

that is, produce without inspection; produce with inspection(to

16



learn the current state); and revise the process to state 1. For
his formulation, he was able to obtain the most generalized
results.

Similarly to that of Ross(1971), Hughes(1975) extended
Kaplan's(1969) optimal policy by redefining the actions available
to the manager as in the three following case: 1)do nothing;
2)obtain a report of period costs; and 3)investigate the reported
period costs and take a necessary-corrective action to place the
process in control.

With reference to Kaplan's model, his validity was advocated
as the following reasons:

Kaplan assumes that cost variances are reported periodically.

However, given that expenditures for preparing cost reports

may oftentimes be nontrivial, these reports should only be

pPrepared when, and if, they can be justified by the expected
benefits to be derived from their use.(p.344)

He also defined the timing of revisions different from
Kaplan(1969)(i.e., transition occurs during the operating period
before costs are reported), making use_of'the following Bayesian
operator:

ggf(xi8,)

qgf(x10,)+(1-9g8)f(x16,)

Thus the optimal equation was given by
C(q)+avn_l(qg)
Vn(q) = Min C(q)+R+aI[qgf(x=91)+(1-qg)f(x:82)]Vn_1(Tx(q))dx

Cl@)+K+aV _ (1)
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where C(q)= qg/xf(x18;)dx+(1-gg)/x{f(x18,)dx
q.= the probability that the process is in control
at the start of the ith period
R = the cost of reporting
K = the costs of investigating and taking corrective
actions.

He concluded in further remarks as follows:

As long as the Markov property is fitting, there will be no

benefit to obtaining cost information from any period other

than the most recent when that action is taken.(p.348)

But in his correction paper(1977), he corrected his
conclusion by referring that, although the above statement is
obviously correct when cost information is perfect, regrettably,
it is incorrect when that information is imperfect. Thus his
additional correction was reconsidered by the following purpose:

The purpose of this note is to show that there could be a

benefit to cost information from other than the most recent

period by presenting a numerical example using a model with a

sampling rule calling for costs, in each period since the

last time that the action to obtain a cost report or to
restore the process was taken, to be reported.(p.313)

Therefore, he suggested a new process that revised the
implicit sampling rule of receiving only the cost observation from
the most recent period when a cost report was obtained, to

receiving cost observations from each period since the last cost

report was obtained or the process was investigated/corrected.
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The model under K-periods sampling rule is expressed as

follows:

Clag +aV _ (q,k+D)
- M3 k
Vn(q,k)- Min { C(qg )+R+al...ff(x1,x2,...,xk)*
vn-l(Txl,xz,...,xk(q)’L)dxl’dXZ""’ka
C(qgk)+K+avn_1(1,1)
where ' f(xl,...,xkiel)qgk
Txl,...,xk(q)= _________________________________________

£(Ry 5000 ,%, 18,008 +5(x,, ..., %, 18,) (1-ag™)

and where: f(xl,...,xk)=f(x1,...,x %el)qgk+f(x1,.‘.,xkiez)(l-qgk)

(X500, %,10)=Tf(x_18,)
£(Xy500.,%185)= Hf(x 18,)(1-qg)/(1-qg Ky
+Hf(x1!8 Y£(x_18,) (qg- ag )/(1 -qg
' k-1
+Hf(xmg81)f(xk 18,) (ag

k)+

—ag®)/ (1-ag%).
As a result, he identified the following three sampling rules

as the dynamic-optimal-control problem:

1) to obtain a cost report containing one observation every
period [Kaplan(1969)1].

2)_t6 obtain a cost report containing a cost observation from
just the most recent period at times determined from an optimal
policy [Hughes(1975)1].

3) to obtain a cost report containing cost observations from all
periods since the last time either a cost report was obtained
or an investigation/correction was made at times determined

under an optimal policy [Hughes(1977)].
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Buckman and Miller(1982) suggested an N-Cost Processes system
where each process was assumed to satisfy the assumptions of the
Kaplan's(1969) model. Their cost processes were established by the
assumption that correction action took place for all n processes
or for none of them. The purpose of their model was to determine a
decision rule which minimized the expected discounted cost over an
infinite planning horizon. However, because the problem could not
be solved by using the standard methods of dynamic programming for
computational reasons, they proposed a Myopic Policy, namely, One
Period Look Ahead Policy, which was optimal for certain problems.
Their model can be also reduced into that of Kaplan(1969) in the
case of One Cost Process except for using thimal Stopping Rules.
In section 6, their model is discussed, in detail, with respect to

Multiple Cost Processes.

4) Markovian Approach

Magee(1976) conducted an empirical study for comparing the
various Cost Variance Investigation models. Several simple Control
Chart models with different control limits, Dyckman's(1969)
Decision Theoretic model and Kaplan's(1969) Dynamic Programming
model were considered as candidates for the best model, and were
compared and evaluated.

The simulation results of Magee show that a contrel policy

using a fixed cost control limit can capture much of the benefits
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obtainable from more complex models such as those of Kaplan or
Dyckman. Hence, Dittman and Prakash(1978) suggested a Cost
Variance Investigation model to determine the optimal cost control
limit for the class of policies which used a fixed critical cost
to signal a need for investigating the Cost Process.

They obtained an equation for the long-run average cost per
period of controlled operation. They also used Markovian Process
Transition Matrix corresponding to Kaplan(l1969). But the process
transition was supposed to have taken place before a cost report
was generated.

They considered two control alternatives:

The first alternative is to regard the process as having gone out
of control, and so to incur a fixed discretionary investigation
cost T. If the process is found when being in out-of-control
state, it is resetted into the in-control state with a constant
correction cost K. But if the process is found when being in in-
control state, it is left to operate as is, and then commits a
Type-1 error, 1—F1(§). The second is to regard the process as
being in-control state, allowing it to run without intervention
for one more period but takeing the risk of committing a type-II
error F, (x).

By two control alternatives above, the control process

trasition matrix is shown as in the following figure:

21



state 1 2 1

1 g 1-g 17 1 0
2 0 1, 2| 1-F,(X)  F,(X)
Process Transition Control Transition
Matrix Matrix
state 1 2
1 1-(1-2)F, (X) (1-g)F, (X)
2 1-F, (%) F, (X)

Controlled Process Transition Matrix

where: F. (x)= PIxsx!il,
i=1: in-control state,
i=2: out-of-control state
X= observed cost

x= critical value

Figure 6: Dittman and Prakash's Controlled Process Transition
Matrix

They obtained the steady-state probabilities, ni(i) and
Si(i)(i=1,2), respectively by using controlled process transition
matrix as follows: ni(i) is the steady-state probability for the
state in which the process finds itself at the end of the
managerial control by m,(x)= nl(i)(l—g)F2(§)+n2(x)F2(§) and
n1(§)+n2(§)=1; Si(i) is the steady-state probability of the state
before generating the cost reports by Sl(§)= gnl(i) and Sz(§)= (1-

EIM, (X)+7, (X) .
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The expected cost per period of operating the controlled
process is obtained as the sum of the expected cost per period of
1) operating 2) investigating 3) correcting the process.

The sum of the expected cost per period was given by
C(X)= C (XI+C (XI+Cp (X)) = by+m, (X) {a-bF, (X))

where:
C,(X)= operating costs= W;§, (X)+1,8, (X)
C,(X)= investigating costs= (PIx>X!i=118, (X)+PIx>X!i=218, (X)}T

ck(§)= correcting costs= PI[x>x!i=21S. (X)K

2

a = (1-8)K+T-g(u,-u,)

b = gT.

Thus the fixed critical cost x* to signal a need for
investigating the Cost Process can be obtained by the
computational result such that C(x™) = Min C(X).

But this proposed funétidn has the problem that the existence
of x* is restricted within 0<a<b, F,(x*)> (a/b), and the total
cost function is not easily differentiated.

They concluded about the broperties of their Markovian

Control Approach as follows:

In summary, we offer the practicing accountant a method for
determining cost control policy i)which does not require
dynamic programming and ii)which does not require Bayesian
updating of probabilities after each cost report. It simply
requires the matching of a reported cost variance against a
fixed critical limit. The critical limit is simple to
caculate, and the resulting policy yields much of the

benefits of the policies based upon more sophisticated cost
control models. (p.25)
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5) Comparisons of Investigation Policies

Three comparison studies of Cost Variance Investigation
Policies were conducted by Magee(1976), Jacobs(1978) and Dittman
and Prakash(1979).

In the study for what is the "best" policy among all possible
control policies, Dittman and Prakash laid down a basis for the
research design of studies on cost management. They insisted that
the "best policy" depended upon the ranking criterion as the
present value of expected cost or the long-run expected cost per
period, or the other criterions, but the optimality with respect
to one criterion might entail trade-offs with respect to some
other criterions.

Magee simulated all possible control policies with ranking
criterion used the average total cost of the first 12 periods,
while Dittman and Prakash used long-run expected cost per period
as the ranking criterion and obtained their data by using
analytical (numerical) methods as opposed to simulation.

However, Jacobs carried out a field experiment from an actual
firm to evaluate the effectiveness of variance investigation
policies, rather than Magee's computer simulation and Dittman-
Prakash's analytical method.

Firstly, Magee conducted an empirical study concerned with
finding the relative superiority of various Cost Variance
Investigation models, using the average total cost as a criterion

for model evaluation. He examined three general types: The first
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is several Control Chart models based on the probability that a
reported observation could have occurred when the process is in-
control; the second is the statistical Decision Theory Approach
employed by Dyckman(1969); and the third is Kaplah's(1969) Dynamic
Programming model. He did not consider Dittman and Prakash's(1978)
model because it had not been developed at that point. He
performed a simulation study of the following seven investigation
rules:

Investigate all unfavorable variances.

2. Investigate all variances that exceed the standard(u;) by 10
percent.

3. Investigate all cost observations that exceed the
standard(u;) by at least one standard deviation gd,.

4. Investigate all cost observations that exceed the
standard(ul) by at least 29, .

5. Investigate if the updated probability that the process is
in-control is less than a critical probability determined
when using Dyckman's(1969) policy. .

6. Investigate if the updated probability that the process is
in-control is less than a critical probability determined
when using Kaplan's(1969) policy.

7. The investigation decision based on perfect knowledge

concerning the state of the process.

Each of the seven policies was performed for 200 simulated
12-month periods with respect to the average total cost.
The research can be summarized as follows:

1. In testing the hypothesis that the seven means are equal,
method(6), the dynamic programming method, has the lowest

expected cost if method(7) is disregarded as being
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unrealistic.

2. The differences between the methods (5) and (6) are not very
large, indicating that Li's(1970) criticism of
Dyckman's(1969) approach for not considering future actions,
while valid theoretically, may have little effect on the
incremental cost savings, at least in the cases examined.

3. The best method in terms of average total cost under
uncertainty appears to be method(6) which in all cases was
closest to method(7). However, the differences between
method(6) and method(4) are not terribly large in most cases.

4. There is no overwhelming evidence that a manager who uses a
"native" method is making a poor model choice decision, and
the opposite may be true.

Thus he concluded that a manager who was concerned with all
costs (including operating costs, investigating costs,
implementing costs and iﬁformation costs) could very well prefer a
less complex investigation rule, and that survey research should
also determine the basis on which the decision-maker was evaluated
and rewarded, since this would affect his or her model choice.

Secondly, Dittman and Prakash compared the long-run expected
cost per period of the best Makovian control vis-a-vis the optimal
control (the best Bayesian policy) for a wide range of cost
situations., Using numerical analysis, they calculated the
opportunity cost of using the best Markovian policy developed by
Dittman and Prakash(1978), compared to an optimal policy based on

Kaplan's(1969) dynamic programming technique.
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They explained the reasons of caculating the opportunity cost

as follows:

It is a theorem of Arrow et al.(1949) that, with long-run
expected cost per period as the ranking criterion, the
optimal policy for any cost situation is equivalent to the
best Bayesian policy for that situation. This means that a
preference for Markovian control necessarily involves an
opportunity cost."(p.359)

The results of their study are summarized as the following
two basic findings:

1. The opportunity cost of the best Markovian control is a small
fraction of the mean difference between the in-control and
out-of-control costs unless the in-control cost has at least
a moderately large coefficient of intrusion and a
substantially greater dispersion than the out-of-control
cost.

2. The opportunity cost of the Dittman-Prakash policy decreases
as the level of the uncertainty of the out-of-control cost
increases to a value somewhat higher than the level of
uncertainty of the in-control cost; beyond this point the
trend reverses.

As a fesult, Dittman and Prakash showed that the somewhat
simpler Markovian Approach was able to produce total costs
virtually identical to the optimal, but more complex, Dynamic
Programming Approach.

Different from Magee's study, they also showed that critical
cost range had to approximately be between 0.60, and 2.70d,, and
then the classical rule, by which control limits are set at a
distance of 20, or 30, from the mean in control cost, cannot be

trusted to provide "good enough" control.
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Finally, Jacobs presented the results of a field experiment
in which six specific models had been evaluated as the models had
been actually used to assess the significgnce of cost variances in
a manufaturing firm. He classiffed models according to the

taxonomy developed by Kaplan(1975) as follows:

single observation | sequential of observation

cost and benefits

of investigation Shewart x-control Cumulative Sum Chart
not considered chart [Wald(1947)]1]

cost and benefits { Economic xX-chart Economic Cumulative Sum
of investigation [Duncan(1956)1] [Goel and Wu(l1973)1]
considered Single-Period Bayesian

Model [Dyckman(1969)1]
Multi-Period Bayesian Model
[Kaplan(1969)]

Figure 7: Jacob's Taxonomy of Cost Variance

Investigation Models

As shown in the taxonomy above, he used six decision policies
on ten processes that considered physical usages and utility
items. Two techniques were used to evaluate the relative
effectiveness of the models. The first is an anaiysis of the
relative frequencies of the type-I and type-II errors. The total
cost of type-1I and type-IIl errors committed by each model was
calculated and compared with all other m&dels to determine an
effectiveness ranking. The second is a sensitivity analysis

ranking technique. Model performances were examined with respect

to:

1. all variables;
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variable groups based on loss/investigation cost ratios;
variable groups based on normality of in-control
distribution;

variable groups based on cost behavior patterns;
variable groups based on monitoring frequencies.

In addition, comparisons of the following model groups were

noneconomic versus economic;
single observation versus multi-observation.

By grouping the models, the empirical results can be

supported by theoretical considerations in researching

concl

usions.

He concluded the relative cost effectiveness of six models as

in the following results:

1.

2.

For all variables, the multi-observation models were
generally more effective than the single-observation models.
for variables with low loss/investigation cost ratios(<6),
the cumulative sum chart was consistently more effective than
the other five models.

For variables with low loss/investigation cost ratios, the
economic models were not consistently more(or less) effective
than the noneconomic models.

For variables with high loss/investigation cost ratios(>17),
the economic models were consistently more effective than the
noneconomic models.

For variable groups based on the normality of the in-control

distributions, the multi-observation models were consistently
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more effective than the single-observation models.

6. For variable groups based on fixed behavior patterns and

weekly monitoring,

model performances were identical to those

for the low-loss variables.

6) Exploratory(or Partial) Investigation Policy

Dyckman(1969),

in his extensive chapter, extended the

traditional two-action space (Investigate, Don't investigate)

model by allowing for an Exploratory Investigation that the cost

of such

assumed

process

He

such as

an investigation was assumed as C' (C'<C), and that h was

as the probability that the cause of an out-of-control

would be discovered when it existed.

considered the following loss matrix due to the action

the Exploratory Investigation:

don't investigate

exploratory investigation

8, 0 (0
8, Lh - C' 0
Figure 8: Loss Matrix by the Exploratory Investigation

Thus the investigation policy can be made by selecting the

action with the smallest expected cost from the following

alternatives:
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alternative action expected cost

a Don't

Investigate 0
b Exploratory

Investigation C'fn(81)+[C'—Lh][l-fn(Bl)]
c Full

Investigation Cfn(81)+[C—L][1-fn(81)]

Figure 9: Expected cost from the Three Alternatives
Setting alternative b and ¢ equal, two breakeven
probabilities can be determined as £, (8,)= (Lh-C')/Lh and £,(8,)=
1-[(C-C'")/L(1-h)1].
He also considered N-Cost Processes case as the extension of
One Cost Process. He showed how the optimal set of processes to be
investigated in any given period j was able to be selected in
Multi-Cost Processes as in the following equation:
k ] 1
max Zi=1{yi[(Li-Ci)(1-fij(81.xj)) Cify ;8 ix)1]
L - t po [1 - t 1
+Yi[(Lih Ci)(l fij(el.xj)) Cifij(el‘xj)]}
Subject to
k ver
Loy (YC,+Y!ICHSM ‘
- - ] [ < i=
Yi[(Ci Li)(l fij(el'xj))+cifij(el'xj)]“0(1 1,...k)
Yi[(Ci—Lih)(l-fij(el.xj))+Cifij(61.xj)]SO(1=1,...k)
' <
yi,yi=0 or 1
where M= a firm budgets.

Kaplan(1975) extended his Bayesian Dynamic Programming Model
(1969) by allowing for an Exploratory Investigation like

Dyckman(1969). If the probability that the system is in control is
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q, then the probability of finding it out of control with the
Exploratory Investigation is (l-q)h. When the process is found to
be out of control, it is reset and a new cycle starts. Conversely,
the probability that the system is not found to be out of control
by the Exploratory Investigation is 1-(1-q)h. If q was the
probability of the system being in control before the unsuccessful
Exploratory Investigation, then the posterior probability of being
in control is obtained by q/[1-(1-q)h] = q/[q+(1-q)(1-h)].

Formally, if K' is the cost of the Exploratory Investigation,
the expected infinite horizon future cost from under taking the
Exploratory Investigation is given by
K'+(1-q)h ![x+aC(rxg)]fg(x)dx+ [1-(1-g)h] f[x+aC(TXq')]fq,(x)dx
with q'=q/[1-h(1-q)1].

For a more general treatment, he defined the amount of money
spent on an investigation as a continuous variable K' and a
function h(k') as the probability of detecting an out-of-control
situation when one existed. He also assumed that h(0)=0, kigmh(k')‘
=1 and that h(k') was a nondecreasing.function of K'. Therefore,
the expected infinite horizon future cost from the equation above
is revised as follows:

Clq)= %igo {K'+(1-g@)h(k") ![x+a(rxg)]fg(x)dx +

[1-(1-9)h(k")] ![x+aC(TXq')]fq,(x)dx‘}
where q' is a function of K' as defined above and setting K'=0
with h(0)=0 and q'(0)=q yields the expected cost when no

investigation is undertaken.
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He also criticized that Dyckman(1869) recognized that the
probabilities of being in or out of control should be revised to
reflect the Exploratory InVestigation outcome but neglected it.

Kim(1983) attempted to extend the previous studies by
allowing for a Partial (or Exploratory) Investigation. He
considered three Partial Investigation cost function by using a
function uch) with u(0)=0 and u(l)=K, similarly to Kaplan's(1975)
h(k'), as follows: 1) K'=Kh, 2) K'=Kh?2 and 3) K'=Kh®. He insisted
that the expected value of the opportunity loss resulted from the
Partial Investigation, L', was denoted as L(l1-h)(l1~-q) with
L=qnn(u2—u1)+ Xg;ijgj(leg)(u2—ul), then the optimal degree of

investigation was obtained by minimizing K'+L' with respect to h.

7) The Other Cost Variance Analysis Models

Demski(1970) insisted that a search procedure was important
because any given cost variance might be the result of a number of
individual causes and each cause required different search
activity. Thus he assumed that the relevant causes of cost

variances were categorized by the following five separate variance

sources:
i) implementation failure;
ii) estimation error of parameter;
iii) measurement error in measuring the actual cost;

iv) model error;
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v) random variance.

He suggested a model to minimize the expected value of the
total elapsed time from determination of a significant variance
(i.e., the variance is to be searched out and the variance then
corrected) to determination of the specific source and subsequent
correction, with knowledge that a significant cost variance had
occurred and that the source of variance was one of five possible
sources.

His objective function for the expected searcﬁ and
correlation time consumed by a specific i,j,k,1,m search sequence
is obtained by the following equation:

E[T(i,j,k,1,m) 1= TiP(i:D)+ (Ti+Tj)P(le)+ (Ti+Tj+Tk)P(k!D)

+(Ti+Tj+T +T1)P(IID)+(Ti+Tj+T +T1+Tm)P(m.D)

k k
where: Ti= the known (and stable) time required to search out
variance source i
P(iiD)= the conditional probability that an observed
variance was caused by a special source Si'

As a result, the solution of equation E[T] is obtained by
renumbering the five variance sources so that
T,/P(1iD)ST,/P(2!D)ST,/P(3iD)ST,/P(4iD)ST,/P(5iD).

But Demski's model was criticized by Ronen(1974) as follows:

His model for optimizing the variance search and corrective
activity is conditional on the knowledge that the process is
now out of control. Basically, his approach consists of an
adaptive formulation in which management assesses prior
probability distribution for failures resulting from
prespecified sources. This prior distribution may be revised
in a Bayesian framework to optimize the search time.
Reporting a variance and determining its significance are
assumed given, when in fact both of these processes should be
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made contingent on the net benefits to be derived from

"optimal search."(p.51)

Ronen also pointed out that the previous approaches to the
analysis of variances implicitly assumed independence of the
reporting(accounting) decision and the control decision; all
approaches dealt with the control of failures given that the
decision on their reporting already had been made; and more
specially, the problem that had by that time been dealt with in
the literature centered on the evaluation of the benefits and
costs of investigation given a repeated variance, and a finite
subset of types of sources was selected for such evaluation.

However, the reporting decision and the ihvestigating
decision can be viewed both as parts of the total decision, and
then the investigating decision to neglect the reporting decision
may result in suboptimization.

Thus his interests was the problem that was transformed into
that of determining the appropriate level of aggregafion'of
variances which was resulted from individual sources.

His framework is consisted of as follows:

i) to identify the set of possible sources.
ii) to identify a subset of levels at which the sources can be
aggregated for the purpose of reporting a variance.

iii) given the particular levels of aggregation identified in
ii) above, to determine what actions may be taken given
the resulting variance.

iv) to specify the probability distribution of net incremental

savings to be gained from such actions.
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v) to estimate the costs of each the aggregation levels
specified. _
vi) to select the level of aggregation which maximizes the

expected net benefits.

Ozan and Dyckman(1971) considered a cost generating process
that the total cos% variance generated for each process was
jointed by many resources. However, cost variance for a resource i
was splitted into controllable in one process but noncontrollable
~in another.

In order to obtain the probability distributions of the
controllable and noncontrollable parts of the total cost variance,
he used Duvall's(1967) suggestion concerning the distribution
between two parts of a cost variance. This distribution was used
to obtain the present worth of the expected profit from an |
investigation. As opposed to the earlier papers, he developed a
model of the cost relationships in a cost center that permitted
the expected value of a noncontrollable cost variance to be
nonzero and that formulated a linear program in which included
budgetary and man power constraints.

His objective function is obtained by maximizing the expected
utility with respect to investments with uncertain returns, and it

is given by the following linear programming:
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Max £.M (E[P.1-k£f(oIP.1))z,
i=1 i i i

Subject to
L0, (M +L.)z B
leld z. SD
0<z <1
where: z,= the decision variable
d.= the amount of manpower required to investigate the

l ith resource

B = the budgeted amount of money for the investigation
of cost variances during the current period

D = the total manpower available to investigation all
of the cost variances

P.= present worth of the cost savings from correcting
the ith resource cost variance

f[U(Pi)J= a general function of the standard deviation of

the present worth of the cost savings

k = a certain constant coefficient.

m = total number of processes.

This model also was criticized by Kaplan(1975) as follows:

a subsequent paper by Ozan and Dyckman expands on
Dyckman's(1969) model by defining different types of
controllable and noncontrollable variances. some guidance is
offered as to how to estimate some of the many different
probabilities this model requires, but the formulation is
still in terms of using myopic decision rules which entails
the difficulties already discussed in Dyckman's(1969) model.
Ozan and Dyckman eventually derive a reward function similar
to that used by Duvall(1967).(pp.327-328)

Magee(1977b) suggested a model which allowed for the use of
information on cost process commonalities for the choice between a

"simplified" cost variance analysis based on considering cost

37



variances individually and a "complete" analysis based on the
joint consideration of multi-cost variances.

He discussed an investigation decision model for two Cost
Processes, by using Kaplan's(1969) model expanded to a Multiple-
Cost Processes. He mainly considered an example that all factors
were kept constant, except for the.correlation between the two
processes.

By analyzing the result of the above example, he summarized
the effect of correlation between the two processes as follows:
1) The expected total costs decrease as the dependence
increase, although the amount of decrease is relatively

small.

2) The decision maker will consider the net benefits of the
complete analysis since the expected cost of a simplified
analysis will equal the expected cost with independent
random cost distribution that correlation coefficient is
0.

Buckman and Miller(1982) modeled an M-Cost Processes system
where each Cost Process evolved independently of the others, while
Ozan and Dyckman(1971) assumed that the Cost Processes were
statistically independent and Magee(1977b) assumed the case that
the independence assumption was not made. Investigation and
correction were assumed to be made for all M-Cost Processes at

once, and the decision problem was to determine when investigation
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and correction should take place given the vector of probabilities
that each cost process was "in-control."

Because the problem could not be solved using the standard
methods of dynamic programming for computational reasons. They
proposed a Myopic Policy(i.e., One Period Look Ahead Policy) whjch
was optimal for certain problems and heuristic otherwise. In their
model, each statistically independent Cost Process was assumed to
satisfy the assumptions of the Kaplan's(1969) paper. They made use
of the specialized theory in the dynamic programming, by
considering the optimal stopping with the One-Period Look Ahead
Policy and the regenerative optimal stopping.

They implemented their myopic rule by using the minimum
expected discounted cost for an n-period problem,

Vn(x)= min{ki C(x,1)-A+ak}), as follows:
continue if C(x,1)-A-k(1-x)<O0
investigate if C(x,1)-2A-k(1-x)20
where: x= the vector of probabilities that each Cost
Process is "in control"

m m
C(x,1)= . U, L) . -X.
( ) j=1 M1 %; ZJ=1uJ2(1 xJ)

>
n

a bonus to the decision to continue since that

decision uses one time period

~
1]

investigation and correction cost

a discount factor.

R
i
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The myopic rule is optimal for the A-Stopping Problem if the
following monotone condition is satisfied[Ross(1983)1]:

Let B represent the set of states for which stopping is at least
as good as continuing for exactly one more period and then
stopping. The monotone condition is that if x£B, then the states
which can be reached from X in one period have to also belong to
B.

However, they implemented the regenerative stopping algorithm
with heuristic method when the myopic rule was not optimal.

In their conclusion, they insisted that their model was the
simplest meaningful N-Cost Processes system one could formulate,
and that a main contribution of their paper would be the fact that
it provided an example of a myopic procedure for this class of
problems.

Magee(1977a) attempted to address the issue of parameter
uncertainty in the cost control by considering two questions:

i) What effect do "mistakes" in assessing distributional

parameters have on the control of costs ?
ii) How might uncertainty concerning the cost parameters

affects the manager's investigation decisions ¢

He discussed a cost system with the information about
imperpect parameter knowledge(e.g., out-of-control state) by using
Kaplan's(1969) Dynamic Programming Cost Variance Investigation

model.
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First, he considered the "robustness" of a Dynamic
Programming Cost Variance Investigation model with respect to
parameter "error". Parameter errors may result in large average
costs, then it will indicate that a manager may be willing to
expend resources to gain information about the true parameter
vélues. Thus a method was suggested with which used the manager's
prior beliefs to form estimates of the desired parameters. Prior
beliefs were classified into prior beliefs f(8) concerning their
possible values of parameter and prior probability, Pl[in-
controll=q, concerning the state of the Cost Process.

He suggested the Cost Variance Investigation model with
parameter uncertainty that the expected cost of the cost system
depended not only on the probability of.being in control, but also
f(B8) as follows:

Cn(qn,fn_l(8))=Mi?§[future costs if investigate!qn,fn_l(e)]

[future costs if don't investigatetqn,f 1(B)].

n-
This formulation is similar to the case that considers prior
beliefs f(B) concerning their possible values of parameter in
Kaplan's modél, but Kaplan's qn is regarded as Magee's qng.
As opposed to the existing accounting literature,
Hannum(1970) developed the model that determined the reporting
schedules for ongoing managerial processes. His model specially

discussed for setting reporting frequencies, for a single ongoing
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process which could be expected to undergo a significant
shift(i.e., transformation into out-of-control) in the level of
performance after some elapsed operating time.

The optimal reporting schedule is obtained by minimizing the
sum of the long-run average opportunity (operating) loss per
reporting cycle plus the long-run average cost per reporting cycle
of obtaining information and taking necessary control action. His
model's control strategy is to obtain information at distinct time
points according to some schedule, and his objective function is

given by

o Xg+1
Average cost per cycle= Ek=o’x [C, (k+1)+C, (X
k

= Cyny+ Co(m ~u )+ Cy

k+1—t)+C3]f(t)dt

where: Xk= the elapsed time in "days" of process operation at
which the kth report is to be obtained if the process
has been found to be operating in control at the
immediately previous(k-1th) report at time
xk_l(k=1,2,...)
t = the process operating time at which a shift out of
control occurs.
C,= direct cost of a single report
C,= direct cost per day of an undetected shift in the
process
Cy= direct cost of taking control action
£(t)= probability density function of t
ut = mean of probability density function f(t)
nx =‘average number of reports per cycle given X
X = the sequence (X;,%X,,...) of reporting times

m_ = average length of cycle given X.
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He also discussed how the optimal reporting schedule was
obtained according to the character of function called failure
rate, r(t)= £(t)/(1-F(t)).

He defined two general types of reporting schedule§ prior fo
obtain the optimal reporting schedules according to failure rate.
The one is "regular" that cost reports are obtained at equal time
intervals and the other is "irregular" that cost reports are
obtained at unequal time intervals.

When the failure rate is constant, the optimal reporting
schedule can be found by trial and error search. But when it is a
strictly decreasing failure rate, no general statement can be made
on the exact nature of the optimal reporting schedule. If a
process has an increasing failure rate, although he mainly
analyzed his model in the same case, he shows that a recursive
analysis which would assure an optimal strategy can be used in
place of a trial and error search.

As a result, the accounting literature discussed until now

can be classified as in the following taxonomy:
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CHAPTER THREE

SEARCH OF THE BASIC ASSUMPTIONS MODIFIED BY LITERATURE

1) Overview

This chapter shows how the development of the basic
assumptions in each paper has been modified throughout all the
previous accounting literature, and how assumptions of this paper
should be modified relatively to the previous ones. In section 2,
the author discusses the required information and their
estimation, especially L which was mainly assumed in the Decision
Theoretic Approach, and also about the definition of operating
and investigation costs that were assumed in Bayesian Dynamic
Programming and Markovian Approaches. The relation between the
point generating a cost report and the point forming decision
making is discussed in section 3. Section 4 shows how states of
transition have been assumed and estimated, and section 5 covers

the control variables in each paper.

2) Required Information and Their Estimation

BFJ(1961) developed a Cost Variance Investigation model to
derive the investigation region associated with the required
information, L and C. L and C are all the information required in
their model, and are defined as follows:

C= the cost of investigating the unfavorable variance
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L= the present value of the costs that will be incurred in the
future if an investigation is not made now.
However, benefit L depends upon future action, and is therefore
difficult to be estimated as discussed in chapter two.

Duvall's(1967) model required the information, u 0;, 03'.L

x?
and C, in order to formulate his model. He defined the cost C as
the average cost of an investigation. He also defined the benefit
L as the present value of future savings resulting from
discovering a controllable variance y that is proportional to the
size of the variance. However, the problem as to how to measure
the savings from an investigation still exists, since this model
does not incorporate the possibility of investigation in the
future.

Dyckman(1969) suggested a model to require the information,
u,, 04, u,, 03, g, L and C. He defined the cost C as the cost of
an investigation, and the saving value L as the present value of
the savings obtainable from an investigation when the activity is
out of control. However, Li(1970) criticized this approach by
saying, "L cannot be estgmated until the optimal decision rules
are known".

Kaplan(1969;1975) suggested a model that requires similar
information with Dyckman's model but without using L. He used the
actual costs when operating in or out of control to derive the
optimal policies, by the reason that incremental costs of

operating out-of-control arised directly from the higher costs
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that accrued when operating away from standard, and because of the
difficulty about how to measure L. He also defined the cost K as
the cost of investigation and correction. In his Extensions and
Limitations section, the cost K was described as follows: If K; is
the cost when actually in control and K, is the cost when actually
out of control, then the expected investigation cost would be

K, +(1-q)K,; If K; and K, were themselves random variables, with
means K; and K;, then the expected investigation cost would be
gK;+(1-qQ)K,.

Hughes'(1975;1977) model, when compared with kaplan's,
requires additional information, that is, the cost of reporting,R.

Dittman and Prakash(1978) form their model by classifing the |
investigating cost K into the investigating cost I and correcting
cost K, differently from Kaplan's K.

In the present study, the investigating cost C includes the
value of the manager's or subordinate's time spent on the
investigation and any cost of interrupting a production process as
discussed by Kaplan(1982); the cost M is defined as the correcting
cost, and it is assumed to be known before investigating the Cost
Process.

On the other hand, Magee(1976) suggested a new method about
estimating the opportunity cost L. He adjusted it to reflect the
possibility of future out-of-control periods as follows:

L = (uy-u,)(expected time until the process goes out of control)

= (u,~-u,)E[N]
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= (up-u )L Z?;ijgj(l-g)+ngn].

He also simulated the relation between Dyckman's(1969) and
Kaplan's(1969) models with respect to the average total cost of
the first 12 periods by adjusting L. Then the differences between
the above two models had little effect on the incremental cost
savings.

Thus, the present study will form the Cost Variance
Investigation model based on Magee's Ln with respect to Decision
Theoretic Approach. Dyckman(1969), Kaplan(1975) and Kim(1983) aiso
require additional information, h, representing the probability
that the cause of an out-of-control process will be discovered
when it exists, in the Exploratory Investigation cases of their
extension parts. Therefore, the present study will seek the
optimal policy by using the same information, such as models of
Kaplan, and Dittman and Prakash in the Full Investigation case,
and such as models of Dyckman, Kaplan and Kim of the Exploratory

Investigation case.

3) The Point Generating Cost Reports and Forming the Decision

Making
Kaplan(1969;1975) defined the posterior probability a in
period i as the probability that the system was in a in-control

state(i.e., state 1) during period i+l given the most recent
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observation Xi=x and the previous probability estimates=qi_1. By
application of Bayes' formula, it was dbtained as
qi=gf1(x)qi_l/[fl(x)qi_1+f2(x)(1—qi_l)] where f, (x)=f(x!8,). This
means that transition occurs at the end of the period after costs
were reported.

As opposed to Kaplan's model, Dyckman(1969) assumed that the
cost observation was obtained posterior to the operation of the
transition matrix, so that the posterior probability was obtained
as q.= fl(X)qi_lg/[fl(x)qi_1g+f2(x)(1-qi_1)g].

Dittman and Prakash(1978) assumed that the process transition
had taken place before a cost was reported, similarly to Dyckman's
model, in his Markovian Approach. However, the time difference
among these models generates no problem with respect to seeking
the optimal policy because it can be regarded as the
methodological differences due to calculating the different prior
probabilities corresponding to the different time levels.

As shown in chapter two, Hughes(1975) considered the case not
to obtain a cost report similarly to Ross'(1971) model, and
Hannum(1970) developed the model that determined the reporting
schedules for setting the reporting frequencies for a single
ongoing process which could be expected to undergo a significant
shift(i.e., transformation into out-of-control) in the level of
performance after some elapsed operating time.

However, the present study will consider the Cost Process in

which the cost report is obtained every period, because the cost
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report is information that is periodically provided from

production division into managerial division.

4) Transition of States and Estimation of Them

Duvall (1967) suggested a procedure which showed how the
distribution of controllable variance y and the relevant costs
were able to be made as a part of the investigating policies, in
order to see if an investigation was expected to be worthwhile.
However, it was criticized due to the fact that it was done only
for a stationary process, because the uy and OY of controllable
distribution were caculated by treating each observation equally
and symmetrically.

Kaplan(1969) solved this problem by using the Markovian
transition probability with a constant probability g. He suggested
the model dealing with a two-state system(i.e., in-and out-of-
control state) that, when in control, would remain in control
during the reporting period with a constant probability g. He
insisted that the parameter g was able to be estimated‘by noting
that the mean of the number of periods before going out of control
was 1/(1-g).

Moreover, Magee(1977a) discussed a Cost Process with
information about imperfect parameter knowledge(e.g., out-of-

control state) by using Kaplan's(1969) Dynamic Programming
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Approach., Specially, he suggested a procedure using the manager's
prior beliefs to form estimates of the desired parameters.

On the other hand, Kaplan(1975) discussed the process to
expand the number of states to allow for varyiné degrees of out-
of-controlness(e.g., S states with state 1 representing perfectly
in control, state 2 representing slight deterioration and state s
being well out-of-control); Ross(1971) suggested a general
formulation by assuming that a process could be in é countable
number of states; and Magee(1986) suggested a Markovian Approach
with three states(i.e., state 1 representing out-of-control, state
2 representing in-control and state 3 also representing out-of-
control).

But when the number of states increases, multi-state models
may not obtain any benefit of realistic application from the
complexity of formulating the model or the measuring of the
conditional distributions given its states. Therefore, the number
of states need to be formed by the realistic applicability and
measurability of the conditional distributions given its statés.

All the models discussed above also assume that the
investigation of an out-of-control process will always disclose
its causes. However, Dyckman(1969), Kaplan(1975) and Kim(1983)
supplemented the Exploratory (or Partial) Investigation case in
which the investigation of an out-of-control process did not

always disclose its causes. Thus, the present study will deal with
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models with two-states of the Full and Exploratory Investigation

cases.

5) Control Variables

BFJ(1961) and Dyckman(1969) used the posterior probability
that denoted the possibility of being in control, when an observed
cost variance was given, as a control variable. The control .
variable can be represented in the light of an action in the
statistical Decision Theoretic Approach, in which the Cost Process
will be investigated if the expected cost of investigating it is
less than the expected cost of not-investigating it.

Kaplan(1969;1975), Hughes(1975;1977) and Buckman and
Miller(1982) also used the posterior probability that denoted the
possibility of being in control, when the most recent observation
X was given, as the control variable with respect to the Bayesian
Dynamic Programming Approach. However, Kaplan's control variable
has a different value from the others because the point of
generating transition probability g was defined differently from
the others.

Duvall(1967) suggested a new model, in which the control
variable was denoted as the cost variance x, that minimized the
expected profit resulting from an investigation.

Dittman and Prakash(1978) defined the control variable with

respect to the Markovian Approach, so that the cost variance x
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itself was used as the control variable and simply required the
matching against a fixed critical limit.

Thus, by using the cost variance x as the control variable,
the present study will establish a model to require only the
matching of a reported cost variance to a fixed critical value
depending on the prior probability, differently from the previous

models in the Statistical Decision Theoretic Approach.
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CHAPTER FOUR

ASSUMPTION AND CONTROL PROCESS

1) Overview

This chapter mainly discusses the basic assumptions and
control process used in the Full Investigation case because the
Exploratory Investigation case can be regarded as the extension of
the Full Investigation ‘case. Therefore, additional assumptions
used in the Exploratory Investigation will be discussed at the
starting point of chapter six.

Section 2 discusses general assumptions, similarly to those
assumed in the previous accounting literature, that is required in
forming a Cost Variance Investigation model proposed in this
study. In section 3, additional assumptions are discussed for the
Likelihood-Ratio Test Approach, which is the methodology of this
study. Section 4 discusses the control process that will be
considered in the present study. The control process can be
described by using the same information, namely, w,, u,, 0%, 0%, g

and C, such as Kaplan's and/or Dittman and Prakash's models.
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2) General Assumptions for Forming the Cost Variance

Investigation Model

The present study assumes a two-state situation with in- and
out-of-control states that was discussed in chapter three. In-
control state denotes the situation in which operating segment is
operating in control. This indicates that, when costs are in
control, there may be some variances but these are caused by
short-term fluctuation and, there are no controllable
inefficiencies that will continue unless corrected. Out-of-control
state denotes the situation in which, when costs are out of
control, there are controllable inefficiencies that will continue
until corrected.

Let x denote a random sample which represents the reported
costs in a given period. When the situation is in control, suppose
that the reported cost X has a probability density function
f(x;8;) which 8, is a vector with elements,u; and 0%. Similarly,
when the situation is out of control, suppose that the probability
density fuﬁction for the reported costs x is given by f(x;8,),
which 82 is a vector with elements, u, and 0%. Presumably, £(x3;0,)
is such that most of the probability is concentrated about low
costs and f(x;0,) has most of its mass at high costs, and then u,
has a value less than u, . However, suppose that 81 and 62 have
been known since standard costs were established, and that the
probability density functions for parameters, 8, and 8,, are

normal density functions.
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Let g denote a probability that will operate in control until
the start of the next period, and (1-g) a probability that an
inefficiency will develop at the start of the accounting period
and will operate out of control for fhe period. The present study
also assumes the case of there being no chance of self-correcting.
Then the transition probability P between the two states is
summarized as in the following transition matrix of the Markov

chain:
P=[ g 1-g
0 1 ].

3) Additional Assumptions for the Likelihood-Ratio Test Approach

In order to define the control actions of the present model,
let us set up a statistical hypothesis. When the cost report x is
observed from normal distribution with parameter,ei(i=1,2), on the
basis of which it is desired to test H,: 6=8, versus H,: 8=8,,
control action ai(i=1,2) is defined as the decision of deciding
that Hi(i=1,2) is correct. Let A denote the action space that
consists of a, and a,, and ® the parameter space with 8, and 8,
(u,<uy). If actions are represented as the function of the outcome
of the cost report x, 6(xX)EA can be defined as the decision rule
which maps the sample space S into A.

In order to determine the investigating region due to testing

H, versus H,, let us partition the range of sample space S into
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{xi 6(x)=a,;} and {x! 6(x)=a,}, define the former as S, and the
latter as S,. Then loss function for fixed numbers, 8, and 6,, is
given by the formulas,

QCa,; B)=(0 if B=8, and Q(a,; B)=(C 1if B=0,

{ L if 8=6, C if 6=8,.

Here, as discussed in section 2 of chapter three, C denotes the
investigation cost used for investigating the Cost Process when
control action a, is performed; M denotes the correcting cost
after an investigation; and L denotes the value of the expected
cost saving to reflect the possibility of future out-of-control
periods over an infinite horizon. Then L can be derived similarly

to Magee(1976) as follows:

i-1 i-1

L

. n J
1ip Zj=1g (1-g) (Lo (upmuy))

- - S (S £ R 3
-2 (- 1ip L, ,8" "Lj

_ _ . n j-1 _ 3 _
(1-g) (- 1ig Ly 87 " ((1-a’)/(1-a))

1l

(M, -1, )/ (1-ag)
where o is a discount factor and random variable N has a
geometric distribution, g" '(1-g).

Schematic representation of this procedure can be shown as in

the following figure:
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Figure 11: Branching Diagram of Expected Cost Savings from
Investigation
As a result, loss function and probability of the

investigating region are summarized as in the following figures:

NS a, a, S XES, XES,
8, 0 C 8, P[xe8,168,1| P[xES,1i06,1
8, L C+M 8, P[xe5,16,1 | PI[xeS,16,]
Figure 12: Loss Matrix Figure 13: Probability of

Investigating Region
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Additionally, note that the conditional probabilities of
committing Type-1 and Type-II errors are P[XES,!8,]1 and

P[xeS,16,1.

4) Schematic Repesentation of Control Process

Consider a Cost Process similar to the previous accounting
literature(i.e., Dyckman(1969) and Hughes(1975;1977)). Then it can

be shown as in the following figure:

prior probability

at the beginning of period n the end of period n
R e il >0-=-—=-=--- of-———-—--- >
L, 1-mw1 transition probability 1 I
g 1-g
[ 0 1 ] cost report x <control action

Figure 14: Cost Process

The state of Cost Pfocess is unknown to the decision maker
except immediately after an investigation, and it can only be
inferred frdm the observed costs and the length of time since
correction action. What is actually known is the probability that
the Cost Process is in control. This probability is determined by
Bayes formula. Thus n is defined as the prior probability of in-
control state at the beginning of period n.

The nm can be easily estimated by Bayes formula depending on

the transition probability, because the Cost Process is reset and
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a new cycle starts when it is found to be out of control. When the
observed costs are given, this prior probability can be specified
by the generalized Bayes formula. This will be discussed in
section seven of next chapter.

Suppose that the cost of obtaining a cost report is zero and
the cost report is required every period, and that the state
transition took place before a cost report is submitted as
discussed in chapter three. Then the cost report provides
information about the status of the process when the cost report
is submitted at the end of a period. Additionally, suppose that
the control action is carried out immediately after the cost
report is submitted, and that the time taken to investigate and
correct the Cost Process is small compared to the duration of an
operating "period".

As a result, basic assumptions of the previous literature
were examined in chapter three, and this chapter discusses the
assumptions of the present study. However, the present study
defines the basic assumptions similar to them of the previous
literature. This is due to the reason why the author concentrates
on developing another simple Decision Theoretic Approach that can
capture much of the benefits obtainable from the other approaches,

without requiring additional information (or assumptions).
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CHAPTER FIVE

FULL INVESTIGATION BY BAYES LIKELIHOOD-RATIO TEST

1) Overview

A new procedure of the Decision Theoretical Approach with
respect to the case of Full Investigation, by using the
assumptions described in chapter four, is proposed in this
chapter. However, the numerical analysis of this procedure will be
discussed in chapter seven.

Section 2 describes two methods, the Extensive and Normal
Forms, which minimize the expected cost. However, the results of
two methods of Bayesian analysis are the same whether the pre-
experimental or post-experimental view point is taken, so we can
use whichever viewpoint is most convenient.

In section 3, the present study sets up the investigating
policies by statistical hypothesis, and shows the new procedure in
this chapter as a Bayes test that turns out to be a simple
likelihood-ratio test. Properties of likelihood ratio
f(x18,)/£(x!8,) are analyzed in section 4, so that the present
study shows how to determine the investigating regions based on
variance ratio 0%2/0% in section 5.

Section 6 discusses the Cost Variance Investigation policies
in N-Cost Processes, with each Cost Process being treated

independently of the others, as the extension of One Cost Process
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problem. Section 7 shows that the two forms are mathematically

equivalent and lead to identical results.

2) Normal and Extensive Forms of Analysis

a) The Normal and Extensive Forms

There are two basic methods of analysis which we can use to
find the course of action which will minimize the expected cost:
the Normal and Extensive Forms of Bayesian analysis(The names
"Normal Form" and "Extensive Form" were first used by Raiffa and
Schlaifer(1961)).

The Extensive Form of analysis proceeds by working backwards
from the end of the decision tree to the initial starting point.
The Bayes risk can be then described as follows:

Minimum Bayes Risk r(a*)= E_. min E

This form can be shown as in the following figure:

Move No.: 1 2 3
Move by : C D
X,y ////,al ////791 D (x,,a,,8;)

Aﬁ:::xz > a, >8, 1 2(x,,2,,6;)
Choices : XES asA 6sd
Measure : PX[.] - Pe[.!x]
where: D= the decision maker

C= the chance

Figure 15: The Extensive Form of Analysis
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However, the Normal Form of analysis starts by explicitly
considering every possible decision rule instead of first
determining the optimal act a for every possible outcome x, the
Bayes risk being then described as follows:

. e . L
Minimum Bayes Risk r(86 ) = min ESEX!BQ(G(X)'G)'

This form can be also shown as in the following figure:

Move No.: 1 2 3
Move by : C C
8, X, >a; . 206(x;)=a,,06;)
<<:::82‘1’/”’f’ix2 >a, : E(x,)=a,,0,)
Choices : Bsd XES atA
Measure : Pet.] PX[.EGJ §(x)

Figure 16: The Normal Form of Analysis

b) Equivalence of the Normal and Extensive Forms

Equivalence between the two forms can be proved as follows:
The Normal and Extensive Forms of analysis will be equivaient if,
and only if, they assién the same minimum Bayes risk, that is, if
the formula r(é*) = m%n EeEX=8Q(6(x),8) by the Normal Form of

analysis agrees with the formula r(a*) = EX m%n Ee < Q(x, a, B8) by

the Extensive Form.

Here, the operation EBE by the Normal Form is equivalent

Xi0
to expectation over the entire possibility space xS and is

therefore equivalent to EXE . It follows that the Normal Form

0ix
above can be written by r(é*) = mgn EXEB}XQ(G(X)’G) and it is then
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obvious that the best 8 will be the one which for every x

minimizes Ee,xg(é(x),e). This, however, is exactly the same thing

*

as selecting for every x and a* which satisfies E 2(x, a , B)=

Bix

min Ee=x Q(x, a, 8). We have thus proved that 6*= a* and formulas

a
for r¢s™) and for r(a™) are equivalent. Q.E.D.

Although the two forms are mathematically equivalent and
lead to identical results, each form has technical advantages in
certain situations. Thus the present study finds an investigating

region which minimizes the expected cost with respect to the

Normal Form of analysis.

3) Investigation Policies by Statistical Hypothesis

Let us set up the Bayes test T of H;: 8=8, versus H,: 8=6,
with respect to a prior probability given by n= P[B8=8,;] according
to the assumptions of chapter four. Note that ei is a vector such
that the elements are ui(ul<u2) and c%(i=1,2), and that Gi is a
known value as discussed in chapter four.

Then the risk by loss function due to each state Gi is

obtained as in the following formulas:

R(91)= EX,8 [Q(d(x);el)]
g |
= Q(al;el)P[XSSI391]+Q(a2;81)P[x852=81]
= &(az;BI)P[xssztell
R(92)= Exle [Q(é(x);ez)]
Y2

R(a, ;8,)PIxeS,16,1+2(a,;6,)P[x£5,16,].
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The prior probability of B, Jjust before obtaining a cost
report is nmg, then the expected cost T(S,) by prior probability
P[6=8i](i=1,2) can be obtained as follows:

T(Sz)=E8 E g [R08(x); 8)1]
=ngR(B,)+(1-ng)R(H,)
=ngl(a,;8,)P[xe5,10,1+(1-ng) {2 (a, ;8,)PIxES, 16,1+
R(a,;8,)PIxES, 16,1} |

=(1-1g)(a,38,)+/ (ngl(a,;8,)f(xi8,)+(1-1g)[2(a,;86,)
2

-2(a,;6,)1f(x!0,)}dx.

To find a Bayes test, we seek an investigating region S, that

minimizes T(Sz) as follows:

ig: T(S,) ig:((l—ng)&(al;82)+!sz[ng&(az;el)f(x%81)+

(1-ng)[%(a,;B8,)-%(a, ;8,)1£(x!8,)]dx}

(1-ng)Q(a,;8,)+inf S _ {(ngl(a,;6,)f(xiB;)+
S Sy

(1-ng)[8(a,;0,)~-2(a,;;6,)1£(xi0,)}dx.
We can minimize the expected cost T(S,) if S, is denoted to
be a set of x for which the integrand of the above equation is
negative, that is,

S,= {xinmgQ(a,;8,)f(x18,)+(1-ng)[%(a,;8,)-2(a,;6,)1£(x18,)<0}
= {x1£(x18,)/£(x18,)<(1-mg)[(a,:6,)-2(a,;6,)1/n1gl(a,;6,)}
= {X1£(x108,)/£(x10,)<(1-1g) (L-(C+M))/ngC}
= {x1E(x108,)/£(x18,)<[(1-ng)/ngl*

[CCuy-u, ) /C(1-ag))-((C+M)/C)1} (by definition of L).
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Note that a Bayes test turns out to be a simple likelihood-ratio

test.

4) Properties of Likelihood Ratio

Let A(x) denote likelihood ratio, f£(xi6,)/£f(x!8,). Then A(X)
has a maximum or minimum value when x=(u,0%-u,0%)/(d3-0%)
= Wy =i (U -U, )02/ (03-0%2) 1= Wy+i(1,-u,)03/(0%-02)! by the results
calculated in Appendix A.

Thus the maximum or minimum value of A(X) is given by

(0,/0,)expl (1, -1,)2/2(03-0%)1 when x= (W,03-U,0%)/(0%-02).

Regérding properties of A(x) that depend on the relationship
between 6% and 0%, if 0% and 0% are the same values, the function
A(x) with respect to x is a monotone decreasing function. If 02
has a lower value than 0%, the function A(X) with respect to x is
a concave function that has a maximum value (0,/0,)expl(u, -
u,)2/2(0%-0%)) when x= u,~103(u,-u,)/(0%-02)!.
However, if 03 is less than 0%, the function A(x) with respect to
X is a convex function that has a minimum value (0,/0,)expl-(u,~
u,>2/2(0%-03)1 when x= b, +102 (U, -1,)/(03-0%3)!.
This procedure is developed and provided, in detail, in Appendix

A. The properties of A(x) can be shown as in the following figure:
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5) Determining the Investigating Regions Based on

Variance Ratio 0%/0%2

The investigating region S, that minimized the expected cost
in section 3 was given by S,={x!1£(x!8,)/£(x18,)< [(1-ng)/ngl*
[CCuy-1,)/C(1~-ag))-((C+M)/C)1}. Every term of the right hand side
of the inequality in S, above(i.e.,[(1-ng)/mgl*
CC(uy-1u,)/C(1-ag))-((C+M)/C)1), while they are yet unknown, is
constant, except for the prior probability m. Thus the right hand
side can be described as a function of only .

Note that if «=1, then it becomes [((uz-ul)/C(l-g))—
((C+M)/C)1L(1-ng)/ngl, and that u, will be regarded as 0 in the
light of the establishment of a standard cost variance from here

on.

a) Determining the investigating regions in the case of 02=02

The investigating region, by the property of A(x) that was

discussed in section 4, is shown as in the following figure:

68



A(x)

explu, (u,-2x)/202]

(1-ng)B/ng

= not-investigating region

S
S,= investigating region
B = ((u,-u,)/C(1-uag))~-((C+M)/C)

Figure 18: Investigating Region When 0%:02

Therefore, the inveséigating region S, based on inequality
between A(x) and (1-ng)B/mg, is described as (xiexplu,(u,-
2x)/20215(1-ng)B/ng). The investigating region S, to satisfy the
above inequality is obtained by

explu, (4,-2x)/20215(1~-ng)B/ng
<=> [u, (u,~-2x)/20215logl(1-ng)B/ngl

<=> (u,/2)-(062/u,)10gl(1-ng)B/nglsx.

b) Determining the investigating regions in the case of 0%>0%2
In accordance with the property of A(X) described in section

4, the investigating region is shown as in the following figure:
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| (0,/0,)expl(-1/2) (x2/0%-(x-1,)2/03)]

————————————————————— (1-ng)B/ng

Figure 19: Investigating Region When 0% >03%

As shown in the above figure, the investigatingﬂregion can be
specified by the relationship between A(xX) and information n, g
and B. Additionally, the region not requiring an investigation for
all x can be described with respect to m so that it satisfies the
following inequality:

(1-ng)B/ng S (0,/0,)expl-u3/2(c2-03>1, that is,

n 2 B/[glB+(0,/0,)exp(-uz/2(a2-02))1].

¢) Determining the investigating regions in the case of 0%<0%

In accordance with the property of A(x) in section 4, the

investigating region is shown as in the following figure:
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A(x)
(0,/0,)expl(-1/2)(x2/0%2-(x-1,)2/0%)] '

' (1-ng)B/ng

-

Figure 20: Investigating Region When 0%<a2

As shown in the above figure, similarly to the way that was
discussed in subsection (b), we can show the investigating region.
Additionally, the region requiring an investigation for all X can
be also described with respect to nm so that it satisfies the
following inequality:

(1-ng)B/ng 2 (0,/0,)explu3/2(d3-02)>1, that is,

n £ B/[glB+(0,/0,)explu3/2(c2-02)11].

6) Evaluating the Multiple Cost Processes Under Budget Constraint

Let j denote Cost Process j (j=1,2,...,N) and eji be a vector
j with elements,uji and dﬁi(i=1,2), as discussed in section 3.
Suppose that each Cost Process evolves independently of the others
in a similar way to Ozan and Dyckman's(1971) and Buckman and

Miller's(1982) models, and that xj denotes a random sample that
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has a normal distribution Nj(ui’U%)’ Then Bayes test of H1:8j=9jl

versus H2:8j=8j2 can be set up with respect to the prior
probability given by nj=P[8j=9j1], according to Bayes test
discussed in section 3. Here, for simplicity, let us translate the
loss function into the regret function, and suppose that the
correcting cost M has the zero value.

Then the investigating region of Cost Process j is obtained,
according to the result that was sought in section 3, as follows:
Sj2={xjIfj(XEBI)/fj(x=92)< [(l—njgj)/njgj][(Lj—Cj)/Cj]}. Let P be
defined as the following set: D={j=xj£Sj2, JEN}.

Thus the objective function that minimizes the total expected

cost can be represented as follows:

M§? L0 BIR(6(x;,y)38,)(1-y )]
Subject to
Lye1Cy7ys D
YjS(O,l}
‘Where: 6(xj,yj) = a, if xjssjl, or ijsz and yj=0
a, if ijsz and yj=1

D= the budget constraint of investigating Cost

Processes.
This total expected cost is developed and revised, in detail,

in Appendix B. According to the revised objective function of

Appendix B, it is shown as follows:

72



. 1
M§§ jgpﬂ(al,ejz)P[ijsz. j2JP[szlyj
Subject to

iEoCyY;= P

.£{0,1}.
YJ {0,1)

The above objective function can be specified as follows:
M . .-C. .ES., 108, . .
§? Jgp[LJ CJJP[xJ S;2 JZJPtejzlyJ
Subject to

sEoCyYyS D

€ .

As a result, the original objective function that minimizes
the total expected cost can be transformed into a 0-1 Knapsack

problem as in the following proposition:

[ PROPOSITION 1 ] the original objective function:
- N
M . ¥ :):0, -y,
§2 ZJ=1E[9(6(XJ ¥323:8;)(1-y )]
Subject to
N
Lj=1C5¥;8 D
ij(O,l}
h : Y ) = i €S, {ES. .=0
where 6(xJ,yJ) a, if X, SJl or X SJz and Y5
i £ =1
a, if X, sz and Y 1

The following function is equivalent to the above function:
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M . .~C. .ES ., 16, . .
§? Jgp[LJ CJ]P[xJ SJ2 BJZJPEBJZJyJ
Subject to
iEeCyV;= P

.£{0,1}.
YJ { }

7) Eaquivalence of the Normal and Extensive Forms in This Study

In accordance with the Normal Form, we sought an

investigation region S, that minimized T(S,)= Ee Exle

with respect to S,. The investigating region S, was given by

Q(s8(x); B)

S,= {X1f(x18,)/£(x18,)< (1-1g)[2(a,;6,)-2(a,;6,)1/m1g2(a,;6,)}.
However, S, can be transformed as follows:
S,= {X1f(x16,)/£(x18,)< (1-mg)[Q(a,;:8,)-2(a,;6,)1/n1gl(a,;6,)}
= {x1£(xi18,)ng/£(x18,)(1-ng)< [2(a,;6,)-2(a,3:08,)1/2(a,;86,)}
= (xIP[8, Ix1/P[B,1x1< [2a,;68,)-2(a,36,)1/98(a,;8,)}
= {XIP[B,1xX1< [2(a,:;B8,)-2(a,:6,)1/[2(a,;6,)+%(a,:;0,)-2(a,;8,)1}.
This transformation explains the fact that the operation
EGExﬁe is equivalent to expectation over the entire possibility
space ®xS and is therefore equivalent to EXEB:X‘
Note that S, can be obtained by the generalized posterior
probability m(8;ix;,Xp,...,x ) = [1+[f(x 18,)(1-g)/£(x 18,)g]+
L 18,0 £ (x 18,0 (1-8)/£(x 18 £ (X 18,0821+, ..

n-1

HLE(X 19,0 .. (X, 18,0 (1-8)/£(X_18,)...£(X,18,)g ]

1

1 H [ ] n - .
+[f(xn.82)...f(xlr82)(1—ng)/f(xn.81)...f(xl.Bl)ng 1] as follows:
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52={xn=f(xn:91)/f(xn:82)<(1-n(81:xl,...,xn_l)g)tﬂ(al;82)-Q(a2;82)]
/M8y 1%y, e,x _ )8(a,38,))
= {(xl,...,xn):n(el:xl,...,xn)<[Q(al;82)—&(a2;82)]
/[%(a,;8,)+%(a,;6,)-9(a,;6,)1}.
This generalized posterior probability n(el%xl,...,xn) is proved
by mathematical induction, in detail, in Appendix C.

On the other hand, according to the Extensive Form described
in section 2, given that the cost report x was observed, the
optimal action can be obtained by
max Eg, [2(x,a,8)]1= max{ Q(a,;8,)P[B, Ix]1+2(a,;8,)PLB, !x];
Q(a,;8,)P[8,1x1}. Therefore, when the cost report X was observed,
the optimal action will be a, if, and only if,

{2Ca;;6,)PI0, 1x]1+2(a,;8,)PI6,1x1}<Q(a, ;8,)PIH, Ix]
<=> PI[8, 1x1<[08¢(a,;68,)-2(a,;68,)1/[2(a,;6,)+2(a,;6,)-2(a,;6,)1.

As a result, the results of two methods are the same whether
the pre-experimental or post-experimental viewpoint is taken.
Additionally, L was obtained with respect to geometric
distribution gn-l(l—g), so that, according to the memoryless
property of geometric distribution, determining S, is sought by

n(Glixl....,xn) with everything else the same for every period n.
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CHAPTER SIX

EXPLORATORY INVESTIGATION BY BAYES LIKELIHOOD-RATIO TEST

1) Overview

This chapter discusses the Exploratory Investigation case,
which is an extensive model of the Cost Variance Investigation
(see chapter five). As opposed to the Full Investigation case,
this case allows for the probability that the cause of an out-of-
control process will be discovered when it exists.

Assumptions needed are almost equal to those of the Full
Investigation case discussed in chapter five. Section 2 discusses
additional assumptions used in the Exploratory Investigation case.
Section 3 shows how to determine the investigating region by Bayes
Likelihood-Ratio Test with respect to the Normal Form. In section
4, the present study shows how the investigating region can bé
determined with respect to variance ratio, U%/U%. Similarly to the
way discussed in section 6 of chapter five, section 5 shows how to
evaluate Multiple Cost Processes under budget constraint. In
section 6, the present study shows that the Extensive and Normal
Forms of Bayesian analysis are mathematically equivalent and lead

to identical results.
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2) Additional Assumptions for Likelihood-Ratieo Test Approach

Adding to assumptions shown in chapter four, let w, denote
the event that the cause of an out-of-control process is
discovered and its probability denote h when it exists, and let W,
denote the event that the cause of an out-of-control process is
not discovered and its probability denote 1-h when it exists. If
the Cost Process is found to be out of control after a cost report
X is observed, it is reset and a new cycle starts. However, if the
Cost Process is not fbund to be out of control by thé exploratory
investigation, then the prior probability of being in control
after the unsuccessful exploratory investigation, n'(8,1x), can be
denoted by f(xi8,)mg/[f(x!8,)ng+f(x10,)(1-ng)(1-h)].

Similarly to the way shown in chapter four, on the basis of
which it is desired to test H,: 8=8, versus H,: 8=8,, let control
action ai(i=1,2) be defined as the decision of deciding that
Hi(i=1,2) is correct. Then loss function for fixed numbers, 6, and

8,, is given by the formulas,

a,; 8 =(0 if 8=8,
L if 8=8,
and 2(a,; wiB)=(C' if 8=0,

C'+M if w=w;, and 8=86,

\C'+L if w=w, and B6=8,.
Here C' denotes the cost of the limited investigation for the

exploratory investigation.
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As a result, loss function and the probability of

investigating region are summarized as in the following figures:

A a, a, g S XES, XES,
8, 0 ok 8, | PIxsS,!8,1 | P[x=S,!8,]
B8, | w,; L C'+M 8, P[x£S,16,1 | P[xES,106,1
Wy L C'+L
Figure 21: Loss Matrix of Figure 22: Probability of the
the Exploratory Investigating Region
Investigation Case of the Exploratory

Investigation Case

3) Investigation Policies by Statistical Hypothesis

By the assumptions defined in chapter four and in section 2
of this chapter, the loss functions due to each action ai(i=1,2)
and each state Bi are obtained as follows:
2(a,;;8,)= 0
Q¢a,;;8,)= L
Q(aé;81)= c

&(az;82)=Ew=82[Q(az;w282)1=9(a2;wlIGZ)P[WI!82]+Q(az;w2382)P[w2:82]

= (C'+MYh+(C'+L) (1-h)=C'+L+(M-L)h.
Then the risk by loss function due to each state 8i is

obtained by

R(8,)= By g [2(6(x)56,)]

= Q(a,;8,)P[xES,16,1+2(a,;6,)PI[xE5,18,1]
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9(a,;8,)PIxeS, 186,

C'P[xeS,!0,]

R(8,)= Byyg [8(6(x);8,)]

it

9(a, ;8,)PIxES, 10,1+8(a,;6,)PIxES,10,]

LP[xES, 18, 1+(C'+L+(M-L)h)P[xE5,186,1.
Therefore, the Bayes risk T(S,) is obtained by
Ee[R(e)]
= Eg E; g Q(6(x); B)
= ngR(B,;)+(1-ng)R(B,)
= ngl(a,;06,)PIxeS,i8,1+(1-ng) {2 (a,;0,)P[xES, 16,1+
2(a,;8,)PIxeS,10,1} _
= C'P[xES5,108, Ing+{L+(C'+(M-L)h)P[x€5,18,1}(1-ng).
To find a Bayes test, we seek‘an investigating‘region S, that

minimizes T(S,) as follows:

ipf T(S;)= ipf{C'PIX=S,18, Ing+[L+(C'+(M-LYh)PIXES,16,11(1-ng))
2 2
= L(1-mg)+ipfs  [C'mgf(x18,)+(C'+(M-LIh) (1-7g) £ (x18,)1dx.
2 2 .

We can minimize the expected cost T(S,), if S, is denoted to
be a set of X for which the integrand of the above equation is
negative, that is,

S,= {xiC'ngf(xiB,)+(C'+(M-LYh) (1-ng)£(x16,)<0}
= {(x1£(x18,)/£(x18,)<((L-M)h-C*)(1-ng)/ngC'}.
Note that if h=1 and C'2C, then S, described above is equal

to S, of the Full Investigation case.
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4) Determining the Investigating Regions Based on

Variance Ratio ¢3/02

The investigating region S, that minimized the expected cost
in section 3 was given by
S,= {x1£(xi8,)/£(x18,)<((L-M)h-C'") (1-ng)/ngC"'}.

For a more general treatment, let the amount of money spent
on an invecstigation be a continuous variable C', and define a
function h(C') as the probability that the cause of an out-of-
control situation is discovered when it exists. Presumably h(0)=0,

éigch(C')=1 and h(C') is a nondecreasing function of C'.

a) Determining the investigating regions in the case of 0€=G2

The investigating region by the property of A(x), as
discussed in section 4 of chapter five, is shown as in the

following figure:
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A(x)

explu, (1,-2x)/202]

(1-ng)B'/ng

where : S5;= not investigating region
S,= investigating region
B'= ((L-M)h(C')-C")/C"

Figure 23: Exploratory Investigating Region When 0§=02

Therefore, the investigating region S; with respect to m,
based on the inequality between A(x) and (1-ng)B'/ng, can be
described as {xlexplu,(u,-2x)/202]15(1-ng)B'/ng}. Thus the
investigating region S, to satisfy the above inequality can be
obtained by

explu, (u,~-2x)/20215(1-ng)B'/ng
<=> [u,(u,-2x)/2021510gl(1-ng)B"'/ngl
<=> (u,/2)-(a2/u,)logl(1-ng)B'/nglsx.

However, h is a function of C', and B' is a function of h or
C'. Therefore, the investigating region S, can be determined only

in the case where either h or C' is given.
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b) Determining the investigating regions in the case of 0%>02

In accordance with the property of A(x), the investigating

region is shown as in the following figure:

A(x)
d (0,/0,)expl(-1/2)(x2/0%-(x-1,)2/03)]

T S (1-ng)B'/ng

Figure 24: Exploratory Investigating Region When 0%>03

As shown in the above figure, the investigating region can be
specified by the relétionship between A(x) and information n, g
and B', as in the Full Investigation case. However, this
investigating region can be determined under any given h(C'),

different from that of the Full Investigation.

c) Determining the investigating regions in the case of 0%2<02

In accordance with the property of A(x), the investigating

region is shown as in the following figure:
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A(x)

(0,/0,)expl(-1/2)(x2/0%2-(x-1,)2/03)]

------- 44'_/_:_____5.._\_-__________3 (1-ng)B'/ng

)
/

Figure 25: Exploratory Investigating Region When 0%<d3

As shown in the above figure, the investigating region is
determined by the method discussed in the Full Investigation under
any given h(C'). Thus the region requiring an investigation for
all x can be also described with respect to n as in the following
inequality:

(1-ng)B'/ng 2 (0,/0,)explu3/2(c%-02)]1, that is,
n S B'/glB'+(0,/6,)explu3/2(03-02)11.

On the other hand, when n was known by the posterior
probability of the last period n-1, the region requiring an
investigation for all x can be also determined with respect to

h(C").
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5) Evaluating the Multiple Cost Processes Under Budget Constraint

Similarly to the assumptions discussed in section 6 of
chapter five, let j denqte Cost Process j (j=1,2,...,N). Suppose
that each Cost Process evolves independently of the others in a
similar way to Ozan and Dyckman's(1971) and Buckman and
Miller's(1982) models, and that xj denotes a random sample that
has a normal distribution Nj(ui,og). Then this case can set up the

Bayes test of H1:8j=8j versus H2:ej=8j2 with respect to the prior

1
probability given by nj=P[8j=Bj1] according to Bayes test of
section 3.

Here, for simplicity, let us translate the loss function into
the regret function, and suppose that the correcting cost M has
the zero value. Then the investigating region of Cost Process j is
obtained, according to the result that was sought in section 3, as
follows: Sj2={xj:fj(xlel)/fj(x:82)<(Ljhj—Ci)(l—njgj)/njngE}.
Let P be defined as the following set: D={j!ijSj2, jEN}.

Thus the objective function that minimizes the total expected

cost can be represented as follows:
. N
Min . _E[Q(6(x.,y.);w!O, -y.
g,j Ljo1EIC8(x,, 7 );wi8) (1-y )]
Subject to
N ~,
Lj=1C'j¥;S D
= .
YJ {0,1}

where: 8(x. .) =(a, if x.€S, or x.£€S., and .=0
i*Yi 1 S R I K Y

a, if x.ES. and .=1
2 i Tz Y
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D= the budget constraint of investigating Cost

Processes.

This total expected cost is developed and revised, in detail,
in Appendix D. In accordance with the revised objective function

of Appendix D, it is shown as follows:

M§§ jgpﬂ(al;ejz)P{ijsz. J.,‘\]P[szlyj
Subject to
iEpCT Y= D
£{0,1}.
yEL }

The above objective function can be specified as follows:

Max . .h.-C! .ES. 10, -n.g.)
y? JED(LJhJ CJ)P[xJ SJ2.8J2](1 nJgJ y
Subject to

]

.E.C'y. S D
JQD Jy.l
.S 0’ .
YJ {0,1}
As a result, the original objective function that minimizes
the total expected cost can be transformed into a 0-1 Knapsack

problem as in the following proposition:
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[ PROPOSITION 2 1 the original objective function:
. N e -

M§? Zj=1E[Q(6(xj,yj),w.8j)(l ;)]

Subject to

N
. '.y.S D
ZJ=1C 373
.€{0,1
YJ { }
where: 6(x.,y.) = i .8S.,, .ES, d y.=0
( i yJ) a, if X; SJl or x;=S,, and y,
a, if xJ.£Sj2 and yj=1.
The following function is equivalent to the above function:
Max . h.-C!H)P[x.€5.,18, -n.g. .
yj Jgp(LJ i J) [xJ SJ2 8J2](1 nJgJ)YJ
Subject to
5 .Cly.
Jgp JyJé D

£{0,1}.
Y {0,1})

6) Equivalence of the Normal and Extensive Forms in This Study

In accordance with the Normal Form, it was possible to seek

an investigating region S, that minimized T(S,)= Ee Ex!B

with respect to S,. The investigating region S, was given by

Q(6(x);6)

S,= (x1f(x!16,)/£(x18,)<[2(a,38,)-((a,;w, 6, )Plw, 18,1+

Q(a, 3w, 18,)PIW,18,1)1(1-ng)/ngl(a,;6,))

{(xi£(x10)ng/f(x18,)(1-mg)<[8(a,;8,)-(2(a,;w,;!6,)Plw,;i06,]

+Q(a,;W, 10,)PIw,18,1)1/9(a,;8,)}

{xiP[B, ix1/P[8, ix1<[%(a,;6,)-(2(a,;w, 18,)PIw, 18,1+
Q(a,;w, 18, Plw,168,1)1/%(a,;8,))

= {XiPI[B,; 1x]1<[2(a,;6,)-(2(a,;w, 18,)Plw,; 18,1+2(a,;w,16,)PIw,168,1)1/
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[2C¢a,;38,)+2(a,:;68,)-(2(a,;w, 18,)PIlw, 18,1+9(a,;w,16,)PIw,16,1)1}
This transformation explains the fact that the operation
EBEx:B is‘equivalent to expectation over the entire possibility
space $xS and is therefore equivalent to ExEB!x‘
Note that S, can be obtained by the generalized prior
Probability of period n+l, m'(8;!X;,X;,...,X ) = [1+[f(xn182)(1-
g) (1-h) /f(xniel)g]+[f(xnl82)f(xn_l:82)(1—g)(1—
h)2/£(x 16,)f(x _ 16,0821+ ... +[£(x 16;)...1(X;18,)(1-g)(1-

h)y"?

/EC(X_18,) .. £(x,18,0g" ']

-1

+LE(X 18,0 ... £(X;10,) (1-mg) (1-h)"/£(x _16,)...£(x,10,)ng" 1]

as follows:

Sp={x (X 168,)/£(x_18,)<[8(a,;8,)-(Q(a,;w, 18,)h +
&(az;wztez)(l—h))](l—n'(81%xl,...,xn_l)g)
/n'(elle,...,xn_l)gﬂ(az;el)).

This generalized prior probability “'(91=X1’°-"xn) is proved
by mathematical induction, in detail, in Appendix E.

On the other hand, according to the Extensive Form described
in section 2 of chapter five, given that the cost report x was
observed, the optimal action can be obtained by
mgn Ee=x[ﬂ(x,a,8)]
= min {2(a,;8,)PI8; IxX1+(Q(a,;w, 16,)Plw, 16,1+

Qa, 3w, 18,)PIw, 18, 1)PIB, 1x]; Q2(a,;6,)PI[B,!x]}.

Therefore, when the cost report x was observed, the optimal

action will be a, if, and only if,
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2(a,;368,)P[8,1x1> R(a,;8,)PLO, Ix1+(Q(a,;w, !8,)Plw, 16,1+
QCa,;w,18,)PIw,168,1)P[0, I x]
<=> PIB,;1x1<[%(a,;6,)-(2(a,;w, 168,)PLw, 16,1+%(a,;w,16,)PIw,16,1)1/
[3(32;91)+£(a1;82)-(Q(a2§w1:82)P[w1!82]+Q(a2;w2!82)P[w2282])].
As a result, the results of the two methods are the same
whether the pre-experimental or post-experimental viewpoint is
taken. |
Additionally, as discussed in section 7 of chapter five,

determining S, depends only upon n'(elixl,...,x 1) for every

n—
period n by the definition of L.

7) Managerial Implication in Accounting Practice

When a manager receives a cost variance report, it is
necessary to understand what the variance was caused by, and what
to do with the variance. Let us say that the variance is a
variance for a direct cost, such as materials. There are a‘variety
of events that could have caﬁsed that variance. It could have
resulted from external events, for example, temporary price
fluctuations, or higher prices paid for a special rush order. Or
it may be that the variance was caused by internal events. These
internal events could have resulted from two factors. The first
factor is uncontrollable, for example, short-term fluctuation that
have no controllable inefficiencies, and the second factor is

controllable, for example, purchasing substandard quality
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material at a lower than standard unit price, or some
inefficiencies of material usage brought about by poorly
maintained machinary. If the variance is due to external events,
it is extremely unlikely that the manager can take any action.
Thus the present study assumes that the variance due to external
events is negligible.

Accordingly, the present study considers only the internal
events for the variance. However, among the controllable factors,
the purchasing substandard quality materials may incur more waste.
This means that there will be a trade-off between a favorable
price variance(materials bought at less than standard unit price)
and an unfavorable quantity variance affecting quality. But the
present study does not consider the variance due to substandard
quality material, because line managers must be responsible for
both the price and the quality of materials when purchasing.

As a result, the present study considers only the
controllable and uncontrollable factors in terms of machinary
condition.

On the other hand, as shown in chapter five and six, the
investigating region S, based on the Normal Form was classified
into five cases as follows:

a) x;S8,8X,, X;,X,€S when 61>02
b) S,3x;,x;88,, X;,X}ES when 0¢,<0,
€) X338,, X;%S vwhen g,=0,

d) S,=% (the special case of (a))
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e) S,={xixES} (the special case of (b)).
First, the case (a), may rarely exist in accounting practice, so
that we have a difficulty in finding an appropriate instance.
However, the cases (b) and (c¢), are usually regarded as
extensions of a simple control chart. The cost variance brought
about incurring more waste than provided for in the standards, can
be contained within x}SS, of (b) above and within x;58, of (c¢)
above. This variance may result from more material waste due to -
a poorly maintained machinary. But when the actual quantity of raw
materials used was less than the quantity range allowed for the
units produced, the cost variance can be contained within S,3x; of
(b) above. This variance may also result from less material usage
due to the poor maintained machinary. The above cost variances do
not always mean that they are due to the poor maintained
machirary, and in these cases we must investigate their causes.
Furthermore, the case (d) reflects the fact that the Cost Process
need not be investigated, because the investigation cost has a
larger value in contrast with the opportunity cost generated when
the Cost Process is not investigated. But the case (e) is in
opposition to that of the case (d). The cases (d) and (e), are

discussed, in detail, in the next chapter.
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CHAPTER SEVEN

NUMERICAL ANALYSIS

1) Overview

This chapter, by using sensitivity and simulation analysis,
shows how alternative values of parameters affect the proposed
model. This analysis was conducted by using the PASCAL compuer-
programming language.

Section 2 shows graphs of log A(x)(i.e., the log function of
likelihood-ratio) according to alternative parameter values used
in Dittman and Prakash's(1979) study of sensitivity analysis.

Section 3 shows what values the lower or upper bound of prior
probability, the critical value of the prior probability for
determining when a Cost Process should be never or always
investigated, must have according to alternative parameter values.
The critical values above are classified according to the Full and
Exploratory Investigations, therefore, the relation between these
Investigations is also discussed.

Section 4 shows how the investigating region S, is changed
according to alternative values of parameters in the Full and
Exploratory Investigation cases, and simulates the relation

between the two cases above with respect to the average total cost
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over 1000 simulated 12-month periods, in a similar manner to

Magee's(1976) study.

2) Graphs of Likelihood-Ratio A (x)

Consider the following parameter values of likelihood-ratio

A(x) as given by Dittman and Prakash(1979):

parameter alternative values
u, 0
u, 20
g, 5, 10, 15, 20, 25, 30
g, 5, 10, 15, 20, 25, 30

Note that Magee(1976) considered alternative values of the
required information as follows: u,=100, u,=120, 150,
0i=20(i=1,2), Cc=10, 30, 60 and g=0.5, 0.7, 0.9.

We consider the case that the value x in the graph of
likelihood-ratio A(x) is ranged from -30 to 50 for all
combinations (01,02)'above. These graphs are drawn on semi-
logarithmic graph paper by computer program as listed in Appendix
F. Figures below give a visual picture of the variety of cost

situations for all combinations (01,02) above.
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i) The combinations that g,=5 and 02=5,10,...,30

S M%)

(5,10) -(5,25) R
e

A 1 . F. . L R AT b e 4 .
e L ]\x

TR0 TES T S THO T U0 TS 0TS TT0 T2 T30 T T4 TS TS0

Figure 26: The Graphs of A(x) in the Combinations That

0,=5 and 0,=5,10,...,30
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ii) The combinations that 01=10 and 02=5,10,...,30

o .
020

Aoy T
05 5

fa¥ih ]
el

TR0 5 TED TEI5 TR0 TS TI 0TI TII0 TS TT20 TS a0 a0 TAS TS0

Figure 27: The Graphs of A(x) in the Combinations That

¢,=10 and 0,=5,10,...,30
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iii) The combinations that o,=15 and 0,=5,10,...,30

Alx)_ _

S B NN s

:'-'4'-—:“""‘"—'v’—.—v‘—f‘v;z'—.';—r—*f m T T e s e T T T s e e e s ee o

R A P

TTR0TIS TR0 TAS A0 5 005 210 1520 25 230 =35 — 40 —45 50 -

Figure 28: The Graphs of A(x) in the Combinations That

¢6,=15 and ¢,=5,10,...,30
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iv) The combinations that 0,=20 and 02=5,10,...,30

N M)

T —_‘*“ 8 S A e e

B A
e S (20,1000 | e e

TR0 TS TR TS 0 IS IO TSI 107 IS 0 35 %0 35 L 4045 5

Figure 29: The Graphs of A(x) in the Combinations That

0,=20 and 0,=5,10,...,30
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v) The combinations that ¢,=25 and ¢,=5,10,...,30

A(x)

R S O N S O U S O 11 T

! . S N
TR0 TE2S 20 THIS TR0 TS5 ST 005 10

Figure 30: The Graphs of A(x) in the Combinations That

0,=25 and 0,=5,10,...,30

97



vi) The combinations that 0,=30 and 0,=5,10,...,30

SR, o M) - e s

R ——

X R IR S R S A L R

*‘"-30 95T S TH0 TS 0 TS TII0 B U ET 40,_-45 T

Figure 31: The Graphs of A(x) in the Combinations That

0,=30 and ¢,=5,10,...,30

98



3) Determining the Lower or Upper Bound of the Prior Probability

due to Opportunity Costs

In order to seek the lower or upper bound of the prior
probability, the critical value of the prior probability for
determining when a Cost Process should be never or always
investigated, consider the Full and Exploratory Invéstigations
according to alternative parameter values similar to those in
Dittman and Prakash(1979). In this numerical analysis, the

correcting cost M will be assumed to have the zero value.

a) Full Investigation case

Additionally to the parameters discussed in section 2,

consider the following alternative values of parameters:

parameter alternative values
o 0.98
C 10, 20, 30, 40, 50, 60
g 0.5, 0.7, 0.9

The results performed according to these alternative values
were conducted by the computer program listed in Appendix G. They
can be classified into eighteen cases. As all eighteen cases bring
about similar results, only the six cases where g=0.7 are listed

below, as follaws:



i) The case that C=10 and g=0.7

constant: u,=0,u,=20,x=0.98,C=10,g=0.7

0,\0, 5 10 15 20 25 30
5 0.22 0.56 0.63 0.62 0.59
10 * 0.60 0.83 0.85 0.83
15 * % 0.80 0.95 0.95
20 * % % 0.91 ek
25 % % 0.98
30 % % *
where * = the case that the lower bound of prior probability does

not exist(i.e., (1-ng)B/ng is larger than the minimum
value of A(x) for all nm )
%= the case that always investigates a Cost Process for

all X regardless of n

Table 1: The Lower or Upper Bounds of the Prior Probability

in the Case That C=10 and g£=0.7

ii) The case that C=20 and g=0.7

constant: v, =z0,u,=20,¢=0.98,C=20,g=0.7

9,\0> 5 10 15 20 25 30
5 0.10 0.30 0.35 0.34 0.32
10 * 0.32 0.51 0.53 0.52
15 * * 0.49 0.63 0.64
20 s’ * 0.60 0.71
25 % % 0.67
30 % * *

Table 2: The Lower or Upper Bounds of the Prior Probability

in the Case That C=20 and g=0.7
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iii) The case that C=30 and g=0.7

constant: u1=04u2=20.a=0.98.C=30.g=0.7

5,\9, 5 10 15 20 25 30
5 0.05 0.17 0.20 0.20 0.19
10 * 0.19 0.32 0.34 0.32
15 * * 0.30 0.41 0.42
20 * % 0.39 0.48
25 * * * 0.44
30 * * * % %

Table 3: The Lower or Upper Bounds of the Prior Probability

in the Case That C=30 and g=0.7

iv) The case that C=40 and g=0.7

constant: ul=O,u2=20.a=0.98.C=40.g=0.7

9,\0, 5 10 15 20 25 30
5 0.03 0.10 0.11 0.11 0.10
10 x+ | _—| o.11 0.19 0.20 0.19
15 % % 0.18 0.25 0.26
20 * % * 0.23 0.30
25 * 0.98 0.88 0.92 0.28
30 * 0.99 0.88 0.81 0.85

Table 4: The Lower or Upper Bounds of the Prior Probability

in the Case That C=40 and g=0.7
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v) The case that C=50 and g=0.7

constant: u,=0,u,=20,x=0.98,C=50,%=0.7

9, \9, 5 10 15 20 25 30
5 0.01 0.05 0.06 0.05 0.05
10 * 0.05 0.09 0.10 0.09
15 0.99 0.96 0.09 0.13 0.13
20 0.93 0.74 0.76 0.12 0.16
25 0.94 0.72 0.61 0.65 0.14
30 0.96 0.73 0.61 0.54 0.58

Table 5: The Lower or Upper Bounds of the Prior Preobability

in the Case That C=50 and g=0.7

vi) The case that C=60 and g=0.7

constant: u,=0,u,=20,0=0.98,C=60,g=0.7

9,\9, 5 10 15 20 25 30
5 * 0.01 0.01 0.01 0.01
10 0.901 | _— | o.01 0.02 0.02 0.02
15 0.48 0.45 0.02 0.03 0.03
20 0.42 0.28 0.29 0.03 0.04
25 0.43 0.26 0.21 0.23 0.03
30 0.45 0.27 0.20 0.17 0.19

Table 6: The Lower or Upper Bounds of the Prior Probability

in the Case That C=60 and g=0.7
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As discussed in section 5 of chapter five, the investigating
region S, is determined by S,={xIA(X)<(1-ng)B/ng} satisfying that
B>0 and B=(u,/C(l-ag))-1, so that the value of (l1-ng)B/ng
decreases when the prior probability increases. Therefore, in
accordance with the property of A(x), the Cost Process can always
be investigated for all x if the prior probability nm is smaller
than the upper bound of the prior probability when 0%2<d%. However,
when d%>0Z, the Cost Process can never be investigated for all x
if the prior probability m is larger than the lower bound of the
prior probability.

As shown in the results tabulated above, in the cases that
C=10,20 and 30, the lower bounds of the prior probability do not
exist when 0%>02. This reflects the fact that (1-ng)B/ng has a
large enough value to form the investigating region S, for every
prior probability n, because the investigation cost C has a
smaller value in contrast with the oppqrtunity cost L generated
when the Cost Process is not investigated. However, when 0%<0d3%,
there exists an upper bound of the prior probability m, the
critical value that the Cost Process can be always investigated
for all x, because the investigation cost C has a smaller value in
contrast with the opportunity cost L generated when the Cost
Process is not investigated.

On the other hand, in the case that C=40, the lower bound of
the prior probability partially exists when g, >0, . However, in the

case that C=50 and 60, there is a reverse trend compared to the

103



case when C=10,20 and 30. This reflects the fact that the lower
bound of the prior probability can be selected, because (1-
ng)B/ng has relatively a small value in this case than in the case
of C=10,20 and 30, according to the decreasing of B by increasing

C.

b) Exploratory Investigation case

In addition to the parameters discussed in section 2 and the
-parameters of the Full Investigation case, consider the following
alternative values of the parameter h where h is taken to be a

linear function and a nonlinear function of C':

c parameter alternative values
C'=Ch ‘ h 0.5, 0.7, 0.9
C'=Ch2 h 0.5, 0.7, 0.9

On the other hand, as discussed earlier, we determined the
investigating régions by using S, ={xif(x!10,)/£(x10,)< (1-ng)B/ng}
(B=(L-C)/C) in the Full Investigation case and
S,={x1f(x18,)/£(x16,)<(1-ng)B'/ng}(B'=(Lh-C')/C') in the
Exploratory Investigation case. However, when C'=Ch, the
Exploratory Investigation case has the same results with the Full
Investigation case due to the fact that B'=(Lh-Ch)/Ch=(L-C)/C=B.
Therefore, from here, we discuss only the case where C'=Ch2 in the
Exploratory Investigation.

The results obtained according to alternative values of
parameters described earlier, were sought by implementing the

computer program listed in Appendix H. As all 54 cases bring about
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similar results, only the six cases where g=0.7 and h=0.7 are
listed below, as follows:

i) The case that C=10, g=0.7 and h=0.7 when C'=Ch2

constant: u,=0,4,=20,0=0.98,C=10,g=0.7, h=0.7(C'=4.9)

0, \0, 5 10 15 20 25 30
5 0.31 0.71 0.78 0.77 0.74
10 * 0.75 0.96 0.98 0.97
15 % 0.94 ok %k
20 % * ok %k
25 * % ok
30 * % *

Table 7: The Lower or Upper Bounds of the Prior Probability
in the Case That C=10, g=0.7 and h=0.7 when C'=Ch2

ii) The case that C=20, g=0.7 and h=0.7 when C'=Ch2

constant: u,=0,1,=20,%=0.98,C=20,2=0.7, h=0.7(C'=9.8)

0,\0, 5 10 15 20 25 30
5 0.16 0.43 0.49 0.48 0.46
10 * 0.46 0.68 0.70 0.67
15 * % 0.66 0.81 0.81
20 * % * 0.77 0.88
25 * * * 0.84
30 * * % *

Table 8: The Lower or Upper Bounds of the Prior Probability
in the Case That C=20, g=0.7 and h=0.7 when C'=Ch2

105



iii) The case that C=30, g=0.7 and h=0.7 when C'=Ch2

constant: u,=0,u,=20,¢=0.98,C=30,g=0.7, h=0.7(C'=14.7)

0,\02 5 10 15 20 25 30
5 0.09 0.29 0.33 0.32 0.30
10 * 0.31 0.49 0.51 0.49
15 * * 0.47 0.61 0.62
20 % s 0.57 0.68
25 * e 0.64
30 * * * *

Table 9: The Lower or Upper Bounds of the Prior Probability

in the Case That C=30, g=0.7 and h=0.7 when C'=Ch2

iv) The case that C=40, g=0.7 and h=0.7 when C'=Ch2

constant:

u,=0,u,220,¢=0.98,C=40,g=0.7, h=0.7(C'=19.6)

FAGA 5 10 15 20 25 30
5 0.06 0.19 0.23 0.22 0.21
10 ] 0.21 0.35 0.37 0.36
15 # % 0.33 0.45 0.46
20 % ] * 0.42 0.52
25 % % % 0.48
30 % * % *

Table 10: The Lower or Upper Bounds of the Prior Probability

in the Case That C=40, g=0.7 and h=0.7 when C'=Ch2
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v) The case that C=50,

g£=0.7 and h=0.7 when C'=Ch?2

constant: u,z0,4,=20,=0.98,C=5 ,g=0.7, h=0.7(C'=24.5)

0,\0, 5 10 15 20 25 30
5 0.04 0.13 0.15 0.15 0.14
10 % 0.14 0.25 0.26 0.25
15 * * 0.23 0.33 0.33
20 * % & 0.30 0.38
25 * * 0.99 * 0.35
30 * * 0.98 0.92 0.96

Table 11: The Lower or Upper Bounds of the Prior Probability

in the Case That C=50, g=0.7 and h=0.7 when C'=Ch2

vi) The case that C=60, g=0.7 and h=0.7 when C'=Ch2

u,=0,u,=20,x=0.98,C=60,=0.7, h=0.7(C'=29.4)

constant:

0,\9, 5 10 15 20 25 30
5 0.03 0.09 0.10 0.10 0.09
10 % 0.09 0.17 0.18 0.17
15 * * 0.16 0.23 0.23
20 * 0.95 0.98 0.21 0.27
25 * 0.93 0.84 0.87 0.25
30 * 0.95 0.83 0.77 0.80

Table 12: The Lower or Upper Bounds of the Prior Probability

in the Case That C=60, g=0.7 and h=0.7 when C'=Ch?2
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As discussed in the Full Investigation case earlier, the
investigating region S, is determined by Sz={x:A(x)<(1—ng)B'/Ug)
satisfying that B'=(Lh-C')/C' and B'>0. This can be analyzed in a
similar manner to the Full Investigation case. That is, the
function B' is written as (L-Ch)/Ch=[(L/h)-C]/C by using C'=Ch, so
that it has a larger value than the B of the Full Investigation
case independent on alternative values of h. Accordingly, the
critical probabilities of the Exploratory Investigation case are a
little larger than those of the Full Investigation case.

As a result, the prior probability m, by the Normal Form,
plays an important part for determining the critical prior
probability, base that a Cost Process always or never be
investigated, while the Extensive Form cannot determine the
critical prior probability. Furthermore, the results of the
numerical analysis show the fact that the control policy, due to
the prior probability, can be sufficiently implemented depending

on alternative parameter values when 0,<d,.

4) Determining the Investigating Regign S,_according to the

Alternative Values of Parameters

a) Determining the investigating region S,

This study classified the investigation policies into the

Full and Exploratory Investigation cases, and the latter was
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divided into two cases that C'=Ch and C'=Ch2. However, note that
due to the reason described earlier, when C'=Ch, the investigation
region of the Exploratory Investigation case resﬁlts in that of
the Full Investigation case. The investigating region S,
according to alternative parameter values of each case, can be
obtained by implementing computer programs listed in Appendix I
and Appendix J. Additionally, the exploratory investigation costs

can be shown as in the following figures:

h h
A o]\
1 1
-C' ->C!
0 C 0 C
The Graph of C'=Ch The Graph of C'=Ch?2

b) The relation between the Full and Exploratory Investigation

cases

As discussed earlier, the investigating regions are given by
S,={x1£(xi8,)/£(x16,)<(1-ng)B/ng} (B=(L-C)/C) in the Full
Investigation case and Sy={x!f(x16,)/£(x16,)<(1-ng)B'/ng} (B'=(Lh-
C')/C') in the Exploratory Investigation case. Here, the relation

between the two cases is influenced by the trend of deviation
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between B and B'. Therefore, we need to investigate their trend
with respect to h.

Firstly, when C'=Ch, the deviation between B and B' has a
zero value for all h due to the fact that B'-B= [(Lh-C')/C']1-[(L-
C)/Cl = [(Lh-Ch)/Ch]-[(L-C)/C1=0. This indicates that a decision
maker had better implement the Exploratory Investigation for all h
because the same result can be derived with less cost than the
full investigation cost. However, as discussed in section 2 of
chapter six, the prior probability of being in control after the
unsuccessful Exploratory Investigation, n'(8,1x), can be obtained
by £(xi8,)ng/[f(xi8,)rg+£(x!6,)(1-ng)(1-h)]1. This indicates that
the Exploratory Investigation, which is carried out at costs lower
than that of the full-investigation cost, makes the prior
probability of being out of control after unsuccessful Exploratory
Investigation higher. Thus a decision maker cannot determine which
of the above two policies is best.

On the other hand, when C'=Ch2, the deviation between B and
B' is a monotone decreasing function with respect to h due to the
fact that B'-B=[(Lh-C')/C']1-[(L-C)/Cl= [(Lh-Ch2)/Ch2]1-[(L-C)/C]l=
L(1-h)/Ch. Thus this case also cannot be analyzed with the
analytical method by the same reason discussed in the case when
C'=Ch.

Here, the relation between the Full and Exploratory
Investigation cases is carried out over 1000 simulated 12-month

periods with respect to the average total costs using a method
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similar to that used by Magee(1976). This total cost includes
operating costs plus the costs of investigations, and the
operating costs are regarded as the random numbers and hence are
randomized in the present simulation. The computer program for
this relation is listed in Appendix K.

Before showing the simulated results, let us show the flow
chart indicating the relation between the two cases with respect

to the average total costs as follows:
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(_ START )

Constant numbers: u,=0, u,=20
Variation : 8=0.5,0.7,0.9
M=0,20
h= 0.1 to 1
C= 10 to 60(width:10)
d,,0,= 5 to 30(width:5)

- 1]

t =1
. 13-t
Opportunity costs,Lt=(u2—U1)(1-g Y/ (1-g)
Generating random number X
YES | NO ]
Operating cost from in-control Operating cost from out-of-

state,OC

t

12
=0, % (L, _, X, =6)+1, control state,OC,=

12
Oy * (L 1 X;=6) 4,

1

¥

Determining the invest{gating region,S,
={fo(x!81)/f(x:82)<((Lt-M)h—C')(l—ntg)/nth'}

o>
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YES

NO

Generating random number Y

Investigation cost,ICt=O

g

L

M (B 1x)=f(x18,))m g/ [£(xi8,)n g+

£(x18,) (1-7,g) 1

YES NO
Investigation cost,ICt=C'+M Investigation cost,IC,=C'
J l
m, (8, 1x)=1 M, (0, 1x)=£(x16,)m, &/

[£(x16,)m,g+£(x16,) (1-7, &) (1~h)]

1

Z.

Total cost

,TC,=TC, _,+IC,+0C,

J

t

=t+1

YES

ts12

NO

Averaging total costs by 1000 repeated operation

Figure 32: Flow Chart for the Average Total Costs
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On the basis of the

flow chart shown above,

the simulated

:sults according to the alternative parameter values are shown as
the following tables:
constant:u =0,u,=20,g=0.7 and M=0
g,| ¢| h
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
5 |10 OC | 166.5 [145.5 |130.3 {117.7 [104.5 | 97.8 | 91.2| 82.9| 76.7| 73.1
IC 8.5 114,91 20.0)24.2) 26.830.5}133.0| 34.8} 36.3) 38.6
TC | 175.0 160.4 [150.3 |141.9 {131.3 {124.2 {124.0{117.7 |{113.0 111.7%
30| OC | 167.6 146.3 |127.5 |115.9 {108.4 | 95.2 | 88.6 | 83.5| 78.7 | 72.8
IC 22.7 | 40.0 | 52.4 | 63.2 | 73.2 | 77.7 | 84.6 | 89.8] 95.5| 98.6
TC | 190.3 [186.3 [179.9 [179.1 [181.6 [172.9 [173.2 |173.3 |174.2 |171.4"
50| OC | 171.3 [154.5 [137.8 {126.0|121.6 |107.5 (102.7 | 96.3 | 92.6 | 87.1
IC 29.2 | 62.5 | 67.9 82.7 | 98.5 |103.3 |109.4(117.4]126.1 {131.0
TC 200.5*207.0 205.7 |208.7 |220.1 {210.8 |212.1 |213.7 |218.7 {218.1
20 {10 | 0C | 165.7 147.5 (131.6 {118.4[109.6 {104.1 | 92.2| 90.5| 85.2 | 78.4
IC 8.7 [15.6 { 20.9 25.3| 29.3 | 33.4| 35.5| 39.2| 41.5| 44.0
TC | 174.4 163.1 |152.5 |143.7 |138.9 |137.5 {127.7 {129.7 |126.7 122.4%
30 | OC |170.4 |154.8 |133.0{123.6 |{115.5 {105.6 |101.3 | 95.0 | 92.4 | 87.2
IC 21.4 | 38.3 | 49.4 | 59.7|1 67.2 1 72.6 | 77.9| 83.0| 87.3 | 93.4
TC | 191.8 193.1 [182.4 [183.3 [182.7 |178.2 |179.2 |178.07179.7 |180.6
50 | OC | 170.1 [159.0 {143.2 135.5 {123.5 |{119.0 ({114.1 {110.4 {105.5 {102.6
IC 27.2 | 48.0( 61.0| 74.1 | 83.7 | 91.7 | 99.6 {104.0 {108.9 {113.9
TC | 197.3%R07.0 [204.2 209.6 {207.2 [210.7 |213.7 |214.4 214.4 216.5
5 |10 { OC | 164.7 [142.2 {122.4{113.7{ 92.9 | 89.1 | 84.8 | 77.1 | 74.2 | 75.7
IC 12.0124.0|36.0| 48.01 60.0 | 72.0| 84.0} 96.0 (108.0 {120.0
TC | 176.7 166.2 {158.4 [161.7 [152.9™161.1 |168.8 |173.1 [182.2 [195.7
30| OC |171.1 [141.2 123.7{112.9(101.6 | 90.4 | 80.6 | 78.8 | 76.9 { 72.3
IC 32.3 | 63.5 ] 94.0124.1 |153.6 |183.3 |212.2 {240.9 |270.0 {300.0
TC | 203.4%R04.7 p17.7 237.0)255.2 273.7 ({292.8 (319.7 |346.9 [372.3
50 | OC | 175.2 |160.2 |143.0 {141.0|134.6 |134.4 |131.4]120.4 |122.2 ]116.5
IC 27.8 [ 48.2 | 63.2 | 76.0| 86.4 | 95.5 {104.2 |{108.0 |114.8 {119.4
TC | 203.0%R08. 4 206.2 1217.01221.0 [229.9 |235.6 [228.4 [237.0 |235.9
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where: OC= The operating costs

IC= The investigating costs
TC

*= Minimum total costs for each case

The total costs

Table 13: Average Total Cost over 1000 12-Month Periods
with respect to C'=Ch Where M=0
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constant:u1=0,u2=20,g=0.7 and M=20

Table 14: Average Total Cost over 1000 12-Month Periods
‘Wwith respect to C'=Ch Where M=20

116

1| g, C h
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
5 5 |10 {OC | 164.5 [146.2 127.9 116.7 {105.8 1 95.0 | 92.0 | 81.5 | 79.5 | 73.3
IC 22.1 | 41.0 | 54.1 | 65.6}| 73.7 | 80.4| 87.8| 92.5 |101.1(103.7
TC | 186.6 [187.2 [182.0 [182.3 [179.5 {175.4 [179.8 [174.0%180.6 [177.0
30 |OC | 172.4 154.7 {135.0 [125.9 |116.5 {109.9 | 99.7 | 96.4 | 90.1 | 87.0
IC 29.6 | 52.3 | 68.3 | 83.7| 94.2(105.7 (111.8 |119.5 |124.5 {127.2
TC | 202.0%207.0 [203.3 209.6 [210.6 |215.6 |211.5 [215.9 1214.6 [214.2
50# OC | 193.5 195.5 |193.6 {194.3 [196.3 {192.0 (195.1 |195.0 |191.5 {193.3
IC 0 0 0 0 0 0 0 0 0 0
TC | 193.5 |195.5 |193.6 [194.3 [196.3 {192.0 (195.1 {195.0 (191.5 |193.3
5120 |10 | O0C | 163.6 (144.2 [131.7 {120.3 |112.0|107.9 | 96.8 | 88.7 | 88.0 | 80.5
IC 22.6 | 38.2 | 53.0}63.5| 73.5| 82.0 | 88.4 | 93.0 |100.3 |107.2
TC | 186.2 [182.4 (184.7 [183.7 |185.5 |189.9 [185.2 |181.77(188.3 [187.7
30 |OC | 172.9 156.2 {141.9 (136.1 {124.7 |114.6 |115.3 {108.9 [105.3 |100.3
IC 27.3 |1 48.3 | 63.0| 76.7 | 84.7| 92.9 | 99.0(107.1 |111.6 [115.5
TC | 200.2%204.5 204.9 212.8 [209.4 |207.5 |214.3 |1216.0 216.9 [215.8
50# OC | 192.2 |189.8 {197.1 ({194.8 {195.1 [193.5 |194.2 |190.8 {195.7 [195.8
IC 0 0 0 0 0 0 0 0 0 0
TC 1192.2 ]189.8 |197.1 {194.8 1195.1 [193.5 [194.2 {190.8 [195.7 |195.8
0| 8 |10 |OC | 164.5 [143.7 {123.9 {108.2 ({100.3 | 84.9 | 81.7| 76.5 | 73.0 | 71.2
IC 33.3 | 64.9 | 97.9 {133.6 |165.2 {198.5 |231.8 |264.5 [296.4 |330.0
TC | 197.8%208.6 221.8 1241.8 |265.5 1283.4 1313.5 |341.0 (369.4 |401.2
30 |OC | 174.6 [153.9 (134.5 {127.0{121.1 |112.7 {108.8 (102.9 [104.8 {102.0
IC 40.6 | 76.5 |109.0 |141.4 ({171.9 {204.0 |{233.0 [262.3 [291.7 |324.2
TC | 215.2%230.4 243.5 |268.4 |293.0|316.7 {341.8 |365.2 (396.5 |426.2
50# OC | 193.3 |194.3 |197.3 {189.6 {195.5{191.9 [196.3 {198.4 (193.3 [{191.5
IC 0 0 0 0 0 0 0 0 0 0
TC [ 193.3 {194.3 |197.3 |189.6 {195.5|191.9|196.3 {198.4 [193.3 |191.5
where #= The case that the Cost Process can never be investigated
because B'<0.(i.e., this case generates only operating costs)



Note that, when h=1, the Exploratory Investigation case
results in the Full Investigation case.

As shown in the above tables, when C'=Ch, the smallest values
of the average total costs simulated in this numerical analysis
are almost found in the Exploratory Investigation cases rather
than in the Full Investigation cases. Furthermore, when C
increases, h, which gives minimum total costs, decreases.
Therefore, if the Full Investigation cost C is large, there is no
need to spend as much money as the Full Investigation cost C for
the Exploratory Investigation to attain minimum total costs,
although the total costs that will be incurred by the Exploratory
Investigation may be larger than total costs by the Full
Investigation. However, when B'<O; the average total costs have
almost the same values for all h, so that it is not possible to
determine the best investigation policy. This can be seen for the
cases of C=50 when M=20 in the above tables.

For this reason, a decision maker must-determine the optimal
value of h by simulating how parameters influence the average

total costs.
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constant:u1

=0,u,=20,g=0.7 and M=0

1 92| C h
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
5/ 5 |10 OC | 166.8 |{144.8 130.0 118.1 [105.0 | 96.6 | 91.2 | 83.7 | 76.4 | 73.1
IC 0.9 3.1 6.2 {10.0 | 13.8 118.3 (23.6| 28.3| 32.8 | 38.6
TC | 167.7 |147.9 [136.2 [128.1 [118.8 {114.9 |114.8 [112.0 [109.2™111.7
30 OC | 166.1(146.1 {127.8 [116.6 [106.3 | 96.3 | 88.2 | 82.9| 78.7 | 72.9
IC 2.6 9.0(17.8 | 28.6 | 40.3 {52.8 | 60.1 | 73.5| 86.8 | 98.9
TC | 168.7 {155.1 |145.6 [145.2¥146.6 149.1 [148.3 156.4 |165.5 [171.8
50| OC | 170.6 [146.0 [127.4 [114.8 [111.1 | 96.8 [ 94.5 | 87.8 | 89.8 | 88.3
IC 4.4 14.9 | 29.1 | 42.5 | 63.0 (78.4|89.9]107.2(115.2 |126.9
TC | 175.0 |160.9 156.5™157.3 174.1 175.2 |184.4 (185.0 1205.0 {215.2
5120 |10| oCc | 163.9 [140.1 {125.4 [112.5 107.0 [ 97.3 | 89.4 | 88.3| 83.9 | 78.0
IC 1.2 4.7 [ 10.2 |15.8 | 19.9 | 24.1 | 28.8| 33.7} 38.6 | 43.9
TC | 165.1 [144.8 [135.6 [128.3 126.9 121.4 [118.2%122.0 [122.5 [121.9
30) OC | 165.9 [145.7 131.0 322.0 110.8 105.7 | 98.5 | 94.7 | 92.1 | 86.0
IC 3.5| 10.6 | 19.5 | 29.2 | 40.4 | 51.6 [ 58.8 | 69.6 | 82.2 | 93.2
TC | 169.4 (156.3 [150.5™151.2 151.2 167.3 {157.3 (164.3 |174.3 {179.2
50| OC | 166.1 |146.8 {133.5 [122.6 [113.3 [105.5 {104.2 |103.2 [103.4 ({103.2
IC 5.2 15.4 1 29.4 | 41.3 | 56.9 | 73.0 | 83.1 | 94.3| 98.7 [114.2
TC }171.3 162.2*162.9 163.9 170.2 [178.5 |187.3 |197.5]202.1 217.4
)} 5 |10| OC | 165.8 (141.3 [121.2 {111.0 | 95.3 | 87.5 | 82.0| 79.4| 71.7 | 77.7
IC 1.2 4.8 |110.8|19.2 |30.0| 43.2 | 58.8 | 76.8| 97.2 {120.0
TC | 167.0 [146.1 [132.0 130.2 [125.3™130.7 [140.8 [156.2 [168.9 [197.7
30| OC | 167.5 |140.2 124.3 {112.7 [ 96.7 | 82.9 | 79.6 | 76.9| 78.1 | 72.5
IC 3.6 | 14.4 }32.457.6 | 84.8 {120.7 |161.7 [211.2 {243.9 {300.0
TC | 171.1 |154.6™156.7 170.3 (181.5 [203.6 |241.3 (287.1 {322.0 [372.5
50| OC | 167.8 |139.4 [126.6 [108.7 [ 99.3 | 94.2 | 88.0 [ 88.1 | 95.6 {119.4
IC 6.0 24.0 ( 51.9 | 88.0 [137.5 [183.1 |223.7 [271.1 [274.9 [122.5
TC |[173.8 163.4™178.5 196.7 236.8 [277.3 {311.8 [359.2 |370.5 [241.9
Table 15: Average Total Cost over 1000 12-Month Periods

with respect to C'=Ch2? Where M=0
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The results tabulated above are shown as in the following figure:
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Figure 33: Average Total Cost over 1000 12-Month Periods
with respect to C'=Ch2 Where M=0
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constant:iu,=0,u,=20,g=0.7 and M=20

L | 02| C h

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 .10.9 1.0
515 (10| oC{ 163.2 143.7 [128.6 [114.9 {105.5 | 93.5 | 91.3 {82.5 | 79.1} 73.3
IC 17.0 {31.1 | 42.4 | 52.0/62.2 | 70.1 | 80.4 | 87.6 | 97.8 |103.6
TC | 180.2 [174.8 171.0 [166.9 [167.7 163.6™171.7 170.1 177.0 [176.9
30| OC | 167.4 147.6 127.2 117.8 [111.2 |101.9 | 92.7 | 92.8 | 88.3 | 88.0
IC 17.8 | 35.1 | 51.6 | 69.4|77.3|92.2 [105.6 [106.9 {118 3 [130.3
TC | 185.2 [182.7 [178.8%187.2 [188.5 [194.1 [198.3 [199.7 06.6 [218.3
50| OC | 167.3 |144.9 |129.4 [119.0 [118.3 [108.7 (110.9 [126.1 173.3 |195.8

IC 19.5 |1 40.3 | 65.1 | 76.9 | 87.9 [107.7 [109.3 { 92.9 | 29.0 0
TC | 186.8 [185.2 [184.5™194.9 06.2 [216.4 £20.2 [219.0 [202.3 [195.8
3120 |10| oC | 164.2 143.0 127.7 |116.7 [104.8 [103.1 | 93.0 | 90.2 | 85.9 | 82.1
IC 24.0 [ 46.9 | 60.8 { 66.8 | 74.1 | 79.7 | 87.3 | 94.1 | 98.8 |105.6
TC | 188.2 [189.9 [188.5 [183.5 178.97182.8 [180.3 [184.3 [184.7 |187.7
30| OC | 171.0 |148.4 [129.8 120.5 [117.8 |111.1 [102.4 {106.3 |101.8 |101.4
IC| 23.1)38.6|52.966.0)73.1|85.6|95.2{97.2([108.2{117.0
TC | 194.1 [187.0 182.7™186.5 [180.9 [196.7 [197.6 [203.5 [210.0 [218.4
50| OC | 162.0 (148.1 [137.6 |128.0 |122.2 [117.9 {123.0 {138.0 ]176.9 [193.9

IC 21.3139.0154.3|71.6|79.4]93.4|95.1 (80.2] 23.4 0
TC | 183.3™187.1 [191.9 f199.6 201.6 [211.3 218.1 218.2 {200.3 |193.9
{5 10| OC| 167.3 [144.4 [121.4 (113.3 | 93.8 | 86.4 | 85.4|75.8| 75.1}76.0
IC 22.1 | 48.4 74;5 105.8 [138.6 |171.4 208.1 [246.4 [288.2 330.0
TC | 189.4%192.8 [195.9 219.1 232.4 [257.8 293.5 [322.2 [363.3 [406.0
30 OC| 167.9 (139.6 |124.6 [112.7 |103.5 | 96.4 | 85.8 [ 92.9 | 93.8 {100.4
IC 25.2 | 567.5 { 95.4 [131.6 [175.2 {210.4 260.8 [285.5 [316.5 [324.3
TC | 193.1%197.1 [220.0 [244.3 £78.7 [306.8 [346.6 [378.4 [410.3 }424.7
50| OC | 164.8 [145.7 |121.2 |116.7 110.1 |119.1 |138.8 {149.1 (193.3 [195.2

IC 26.9 | 64.0 {105.8 [149.4 [186.9 [203.5 | 97.6 | 70.9 0 0
TC | 191.7209.7 [227.0 [266.1 [297.0 [322.6 [236.4 [220.0 [193.3 [195.2

Table 16: Average Total Cost over 1000 12-Month Periods
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with respect to C'=Ch2 Where M=20




Different from C'=Ch, as shown in the table above, when
C'=Ch2, the smallest values of the average total costs simulated
in these numerical examples are always found in the Exploratofy
Investigation case rather than in the Fuli Investigation case.
Furthermore, when C increases, h, which gives minimum total costs,
decreases. For this reason, a decision maker must determine the
optimal value of h by simulating how parameters influence the
average total costs.

Note that the author obtained similar results to the above
results in the cases, g=0.5 and g=0.9.

The results obtained in this simulation analysis are

summarized as in the following proposition:

{PROPOSITION 31

The value of h that gives minimum total costs will almost
exist when C'=Ch and will always exist when C'=Ch2, in
the range of the Exploratory Investigation. Furthermore,
when the value of C increases, the value of h that gives
minimum total costs will decrease. Therefore, if the Full
Investigation cost C is large, there is no need to spend
as much money as the Full Investigation cost C for the
Exploratory Investigation to attain minimum total costs,
although the total costs that will be incurred by the
Exploratory Investigation may be larger than total costs
by the Full Investigation.
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CHAPTER EIGHT

CONCLUSION

1) Overview

After the Second World War, there was an increasing awareness
of the view that accounting information should be appropriate to
the needs of users, especially managers. Thus management
accounting became recognized such that accounting information
could be widely used in both managerial planning and managerial
control.

With this recognition, management accounting placed the
notion of responsibility accounting at the very center of the
management control system. Responsibility accounting was confirmed
to the principles of management which emphasized lines of
authority and responsibility. These principles had a substantial
impact on organizational design, and it was argued that the
responsibility accounting system should be founded upon the
company's organization structure.

Although managerial control system, such as standard costing
and budget control, had been developed in the early decades of the
twentieth century, the responsibility accounting developed
rapidly, in the vanguard of advances in management accounting. Its
development and popularity was a major step in the movement from

‘cost control to managerial control which typified the emergence of
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management. The use of standard costs and/or budgets to quantify
plans for responsibility centers and the measurement of
performance in terms of variances therefrom became the main method
of managerial control.

Due to the recognition for managerial control, new methods of
evaluating variances were derived from the economic framework.
This implies economic decisions on whether or not the process
should be investigated.

The previous studies were classified into three kinds
according to how control variables were established. The first was
the Deéision Theoretic Approach in which the control variable
was denoted as a Bayesian posterior probability with respect to
opportunity costs. The second was the Bayesian Dynamic Programming
Approach, in which the control variable was denoted as a Bayesian
posterior probability relating whether to investigate a Cost
Process with respect to operating costs and investigation costs.
The third was the Markovian Approach in which the control variable
was denoted as a cost variance itself in order to decide whether
to investigate a Cost Process with respect to operating costs and
investigation costs. However, these approaches may entail trade-
offs with respect to the "best policy" as pointed out by
Magee(1976), Dittman and Prakash(1979) and other comparison
studies.

Accordingly, the present study does not discuss the

comparison between the proposed model and the above three
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approaches, because the simulation results of Magee(1976) show
that the differences between Dyckman's(1969) and Kaplan's(1969)
models may have little effect on the incremental cost savings; and
the Normal Form of this study and Extensive Form of Dyckman's |
model are mathematically equivalent and lead to identical results
whether the pre-experimental viewpoint or post-experimental
viewpoint is taken.

However, as pointed out in the Literature Review chapter, the
Markovian Approach has the problem that the existence of x* is
restricted within the condition 0<(1-g)K+I-gAu<gl and FI(X*)>((1-
g)K+I-gAu)/gl, and that x* is sought by minimizing the total cosf
function with respect to the trial and error method because the
total cost function is not easily differentiated. Also the Bayes
Dynamic Programming Approach has the problem that the models are
complex and have a higher solution cost.

Thus, this study concentrated on developing another form of
the Decision Theoretic Approach that can capture much of the
benefits obtainable from the other models. The control variable is
denoted as a cost variance itself in place of the Bayes posterior
probability used in the previous Decision Theoretic Approach
models.

Section 2 discusses, the relation between the proposed and
previous models, and the contribution from the proposed model

against the previous models.
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The limitations of the proposed model and further direction

are discussed in section 3.

2) The Results of the Proposed Model

This study concentrated on developing a new method, using a
Normél Form of Decision Theoretic Approach, and investigating the
relation betwgen the Full and Exploratory Investigation cases with
respect to investigation costs.

Thus, we can summarize the results and contributions from the
proposed model against the previous models as follows:

a) The proposed model provides a new method with respect to a
Normal Form of analysis according to the Decision
Theoretic Approach, and it shows how to determine the
investigating regions S, depending on the variance ratio
03/067 with respect to the cost variance x itself.
Therefore, this proposed model simply requires the
matching of a reported cost variance against a given
investigating region depending on the prior probability,
different from the Markovian Approach model having the
same critical control limit for every period. As a result,
this model has analytical merits because control actions
are sought within the sample space, while the Extensive
Form has a condensed meaning because it is discussed

within a [0,1] probability space.
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b) This study shows how the optimal set of processes to be
investigated in any period can be selected in N-Cost
Processes with each cost process being treated
independently of the others. This differs from the model

of N-Cost Processes by Dyckman(1969).

¢) This study developed a Exploratory Investigation model as
an extension of the Full Investigation model with respect

to the Normal Form of Bayesian analysis.

d) The numerical anal&sis can seek the lower or upper bound
of the prior probability, the critical value for
determining when a Cost Process should be never or always
investigated. Therefore one can partially determine
whether or not to investigate according to the prior

probability as shown in the numerical analysis.

e) The results simulated in the numerical analysis chapter
are summarized as follows:
The value of h that gives minimum total costs will almost
exist when C'=Ch and will always exist when C'=Ch2, in the
range of the Exploratory Investigation. Furthermore, when
C increases, the value of h, which gives minimum total
costs, will decrease. Therefore, if the Full Investigation

cost C is large, there is no need to spend as much money
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as the Full Investigation cost C for the Exploratory
Investigation to attain minimum total costs, although the
total costs that will be incurred by the Exploratory
Investigation may be larger than total costs by the Full
Investigation. For this reason, a decision maker must
determine the optimal value of h by simulating how

parameters influence the average total costs.

3) Limitations and Further Direction

This study was set up based on the assumption that an
accounting report did not change the behavior of a second party.
Thus, as discussed in the Motivation section of chapter one,
further investigation into the Decision-Influencing case when the
accounting report changes the behavior of a second party, should
, be‘undertaken.

This study also showed that the sample space with respect to
the investigating region was split into three parts under the case
that 0,%#0,. Thus Bayesian investigating region differs from the
two-parts-investigating region of Magee's(1976) study and Dittman
and Prakash's(1978) model. However, Dittman and Prakash(1979)
showed that Markovian control allegedly performed almost as well
as Bayesian optimal contol unless the in-control cost had at least
a moderately large coefficient of intrusion and a substantially

greater dispersion than the out-of-control cost. This is due to
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the fact that Markovian two-parts control differs from Bayesian
three-parts control. Additionally, Magee(1976) found that the
differences between Bayesian-optimal control and two-standard-
deviations control were not terribly large. However, these were
based only on the case when 0,=0,, therefore the case when g,#0,

should be analyzed.
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APPENDIX A: Properties of Likelihood Ratio, f(x!8,)/f(x!8,)

A(x)= £(x16,)/£(x18,)= (0,/0,)exp{(-1/2)[((x-u;)2/a})~
((x-uv,3>2/02)1}.
If we consider logA(x) instead of A(x), then
logh(x)= 1log(0,/0,)~-(1/2)L((x-1,)2/03)-((x-1u,)2/03)1].
If we calculate the first derivative of A(X) with respect to Xx,
then d(logA(x))/dx= [(03-0%)x/0%031-[(n,0%-u,0%)/0%0%].
When d(logh(x))/dx=0, then x=u, +(u,-u,)0%}/(0%-0%)=
u,+(u,-u,)03/(0%2~-02), and the maximum or minimum value of A(X)
with respect to x is (0,/0,)expl(u,-u,)2/2(0%-063>1. However, if
0%=02(i=1,2), then dA(x)/dx= (-(u,-u1,)/02)expl(-(Uy-U,) (2x~
(u;+u,))/2021<0. Thus A(xX) with respect to x is a monotone
decreasing function.
If we calculate the second derivative of A(x) with respect to

X, the operating of taking the derivative of A(X) twice can be
shown as follows: '
Let A(x) denote f(x). Then
logf(x)= logA(x)
-=> d(logf(x))/dx= d(logh(x))/dx
=> £'(X)/f(x)= d(logA(x))/dx
=> f'(x)= [d(logA(x))/dx]1f(x)
=> df'(x)/dx= f"(k)=[d(d(1ogk(x))/dx)/dx]f(x)+[d(logk(x))/dx]f'(X)
[d(d(logA(x))/dx)/dxIA(x)+[d(logA(x))/dxIZA(X)
A(x){[-(0%-0%)/0%031+[(~(03-0%2)x/0%03)-((u,0%-u,0%)/0%03)12}.

If 03>0%, then f£"(u,+0%2(u,-1,)/(03-0%))
ACu, + (03 (u,-u,)/(03-0%2)))[-(0%-0%2) /6203 1<0.

If 0%2<0%}, then f"(u,+03(u,-u,)/(0%-0%))
AQu, + (02 (4, -u,)/(c%-0%)))[-(0%-0%)/0%0%1>0.
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Thus, if 0%>0%, then A(x) with respect to x is a convex
function that has a minimum value (0,/0;)expl-(u,-u,)2/2(0%-03)]1
when x= u,+1{(u,-u,)0%/(03-02)!.

If 0%<03, then A(x) with respect to x is a concave function
that has a maximum value (d,/d,)expl(k,-u,)2/2(d3-02)]
wvhen x= u,-i(u,-1,)0%/(03-03)!.
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APPENDIX B: Developing the Objective Function in N Cost Processes

- of the Full Investigation Case

Min ZE[Q(G(Xj,yj):Bj)(l-yj)]
= Mi 307238 . =Y.
in Y{EI[Q(&(x yJ) BJ)Isjz(xJ)(l yl)] +
E[&(G(x )Y ); e B (x.)(1-y.>1}
Sj1 J

Mi .,Y.):0, . -y.
in{ ZE[Q(G(XJ yJ) eJ)ls.z(xJ)(l yJ)] +

8(xX.,v.):0, . -y,
YE[Q¢( (xJ yJ) GJ)Isjl(xJ)(l yJ)J}

Min 2(6(x.,y.);B, . -y. +
in {YECQ( (xJ v5) BJ)ISjZ(xJ)(l yJ)]
Q2(6(x.):;8, .
YELQ( (x,) GJ)ISjl(xJ)]}
the j that satisfies the above equation is equivalent to
the following equation:

Min .E.E 6(x.,y.);8. . Y.
in Jgp [ (XJ yJ) BJ)Isj2(XJ)(1 yJ)J

Min E,{0€8(x;,¥,238,,01 (, (¥ )(1-y IPIx,8S,,168,,1PI8,, 1+

3’7 {0 7§ J J
26(x,,¥,); e 1)1{1}(yJ)(1 y)PIx =S §1IPI8;, 1+
QC6(x,¥238,,0T o) (¥ ) (1= yJ)P[xJSS 2.9 2 IPIO,, 1+
QC8(x;,¥;)58,,01 11 (¥ ) (1-y IPIx =S, 2.9 21P18,1}

= Minjgp{g<a1;ejl>1{o}(yJ)(l Y OPIX25,,16,,1P[8;, 1+
ﬂ(aQ;BjI)I{l)(YJ)(l yJ)P[x (€S 2-83,]P[811]+
9(31;952)1(0}(yj)(1 y;)PIx;® 2 IP[8;, 1+
2(a;38;,)1 ) 1=y OPIx, SSjZIBjZJP[BjZJ}

t..a(..o(—a(—

(ay &Y
= Min E,9(a,38,,)1 ) (v) (1-y IPIX, 5,16 ,1PIB ;]

= Minjgpﬁ(al;sz)(l—yj)P[ijszi jzlP[szl
= Max;E,9(a,i0;,)PIX 85,18, 1P[8,,1y,
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APPENDIX C: Developing the Generalized Posterior Probability

n(B, 1X; eeeeaX )
R I

For every natural number n,

posterior probability, n(ellxl,...,xn)

= [1+08(x 10, (1-g)/1(x 18,)g1+[£(x_18,)f(x _ 18,)(1-8)
/f(xniel)f(xn_liel)g2]+...+[f(xn:82)...f(xziez)(l—g)

/f(xnﬁel)...f(xzzel)gn_1]+[f(xn=82)...f(xl!82)(1-Hg)
/E(x 18,).. . £(x,18,)mg" 1]},

[Proof]

For n=1,

m(B, 1x,)=£f(x,10,)ng/lf(x,16,)ng +f(x,16,)(1-ng)]1(by Bayes formula)
=[1+£(x,10,) (1-ng)/£(x,10,)ng 1 '

For n=2,
M(O, 1Xy ,X,)=£(X,10,)n(0, Ix,)8/[£(X,10,)n(8, ix,)g+
£(x,18,)(1-n(8, 1x,)8)1(by the Bayes formula)
=[1+£(X,10,) (1-m(0, 1x,)g)/£(x,!16,)n(8, ix,)g]"
=[1+£(x,10,)(1-8)/£f(x%,18,)8+
£(X,18,) £(x,16,) (1-ng)/f(%,10,)f(x,18,)ng2]"

1

1

For n=k, we assume that n(ellxl,...,xk)
= f(xklel)n(elle,...,xk_l)g/[f(xklel)n(el:xl,---,xk,l)g+

f(xkiez)(1~n(81:xl,...,xk_l)g)] (by Bayes formula)

= [140£0x,18,) (1-g)/£(x, 10, )1+ 1£(x, 18,0 £ (X, _ 18,) (1-8)
/f(xklel)f(xk_l%81)g2;+...+[f(xk%82)...f(x2!82)(1—g)
/ECx 181) .. E(X, 188" T IHIE(x,10,) .. £(X,10,) (1-T8)

K.i-1 k
/f(xktel)...f(xlkel)ng 1] .
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Then for n=k+1, ”(91=X1"-"Xk+1)

EEAC SR L IR EC PR S SINRIRIS SO F-VA % KC SRR L PRE AT SRS S0) -4

f(x) . 18,2(1-7(B, Ixy,...,%.)8)] (by Bayes formula)

1

SO+ E(xy, 10,) (1-m(B Xy, ey X, )&/ E(X,, 10 IM(B 1X; .0, )E]

1 1 ' -1
=[1-f(xk+1382)/f(xk+1.81)+f(x .82)/f(xk+1581)n(81.xl,...,x )gl

K+1 k

[1-fCx,, 10,)/80x, 18 ) +E(x,, 18,)/f(x,, 18)g%
(1+0£(x,18,) (1-8)/£(x, 18,81+ [£(x, 18,0 £(x, _ 18,) (1-&)
[£(x, 18,0 £ (x, 18,0821+, . +[£(x,16,)...£(x,16,) (1-g)
£k, 18,0 .. £(x,18,08" N1+ 0£(x, 16,) ... £(x,18,) (1-7g)
/£(x,18,) ... £(x,18,)mg") 17",

(1+0£0x, 18,0 (1-8)/f(x,, 18,081+ (x,  18,)£(x,18,)(1-&)
FE(Xy, 1810 E(X) 18,0820+, +[E(x,, 18,)...f(X,16,)(1-8)
/f(xk+1:el)...f(xz:el)gk1+:f(xk+l:ez>...f(x1:e§)(1—ng>
/ECx,, 18,) ... £(x, 18 mg" 1] 7E,

We show that n(ellxl,..;,x ) is valid for n=k+1 if it is valid

k+1
for n=k. Thus by mathematical induction, the generalized posterior

probability, n(eltxl,...,xn) is true for all natural numbers n.
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APPENDIX D: Developing the Objective Function in N Cost Processes

of the Exploratory Investigation Case

Min ZE[Q(G(X 'Y ) e Y(1- Y; )1

=  Min Z{E[Q(é(x ,y )3 e I (xJ)(l-yj)] +
j2
ELR(6(X;,y ;2301 (x.)(1-y.)1)
Sj1 J
= M‘ 29 s ; 'y e - 3
in{ ZE[Q(&(XJ vy GJ)Isz(xJ)(l vyl ¢
ZE[Q(G(xj,yj);Bj)Isjl(xj)(l-yj)l}
= Mi ' .3 .)50. . =Y.
in {ZEtsz(é(xJ yJ) BJ)Isz(xJ)(l yJ)] +
ZE[Q(é(xj);Gj)Isjl(xj)]}

the j that satisfies the above equation is equivalent to
the following equation:
Min jng[Q(d(xj,yj);E)j)Isjz(xj)(l—yj)]
= Min £ {0¢8(x;,v,):8, 1210y (V52 (1-y IPIX;2S,,18,,IP[8;, 1+
Q(G(x y )3 8 1)I{l}(y.)(l-y )P[xjasjz.ejIJP[8j1]+
Q(é(xJ,yJ) wl.GJZ)I{O}(y Y(1-y . )*
Plw, 10, 2]P[x
Sl(d(xj,yj);wl-ej )I{l}(y )(1-y.
P[wl.e 2 JPLx,
ﬁ(é(xj,yj);wz.ej )I{O)(y Y(1-y.
P[w2.8 2 JPIX, SSjZIszlP[8j2]+
Q(é(xj,yj);wz.ejz)l{l}(y Y(1-y . )%
PIw,!8,,1PIx£5,,18,,1P[8,,1)

52 1PI6,, 1+
i
[ES,218
) %

§21PI8,, 1%

hhl—at—al—a(—-l—n
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Minjgp{ﬂ(al;ejl)l{0}(yj)<1—yj)chjssj2:ej,JP[ej11+
2(2,3585,)1 1, (V) (1-y IPIX;25,,18,, P8, 1+
QCay3wy 105,01 6 (¥ ) -y )P[w,.e 2]P[xj 216, 1P[8,,1+
R€ay 3wy 10,01 4, (¥) (1-y OPLv, 18, JP[stsJZ.e JP[eJ 1+
3 (1-y IPLw, B 2 1PIX28,,18,, 1P, 1+
J J

Q(al;wziejz)l{o}(y
(2,5, 185501 1y (5> (1-y OPIW, 18, IPIx; sst.e j21P18; 2]}

Cute Cte Cte Lo

Minjgp{ﬂ(al:wllejz)l
9(ay 3wy 18,01

(¥;)(1-y OPIW, 18, IPIX 25, 16,,1P[8;,1+
- '8, .ES ., 18, .5
(¥ (1-y IPIW, 18, IPIX =8, lepzelzl}

{0}
{0}

Minjgp{a(al;wl:ejz)(l-yj)P[wl:ejZJP[xjasjz=9j2]P[ej21+
Q(al;wziejz)(l-yj)P[wz:8j2]P[ijSj2EGjZJPEBjZJ}

Maxjgp{a(al;wl:ejz)P[wl:ejZJP{xjasjz: §21PI8;, 1+
(a3, 18;5)PIW, 18, IPIX =5, ! j2]P[9j2]}yj
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APPENDIX E: Developing the Generalized Prior Probability in the

Case of Exploratory Investigation

For every natural number n,

prior probability in the beginning of period n+l, n‘(Glixl,...,xn)

LN CIRD SRS L ACHED SRR SV

[n(el%xl,...,xn)+n(82:x1,...,xn)(l—h)]

[1+[f(xn:82)(1—g)(l—h)/f(xn=81)g]+[f(x :ez)f(xn_liez)(l—g)(l—h)2
/f(x 18, )f(x _ lB Yg2l+. +[f(x 18,). f(xziez)(l—g)(l—h)n !
/f(x 18 )...f(x2.8 yg"~ ‘]+[f(x .e ). f(xl:ez)(l—ng)(l—h)n
/f(xn'e Yoo £(x,18,)mg"1]17!

[Proof]
For n=1, n'(B,ix,)=m(8,{x,)/In(B,ix,)+n(6,1x,)(1-h)]
=£(x, 18, )ng/[£(x,168,)ng +f(x,16,)(1-ng)(1-h)]
(by Bayes formula)
=[1+£(x,168,) (1-ng) (1-h)/£(x,!8, ng 1 .

For n=2, n'(8,1x,,x,)= M(B, 1Xy X, )/ I8, 1%, , X, )+M (6, 1%, ,%,) (1-h) ]
=f(x, 16,07 (8, 1x,)8/[£(x,!8,)7' (8, Ix,)g+
f(X,16,)(1-n'(8,;1xX,)g)(1-h)] (by the Bayes formula)
=[1+£(X,16,) (1-7' (8, 1x,)8) (1-h)/£(x,18,)n' (8, Ix,)g1 "
=[1+£(X,18,) (1-g) (1-h)/£(x,!6,)g+
£(x,10,)£(x,18,) (1-1g) (1-h)2/£(x,!6,)f(x,18,)ng2] '

For n=k, we assume that n'(ellxl,...,xk)

=n(813x1,...,xk)/[n(81:xl,...,xk)+n(82:xl,...,xk)(l—h)]
[1+[f(xk!82)(l-g)(l—h)/f(x 18, )g]+[f(x 18, )f(x .9 )(1-g)(1-h)?2
/E(x, 18, £(x, | 18,082 1%, . . +[£(x, 10, )...f(lee y-g) (- h)k !
/f(inel)...f(X2 8, )gk 1]+[f(X .8 2)...£(x,18,)(1-nwg) (1- h)

/f(xklel)...f(xliel)ng 117!

k
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Then for n=k+1, n'(8,ix,,. )

"’Xk+1

= M8, X, ... VACICIEE SN S R I CI S ) (1-h)1

RS L

= ECxp, 18T B IRy, X I8/ E(R, 1B M8 IX), L, X )8
’f(xk+l:82)(1—n’(81lxl,...,xk)g)(l—h)l (by Bayes formula)
=[1+f(xk+1l82)(1—n'(81:xl,...,x Yg) (1-h)

ygl1 !

k

/f(xk+1281)n'(81=x1,...,xk

[1-f(x,, 18,0 (1-h)/f(x,, 18,)+f(x

(1+0£(x,16,) (1-g) (1-h) /£ (x
/(% 16,01 (xy _ 1+
[£(x, 18,0 .. £(%,18,)8" '1+[£(x
/£(x,16,). .. £(x, 18, ngfy ] 7L,

k+1382)(1-h)/f(xk+1Iel)g*

:81)g1+[f(xk:ez)f(xk_l:82)(1—g)(i:?)2

k

k
11810821+ L+ [E(X18,). .. 1(X,16,)(1-8) (1-h)

1820+ - (%, 18,) (1-1g) (1-h)

k

[1+0fCx,, 18,0 (1-8) (1-h)/f(x,, 18,081+ [£(x,, 18,)£(x, 18;)(1-g)

(l—h);/f(xk+l!Bl)f(xklel)g2]+k..+[f(xk+1:82)...f(X2:82)(1—g)
(1—h)k£f<xk+l:e,)...f(xzzel)g ]+£f(xkil!82)...f(x1:82)(1-ng)
-7 /£y, 18 £(x, 108, 0mg 1],

We show that n'(813x1,...,x ) is valid for n=k+1 if it is valid

k+1
for n=k. Thus by mathematical induction, the generalized posterior

probability, n'(ellxl,...,xn) is true for all natural numbers n.
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APPENDIX F: Computer Program for the Property of Likelihood-

Ratio A(X)

Program NumericalAnalysisl;
{su+)
{This is a program to explain a property of

likelihood function, f(x!in control)/f(xiout of control)}
const

u2=20;
slmax=30;
Xmax=50;
s2max=30;
var .
sl,s2,x:integer;
y:real;
begin
writeln(lst,'s1':15,'s2':15,'x':15,'y':30);
writeln;
s1:=5;
while sl<=slmax do
begin
s2:=5;
while s2<=s2max do
begin
X:=-30;
while xX<{=xmax do
begin
y:=(s2/s1)%exp((-1/2)%(sqr(x/sl)-sqr((x-u2)/s2)));
writeln(lst,sl1:15,82:15,x:15,y:30:3);
X:=X+5;
end;
- 82:=82+5;
end;
sli=sl1+5;
end
end.
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APPENDIX G: Computer Program for the lower or Upper Bounds of

the Prior Probability in the Full

Investigation Case

Program NumericalAnalysislII;
{su+} .
{This is a program to explain an upper or lower bound
of the prior probability in the Full Investigation case}
const ’
u2=20;
a=0.98;
gmax=9;
cmax=60;
slmax=30;
s2max=30;
var
g,C,sl,s2:integer;
k,t,p,81,82,y:real;
function cost(gx:real;cx:integer):real;
begin
cost:=(u2/(cxx(l-a%xgx)))-1
end;
begin
writeln;
writeln; _
writeln(lst,'c':15,'g':15,'s1':15,'s2':15,'p':156);
writeln;
c:=10;
while c<=cmax do
begin
g:=5;
while g<{=gmax do
begin
sl:=5;
while sl<=slmax do
begin .
s2:=5;
while s2<=s2max do
begin
gli=g;
g2:=g1/10;
k:=cost(g2,c);
if k>0 then
begin
if s1<>s2 then
if S1<s2 then
begin
pi=k/(g2%(k+(s2/sl)*exp(sqr(u2)/(2%(sqr(s2)-sqr(sl))))));
writeln(lst,c:15,g22:15:2,s51:15,582:15,p:15:4);
end
else
begin
pPi=k/(g2%(k+(s2/sl)*exp(-sqr(u2)/(2%(sqr(sl)-sqr(s2))))));
writeln(lst,c:15,g2:15:2,s1:15,82:15,p:15:4);
end;
end;
if k<=0 then
begin
writeln(lst,c:15,g2:15:2,s1:15,s82:15, 'B<0(never investigate)'
end;
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s2:=52+5H;
end;
sl:=sl+5;
end;
g:=g+2;
end;
c:=c+10;
end
end.
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'ENDIX H: Computer Program for the Lower or Upper Bounds of

the Prior Probability in the Exploratory

Investigation Case When C'=Ch?

ygram NumericalAnalysisIII;

{$u+)

{This is a program to explain an upper or lower bounds
of the prior probability in the Exploratory Investigation
case when C'=Csqrh)}

ast

12=20;

3=0.98;

rmax=9;

max=60;

1max=9;

51max=30;

52max=30;

r

1,£,¢,81,s2:integer;

k,t,p,81,82,hl,h2,cl,c2:real;

function cost(gx,hx,cx:real):real;
begin

cost:=((u2/(1-axgx))-cx*xhx)/ (cx*hx)

end; ,

gin

writeln;

writeln(lst,'c':15,'ct':15,'g':15,'h':15,'s1':15,'s2':15,'p':15);

writeln;

c:=10;

while c<{=cmax do

while g<{=gmax do
begin
h:=5;
while h<=hmax do
begin
sl:=5; -
while sl1<=slmax do
begin
s2:=5h;
while s2<=s2max do
begin
gl:=g;
g2:=g1/10;
hl:=h;
h2:=h1/10;
cl:=c;
c2:=cl*sqr(h2);
k:=cost(g2,h2,cl);
if k>0 then
begin
if sl<{>s2 then
if S1<s2 then
begin
pi=k/(g2%(k+(s2/sl)*exp(sqr(u2)/(2x(sqr(s2)-sqr(sl1))))));
writeln(lst,c:15,c2:15:2,g2:15:2,h2:15:2,s1:15,82:15,p:15:4)
end
else :
begin 141



pP:=k/(g2x(k+(s2/sl)*exp(-sqr(u2)/(2*(sqr(sl)-sqr(s2))))));
writeln(lst,c:15,¢c2:15:2,g2:15:2,h2:15:2,s81:15,52:15,p:15:4);
end; :
end;
if k<=0 then
begin v
writeln(lst,c:15,c2:15:2,g2:15:2,h2:15:2,s81:15,s2:15,
'B!<0(never investigate)':30);
end;
s2:=82+5;
end;
sl:=sl+5;
end;
h:=h+2;
end;
g:i=g+2;
end;
ci=¢c+10;
nd
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APPENDIX I: Computer Program for Seeking an Investigating

Region S, in the Full Investigation Case

Program NumericalAnalysislIV;
{$u+)
{This is a program to explain how to seek an investigating
region in the Full Investigation case}
const
u2=20;
a=0.98;
gmax=9;
cmax=60;
slmax=30;
s2max=30;
pmax=10;
var
g,¢,81,s2,p:integer;
k,t,pl,p2,g1,g82,x,x1,x2,dis:real;
function cost(gx:real;cx:integer):real;
begin
cost:=(u2/(cx*x(l-axgx)))-1
end;
begin
writeln;
writeln(lst,'c':15,'g':156,'s1':15,'s2':15,
'‘p':lb,'x1':15,'x2':15);
writeln;
c:=10;
while c<=cmax do
begin
g:=5;
while g<{=gmax do
begin
sl:=5;
while sl<=slmax do
begin
s2:=5;
while s2<{(=s2max do
begin
p:=2;
while p<=pmax do
begin
gli=g;
g2:=g1/10;
Pli=p;
p2:=pl1/10;
k:=cost(g2,c);
if k>0 then
begin
if sl=s2 then
begin
X:=(u2/2)-(sqr(sl)/u2)*In((1-p2%g2)*k/ (p2%g2));
writeln(lst,c:15,22:15:2,81:15,s2:15,p2:15:2,x:15:4);
end
else
begin
if s1<s2 then
begin
dis:=sqr(u2*sqr(sl))-(sqr(s2)-sqr(sl))*(2%sqr(sl*s2)*
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In((slx(1-p2%g2)%k)/(s2*p2%g2))-sqr(sl)*sqr(u2));
if dis>0.0 then
begin
x1:=(-u2*sqr(sl)-sqrt(dis))/(sqr(s2)-sqr(sl));
X2:=(-u2x%sqr(sl)+sqrt(dis))/(sqr(s2)-sqr(sl));
writeln(lst,c:15,g2:15:2,s1:15,s2:15,p2:15:2,
xX1:15:4,x2:15:4);
end;
if dis=0.0 then
begin
xX:=(-u2%sqr(sl))/(sqr(s2)-sqr(sl));
writeln(lst,c:15,g2:15:2,s1:15,82:15,p2:15:2,%x:15:3);
end; '
if dis<0.0 then
begin
writeln(lst,c:15,g2:15:2,s1:15,82:15,p2:15:2,
'always investigate':20);
end
end;
if s1>s2 then
begin
dis:=sqr(u2*sqr(sl))-(sqr(sl)-sqr(s2))x((sqr(sl)*sqr(u2))-
2%sgr(slxs2)*1n((sl*(1-p2%g2)%*K)/(s2%p2%g2)));
if dis>0.0 then
begin
X1:=(u2%sqr(sl)~-sqrt(dis))/(sqr(sl)-sar(s2));
x2:=(u2%sqr(sl)+sqrt(dis))/(sqr(sl)-sqr(s2));
writeln(lst,c:15,g2:15:2,s1:15,82:15,p2:15:2,
x1:15:4,x2:15:4);
end;
if dis=0.0 then
begin
X:=(u2*sgr(sl))/(sar(sl)-sqr(s2));
writeln(lst,c:15,g2:15:2,s81:15,52:15,p2:15:2,x%x:15:3);
end;
if dis<0.0 then
begin
writeln(lst,c:15,g2:15:2,s1:15,s2:15,p2:15:2,
'never investigate':20);
end
end
end;
end;
if k<=0 then
begin
writeln(lst,c:15,22:15:2,s1:15,s2:15,p2:15:2, 'no solution':15);
end;
pi=p+2;
end;
s2:=82+5;
end;
sl:=sl+5;
end;
g:i=g+2;
end;
c:=c+10; 144



end
end.
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APPENDIX J: Computer Program for Seeking an Investigating

Region S, in the Exploratory Investigation Case

W¥hen C'=Ch?

Program NumericalAnalysisV;
{su+} ,
{This is a program to explain how to an investigation
region when C'=Csqr(h) in the Exploratory Investigation case}
const
u2=20;
a=0.98;
gmax=9;
cmax=60;
hmax=9;
slmax=30;
s2max=30;
pmax=8;
var
h,g,c,s1,s2,p:integer;
k,t,pl,p2,g1,g2,h1,h2,cl,c2,x,x1,x2,dis:real;
function cost(gx,hx,cx:real):real;
begin
cost:=((u2/(1l-a%*gx))*hx-cx)/cx
end;
begin
writeln;
writeln(lst,'c':15,'c!':15,'g':15,'h':15,'s1"':15,
's2':15,'p':15,'x1':15,'x2':15);
writeln;
c:=10;
while c<=cmax do
begin
g:=5;
while g<=gmax do
begin
h:=5;
while h<{=hmax do
begin
sl:=5;
while sl<=slmax do
begin
s2:=5;
while s2<{=s2max do
begin
p:=2;
while p<{=pmax do
begin
gl:=g;
g2:=g1/10;
pPl:=p;
P2:=pl1/10;
hl:=h;
h2:=h1/10;
cl:=c;
c2:=clxsqr(h2);
ki=cost(g2,h2,c2);
if sl=s2 then
begin
X:=(u2/2)-(sqr(sl1)/u2)*In((1-p2%g2)xk/ (p2*g2));
writeln(lst,c:15,¢2:156:2,g2:15:2,h2:15:2,s1:15,
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s2:15,p2:15:2,x:15:4);
end
else
begin
if s1<s2 then
begin ‘
dis:=sqr(u2*sqr(sl))-(sqr(s2)-sqr(sl))*(2%sqr(sl*xs2)x*
In((s1x(1-p2%g2)%Kk)/(s24p2%g2))-sqr(sl)*sqr(u2));
if dis>0.0 then
begin
x1:=(-u2%sqr(sl)-sqrt(dis))/(sqr(s2)-sqr(sl));
x2:=(-u2%sqr(sl)+sqrt(dis))/(sar(s2)-sqr(sl));
writeln(lst,c:15,¢c2:15:2,g2:15:2,h2:15:2,s1:15,
s2:15,p2:15:2,x1:15:4,x2:15:4);
end;
if dis=0.0 then
begin
X:=(-u2%sqr(sl))/(sqr(s2)-sqr(sl));
writeln(lst,c:15,c2:15:2,g2:15:2,h2:15:2,s1:15,
s2:15,p2:15:2,x:15:3);
end;
if dis<0.0 then
begin
writeln(lst,c:15,c2:15:2,g2:15:2,h2:15:2,s81:15,s2:15,
p2:15:2,'always investigate':20);
end
end;
if s1>s2 then
begin ‘
dis:=sqr(u2#*sqr(sl))-(sar(sl)-sqr(s2))*((sar(sl)*sqr(u2))-
2%sqr(sl*s2)*1n((sl1*x(1-p2%g2)%k)/(s2%p2%g2)));
if dis>0.0 then
begin
X1:=(u2%sqr(sl)-sqrt(dis))/(sqr(sl)-sqr(s2));
X2:=(u2*sqr(sl)+sqrt(dis))/(sqr(sl)~-sqgr(s2));
writeln(lst,c:15,¢c2:15:2,g2:15:2,h2:15:2,s1:15,s2:15,
p2:15:2,x1:15:4,%x2:15:4);
end;
if dis=0.0 then
begin
X:=(u2#%sqr(sl))/(sqr(sl)-sqr(s2));
writeln(lst,c:15,¢c2:15:2,g82:15:2,h2:1:2,s1:15,82:15,
p2:15:2,%x:15:3);
end;
if dis<0.0 then
begin
writeln(lst,c:15,¢c2:15:2,g2:15:2,h2:15:2,s1:15,s2:15,
p2:15:2, 'never investigate':20);
end
end
end;
pP:=p+3;
end;
s2:=52+5;
end;
sl:=s1+5; 147



end;
h:=h+2;
end;
g:=8+2;
end;
ci=c+10;
end
end.
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APPENDIX K: Computer Program

for Simulating the Relation

between the Full

and Exploratory Investigation

Cases

Program NumericalAnalysisVI;
{$u+)

{This is a program to simulate the relation between
the Full and Exploratory Investigation cases}

Const
U2=20;
g=0.7;
hMax=10;
CMax=50;
IMin=1;
Slmax=20;
S2max=20;
M=0;

Var
C,h,i,j,il,1l,sl,s2:integer;

hi,h2,c1,c2,p,21,k,kl,a,t,r,suml,rl,ic,x1,x2,TC,

f,dis,t1,t2,0c,0cl,icl,ic2,
begin

writeln(lst,'sl’:lO,'sZ':lO,’C':lO,'M':lO,'Partial

'h':10,'1':10,'0C"':
sl:=5;
while sl<=slmax do
begin
s2:=53
while s2<=s2max do
begin
C:=10;
while C<{=CMax do
begin
h:=3;
while h<=hMax do
begin
hl:=h;
h2:=h1/10;
Cl:=C;
C2:=C1*h2;
0C:=0;
0C1:=0;
IC1:=0;
IC2:=0;
TC1:=0;
TC2:=0;

for 1:=1 to 1000 do

begin

p:=13

i:=12;

1C:=0;

X2:=0;

TC:=0;

while i>=imin do

begin
ji=1;
gl:=1;
while j<=i
begin

gl:=g1x%g;

do

tcl,tc2:real;

c':10,
10,'1C':10,'TC':10);
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ji=j+l
end;
kl:=(U2%(1-g1))/(1-g);
k:=g(k1—M)*h2-C2)/CZ;
r:=random;
if r<=p%g then
begin
suml:=0;
for il:=1 to 12 do
begin
rl:=random;
suml:=rl+suml
end;
xX1l:=sl%(suml-6)
end
else
begin
suml:=0;
for il:=1 to 12 do
begin
rl:=random;
suml:=rl+suml
end;
xX1:=82%(suml-6)+u2
end;
if sl=s2 then
begin
if K>0 then
begin :
t:=(u2/2)-(sqr(sl)/u2)*1n{(1-p*g)*k/(p*g));
if x1>=t then
begin
a:=random;
if a<=h2 then
begin
IC:=IC+C2+M;
p:=1
end
else
begin
IC:=IC+C2;
P:=1/(1+Exp((2%x1%u2-sqr(u2))/(2%sqr(sl)))*
((1-pxg)x(1-h2)/(p%g)))
end;
end
else
p:=1/(1+Exp((2%x1%u2-sqr(u2))/(2%sqar(s1)))*x((1-p*g)/(p*g)));
end
else
pP:=1/(1+Exp((2%x1%u2-sqr(u2))/(2xsqr(sl)))*((1-p*g)/(p*g)));
end
else
begin
fi=(sqr(x1%s2)-(sqr(xl1-u2)*sqr(sl)))/(2xsqr(sl*s2));
if £ > 80 then f:=80;
if £f ¢ -80 then f:=-80; 150



if s1<s2 then
begin
if K>0 then
begin . :
dis:=sqr(u2*sqr(sl))-(sqr(s2)-sqr(sl))*x(2%sgr(sl*s2)x*
In((sl#(1- p*g)*k)/(SZ*p*g)) sqr(sl*xu2));
if dis>0 then
begin
tl:=(-u2%sgr(sl)-sqrt(dis))/(sqr(s2)-sqr(sl));
t2:=(-u2%sqr(sl)+sqrt(dis))/(sqr(s2)-sqr(sl));
if (x1<=t1) or (x1>=t2) then
begin
a:=random;
if a<=h2 then
~begin
IC:=1C+C2+M;
p:=
end
else
begin
IC:=1C+C2;
p:~1/(1+(sl/sZ)*Exp(f)*((1 p*g)%*(1-h2)/(p%g)))
end;
end
else
P:=1/(1+(s1/82)*Exp(£f)*((1-p*g)/(p*g)));
end
else
begin
a:=random;
if a<=h2 then
begin
IC:=IC+C2+M;
p:=
end
else
begin
IC:=1C+C2;
P:=1/(1+(s1/s2)%((1-pxg)*(1-h2)/(p*g))*
Exp(£))
end;
end;
end
else
P:=1/(1+(s1/s2)*Exp(f)*((1-pxg)/(p*g)));
end;
if s1>s2 then
begin
if K>0 then
begin
dis:=sqr(u2*sqr(sl))-(sqr(sl)-sqr(s2))*(sqr(u2*sl)-
2%sqr(sl1%s2)*1n((sl*(1-p%xg)*K)/(s2%p*g)));
if dis>0 then
begin »
tl1:=(u2%sqr(sl)-sqrt(dis))/(sqr(sl)-sqr(s2));
t2:=(u2%sqr(sl)+sqrt(dis))/(sqr(sl)-sqr(s2));
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if (x1>=t1) or (x1<=t2) then
begin
- as=random;
if a<=h2 then
begin
IC:=IC+C2+M;
p:=1
end
else
begin
IC:=IC+C2;
P:=1/(1+(s1/s2)*Exp(f)*((1-p*g)*(1-h2)/(p*g)))
end;
end
else
p:=1/(1+(s1/s2)%Exp(£f)*((1-pxg)/(p*g)));
end
else
P:=1/(1+(s1/82)*Exp(£f)*((1-p%g)/(p*g)));
end
else :
P:=1/(1+(s1/82)*Exp(f)*((1-p*g)/ (p*g)));
end;
end;
if p<=0.001 then p:=0.001;
X2:=xX1+x2;
TC:=1C+x2;
ir=i-1
end;
0C:=0C+x2;
IC1:=IC1+IC;
TC1:=TC1+TC;
end;
0C1:=0C/1;
IC2:=1Cl1/1;
TC2:=TC1/1;
writeln(lst,S1:10,82:10,C:10,M:10,c2:10:2,h2:10:2,
1:10,0c1:10:2,ic2:10:2,tc2:10:2);
h:=h+1;
end;
C:=C+20;
end;
s2:=82+15;
end;
sl:=s81+15;
end
end.
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