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Abstract

Regression analysis is one of the important techniques in multivariate data

analysis in which the ordinary linear regression (OLR) model has been exten-

sively applied. However, OLR has limitations on applications. First, OLR

yields only a linear prediction and is sensitive to multicollinearity (collinear-

ity) in which multicollinearity (collinearity) can seriously deteriorate the pre-

diction. To eliminate the effects of multicollinearity (collinearity), we can

use principal component regression (PCR) or ridge regression (RR). How-

ever, those methods still yield only a linear prediction. To overcome the

limitations of linearity and multicollinearity (collinearity), we can use kernel

principal component regression (KPCR) or kernel ridge regression (KRR).

The basic idea of the KPCR (KRR) is that the set of given data is mapped

to a high dimensional space by a function, say ψ, and construct OLR model

in the high dimensional space. The important point is that the function ψ

is not explicitly defined. Instead of choosing ψ explicitly, we choose a ker-

nel function κ. Then, the KPCR (KRR) is obtained by using the kernel κ.

We refer to the procedures to obtain the nonlinear predictions by using the

kernel κ as the kernel method. However, the previous works of KPCR has

theoretical difficulty in the procedure to derive the prediction of KPCR. In

this dissertation, we revise the previous works of KPCR to overcome its limi-

tations. Afterwards, we compare the performance of the revised KPCR with

the Nadaraya-Watson regression. Our case studies showed that the revised

KPCR gives the better results than the Nadaraya-Watson regression.

Second, OLR model uses the assumption that random errors have equal

values. In some cases, however, we face the regression model with random

errors having unequal variances. We noticed that OLR uses ordinary least

squares (OLS) method to obtain the regression coefficients. In this regres-

sion model, the OLS estimator and hypothesis testing based on the OLS

estimator become invalid [14, 27, 30, 41, 44]. Weighted least-squares (WLS)

is widely used to overcome the limitations. However, applying WLS in linear

regression still yields only a linear prediction and there is no guarantee that

the effects of multicollinearity (collinearity) can be avoided. Therefore, we
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propose two methods, a combination of WLS and KPCR (WLS-KPCR) and

a combination of WLS and KRR (WLS-KRR), to eliminate the limitations

of linearity and multicollinearity (collinearity) in this regression model. The

basic idea of the WlS-KPCR (WlS-KRR) is that the set of given data is also

mapped to a high dimensional space and construct OLR model in the high

dimensional space. Then, we apply the WLS method to the OLR model.

Afterwards, WLS-KPCR (WLS-KRR) is obtained by applying the kernel

method. Our case study showed that WLS-KPCR and WLS-KRR give the

better results than that of the WLS method, the revised KPCR and KRR

for the regression model with random errors having unequal variances.

Third, we also noticed that the main disadvantage of the OLS method is

its sensitivity to outliers. If the outliers are contained in the observed data,

the predictions of OLR, PCR, RR, KPCR and KRR can be inappropriate to

be used. To eliminate the effects of outliers, we can use a robust regression

method. The M-estimation, which was first introduced by Huber in 1964,

is one of the most widely used methods for the robust regression, which

however yields only a linear prediction. Fomengko et al. [13] proposed a non-

linear robust prediction based on the M-estimation. Their method, however,

needs a specific nonlinear regression model in advance. In this dissertation,

we propose two nonlinear robust methods without the need of specifying a

nonlinear model in advance. Our proposed methods are a combination of M-

estimation and KPCR (R-KPCR) and a combination of M-estimation and

KRR (R-KRR). The basic idea of the R-KPCR (R-KRR) is that the set of

given data is also mapped to a high dimensional space and construct OLR

model in the high dimensional space. Then, we apply the kernel method and

M-estimation to the OLR model. Our case study showed that R-KPCR and

R-KRR give the better results than that of the robust linear regression based

on M-estimation, the revised KPCR and KRR for the set of data that are

contaminated by outliers.
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(blue, ĥ1ba = 4.5724) and the revised KPCR (red and r̃ = 8)

by applying the Gaussian kernel with % = 20 for the second

toy data. The black circles are the original training (testing)

data. The black dots are the original training (testing) data

by adding the random noise. The standard deviation of the

noise for the training data is 2 and for the testing data is 2:

(a) training data (b) testing data. . . . . . . . . . . . . . . . . 80

6.7 The linear regression (green), Nadaraya-Watson Regression

(blue) and the revised KPCR (red, % = 5 and r̃ = 19) for the

stock of cars in Netherland. The black circles are the given

data: (a) Nadaraya-Watson Regression with ĥ1ba = 62.8357
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Chapter 1

Introduction

In this chapter, we present ordinary linear regression (OLR) model that is

widely used in regression analysis. Then, we introduce the limitations of the

OLR model. Further, we present our motivations for considering of nonlinear

regression models which are used to overcome the limitations of the OLR

model. The purposes, results and the outline of this dissertation are also

presented.

1.1 Background

Regression analysis is a model of the relationship between a single ran-

dom variable Y , called the response variable, and independent variables

x1, x2, · · · , xp. The independent variables are called the regressor variables.

The regression analysis is one of the important techniques in multivariate

data analysis. The multiple linear regression has been extensively applied

in almost every field, including engineering, the physical and chemical sci-

ences, economics, management, life and biological sciences, and the social

sciences [27]. The ordinary linear regression (OLR) model with p regressors

is given by

Y = β0 +

p∑
j=1

βjxj + ε. (1.1.1)
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The parameters βj (j = 0, 1, . . . , p) are called the regression coefficients and

ε is a random variable called the random error. It is assumed that the values

of x1, x2, . . . , xp are chosen by an experimenter and βj’s are unknown.

Let Yi be the response variable on the ith observation (i = 1, 2, . . . , N),

xij ∈ R be the ith observation of regressor xj and εi be the random error on

the ith observation where R is the set of real numbers. We denote xi =

(xi1 xi2 . . . xip)
T , Y = (Y1 Y2 . . . YN)T , X̃ = (x1 x2 . . . xN)T ,

X =
(
1N X̃

)
, β = (β0 β1 . . . βp)

T , and ε = (ε1 ε2 . . . εN)T , where

sizes of xi, Y, X̃, X, β and ε are p×1, N ×1, N ×p, N × (p+1), (p+1)×1

and N × 1, respectively, and 1N = (1 1 . . . 1)T
N×1. The vector xT

i denotes

the transpose of the vector xi.

Then, the standard ordinary linear regression model corressponding to

Eq. (1.1.1) is written as

Y = Xβ + ε. (1.1.2)

It is assumed that the expected value of ε, denoted by E(ε), is equal to 0

and the variance matrix of ε, denoted by E(εεT ), is equal to σ2IN , where

the matrix IN denotes the N ×N identity matrix and σ2 ∈ R+ . Matrix X

is called the regression matrix.

The aim of regression analysis is to find the estimator of β, say β̂ =(
β̂0 β̂1 . . . β̂p

)T

, such that ‖ε‖2 is minimized. The solution can be found

by solving the following linear equations

XTXβ̂ = XTY. (1.1.3)

Eq. (1.1.3) is called the least squares normal equations. The procedure to

obtain β̂ by solving Eq. (1.1.3) is called the ordinary least squares (OLS )

method. Note that, XTX is a symmetric and positive semidefinite matrix,

implying that the eigenvalues of XTX are nonnegative real numbers [1]. We

say that collinearity exists on X if XTX is a singular matrix, i.e., if some

eigenvalues of XTX are zero [27, 41]. If collinearity exists on X then there

are infinitely many solutions of Eq. (1.1.3), which makes it difficult to choose

the “best” linear multiple regression model. This implication is known as

2



the effect of collinearity.

In addition, we say that multicollinearity exists on X if XTX is a nearly

singular matrix, i.e., if some eigenvalues of XTX are close to zero. In [22,

25, 30, 27, 41, 44], they considered the standard multiple linear regression

model where the column vectors of X are linearly independent. In this case,

the eigenvalues of XTX are positive real numbers, and the variance of β̂j for

j = 0, 1, . . . , p, denoted by V ar(β̂j), is given by

V ar(β̂j) = σ2((XTX)−1)j+1,j+1, j = 0, 1, . . . , p. (1.1.4)

where (XTX)−1 is the inverse of XTX. If multicollinearity exists on X then

the estimator of some βj can be have wrong sign [5], V ar(β̂j) can be a large

number and under the assumption that εi is normally distributed, the tests

for inferences βj (j = 0, 1, . . . , p) have low power and the confidence interval

can be large [44]. Therefore, it will be difficult to decide if a variable xj

makes a significant contribution to the regression. These implications are

known as the effects of multicollinearity.

After the observations are taken, we obtain the observed data correspond-

ing to Y. Let y = (y1 y2 . . . yN)T ∈ RN be the observed data correspond-

ing to Y and β̂∗ =
(
β̂∗0 β̂∗1 . . . β̂∗p

)T

∈ Rp+1 be the value of β̂ when Y

is replaced by y in the Eq. (1.1.3). Under the assumption that the column

vectors of X are linearly independent, we obtain

β̂∗ = (XTX)−1XTy. (1.1.5)

The prediction value of y, say ŷ, is given by

ŷ =
(
ŷ1 ŷ2 . . . ŷN

)T

:= Xβ̂
∗
, (1.1.6)

and the residual between y and ŷ is given by

ê =
(
ê1 ê2 . . . êN

)T

:= y − ŷ. (1.1.7)

3



The root mean square error (RMSE ) by OLR is given by

RMSEolr :=

√
êT ê

N
, (1.1.8)

and the prediction by OLR is given by

folr(x) := β̂∗0 +

p∑
j=1

β̂∗j xj, (1.1.9)

where x = (x1 x2 . . . xp)
T ∈ Rp and folr is a function from Rp to R.

1.2 Motivations

As known that OLR model yields a linear prediction which has limitations

on applications since the most of real problems are nonlinear. Beside that,

OLR is sensitive to multicollinearity (collinearity) where existence of multi-

collinearity (collinearity) on matrix regression can seriously deteriorate the

prediction by OLR. To avoid the effects of multicollinearity (collinearity),

we can use principal component regression (PCR) or ridge regression (RR).

However, those methods also yield linear prediction. To overcome the limi-

tation of linearity, Rosipal et al. [33, 34, 35], Hoegaerts et al. [18] and Jade

et al. [20] used the kernel principal component regression (KPCR). However,

the proposed KPCR still has theoretical difficulty in the procedure to de-

rive the prediction of KPCR. Therefore, we revise the proposed KPCR to

overcome the difficulty.

In some cases, however, we face the regression model with variance of

random errors having unequal values in diagonal elements. Weighted least-

squares (WLS ) is a widely used to handle the limitations. However, applying

WLS in linear regression yields a linear prediction model and there is no guar-

antee that this method can avoid the effects of multicollinearity. Although

we can use KPCR and KRR to overcome the limitations of linearity and mul-

ticollinearity, KPCR and KRR can be inappropriate in this regression model.

Since KPCR and KRR were constructed on the different assumption, that
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is, the variance of random errors having equal values in diagonal elements.

We also noticed that the main disadvantage of the OLS method is its

sensitivity to outliers, i.e., residuals of the observed data are large numbers.

Outliers have a large influence on the prediction value because squaring resid-

uals magnifies the effect of the outliers. If the outliers are contained in the

observed data, the predictions of OLR, PCR, RR, KPCR and KRR become

inappropriate to be used, which are referred to as the effects of outliers, since

those methods were constructed based on OLS method.

1.3 Purposes and Results

Kernel-based approaches to classification and regression have become very

popular in recent years [56], following their introduction by Vapnik [47] and

their further development by many researchers, see for examples [9, 40]. The

basic insight gained by Vapnik was that problems that are difficult to solve

in low dimensions space and can be easier when the set of given data is

mapped to a high dimensional space, i.e., xi is mapped into F by using a

function ψ : Rp → F for i = 1, 2, . . . , N . The set F is called the feature

space which we assume is an Euclidean space of higher dimension than p, say

pF . The important point is that the function ψ is not explicitly defined. We

say that a function ϕ is a symmetric function if ϕ(wi,wj) = ϕ(wj,wi) for

every wi,wj ∈ Rp and is a positive semidefinite function if for every natural

number m, and for w1,w2, . . . ,wm ∈ Rp it gives rise to a positive semidefinite

matrix W = (ϕ(wi,wj))i,j=1,2,...,m (see [40] for the detailed discussion). The

function ψ is provided by another function1, say κ : Rp×Rp → R, where κ is

a symmetric, continuous and positive semidefinite function [10, 26, 39]. The

function κ is called the kernel function.

As mentioned before, the previous works of KPCR have theoretical diffi-

culties in the procedure to derive the prediction of KPCR. In this dissertation,

we revise the KPCR to overcome its limitations. The procedure to derive

our proposed KPCR is straightforward as the procedure of PCR, except that

1See Theorem 2.2.2 (Mercer Theorem).
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Table 1.1: The linear and nonlinear predictions in regression analysis which
are observed in this dissertation (Our proposed methods to obtain a nonlinear
prediction are marked by *).

Linear
Nonlinear
(Non Kernel)

Nonlinear
(Kernel)

OLS OLR Jukic’s Regression KPCR
Revised KPCR*

Ridge RR KRR
WLS WLS LR WLS KPCR*

WLS KRR*
Robust M-Estimation Famenko et al. [13] R-KPCR*

based on M-estimation R-KRR*
Nonparametric Nadaraya [28] and Watson [48]

some mathematical techniques are done to obtain a nonlinear prediction and

to avoid the effects of multicollinearity (collinearity). Another technique

to overcome the limitation of linearity and multicollinearity (collinearity) is

kernel ridge regression (KRR) which was studied by Hoegaerts et al. [18],

Rosipal et al. [33, 34, 35], and Saunders et al. [37]. The procedure to derive

the KRR is also straightforward as the procedure of RR with applying some

mathematical techniques to obtain a nonlinear prediction and to avoid the

effects of multicollinearity (collinearity). We refer to the procedures to obtain

the nonlinear predictions by using kernels as the kernel method.

However, if we face the regression model with variance of random errors

having unequal values in diagonal elements, KPCR and KRR become inap-

propriate to be used. Here, we propose two methods, which are a combination

of WLS and KPCR and a combination of WLS and KRR, to overcome the

limitation of KPCR and KRR in this regression model. These methods yield

nonlinear predictions and they can also avoid the effects of multicollinearity

(collinearity).

The predictions of OLR, PCR, RR, KPCR and KRR can also be inap-

propriate to be used when outliers are contained in the observed data. A

robust regression method is widely used technique to eliminate the effects of

outliers. M-estimation is one of the most widely used methods for the robust

regression, where the method yields a linear prediction. We noticed that
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Fomengko et al. [13] proposed a nonlinear robust prediction based on the

M-estimation; their method, however, needs a specific nonlinear regression

model in advance. In this dissertation, we propose two methods, which are a

combination of M-estimation and KPCR and a combination of M-estimation

and KRR, to obtain a nonlinear robust prediction without specifying a non-

linear model in advance. Furthermore, we compare the proposed methods

with some other methods. The linear and the nonlinear predictions in re-

gression analysis which are compared in this dissertation are given in Table

1.1.

We noticed that the Nadaraya-Watson regression is categorized as a ker-

nel regression in statistic community. In statistics, kernel regression is a

non-parametric technique to estimate the conditional expectation of a ran-

dom variable. In the Nadaraya-Watson regression, we do not need to map the

given data to a high dimensional space. The idea of prediction by Nadaraya-

Watson is given in the following manner. Let Y, X1, X2, . . . , Xp be the ran-

dom variables defined on a sample space Ω and (X1, X2, . . . , Xp)
T be the

p-dimensional random vector. We assume that xT
i , (i = 1, 2, ..., N), is the

observed data corresponding to (X1, X2, . . . , Xp)
T . Let g1(y,x) be the joint

probability density function of Y,X1, X2, . . . , Xp and g2(x) be the joint prob-

ability density function of X1, X2, . . . , Xp. The expected value of Y given the

value X = x is given by

E(Y |X = x) =

∫∞
−∞ yg1(y,x)dy

g2(x)
. (1.3.1)

We assume that g2(x) is not equal to zero. The unknown quantities on the

right hand side of (1.3.1) are g1(y,x) and g2(x). To estimate g1(y,x) and

g2(x), we employ the multiplicative kernel density estimators of g1(y,x) and

g2(x) which are given by

ĝ1(y,x) :=
1

Nhp
1h2

N∑
i=1

p∏
j=1

κ1(
xj − xij

h1

)κ1(
y − yi

h2

), (1.3.2)

7



and

ĝ2(x) :=
1

Nhp
1

N∑
i=1

p∏
j=1

κ1(
xj − xij

h1

), (1.3.3)

respectively; where κ1 is a function from R to R, y is a value of Y , h1 and

h2 are smoothing parameters of the multiplicative kernel density estimators.

We assume that ĝ2(x) is not equal to zero. The function κ1 is required to

satisfy the following conditions:

∫ ∞

−∞
κ1(u)d(u) = 1, (1.3.4)

∫ ∞

−∞
uκ1(u)d(u) = 0, (1.3.5)

and

κ1(u) ≥ 0 for any u ∈ R. (1.3.6)

Then, the prediction by Nadaraya-Watson is given by

m̂(x) :=

∫∞
−∞ yĝ1(y,x)dy

ĝ2(x)

=

∑N
i=1

∏p
j=1 κ1(

xj−xij

h1
)yi∑N

i=1

∏p
j=1 κ1(

xj−xij

h1
)

. (1.3.7)

The “best” value of h1 can be chosen by several methods, see example [31, 16].

Readers may consult other literatures for the detailed discussion, for example

[31, 16, 28, 29, 38, 48, 17].

1.4 Outline of This Dissertation

This dissertation is organized as follows: In Chapter 2, we present principal

component analysis and apply kernel method in principal component analy-

sis to obtain a nonlinear principal component analysis. In Chapter 3, we

present PCR and RR as linear methods for dealing with multicollinearity

(collinearity). We also consider WLS as a linear method for regression model

with variance of random errors having unequal values in diagonal elements
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and M-estimation as a linear method for dealing with the observed data that

are contaminated by outlier.

In Chapter 4, we show the theoretical difficulty of the previous works of

KPCR and revise it. We also propose a combination of WLS and KPCR

to overcome the limitation of WLS method, while a combination of M-

Estimation and KPCR as a nonlinear method for dealing with outliers is

given in the end of this chapter. In Chapter 5, we review KRR as an alter-

native nonlinear method for dealing with multicollinearity (collinearity). In

this chapter, we also propose a combination of WLS and KRR to overcome

the limitation of WLS method. Afterward, we present a combination of M-

Estimation and KRR as an alternative nonlinear method for dealing with

outliers.

In Chapter 6, we present some case studies in which our proposed methods

are compared with some other methods. Then, conclusions are presented in

Chapter 7. Finally, some important concepts of random vectors (matrices)

and proofs of some of theorems and lemmas are given in appendices.
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Chapter 2

Principal Component Analysis
and Kernel Principal
Component Analysis

In this chapter, we introduce principal components analysis (PCA) and a

nonlinear PCA which is obtained by applying kernel method in PCA. These

methods will be used to avoid the effects of multicollinearity and collinearity

in regression models. PCA is an orthogonal transformation of a coordinate

system. The new coordinate values by which we represent the data are called

the principal components [39]. PCA and the nonlinear PCA are introduced

in Subchapter 3.1 and Subchapter 3.2, respectively.

2.1 Principal Component Analysis

PCA is one of the most important techniques in multivariate data analy-

sis. It is often applied to multivariate data analysis, such as to visualize

the data structure, to detect outliers and to reduce the data dimensionality,

and many important methods based on PCA [55]. The idea of PCA was

firstly introduced by Pearson (1901) and developed independently by Hotel-

ing (1933) [22]. Even though the idea of PCA appeared about 100 years ago,

PCA research and applications are still very hot topics [11]. There have been

a number of survey papers and books that have reported on PCA algorithms.
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For examples, [8, 20, 24, 36, 45] have been published in the last decade.

Let us first start with a set of N centered data of X̃ which is given by

the following matrix

Z := (z1 z2 · · · zN)T = (IN − 1
N
1N1T

N)X̃,

where sizes of Z is N × p and X̃ is given in the previous chapter. Then, the

sample covariance matrix of Z is given by

C :=
1

N
ZTZ

=
1

N

N∑
i=1

ziz
T
i , (2.1.1)

which has the following important properties.

Lemma 2.1.1. C is a symmetric matrix.

Proof.

CT =
1

N
(ZTZ)T =

1

N
ZTZ = C.

Lemma 2.1.2. C is a positive semidefinite matrix.

Proof. Let d be a vector in Rp. Then,

dTCd =
1

N

N∑
i=1

dTziz
T
i d

=
1

N

N∑
i=1

(dTzi)
2 ≥ 0 (Since dTzi = zT

i d and real numbers).
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By using Theorem (A.9), the eigenvalues of C are nonnegative real numbers.

Let λ1, λ2, . . . , λp be the eigenvalues of C and a1, a2, . . . , ap be normalized

eigenvector of C corresponding to λ1, λ2, . . . , λp, respectively.

Lemma 2.1.3. Trace of C is given by

tr(C) =
1

N

p∑
i=1

λi. (2.1.2)

Proof. Since ZTZ is symmetric, ZTZ is orthogonally diagonalizable (by using

Theorem A.6). Hence, there exists Q ∈ Rp×p and QT = Q−1 such that

QTZTZQ = D where

D =




λ1 0 . . . 0

0 λ2 . . . 0

. . . . . . . . . . .

0 0 . . . λp




.

This implies ZTZ = QDQT = QDQ−1. Hence,

Tr(ZTZ) = Tr(QDQ−1)

= Tr(DQQ−1)

= Tr(D)

=

p∑
i=1

λi. (2.1.3)

Hence, we obtain that Tr(C) = 1
N

∑p
i=1 λi.

Let us choose an arbitrary observation of Z, say zk ∈ {z1, z2, . . . , zN} ⊆
Rp. Since Rp is a finite dimensional inner product space, Rp has an ortho-

normal basis. Let {Hl}l∈I be a collection of q dimensional subspaces which

Hl has orthonormal basis {ul1,ul1, . . . ,ulq} for every l ∈ I, where I is an
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index set. Let us choose an arbitrary H ∈ {Hl}l∈I and {u1,u1, . . . ,uq} be

the orthonormal basis for H. Moreover, we define

U := (u1 u2 . . . uq),

ẑk := ProjHzk =

q∑
i=1

(zT
k ui)ui,

yki := zT
k ui = uT

i zk, for i = 1, 2, . . . , q,

and construct the vector

yk =




yk1

yk2

·
·

ykq




=




uT
1

uT
2

·
·

uT
q




zk = UTzk.

Note that ẑk is the projection zk onto subspace H. Then, the vector ẑk can

now be written as

ẑk =

q∑
i=1

ykiui = Uyk = UUTzk. (2.1.4)

The aim of PCA is to find the best representation of zk (k = 1, 2, ..., N),

say Proj ˆ̂
H
zk, such that

N∑
i=1

‖zi − ProjĤzi‖2 ≤
N∑
i

‖zi − ProjHzi‖2 for H ∈ {Hl}l∈I (2.1.5)

or equivalent to

min
∑N

i=1 ‖zi − ProjHzi‖2 (2.1.6)

s.t. H ∈ {Hl}l∈I .
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Problem (2.1.6) can be written as

min
∑N

i=1 ‖zi −
∑q

k=1(z
T
k uk)uk‖2 (2.1.7)

s.t. uT
j uk =





1 if j = k, for j, k = 1, 2, . . . , q,

0 otherwise.
.

Let ri = zi −
∑q

k=1(z
T
k uk)uk = zi − ẑi. This implies that zT

i zi = (ẑi +

ri)
T (ẑi + ri) = ẑT

i ẑi + 2ẑT
i ri + rT

i ri. Since ẑi is an orthogonal projection of zi

into H, we have ẑT
i ri is equal zero (by Definition (A.3)). Hence

N∑
i=1

‖zi −
q∑

k=1

(zT
k uk)uk‖2 =

N∑
i=1

rT
i ri

=
N∑

i=1

zT
i zi −

N∑
i=1

ẑT
i ẑi. (2.1.8)

By using Lemma (2.1.3), we obtain that
∑N

i=1 zT
i zi = tr(

∑N
i=1 zT

i zi) =

tr(
∑N

i=1 ziz
T
i ) which implies

∑N
i=1 zT

i zi = N
∑N

i=1 λi. Hence, Eq.( 2.1.8)

becomes

N∑
i=1

rT
i ri = N

N∑
i=1

λi −
N∑

i=1

ẑT
i ẑi

= N

N∑
i=1

λi −
N∑

i=1

(UUTzk)
T (UUTzk)

= N

N∑
i=1

λi −
N∑

i=1

zT
k UUTUUTzk

= N

N∑
i=1

λi −
N∑

i=1

zT
k UIqU

Tzk

= N

N∑
i=1

λi −
N∑

i=1

zT
k UUTzk. (2.1.9)
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Since
∑N

i=1 zT
k UUTzk ∈ R, we have

N∑
i=1

zT
k UUTzk = tr(

N∑
i=1

zT
k UUTzk)

= tr(
N∑

i=1

(zT
k U)(UTzk))

= tr(
N∑

i=1

(UTzk)(z
T
k U))

= tr(
N∑

i=1

UTzkz
T
k U)

= tr(UT (
N∑

i=1

zkz
T
k )U)

= tr(UT (NC)U)

= Ntr(UT (C)U)

= N

q∑

k=1

uT
k Cuk. (2.1.10)

Hence, problem (2.1.7) becomes

min N(
∑N

i=1 λi −
∑q

k=1 uT
k Cuk) (2.1.11)

s.t. uT
j uk =





1 if j = k, for j, k = 1, 2, . . . , q,

0 otherwise,

which is equivalent to

N(
N∑

i=1

λi −max

q∑

k=1

uT
k Cuk) (2.1.12)

s.t. uT
j uk =





1 if j = k, for j, k = 1, 2, . . . , q,

0 otherwise.
.
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It is evident that N
∑N

i=1 λi is a constant. Hence, we solve the following

problem

max
∑q

k=1 uT
k Cuk (2.1.13)

s.t. uT
j uk =





1 if j = k, for j, k = 1, 2, . . . , q,

0 otherwise.
.

to obtain the optimal solution of problem (2.1.12). Let us consider the fol-

lowing theorem to obtain the optimal solution of the problem.

Theorem 2.1.4. The optimal solution of problem (2.1.13) is obtained by the

choice uk = ak.

Then, the k-th principal component of x, k = 1, 2, . . . , q, is given by

yk(x) := xTak, x ∈ Rp. (2.1.14)

Although PCA has been extensively applied in almost every discipline,

chemistry, biology, engineering, meteorology, etc., but there have also been

difficulties in its applications. Because PCA is a linear method and most real

problems are nonlinear. Applying PCA to nonlinear problems can sometimes

be inadequate [11]. To overcome such a drawback, various techniques have

been developed by Dong and McAvoy [11], Saegusa et al. [36] and so on.

Among the nonlinear techniques, Schölkopf et al. [39] have developed an

attractive algorithm because it does not involve nonlinear optimization, it is

as simple as the PCA, and it does not need to specify the number of principal

components prior to modeling compared to other nonlinear methods. The

technique is called the kernel principal component analysis (KPCA). In the

next subchapter, the detailed KPCA will be presented.
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2.2 Kernel Principal Component Analysis

Assume we have a function ψ : Rp → F , where F is the feature space

which we have assumed is an Euclidean space of higher dimension, say pF ,

than p. Then, we define Ψ =
(
ψ(x1) . . . ψ(xN)

)T

, C̃ := 1
N
ΨTΨ =

1
N

∑N
i=1 ψ(xi)ψ(xi)

T and K = ΨΨT , where sizes of Ψ, C̃ and K are N × pF ,

pF × pF and N × N , respectively. We assume that
∑N

i=1 ψ(xi) = 0. If F
is infinite-dimensional, we consider the linear operator ψ(xi)ψ(xi)

T instead

of the matrix C̃ [40]. The relation of eigenvalues and eigenvectors of the

matrices C̃ and K was studied by Scholkopf et al. [40]. However, we restate

it in the following theorem.

Theorem 2.2.1. [50, 51, 53] Suppose λ̂ 6= 0 and â ∈ F \{0}. The following

statements are equivalent:

1. λ̂ and â satisfy λa = C̃a.

2. λ̂ and â satisfy λNKb = K2b and a = ΨTb,

for some b =

(
b1 b2 . . . bN

)T

∈ RN \ {0}.

3. λ̂ and â satisfy λN b̃ = Kb̃ and a = ΨT b̃,

for some b̃ =

(
b̃1 b̃2 . . . b̃N

)T

∈ RN \ {0}.

Proof. See Appendix B.1.

Let p̂F be the rank of Ψ where p̂F ≤ min{N, pF}. It is well known that

the rank(Ψ) is equal to rank(K) and rank (ΨTΨ). Hence, the rank(K) and

rank(ΨTΨ) are equal to p̂F . As we see that the matrix K is symmetric and

positive semidefinite, implying that the eigenvalues of K are nonnegative

real numbers. Let λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃r̃ ≥ λ̃r̃+1 ≥ . . . ≥ λ̃p̂F
> λ̃p̂F +1 =

. . . = λ̃N = 0 be the eigenvalues of K and B̃ = (b̃1 b̃2 . . . b̃N) be the

matrix of the corresponding normalized eigenvectors b̃l of K. Then, let
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αl =
(
αl1 αl2 . . . αlN

)T

= b̃l√
λ̃l

and ãl = ΨT αl for l = 1, 2, . . . , p̂F . By

Theorem 2.2.1 we obtain

λ̃l

N
ãl = C̃ãl for l = 1, 2, . . . , p̂F

ãT
i ãj =





1 if i = j, for i, j = 1, 2, . . . , p̂F ,

0 otherwise,

or equivalent to

λ̃lãl = ΨTΨãl for l = 1, 2, . . . , p̂F

ãT
i ãj =





1 if i = j, for i, j = 1, 2, . . . , p̂F ,

0 otherwise.

Note that ΨTΨ has pF eigenvalues. Since the rank of ΨTΨ is equal to p̂F ,

then the remaining (pF − p̂F ) eigenvalues of ΨTΨ are zero eigenvalues. Let

λ̃h, (h = p̂F + 1, p̂F + 2, . . . , pF ), be the zero eigenvalues of ΨTΨ and ãh be

the normalized eigenvectors of ΨTΨ corresponding to λ̃k. Theorem (A.7)

ensures that ãl (l = 1, 2, . . . , p̂F ) and ãh (h = p̂F + 1, p̂F + 2, . . . , pF ) are

orthogonal. Hence, we have

λ̃hãh = ΨTΨãh for h = 1, 2, . . . , pF

ãT
i ãj =





1 if i = j, for i, j = 1, 2, . . . , pF ,

0 otherwise.

The eigenvectors ãh (h = 1, 2, . . . , pF ), however, cannot be found explicitly

since we do not know ΨTΨ explicitly. However, we can obtain the principal

component of ψ(x) corresponding to nonzero eigenvalues of ΨTΨ by using

the kernel method. The l-th principal component of ψ(x), l = 1, 2, . . . , p̂F ,
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is given by

ỹl(x) := ψ(x)T ãl

= ψ(x)TΨT αl

=
N∑

i=1

αliψ(x)T ψ(xi) for x ∈ Rp. (2.2.1)

Unfortunately, we do not know the term ψ(x)T ψ(xi) explicitly yet. To over-

come this limitation, we use the following theorem.

Theorem 2.2.2. (Mercer’s Theorem) [26, 39] For any symmetric, continuous

and positive semidefinite kernel ξ : Rp × Rp → R, there exists a function

φ : Rp → F such that

ξ(x,y) = φ(x)T φ(y) for x,y ∈ Rp.

By using Theorem 2.2.2, if we choose a continuous, symmetric and positive

semidefinite kernel κ : Rp × Rp → R then there exists φ : Rp → F such that

κ(xi,xj) = φ(xi)
T φ(xj). Instead of choosing ψ explicitly, we choose a kernel

κ and employ the corresponding function φ as ψ. Let Kij = κ(xi,xj). Hence,

we have

K =




K11 K12 . . . K1N

K21 K22 . . . K2N

. . . . . . . . . . . . . . . .

KN1 KN2 . . . KNN




,

and it is explicitly known now.

Furthermore, Eq. (2.2.1) can be written as

ỹl(x) =
N∑

i=1

αliκ(x,xi) for x ∈ Rp. (2.2.2)
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and called it the the l-th nonlinear principal components corresponding to κ.

The key difference between KPCA and PCA is in the extraction of princi-

pal components. For data X̃, the linear PCA can find at most p principal

components while the KPCA can find up to N principal components.

In summary, the following steps were necessary to compute the nonlinear

principal components : (1) compute the matrix K, (2) diagonalize matrix

K and construct αl = b̃l√
λ̃l

, (3) compute projection of a vector x onto the

eigenvectors ãl which is given by Eq. (2.2.1).
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Chapter 3

Principal Component
Regression, Ridge Regression,
Weighted Least Squares and
M-Estimation

We introduce principal component regression (PCR) and ridge regression

(RR) as linear methods for dealing with multicollinearity and collinearity.

PCR and RR will be presented in Subchapter 3.1 and Subchapter 3.2, re-

spectively. In Subchapter 3.3, we consider the regression model with variance

of random errors having unequal values in diagonal elements. In this sub-

chapter, we present weighted least-squares (WLS) which is a widely used

technique to this regression. Afterward, we consider the regression model

where the observed data are contaminated by outliers. In subchapter 3.4,

we present M-estimation which is a widely used technique to eliminate the

effects of outliers in the regression model.

3.1 Principal Component Regression

The standard centered multiple linear regression model corresponding to Eq. (1.1.2)

is given by

Yo = Zβ−0 + εo, (3.1.1)
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where Z = (IN− 1
N
1N1T

N)X̃, εo = (IN− 1
N
1N1T

N)ε, β−0 = (β1 β2 . . . βp)
T ,

Yo = (IN − 1
N
1N1T

N)Y and βj (j = 1, 2, . . . , p) are defined in Subchapter

1.1. Let p̂ be the rank of ZTZ where p̂ ≤ min{N, p}.
Since ZTZ is symmetric and positive semidefinite, the eigenvalues of ZTZ

are nonnegative real numbers. Let λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂r ≥ λ̂r+1 ≥ . . . ≥ λ̂p̂ >

λ̂p̂+1 = . . . = λ̂p = 0 be the eigenvalues of ZTZ and Â = (â1 â2 . . . âp)

be the matrix of the corresponding normalized eigenvectors âl of ZTZ. Then

ÂT = Â−1 and

ÂTZTZÂ = D̂,

where

D̂ =

(
D̂(p̂) O

O O

)
,

D̂(p̂) =




λ̂1 0 . . . 0

0 λ̂2 . . . 0

. . . . . . . . . . .

0 0 . . . λ̂p̂




,

and O is a zero matrix.

Using ÂÂT = Ip, we rewrite the model (3.1.1) as

Yo = Uω + εo, (3.1.2)

where U = ZÂ and ω = ÂT β−0. Let

U =
(
U(p̂) U(p−p̂)

)
and ω =

(
ωT

(p̂) ωT
(p−p̂)

)T

,

where sizes of U(p̂), U(p−p̂), ω(p̂), and ω(p−p̂) are N × p̂, N × (p − p̂), p̂ × 1

and (p− p̂)× 1, respectively. The model (3.1.2) can now be written as

Yo = U(p̂)ω(p̂) + U(p−p̂)ω(p−p̂) + εo. (3.1.3)

As we know that D̂ = ÂTZTZÂ = UTU, we obtain

UT
(p̂)U(p̂) = D̂(p̂),
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UT
(p−p̂)U(p−p̂) = O,

and

UT
(p̂)U(p−p̂) = O.

Since (U(p−p̂)ω(p−p̂))
TU(p−p̂)ω(p−p̂) = 0, we see that U(p−p̂)ω(p−p̂) is equal to

0. Thus, the model (3.1.3) reduces to

Yo = U(p̂)ω(p̂) + εo. (3.1.4)

Let us assume that λr+1, λr+2, . . . , λp̂ are close to zero. Let

U(p̂) =
(
U(r) U(p̂−r)

)
, ω(p̂) =

(
ωT

(r) ωT
(p̂−r)

)T

and

D̂(p̂) =

(
D̂(r) O

O D̂(p̂−r)

)
,

where

D̂(r) =




λ̂1 0 . . . 0

0 λ̂2 . . . 0

. . . . . . . . . . .

0 0 . . . λ̂r




,

D̂(p̂−r) =




λ̂r+1 0 . . . 0

0 λ̂r+2 . . . 0

. . . . . . . . . . . . . .

0 0 . . . λ̂p̂




,

and sizes of U(r), U(p̂−r), ω(r), and ω(p̂−r) are N × r, N × (p̂− r), r × 1 and

(p̂− r)× 1, respectively. The model (3.1.4) can now be written as

Yo = U(r)ω(r) + U(p̂−r)ω(p̂−r) + εo. (3.1.5)

Since D̂(p̂) = UT
(p̂)U(p̂), we obtain that
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UT
(r)U(r) = D̂(r),

UT
(p̂−r)U(p̂−r) = D̂(p̂−r)

and

UT
(r)U(p̂−r) = O.

It is evident that the estimator of ω(p̂−r), say ω̂(p̂−r) = (ω̂r+1 ω̂r+2 . . . ω̂p̂)
T ,

is given by

ω̂(p̂−r) = (UT
(p̂−r)U(p̂−r))

−1UT
(p̂−r)Yo = D−1

(p̂−r)U
T
(p̂−r)Yo. (3.1.6)

The terms UT
(p̂−r)Yo and UT

(p̂−r)Y are related by the following lemma.

Lemma 3.1.1. UT
(p̂−r)Y = UT

(p̂−r)Yo.

Proof. See Appendix B.2.

By using Lemma 3.1.1, we obtain

ω̂(p̂−r) = D̂−1
(p̂−r)U

T
(p̂−r)Y, (3.1.7)

and the variance of ω̂j is

V ar(ω̂j) = σ2(D̂−1
(p̂−r))jj, j = r + 1, . . . , p̂. (3.1.8)

Since λ̂r+1, λ̂r+2, . . . , λ̂p̂ are close to zero, the diagonal elements of D̂−1
(p̂−r) and

also the variance of ω̂j (j = r + 1, . . . , p̂) will be very large numbers. Thus,

we encounter the ill effect of multicollinearity in the model (3.1.5). To avoid

the effect of multicollinearity, we drop the term U(p̂−r)ω(p̂−r) as in [44] and

obtain

Yo = U(r)ω(r) + έo, (3.1.9)

where έo is a random vector influenced by dropping U(p̂−r)ω(p̂−r) in the

model (3.1.5). The model (3.1.9) shows that the effects of collinearity and
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multicollinearity on Z are avoided by using the orthogonal matrix Â1.

Note that UT
(r)U(r) = D̂(r), which is invertible. Hence, the estimator of

ω(r), say ω̂(r), is given as

ω̂(r) = (UT
(r)U(r))

−1UT
(r)Yo. (3.1.10)

Let yo = (IN − 1
N
1N1T

N)y ∈ RN be the observed data corresponding to

Yo. Let ω̂∗
(r) ∈ Rr be the value of ω̂(r) when Yo is replaced by yo in the

Eq. (3.1.10). By using the fact that UT
(r)y = UT

(r)yo (see Lemma 3.1.1), we

obtain

ω̂∗
(r) = (UT

(r)U(r))
−1UT

(r)y. (3.1.11)

Then the prediction value of y, say y̌, is given by

y̌ := ȳ1N + U(r)ω̂
∗
(r). (3.1.12)

where ȳ = 1
N
1T

Ny. Since

U =
(
U(r) U(p̂−r) U(p−p̂)

)
=

(
ZÂ(r) ZÂ(p̂−r) ZÂ(p−p̂)

)
,

we obtain U(r) = ZÂ(r). The Eq. (3.1.12) can now be written as

y̌ = ȳ1N + ZÂ(r)ω̂
∗
(r). (3.1.13)

The prediction by PCR model is given by

fpcr(z) := ȳ + zT Â(r)ω̂
∗
(r), (3.1.14)

where fpcr is a function from Rp to R, z =
(
x1 − x̄1 x2 − x̄2 . . . xp − x̄p

)T

1To detect multicollinearity (collinearity) on Z, we use the ratio λl/λ1 for l = 1, 2, . . . , p.
If λl/λ1 is smaller than, say < 1

1000 , then we consider that multicollinearity (collinearity)
exists on Z [27].
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and x̄j = 1
N

∑N
i=1 xij (j = 1, 2, . . . , p).

3.2 Ridge Regression

As mentioned before, we can use ridge regression to avoid the effects of mul-

ticollinearity and collinearity. Let us consider the standard ordinary multiple

linear regression model (1.1.2) again. The ridge estimator of β is found by

solving the following problem

min (Y − β)T (Y − β) + cβT β (3.2.1)

for some c > 0. Let β̂R(c) be the solution of problem (3.2.1). Then, we have

βR(c) = (XTX + cIp+1)
−1XTY. (3.2.2)

β̂R(c) is called the ridge estimator of β.

Furthermore, let β̂∗
R(c) =

(
β̂∗R0(c) β̂∗R1(c) . . . β̂∗Rp(c)

)T

∈ Rp+1 be the

value of β̂ when Y is replaced by y in the Eq. (3.2.2). Hence,

β̂∗
R(c) = (XTX + cIp+1)

−1XTy. (3.2.3)

Then, the prediction by RR is given by

fR(x) := β̂∗R0(c) +

p∑
j=1

β̂∗Rj(c)xj, (3.2.4)

where fR is a function from Rp to R. The appropriate c of the prediction by

RR can be found by the cross validation (CV) method2 or other methods.

2The detailed CV method is given in Subchapter 4.1
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3.3 Weighted Least Squares

In some cases, we face the regression model with variance of random er-

rors having unequal values in diagonal elements. The model is given by the

following regression model

Y = Xβ + ε, (3.3.1)

E(ε) = 0,

V ar(ε) = σ2
1V̀,

where V̀ = diag(1/w1 , 1/w2 , . . . , 1/wN ) and wi is a positive number for

i = 1, 2, . . . , N . The weight wi is estimated by using the data y and X, see

for example [14, 30, 27]. An implication of the assumption V ar(ε) = σ2V̀

are the OLS estimator and hypothesis testing based on the OLS estimator

of the variance matrix become invalid [14, 27, 30, 41, 44]. This limitation

is avoided by transforming the model (3.3.1) to a new model that satisfies

the assumption of the OLR model. This technique is known as the weighted

least-squares (WLS ) in linear regression.

Let L = diag(1/
√

w1 , 1/
√

w2 , . . . , 1/
√

wN ). It is evident that LT = L,

LLT = V̀ and L−1 = diag(
√

w1 ,
√

w2 , . . . ,
√

wN ). The above difficulties can

be avoided by multiplying the model with L−1. Then, we have

L−1Y = L−1Xβ + L−1ε. (3.3.2)

Let Y1 = L−1Y, X1 = L−1X and ε1 = L−1ε. It is easy to verify that

E(ε1) = 0 and V ar(ε1) = σ2IN . Hence, model (3.3.1) becomes

Y1 = X1β + ε1, (3.3.3)

E(ε1) = 0,

V ar(ε1) = σ2IN .

It is evident that the error ε1 in the model (3.3.3) satisfies the ordinary linear
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model assumption. Then, the least-squares function is

S(β) = ε1
T ε1, (3.3.4)

= (Y1 −X1β)T (Y1 −X1β),

= (Y −Xβ)T V̀−1(Y −Xβ).

To obtain the estimator of β in model (3.3.3), we solve

min (Y −Xβ)T V̀−1(Y −Xβ). (3.3.5)

with respect to β. Let β̂1 be the solution of the problem (3.3.5). Hence, β̂1

satisfies the least-squares normal equations

(XT V̀−1X)β̂1 = XT V̀−1Y. (3.3.6)

It is evident that if the row vectors of X are linearly independent, then the

row vectors of X1 are also linearly independent. Hence, X1
TX1 = XT V̀−1X

is invertible and we obtain

β̂1 = (XT V̀−1X)−1XT V̀−1Y. (3.3.7)

Here, β̂1 is called the WLS estimator of β. The covariance matrix of β̂1 is

V ar(β̂1) = σ2(XT V̀−1X)−1. (3.3.8)

Note that, elements of X can be chosen such that multicollinearity does not

exist in X. Unfortunately, eigenvalues of XTX are not equal to eigenvalues

of X1
TX1. Hence, there is no guarantee that multicollinearity does not exist

in X1.

Let β̂∗
1 =

(
β̂∗10 β̂∗11 . . . β̂∗1p

)T

∈ Rp+1 be the value of β̂1 when Y is

replaced by y in the Eq. (3.3.7). The prediction value of y1(= L−1y), say
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ŷ1, is given by

ŷ1 :=
(
ŷ11 ŷ12 . . . ŷ1N

)T

= X1β̂
∗
1, (3.3.9)

and the residual between y1 and ŷ1 is given by

e1 :=
(
e11 e12 . . . e1N

)T

= y1 − ŷ1. (3.3.10)

The RMSE for the WLS regression model is given by

RMSEwls :=

√
e1

Te1

N
(3.3.11)

and the prediction by the WLS-LR is given by

fwls(x) := β̂∗10 +

p∑
j=1

β̂∗1jxj, (3.3.12)

where fwls is a function from Rp to R.

As we see that WLS-LR yields a prediction in the linear form. Since the

most of real problems are nonlinear, the model has limitations on applica-

tions. Beside that, there is no guarantee that multicollinearity does not exist

in L−1X. Although we can use KPCR or KRR to overcome the limitations

of the linearity and multicollinearity, these methods can be inappropriate

in this regression model. Since these methods were constructed by the as-

sumption that the variance of random errors having equal values in diagonal

elements.

3.4 M-Estimation

Let us consider again model (1.1.2) again

Y = Xβ + ε, (3.4.1)
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Note that y is the observed data corresponding to Y. Hence, we have

y = Xβ + e, (3.4.2)

where e ∈ RN is a vector of residuals. Note that the aim of regression analysis

is to find the estimator of β, say β̂, such that the least-squares function,

S(β) = eT e

= (y −Xβ)T (y −Xβ), (3.4.3)

is minimized and the procedure to obtain the estimator of β by solving

Eq. (3.4.3) is called the OLS method.

The main disadvantage of the OLS method is its sensitivity to outliers,

i.e., residuals of the observed data are large numbers. Outliers have a large

influence on the prediction value because squaring residuals magnifies the

effect of the outliers. If the outliers are contained in the observed data, the

predictions of OLR, PCR, RR, KPCR and KRR become inappropriate to be

used since those methods were constructed based on OLS method.

Andrews, Carol and Ruppert; Hogg, Hubber, Krasker and Welsch; and

Rousseeuw and Leroy proposed robust regression methods to eliminate the

influence of the outliers [27]. M-estimation is one of the most widely used

methods for the robust regression but the method yields a linear prediction.

We notice that Fomengko [13] proposed a nonlinear robust prediction based

on M-estimation with specifying a nonlinear regression model in advance. In

many situations, however, a specific nonlinear regression model for a set of

data is unknown in advance. Hence, the proposed method has limitations in

applications.

M-estimation method can be considered as a modification of both re-

gression based on OLS and maximum likelihood estimation that eliminate

the effects of outlying observation on the regression estimation. Note that,

Eq. (3.4.3) can be written as
N∑

i=1

e2
i , (3.4.4)
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where ei = yi − x́T
i β and x́T

i =
(
1 xT

i

)
. In the M-estimation method, the

term e2
i is replaced by ρ(ei) where ρ is a function from R to R. Hence, we

must find the estimator of β such that the function

N∑
i=1

ρ(ei) =
N∑

i=1

ρ(yi − x́T
i β), (3.4.5)

is minimized. Consequently, RMSE of linear robust regression based on

M-estimation is calculated by using ρ(ei). The function ρ should be symmet-

ric (ρ(ei) = ρ(−ei)), positive (ρ(ei) ≥ 0), strictly monotonically increasing

(ρ(|ei1|) > ρ(|ei2|) if |ei1| > |ei2|), and convex on R. The most common choice

of ρ is the Huber function [3]

ρ(z) =





1/2z2 |z| ≤ k,

k|z| − 1/2k2 |z| > k,
(3.4.6)

where k ∈ R. Another choice of ρ is the Tukey biweighted function

ρ(z) =





1/6[(1− (1− z2)3] |z| ≤ 1,

1/6 |z| > 1.
(3.4.7)

To minimize Eq. (3.4.5), equate the first partial derivatives of ρ with

respect to βj (j = 0, 1, . . . , p) to zero. This gives the system of p+1 equations

N∑
i=1

ρ′(ei)x́
T
i = 0T , (3.4.8)

where ρ′ is the derivative of ρ. Then, we define the weight function

w(z) =





ρ′(z)/z if z 6= 0,

1 if z = 0,
(3.4.9)
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Then, Eq. (3.4.8) can be written as

N∑
i=1

(
ρ′(ei)

ei

)eix́
T
i =

N∑
i=1

wieix́
T
i = 0T , (3.4.10)

where wi = w(ei). Since ei = yi − x́T
i β, we obtain

N∑
i=1

wiyix́
T
i =

N∑
i=1

wix́
T
i βx́T

i . (3.4.11)

In matrix form, Eq. (3.4.11) becomes

XTWXβ = XTWy, (3.4.12)

where W = diag(w1, w2, . . . , wN) and called the weigthed least squares equa-

tions. Let β̂
∗
M be the solution of Eq. (3.4.12). Hence, we have

XTWXβ̂
∗
M = XTWy. (3.4.13)

The estimator β̂
∗
M is called the robust estimator of β. The weights, however,

depend upon the residuals, the residuals depend upon the estimated regres-

sion coefficients and the the estimated regression coefficients depends upon

the weights. An iterative solution, called iteratively reweighted least-squares

(IRLS ), is therefore required. The IRLS algorithm is given in the following

steps:

1. Select the initial estimator of β, say β̂
∗(0)
M , by OLS.

2. At each iteration t, calculate residual e
(t−1)
i = yi − x́T

i β
∗(t−1)
M , w

(t−1)
i =

w(e
(t−1)
i ) and W(t−1) = diag(w

(t−1)
1 , w

(t−1)
2 , . . . , w

(t−1)
N ).

3. Solve the new weighted least squares equations

XTW(t−1)Xβ̂
∗(t)
M = XTW(t−1)y.

Step 2 and Step 3 are repeated until the estimated regression coefficients

converges.

32



In general, the convergence of IRLS algorithm is not quarantee. However,

IRLS works well in practice [7, 19] and is frequently used in the computa-

tional statistic community [12, 32]. By adding some other assumptions, the

convergence proof of IRLS can be found in [54].
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Chapter 4

Nonlinear Regressions Based
on Kernel Principal
Component Analysis

In this chapter, we consider some nonlinear methods based on kernel principal

component analysis (KPCA). In Subchapter 4.1, we present kernel principal

component regression (KPCR) which was constructed to overcome the limi-

tations of PCR. We show that the previous works of KPCR have theoretical

difficulty in the procedure to derive the prediction by the KPCR. The re-

vised method of the KPCR will also be presented in this subchapter. In

Subchapter 4.2, we propose a combination of WLS and KPCR to overcome

the limitation of WLS method. Then, a combination of M-Estimation and

KPCR as a nonlinear method for dealing with outliers is given in Subchapter

4.3.

4.1 Kernel Principal Component Regression

4.1.1 The Previous Works

As mentioned before that PCR can be used eliminate the effect of multi-

collinearity and collinearity. However, PCR still yield predictions in the

linear forms. Since the most of real problems are nonlinear, PCR has limi-
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tations on applications. Rosipal et al. [33, 34, 35], Hoegaerts et al. [18] and

Jade et al. [20] used the KPCR to overcome the limitations. We refer their

KPCR as the previous KPCR.

They transformed xi (i = 1, 2, . . . , N) into F by using a function ψ̃ :

Rp → F . Note that the function ψ̃ is not explicitly known. Then, they

constructed two matrices

Ψ̃ = (ψ̃(x1) ψ̃(x2) . . . ψ̃(xN))T ,

K̃ = Ψ̃Ψ̃
T
,

where sizes of Ψ̃ and K̃ are N × pF and N × N , respectively. Roman et

al. [33, 34, 35], Hoegaerts et al. [18] and Jade et al. [20] defined the standard

multiple linear regression model in the feature space as the following model

Y = Ψ̃η + έ, (4.1.1)

where η =
(
η1 η2 . . . ηpF

)T

is a vector of regression coefficients in the

feature space and έ is a vector of random errors in the feature space which is

assumed that
∑N

i=1 ψ(xi) = 0, E(έ) = 0, E(έέT ) = δ2IN where δ2 ∈ R. They

denoted that µ1 ≥ µ2 ≥ . . . ≥ µr̂ ≥ µr̂+1 ≥ . . . ≥ µpF
be the eigenvalues of

Ψ̃
T
Ψ̃, %k = (%k1 %k2 . . . %kN)T be the normalized eigenvector of K̃ corre-

sponding to µk and V = (v1 v2 . . . vpF
) be the matrix of the correspond-

ing normalized eigenvectors vk of Ψ̃
T
Ψ̃ where vk = Ψ̃

T %k√
µk

(k = 1, 2, ....pF ).

It is evident that VVT = IpF
. They rewrote the model (4.1.1) as

Y = B$ + έ, (4.1.2)

where B = Ψ̃V and $ = ($1 $2 . . . $pF
)T = VT η. As we see that

the element ψ̃(xi)
Tvk of B is the k-th principal component of ψ̃(xi) for

k = 1, 2, ..., pF . By choosing a kernel function κ and applying Theorem 2.2.2,

they obtained that the element ψ̃(xi)
Tvk is equal to

∑N
j=1

%kj√
µk

κ(xi,xj) (i =

1, 2, . . . , N). They stated the estimator of $, say $̂ = ($̂1 $̂2 . . . $̂pF
)T ,

35



is given by

$̂ = (BTB)−1BTY (4.1.3)

= Λ−1BTY, (4.1.4)

where

Λ−1 =




1
µ̃1

0 . . . 0

0 1
µ̃2

. . . 0

. . . . . . . . . . . .

0 0 . . . 1
µ̃pF




.

Further, the estimator of η, say η̂, is written as

η̂ = V$̂ =

pF∑
i=1

µ−1
i viv

T
i ΨTY, (4.1.5)

and its corresponding covariance matrix as

cov(η̂) = δ2

pF∑
i=1

µ−1
i viv

T
i . (4.1.6)

It is evident from (4.1.6) that the influence of small eigenvalues can signif-

icantly increase the overall variance of the estimator of η. To avoid the effect

of multicollinearity, PCR deletes some eigenvectors of Ψ̃
T
Ψ̃ corresponding to

small eigenvalues µi. Let $̂∗ = ($̂∗
1 $̂∗

2 . . . $̂∗
pF

)T ∈ RpF be $̂ when Y

is replaced by y in the Eq. (4.1.3). Using the first r̂ vectors of v1,v2, . . . ,vpF
,

they stated that the prediction by the previous KPCR model is written as

gp−kpcr(x) =
N∑

i=1

aiκ(xi,x) + d, (4.1.7)

where g is a function from Rp to R, ai =
∑r̂

k=1 $̂∗
k

%ik√
µk

for i = 1, . . . , N ,

and d is a bias term. The term d will vanish when
∑N

i=1 yi = 0 as shown

in [18, 20, 33, 34, 35], where yi is the ith element of y. The number r̂ is
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called the retained number of nonlinear principal components (PCs) for the

previous KPCR model.

Note that the size of B (= Ψ̃V) is N × pF . We want to show the

theoretical difficulty of the previous KPCR. Let us consider in the cases

of N < pF and N ≥ pF . In the case of N < pF , the column vectors of

B are linearly dependent. It is well known that rank(BTB) = rank(Ψ̃
T
Ψ̃).

Since column vectors of B are linearly dependent, rank(BTB) < pF , and

hence some eigenvalues of Ψ̃
T
Ψ̃ are equal to zero. As a result, Eq. (4.1.3)-

(4.1.6) become undefined. Consequently, gp−kpcr(x) is undefined either. As

we see that we do not know ψ̃(xi)
Tvk̂ explicitly when µk̂ is equal to zero for

k̂ ∈ {1, 2, ..., pF} since vk̂ is not known explicitly either1. It implies that some

elements of B are not known explicitly. Hence, we cannot use the generalized

inverse of BTB to obtain the estimator of $2.

In the case of N ≥ pF , the column vectors of B can be linearly dependent,

which offers the difficulty that we have explained as above. In OLR model,

we can construct X so that it consists of linearly independent columns. In

the KPCR, however, the matrix B is defined by the function ψ̃ and ψ̃ is

provided implicitly by a kernel function κ. It is a difficult task to choose

the kernel function κ in order to make the column vectors of B be linearly

independent. Thus, the procedure to derive the KPCR suffers theoretical

difficulties.

We also note that they [34] used the CV technique for model selection

in the KPCR. In the CV technique, the original data are partitioned into L

disjoint subsets data where L is a positive integer. A subset data, say Gk

(k = 1, 2, . . . , L), is chosen as the validation for testing the prediction model

and the remaining L − 1 subsets data are used to estimate the regression

coefficients $. The CV technique uses the prediction error sum of squares

1KPCA can find up to N principal components corresponding to nonzero eigenvalues.
2$̂ = (BT B)−BT Y where (BT B)− is a generalized inverse of BT B. (BT B)− is said

to be a generalized inverse of BT B if BT B(BT B)−BT B = BT B.

37



(PRESS) to obtain the appropriate r̂. The PRESS of Gk is given by

PRESS(Gk) =

mk∑
s=1

(yk
s − gp−kpcr(x

k
s))

2, (4.1.8)

where xk
s and yk

s are contained in Gk and mk is the cardinality of Gk. Then,

PRESS(Gk) is summed over all the subsets data. As we see, the PRESS(Gk)

becomes undefined when gp−kpcr(x) is undefined or the PRESS(Gk) is difficult

to define when we have difficulty to obtain gp−kpcr(x). Hence, the procedure

based on CV to obtain the appropriate r̂ also suffers theoretical difficulty.

4.1.2 The Revised of KPCR

The standard centered multiple linear regression model in the feature space is

given by

Yo = Ψγ + ε̃, (4.1.9)

where γ =
(
γ1 γ2 . . . γpF

)T

is a vector of regression coefficients in the

feature space, ε̃ is a vector of random errors in the feature space and Yo

is defined in Subchapter 3.1. We assume E(ε̃) = 0, E(ε̃ε̃T ) = σ̃2IN where

σ̃2 ∈ R. Here, we cannot use the generalized inverse matrix to obtain the

estimator of γ since Ψ is not known explicitly. We refer to our proposed

KPCR as the revised KPCR.

As mentioned in Subchapter 2.2 that K is explicitly known by choosing

a kernel function κ and the rank of K is p̂F where p̂F ≤ min(N, pF ). The

eigenvalues of K are λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃r̃ ≥ λ̃r̃+1 ≥ . . . ≥ λ̃p̂F
> λ̃p̂F +1 =

. . . = λ̃N = 0, B̃ = (b̃1 b̃2 . . . b̃N) are the matrix of the corresponding

normalized eigenvectors b̃l of K, αl =
(
αl1 αl2 . . . αlN

)T

= b̃l√
λ̃l

and
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ãl = ΨT αl for l = 1, 2, . . . , p̂F . Then, we have

λ̃hãh = ΨTΨãh for h = 1, 2, . . . , pF

ãT
i ãj =





1 if i = j, for i, j = 1, 2, . . . , pF ,

0 otherwise.

Furthermore, we define Ã = (ã1 ã2 . . . ãpF
). It is evident that Ã is

an orthogonal matrix, that is, ÃT = Ã−1. It is not difficult to verify that

ÃTΨTΨÃ = D̃,

where

D̃ =

(
D̃(p̂F ) O

O O

)
,

D̃(p̂F ) =




λ̃1 0 . . . 0

0 λ̃2 . . . 0

. . . . . . . . . . . .

0 0 . . . λ̃p̂F




.

By using ÃÃT = IpF
, we rewrite the model (4.1.9) as

Yo = Ũϑ + ε̃, (4.1.10)

where Ũ = ΨÃ and ϑ = Ã
T
γ. Let

Ũ =
(
Ũ(p̂F ) Ũ(pF−p̂F )

)
and ϑ =

(
ϑT

(p̂F ) ϑT
(pF−p̂F )

)T

,

where sizes of Ũ(p̂F ), Ũ(pF−p̂F ), ϑ(p̂F ), and ϑ(pF−p̂F ) are N× p̂F , N×(pF− p̂F ),

p̂F × 1 and (pF − p̂F )× 1, respectively. The model (4.1.10) can be written as

Yo = Ũ(p̂F )ϑ(p̂F ) + Ũ(pF−p̂F )ϑ(pF−p̂F ) + ε̃. (4.1.11)
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As we see that D̃ = ÃTΨTΨÃ = ŨT Ũ, and we obtain

ŨT
(p̂F )Ũ(p̂F ) = D̃(p̂F ),

ŨT
(pF−p̂F )Ũ(pF−p̂F ) = O,

and

ŨT
(p̂F )Ũ(pF−p̂F ) = O.

Since (Ũ(pF−p̂F )ϑ(pF−p̂F ))
T Ũ(pF−p̂F )ϑ(pF−p̂F ) = 0, we see that Ũ(pF−p̂F )ϑ(pF−p̂F )

is equal to 0. Consequently, the model (4.1.11) reduces to

Yo = Ũ(p̂F )ϑ(p̂F ) + ε̃. (4.1.12)

Let us assume that λ̃r̃+1, λ̃r̃+2, . . . , λ̃p̂F
are close to zero. Let

Ũ(p̂F ) =
(
Ũ(r̃) Ũ(p̂F−r̃)

)
, ϑ(p̂F ) =

(
ϑT

(r̃) ϑT
(p̂F−r̃)

)T

and

D̃(p̂) =

(
D̃(r̃) O

O D̃(p̂F−r̃)

)
,

where

D̃(r̃) =




λ̃1 0 . . . 0

0 λ̃2 . . . 0

. . . . . . . . . . .

0 0 . . . λ̃r̃




,

D̃(p̂F−r̃) =




λ̃r̃+1 0 . . . 0

0 λ̃r̃+2 . . . 0

. . . . . . . . . . . . . . .

0 0 . . . λ̃p̂F




,

and sizes of Ũ(r̃), Ũ(p̂F−r̃), ϑ(r̃), and ϑ(p̂F−r̃) are N × r̃, N × (p̂F − r̃), r̃ × 1

and (p̂F − r̃)× 1, respectively. The model (4.1.12) can now be written as

Yo = Ũ(r̃)ϑ(r̃) + Ũ(p̂F−r̃)ϑ(p̂F−r̃) + ε̃. (4.1.13)
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The term Ũ(p̂F−r̃)ϑ(p̂F−r̃) in the model (4.1.13) will give us the ill effect of

multicollinearity. To avoid the effect of multicollinearity, we drop the term

Ũ(p̂F−r̃)ϑ(p̂F−r̃) and obtain

Yo = Ũ(r̃)ϑ(r̃) + ˜̃ε, (4.1.14)

where ˜̃ε is a random vector influenced by dropping Ũ(p̂F−r̃)ϑ(p̂F−r̃) in the

model (4.1.13). The model (4.1.14) shows that the ill effect of collinearity

and multicollinearity on Ψ are avoided by using the matrix Ã.

Note that ŨT
(r̃)Ũ(r̃) = D̃(r̃), which is invertible. Hence, the estimator of

ϑ(r̃), say ϑ̂(r̃), is given by

ϑ̂(r̃) = (Ũ
T

(r̃)Ũ(r̃))
−1Ũ

T

(r̃)Yo. (4.1.15)

The terms Ũ
T

(r̃)Yo and Ũ
T

(r̃)Y are related by the following lemma.

Lemma 4.1.1. ŨT
(r̃)Y = ŨT

(r̃)Yo.

Proof. See Appendix B.3.

Let ϑ̂
∗
(r̃) ∈ Rr̃ be the value of ϑ̂(r̃) when Yo is replaced by yo in the Eq. (4.1.15),

where yo is the observed data corresponding to Yo. By using Lemma 4.1.1,

we obtain

ϑ̂
∗
(r̃) = (Ũ

T

(r̃)Ũ(r̃))
−1Ũ

T

(r̃)y. (4.1.16)

The prediction value of y, say ỹ, is given by

ỹkpcr := ȳ1N + Ũ(r̃)ϑ̂
∗
(r̃). (4.1.17)

Since

Ũ =
(
Ũ(r̃) Ũ(p̂F−r̃) Ũ(pF−p̂F )

)
=

(
ΨÃ(r̃) ΨÃ(p̂F−r̃) ΨÃ(pF−p̂F )

)
,
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we obtain Ũ(r̃) = ΨÃ(r̃). The Eq. (4.1.17) can be now written as

ỹkpcr = ȳ1N + ΨÃ(r̃)ϑ̂
∗
(r̃). (4.1.18)

The prediction by the revised KPCR is given by

gkpcr(x) := ȳ + ψ(x)T Ã(r̃)ϑ̂
∗
(r̃), (4.1.19)

where gkpcr is a function from Rp to R. The elements of ψ(x)T Ã(r̃) =
(
ψ(x)T ã1 . . . ψ(x)T ãr̃

)
are the 1st, . . ., r̃th nonlinear principal compo-

nents corresponding to ψ, respectively, which are given by Eq. (2.2.2).

Since Ũ(r̃) = ΨÃ(r̃) and Ã(r̃) = (ã1 ã2 . . . ãr̃) = ΨTΓ(r̃), we obtain

that

Ũ(r̃) = ΨΨTΓ(r̃) = KΓ(r̃). (4.1.20)

where Γ(r̃) =

(
α1 α2 . . . αr̃

)
. Note that αl = b̃l√

λ̃l

and b̃l is a normal-

ized eigenvector of K for l = 1, 2, . . . , r̃. Hence, Ũ(r̃) is explicitly known now

and Eq. (4.1.16) becomes

ϑ̂
∗
(r̃) = ((KΓ(r̃))

T (KΓ(r̃)))
−1(KΓ(r̃))

Ty, (4.1.21)

the prediction value ỹkpcr can now be written as

ỹkpcr = ȳ1N + KΓ(r̃)ϑ̂
∗
(r̃), (4.1.22)
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and the prediction by the revised KPCR is written as

gkpcr(x) = ȳ +
N∑

i=1

ciκ(x,xi), (4.1.23)

where

(
c1 c2 . . . cN

)T

= Γ(r̃)ϑ̂
∗
(r̃). The number r̃ is called the retained

number of nonlinear PCs for the revised KPCR model.

4.1.3 Revised KPCR’s Algorithm

We summarize the procedure in 4.1.2 to obtain the prediction by the revised

KPCR.

Algorithm:

1. Given (yi, xi1, xi2, . . . , xip), i = 1, 2, . . . , N .

2. Calculate ȳ = 1
N
1T

Ny.

3. Choose a kernel κ : Rp × Rp → R.

4. Construct Kij = κ(xi,xj) and K = (Kij).

5. Diagonalize K.

Let λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃r̃ ≥ λ̃r̃+1 ≥ . . . ≥ λ̃N ≥ 0 be the eigenvalues

of K and b̃1, b̃2 . . . , b̃r̃, b̃r̃+1, . . . , b̃N be the corresponding normalized

eigenvectors of K.

6. Detect collinearity and multicollinearity on K.

Let r̃ be the retained number of nonlinear PCs such that r̃ = max{r|λr

λ1
≥

1
1000

}.
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7. Construct αl = b̃l√
λ̃l

for l = 1, 2, . . . , r̃ and Γ(r̃) =

(
α1 α2 . . . αr̃

)
.

8. Calculate U(r̃) = KΓ(r̃), ϑ̂
∗
(r̃) = (UT

(r̃)U(r̃)
−1UT

(r̃)y

and c =

(
c1 c2 . . . cN

)T

= Γ(r̃)ϑ̂
∗
(r̃).

9. Given a vector x ∈ Rp, the prediction by the revised KPCR is given by

gkpcr(x) = ȳ +
∑N

j=1 ciκ(x,xj).

Note that the above algorithm works under the assumption
∑N

i=1 ψ(xi) =

0. When
∑N

i=1 ψ(xi) 6= 0, we have only to replace K by KN := K − EK −
KE + EKE in Step 4, where E is the N ×N matrix with all elements equal

to 1
N

. Further, we diagonalize KN in Step 5 and work based on KN in the

subsequent steps.

4.2 Weighted Least Squares in Kernel Prin-

cipal Component Regression

4.2.1 WLS-KPCR

Let us consider the linear regression model in the feature space

Yo = Ψγ + ε2, (4.2.1)

E(ε2) = 0,

V ar(ε2) = σ2
2V̆,

44



where γ = (γ1 γ2 . . . γpF
)T is a vector of regression coefficients in the

feature space, ε2 is a vector of random errors in the feature space, Yo =

(IN − 1
N
1N1T

N)Y and V̆ = diag(1/w̆1 , 1/w̆2 , . . . , 1/w̆N ) and w̆i is a positive

number for i = 1, 2, . . . , N . The weight w̆i is estimated by using the data

yo = (IN − 1
N
1N1T

N)y and X. Let L̆ = diag(1/
√

w̆1 , 1/
√

w̆2 , . . . , 1/
√

w̆N ).

Hence, L̆T = L̆, L̆L̆T = V̆ and L̆−1 = diag(
√

w̆1 ,
√

w̆2 , . . . ,
√

w̆N ). Then, we

have

Zo = θγ + ε̃2, (4.2.2)

E(ε̃2) = 0,

V ar(ε̃2) = σ2
2IN ,

where Zo = L̆−1Yo, θ = L̆−1Ψ and ε̃2 = L̆−1ε2. Furthermore, we define two

matrices K̆ := θθT = L̆−1KL̆−1 and C̆ := 1
N

θT θ where K = ΨΨT . Note

that K is explicitly known by choosing a kernel function κ. The relation of

eigenvalues and eigenvectors of the matrices C̆ and K̆ are related by Theorem

2.2.1.

Let p̆F be the rank of θ where p̆F ≤ min{N, pF}. Since the rank of θ is

equal to the rank of K̆ and the rank of θT θ, then the rank of K̆ and the rank

of θT θ are equal to p̆F . Note that, K̆ is symmetric and positive semidefinite.

This implies that the eigenvalues of K̆ are nonnegative real numbers. Let

λ̆1 ≥ λ̆2 ≥ . . . ≥ λ̆r̆ ≥ λ̆ř+1 ≥ . . . ≥ λ̆p̆F
> λ̆p̆F +1 = . . . = λ̆N = 0

be the eigenvalues of K̆ and B̆ = (b̆1 b̆2 . . . b̆N) be the matrix of the

corresponding normalized eigenvectors b̆i (i = 1, 2, . . . , N) of K̆. Then, let
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ᾰl = b̆l√
λ̆l

and ăl = θT ᾰl for l = 1, 2, . . . , p̆F . By Theorem 2.2.1 we obtain

λ̆l

N
ăl = C̆ăl for l = 1, 2, . . . , p̆F

ăT
i ăj =





1 if i = j, for i, j = 1, 2, . . . , p̆F ,

0 otherwise,

or equivalent to

λ̆lăl = θT θăl for l = 1, 2, . . . , p̆F

ăT
i ăj =





1 if i = j, for i, j = 1, 2, . . . , p̆F ,

0 otherwise.

Since the rank of θT θ is equal to p̆F , then the remaining (pF − p̆F ) eigen-

values of θT θ are zero eigenvalues. Let λ̆k, (k = p̆F + 1, p̆F + 2, . . . , pF ), be

the zero eigenvalues of θT θ and ăk be the normalized eigenvectors of θT θ

corresponding to λ̆k. Hence, we have

λ̆lăl = θT θăl for l = 1, 2, . . . , pF

ăT
i ăj =





1 if i = j, for i, j = 1, 2, . . . , pF ,

0 otherwise.

Furthermore, we define Ă = (ă1 ă2 . . . ăpF
). It is evident that Ă is

an orthogonal matrix, that is, ĂT = Ă−1. It is not difficult to verify that

ĂT θT θĂ = D̆,
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where

D̆ =




D̆(p̆F ) O

O O


 ,

D̆(p̂F ) =




λ̆1 0 . . . 0

0 λ̆2 . . . 0

. . . . . . . . . . . .

0 0 . . . λ̆p̆F




.

and O is a zero matrix.

By using ĂĂT = IpF
, we can rewrite the model (4.2.2) as

Zo = Ŭϑ + ε̃2, (4.2.3)

E(ε̃2) = 0,

V ar(ε̃2) = σ2
2IN ,

where Ŭ = θA and ϑ = AT γ. Let

Ŭ =

(
Ŭ(p̆F ) Ŭ(pF−p̆F )

)
and ϑ =

(
ϑT

(p̆F ) ϑT
(pF−p̆F )

)T

,

where sizes of Ŭ(p̆F ), Ŭ(pF−p̆F ), ϑ(p̆F ), and ϑ(pF−p̆F ) are N× p̆F , N×(pF− p̆F ),

p̂F × 1 and (pF − p̆F )× 1, respectively. The model (4.2.3) can be written as

Zo = Ŭ(p̆F )ϑ(p̆F ) + Ŭ(pF−p̆F )ϑ(pF−p̆F ) + ε̃2, (4.2.4)

E(ε̃2) = 0,

V ar(ε̃2) = σ2
2IN .
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As we see that D̆ = ĂT θT θĂ = ŬT Ŭ, and we obtain

ŬT
(p̆F )Ŭ(p̆F ) = D̆(p̆F ),

ŬT
(pF−p̆F )Ŭ(pF−p̆F ) = O,

and

ŬT
(p̆F )Ŭ(pF−p̆F ) = O.

Since (Ŭ(pF−p̆F )ϑ(pF−p̆F ))
T (Ŭ(pF−p̆F )ϑ(pF−p̆F )) is equal to zero, we see that

Ŭ(pF−p̆F )ϑ(pF−p̆F ) is equal to 0. Consequently, the model (4.2.4) is simplified

to

Zo = Ŭ(p̆F )ϑ(p̆F ) + ε̃2, (4.2.5)

E(ε̃2) = 0,

V ar(ε̃2) = σ2
2IN .

Let us assume that λ̆r̆+1, λ̆r̆+2, . . . , λ̆p̆F
are close to zero. Let

Ŭ(p̆F ) =

(
Ŭ(r̆) Ŭ(p̆F−r̆)

)
, ϑ(p̆F ) =

(
ϑT

(r̆) ϑT
(p̆F−r̆)

)T

and

D̆(p̆F ) =




D̆(r̆) O

O D̆(p̆F−r̆)


,
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where

D̆(r̆) =




λ̆1 0 . . . 0

0 λ̆2 . . . 0

. . . . . . . . . . .

0 0 . . . λ̆r̆




,

D̆(p̆F−r̆) =




λ̆r̆+1 0 . . . 0

0 λ̆r̆+2 . . . 0

. . . . . . . . . . . . . . .

0 0 . . . λ̆p̆F




,

and sizes of Ŭ(r̆), Ŭ(p̆F−r̆), ϑ(r̆), and ϑ(p̆F−r̆) are N × r̆, N × (p̆F − r̆), r̆ × 1

and (p̆F − r̆)× 1, respectively. The model (4.2.5) can now be written as

Zo = Ŭ(r̆)ϑ(r̆) + Ŭ(p̆F−r̆)ϑ(p̆F−r̆) + ε̃2 (4.2.6)

E(ε̃2) = 0,

V ar(ε̃2) = σ2
2IN ,

It is evident that the estimator of ϑ(p̆F−r̆), say ϑ̆(p̆F−r̆) = (ϑ̆r̆+1 ϑ̆r̆+2 . . . ϑ̆p̆F−r)
T ,

is given by

ϑ̆(p̆F−r̆) = (ŬT
(p̆F−r̆)Ŭ(p̆F−r̆))

−1ŬT
(p̆F−r̆)Zo = D̆−1

(p̆F−r̆)Ŭ
T
(p̆F−r̆)Zo, (4.2.7)
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and the variance of ϑ̆j (j = r̆ + 1, . . . , p̆F − r̆) is

V ar(ϑ̆j) = σ2(D̆−1
(p̆−r̆))jj. (4.2.8)

Since λ̆r̆+1, λ̆r̆+2, . . . , λ̆p̆F−r̆ are close to zero, the diagonal elements of D̆−1
(p̆F−r̆)

and also the variance of ϑ̆j (j = r̆+1, . . . , p̆F − r̆) will be very large numbers.

Thus, we encounter the ill effect of multicollinearity in the model (4.2.6).

To avoid the effects of multicollinearity, we drop the term Ŭ(p̆F−r̆)ϑ(p̆F−r̆) as

in [44] and obtain

Zo = Ŭ(r̆)ϑ(r̆) + ˜̃ε, (4.2.9)

where ˜̃ε is a random vector influenced by dropping Ŭ(p̆F−r̆)ϑ(p̆F−r̆) in the

model (4.2.9). The model (4.2.9) shows that the ill effects multicollinearity

on Ŭ(p̆F ) are avoided by using the matrix Ă.

Note that ŬT
(r̆)Ŭ(r̆) = D̆(r̆), which is invertible. Hence, the estimator of

ϑ(r̆), say ϑ̆(r̆), is given by

ϑ̆(r̆) = (ŬT
(r̆)Ŭ(r̆))

−1ŬT
(r̆)Zo. (4.2.10)

Let zo = L̃−1(IN − 1
N
1N1T

N)y be the observed data corresponding to Zo and

ϑ̆
∗
(r̆) ∈ Rr̆ be the value of ϑ̆(r̆) when Zo is replaced by zo in the Eq. (4.2.10).

Hence

ϑ̆
∗
(r̆) = (ŬT

(r̆)Ŭ(r̆))
−1ŬT

(r̆)zo,

= D̆−1
(r̆)Ŭ

T
(r̆)zo.

(4.2.11)
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Since

Ŭ =

(
Ŭ(r̆) Ŭ(p̆F−r̆) Ŭ(pF−p̆F )

)
=

(
θĂ(r̆) θĂ(p̆F−r̆) θĂ(pF−p̆F )

)
,

we obtain Ŭ(r̆) = θĂ(r̆). As we see that Ă(r̆) = θT

(
ᾰ1 ᾰ2 . . . ᾰr̆

)
.

Hence,

Ŭ(r̆) = θθT Γ̆(r̆) = K̆Γ̆(r̆), (4.2.12)

where Γ̆(r̆) =

(
ᾰ1 ᾰ2 . . . ᾰr̆

)
. Since K is known explicitly, K̆ = L̆−1KL̆−1,

Γ̆(r̆) and Ŭ(r̆) are also known explicitly.

The prediction value of zo (= L̃−1(y− ȳ1N)), say z̆o (= L̃−1(y̆− ȳ1N)) is

given by

z̆o :=

(
ẑo1 ẑo2 . . . ẑoN

)T

= K̆Γ̆(r̆)ϑ̆
∗
(ř). (4.2.13)

The residual between zo and z̆o is given by

e2 :=

(
e21 e22 . . . e2N

)T

= zo − z̆o, (4.2.14)

and the prediction by the WLS KPCR is given by

gwls−kpcr(x) := ȳ +
N∑

i=1

c̆iκ(x,xi), (4.2.15)

where gwls−kpcr is a function from Rp to R and

(
c̆1 c̆2 . . . c̆N

)T

= L̆−1Γ̆(ř)ϑ̆
∗
(r̆).

The number r̆ is called the retained number of nonlinear PCs for the WLS

KPCR.
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4.2.2 WLS KPCR’s Algorithm

We summarize the procedure in 4.2.1 to obtain the prediction by WLS

KPCR.

Algorithm:

1. Given (yi, xi1, xi2, . . . , xip), i = 1, 2, . . . , N .

2. Calculate ȳ = 1
N
1T

Ny and yo = (IN − 1
N
1N1T

N)y.

3. Estimate V̆ and find L̆.

4. Calculate zo = L̆−1yo.

5. Choose a kernel κ : Rp × Rp → R.

6. Construct Kij = κ(xi,xj) and K = (Kij).

7. Construct K̆ = L̆−1KL̆−1.

8. Diagonalize K̆.

Let λ̆1 ≥ λ̆2 ≥ . . . ≥ λ̆r ≥ . . . ≥ λ̆p̆F
> λ̆p̆F +1 = . . . = λ̆N = 0 be the

eigenvalues of K̆ and b̆1, b̆2 . . . , b̆N be the corresponding normalized

eigenvectors of K̆.

9. Detect collinearity and multicollinearity on K̆.

Let r̆ be the retained number of nonlinear PCs such that r̆ = max{s| λ̆s

λ̆1
≥

1
1000

}.

10. Construct ᾰl = b̆l√
λ̆l

for l = 1, 2, . . . , r̆ and Γ̆(r̆) =
(
ᾰ1 ᾰ2 . . . ᾰr̆

)
.

11. Calculate Ŭ(r̆) = K̆Γ̆(r̆), ϑ̆
∗
(r̆) = D̆−1

(r̆)Ŭ
T
(r̆)zo

and c̆ =
(
c̆1 c̆2 . . . c̆N

)T

= L̆−1Γ̆(r̆)ϑ̆
∗
(r̆).

12. Given a vector x ∈ Rp, the prediction by WLS KPCR is given by

gwls−kpcr(x) = ȳ +
∑N

j=1 c̆iκ(x,xj).
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We also notice that the above algorithm works under the assumption

∑N
i=1 ψ(xi) = 0. When

∑N
i=1 ψ(xi) 6= 0, we have only to replace K by KN

in Step 7.

4.3 KPCR and M-Estimation in Robust Re-

gression Model

4.3.1 Robust Kernel Principal Component Regression

Let us consider again the standard centered multiple linear regression model

in the feature space

Yo = Ψγ + ε̃, (4.3.1)

where γ =

(
γ1 γ2 . . . γpF

)T

is a vector of regression coefficients in the

feature space, ε̃ is a vector of random errors in the feature space and Yo =

(IN − 1
N
1N1T

N)Y . Note that yo is the observed data corresponding to Yo.

Hence, we have

yo = Ψγ + ẽ, (4.3.2)

where ẽ ∈ RN is a vector of residuals.

As mentioned before that Ψ =

(
ψ(x1) . . . ψ(xN)

)T

, K = ΨΨT , C̃ =

1
N
ΨTΨ, p̂F is the rank of Ψ where p̂F ≤ min{N, pF}. The eigenvalues of

K are λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃ŕ ≥ λ̃ŕ+1 ≥ . . . ≥ λ̃p̂F
> λ̃p̂F +1 = . . . = λ̃N = 0

and B = (b1 b2 . . . bN) are the matrix of the corresponding normalized

eigenvectors bl of K. We have defined that αl = bl√
λ̃l

and ãl = ΨT αl

for l = 1, 2, . . . , p̂F . We have also defined that Ã = (ã1 ã2 . . . ãpF
),
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U(p̂F ) = ΨÃ and ϑ(p̂F ) = ÃT γ. Note that Ã is an orthogonal matrix, that

is, ÃT = Ã−1. Then, Eq. (4.3.2) reduces to

yo = U(p̂F )ϑ(p̂F ) + ẽ, (4.3.3)

where U(p̂F ) is explicitly known. Note that, U(p̂F ) = KΓ(p̂F ) and Γ(p̂F ) =(
α1 α2 . . . αp̂F

)
. Furthermore, model (4.3.3) is written as

yo = U(ŕ)ϑ(ŕ) + U(p̂F−ŕ)ϑ(p̂F−ŕ) + ẽ. (4.3.4)

If we only use the first ŕ vectors of α1,α2, . . . , αp̂F
, model (4.3.4) becomes

yo = U(ŕ)ϑ(ŕ) + ẽ1, (4.3.5)

where ẽ1 =

(
ẽ11 ẽ12 . . . ẽ1N

)T

is a vector of residuals influenced by drop-

ping the term U(p̂F−ŕ)ϑ(p̂F−ŕ) in model (4.3.4). Let U(ŕ) = (u1 u2 . . . uN)T .

Now, we apply M-estimation method for model (4.3.5) which minimize

N∑
i=1

ρ(ẽ1i) =
N∑

i=1

ρ(yoi − uT
i ϑ(ŕ)), (4.3.6)

with respect to ϑ(ŕ). To minimize Eq. (4.3.6), equate the first partial deriv-

atives of ρ with respect to ϑj (j = 1, . . . , p̂F ) to zero. This gives the system

of p̂F equations
N∑

i=1

ρ′(ẽ1i)u
T
i = 0T , (4.3.7)

54



Then, we define the weight function

w̃(z) =





ρ′(z)/z if z 6= 0,

1 if z = 0.

(4.3.8)

Now, Eq. (4.3.7) can be written as

N∑
i=1

(
ρ′(ẽ1i)

ẽ1i

)ẽ1iu
T
i =

N∑
i=1

w̃iẽ1iu
T
i = 0T , (4.3.9)

where w̃i = w̃(ẽ1i). Since ẽ1i = yoi − uT
i ϑ(ŕ), we obtain

N∑
i=1

w̃iyoiu
T
i =

N∑
i=1

w̃iu
T
i ϑ(ŕ)u

T
i . (4.3.10)

In matrix form, Eq. (4.3.10) becomes

UT
(ŕ)W̃U(ŕ)ϑ(ŕ) = UT

(ŕ)W̃yo, (4.3.11)

where W̃ = diag(w̃1, w̃2, . . . , w̃N). Let ϑ̂
∗
M(ŕ) = (ϑ̂∗M1 ϑ̂∗M2 . . . ϑ̂∗Mŕ

)T be

the solution of Eq. (4.3.11). Hence, we have

UT
(ŕ)W̃U(ŕ)ϑ̂

∗
M(ŕ) = UT

(ŕ)W̃yo. (4.3.12)

As mentioned before, the weights, however, depend upon the residuals, the

residuals depend upon the estimated regression coefficients and the estimated

regression coefficients depends upon the weights. Therefore, we use IRLS

algorithm to obtain ϑ̂
∗
M(ŕ).
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The prediction of y with the first ŕ vectors of α1,α2, . . . , αp̂F
, say ỹM , is

given by

ỹM := ȳ1N + KΓ(ŕ)ϑ̂
∗
(ŕ). (4.3.13)

The residual between y and ỹ is given by

ˆ̃e1 := y − ỹM , (4.3.14)

Then, the prediction by the R-KPCR with the first ŕ vectors of α1,α2, . . . , αp̂F

is given by

grkpcr(ŕ)(x) := ȳ +
N∑

i=1

c̃iκ(x,xi), (4.3.15)

where grkpcr(ŕ) is a function from Rp to R,

(
c̃1 c̃2 . . . c̃N

)T

= Γ(ŕ)ϑ̂
∗
M(ŕ).

The number ŕ is called the retained number of nonlinear PCs for the R-

KPCR.

4.3.2 R-KPCR’s Algorithm

We summarize the procedure in 4.3.1 to obtain the prediction by R-KPCR.

Algorithm:

1. Given (yi, xi1, xi2, . . . , xip), i = 1, 2, . . . , N .

2. Calculate ȳ = 1
N
1T

Ny and yo = (IN − 1
N
1N1T

N)y.

3. Choose a kernel κ : Rp × Rp → R and ρ : R→ R

4. Construct Kij = κ(xi,xj) and K = (Kij).

5. Diagonalize K.

Let λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃ŕ ≥ λ̃ŕ+1 ≥ . . . ≥ λ̃p̂F
> λ̃p̂F +1 = . . . =
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λ̃N = 0 be the eigenvalues of K and b1,b2, . . . ,bN be the corresponding

normalized eigenvectors of K.

6. Construct αl = bl√
λ̃l

for l = 1, 2, . . . , ŕ and Γ(ŕ) =
(
α1 α2 . . . αŕ

)

where ŕ ∈ {1, 2, . . . , p̂F}.

7. Calculate U(ŕ) = KΓ(ŕ).

8. Find estimator of ϑ(ŕ) by IRLS

(a) Select an initial estimator of ϑM(ŕ), say ϑ̂
∗(0)

M(ŕ), by OLS.

(b) At each iteration t, calculate residual ẽ
(t−1)
1i = yoi − uT

i ϑ̂
∗(t−1)

M(ŕ) ,

w̃
(t−1)
i =





ρ′(ẽ(t−1)
1i )

ẽ
(t−1)
1i

if ẽ
(t−1)
1i 6= 0,

1 if ẽ
(t−1)
1i = 0,

and W̃(t−1) = diag(w̃
(t−1)
1 , w̃

(t−1)
2 , . . . , w̃

(t−1)
N ).

(c) Solve the new weighted least squares equations

UT
(ŕ)W̃

(t−1)U(ŕ)ϑ̂
∗(t)
M(ŕ) = UT

(ŕ)W̃
(t−1)yo.

Step (b) and (c) are repeated until the estimated regression co-

efficients converges. Let the estimated regression coefficients is

convergence at ϑ̂
∗(t̂)
M(ŕ) =

(
ϑ̂
∗(t̂)
M1 ϑ̂

∗(t̂)
M2 . . . ϑ̂

∗(t̂)
Mŕ

)T

9. Calculate c̃ =
(
c̃1 c̃2 . . . c̃N

)T

= Γ(ŕ)ϑ̂
∗(t̂)
M(ŕ).

10. Given a vector x ∈ Rp, the prediction by R-KPCR with the first ŕ

vectors of α1,α2, . . . , αp̂F
is given by

grkpcrŕ(x) = ȳ +
∑N

j=1 c̃iκ(x,xj),

Note that the above algorithms work under the assumption
∑N

i=1 ψ(xi) =

0. When
∑N

i=1 ψ(xi) 6= 0, we have only to replace K by KN . Further, we

diagonalize KN in Step 5 and work based on KN in the subsequent steps.
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Chapter 5

Nonlinear Regressions Based
on Ridge and Kernel Method

In this chapter, we consider some nonlinear methods based on ridge and

kernel method. In Subchapter 5.1, we review kernel ridge regression (KRR) to

overcome the limitations of RR. In Subchapter 5.2, we propose a combination

of WLS and KRR to overcome the limitation of WLS method. Then, a

combination of M-Estimation and KRR for dealing with outliers is presented

in Subchapter 5.3.

5.1 Kernel Ridge Regression

Let us consider model (4.1.9) again. The ridge estimator of γ is found by

solving the following problem [49]

min (Yo −Ψγ)T (Yo −Ψγ) + c̃γT γ (5.1.1)

for some c̃ > 0. Let γ̂R(c̃) be the solution of problem (5.1.1). Then, we have

γ̂R(c̃) = (ΨTΨ + c̃IpF
)−1ΨTYo. (5.1.2)

58



Let γ̂∗
R(c) be the value of γ̂ when Yo is replaced by yo in the Eq. (5.1.2).

Since ΨTyo = ΨTy (see Appendix B.3), Eq.( 5.1.2) becomes

γ̂∗R(c̃) = (ΨTΨ + c̃IpF
)−1ΨTy. (5.1.3)

Let us consider the following lemma.

Lemma 5.1.1. [49] (ΨTΨ + c̃IpF
)−1ΨTy = ΨT (ΨΨT + c̃IN)−1y.

Proof. See Appendix B.4.

By using Lemma 5.1.1, Eq. (5.1.3) can be written as

γ̂∗R(c̃) = ΨT (ΨΨT + c̃IN)−1y. (5.1.4)

Then, the prediction by KRR is given by

gkrr(x) := ȳ + ψ(x)T γ̂∗R(c̃)

:= ȳ + ψ(x)TΨT (ΨΨT + c̃IN)−1y

:= ȳ + ψ(x)TΨT (K + c̃IN)−1y (5.1.5)

where gkrr is a function from Rp to R.

As we see that the elements of ψ(x)TΨT =
(
ψ(x)T ψ(x1) . . . ψ(x)T ψ(xN)

)

are provided implicitly by choosing a kernel function κ. Hence, Eq. (5.1.5)

can be written as

gkrr(x) = ȳ +
N∑

i=1

ćiκ(x,xi) (5.1.6)

where ć =
(
ć1 ć2 . . . ćN

)T

= (K + c̃IN)−1y. The appropriate ć of the

prediction by KRR can be found by the cross validation method or other

methods.
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5.2 Weighted Least Squares in Kernel Ridge

Regression

5.2.1 WLS-KRR

Let us consider the model (4.2.2) again. Here, we use the ridge regression to

avoid the effects of multicollinearity in model (4.2.2). Hence, we solve

min (Zo − θγ)T (Zo − θγ) + q̃γT γ, (5.2.1)

with respect to γ and for some q̃ > 0. The solution of the problem (5.2.1)

can be found by solving the following equations

(θT θ + q̃IpF
)γ = θTZo. (5.2.2)

It is evident that matrix θT θ + q̃IpF
is invertible. Let γ̆(q̃) be the solution

of the problem (5.2.1). Hence, we obtain

γ̆(q̃) = (θT θ + q̃IpF
)−1θTZo. (5.2.3)

Since (θT θ + q̃IpF
)−1θTZo = θT (θθT + q̃IN)−1Zo = θT (K̆ + q̃IN)−1Zo, we

obtain

γ̆(q̃) = θT (K̆ + q̃IN)−1Zo, (5.2.4)

where K̆ = L̆−1KL̆−1 is known explicitly.

Let zo = L̆−1(IN − 1
N
1N1T

N)y ∈ RN be the observed data corresponding

to Zo. Let γ̆∗(q) =
(
γ̆∗1(q) γ̆∗1(q) . . . γ̆∗pF

(q)
)T

∈ Rp+1 be the value of γ̆(q̃)

when Zo is replaced by zo in the Eq. (5.2.4). The prediction value of zo, say
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ẑo (= L̃−1(ŷ − ȳ1N)) is given by

ẑo :=
(
ẑo1 ẑo2 . . . ẑoN

)T

(5.2.5)

= θγ̆∗(q),

= K̆(K̆ + q̃IN)−1zo.

The residual between zo and ẑo is given by

e2 :=
(
e21 e22 . . . e2N

)T

= zo − ẑo, (5.2.6)

and the prediction by the WLS KRR is given by

gw−krr(x) := ȳ +
N∑

i=1

ćiκ(x,xi), (5.2.7)

where gw−krr is a function from Rp to R and
(
ć1 ć2 . . . ćN

)T

= (K̆L̆ +

q̃L̆)−1zo. The appropriate value of q̃ can be obtained by the cross validation

method or other methods.

5.2.2 WLS-KRR’s Algorithm

We summarize the procedure in Subsection 5.2.1 to obtain the prediction by

WLS KRR.

Algorithm:

1. Given (yi, xi1, xi2, . . . , xip), i = 1, 2, . . . , N .

2. Calculate ȳ = 1
N
1T

Ny and yo = (IN − 1
N
1N1T

N)y.

3. Estimate V̆ and find L̆.

4. Calculate zo = L̆−1yo.
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5. Choose a kernel κ : Rp × Rp → R and a positive number q̃.

6. Construct Kij = κ(xi,xj) and K = (Kij).

7. Construct K̆ = L̆−1KL̆−1.

8. Calculate
(
ć1 ć2 . . . ćN

)T

= (K̆L̆ + q̃L̆)−1zo.

9. Given a vector x ∈ Rp, the prediction by WLS KRR is given by

gw−krr(x) = ȳ +
∑N

j=1 ćiκ(x,xj).

Note that the above algorithm works under the assumption
∑N

i=1 ψ(xi) = 0.

When
∑N

i=1 ψ(xi) 6= 0, we have only to replace K by KN in Step 7.

5.3 KRR and M-Estimation in Robust Re-

gression Model

5.3.1 Robust Kernel Ridge Regression

Let us consider the model (4.3.2) again. We solve

min (yo −Ψγ)T (yo −Ψγ) + q́γT γ, (5.3.1)

with respect to γ and for some q́ > 0 if we use the ridge regression method

to obtain the estimator of γ. If we use the M-estimation method, the term

(yo−Ψγ)T (yo−Ψγ) =
∑N

i=1(yoi−ψ(xi))
2 is replaced by

∑N
i=1 ρ(yoi−ψ(xi)).

Hence, we find the estimator of γ such that minimizes the function

N∑
i=1

ρ(yoi − ψ(xi)
T γ) + q́γT γ. (5.3.2)
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To minimize Eq. (5.3.2), equate the first partial derivatives of ρ with respect

to γj (j = 1, . . . , pF ) to zero. This gives the system of pF equations

−
N∑

i=1

ρ′(ẽi)ψ(xi)
T + 2q́γT = 0T , (5.3.3)

where ρ′ is the derivative of ρ. Then, we define the weight function

w̆(z) =





ρ′(z)/z if z 6= 0,

1 if z = 0.
(5.3.4)

Then, Eq. (5.3.3) can be written as

−
N∑

i=1

(
ρ′(ẽi)

ẽi

)ẽiψ(xi)
T + 2q́γT = −

N∑
i=1

w̆iẽiψ(xi)
T + 2q́γT = 0T , (5.3.5)

where w̆i = w̆(ẽi). Since ẽi = yoi − ψ(xi)
T γ, we obtain

N∑
i=1

w̆iyoiψ(xi)
T =

N∑
i=1

w̆iψ(xi)
T γψ(xi)

T + 2q́γT . (5.3.6)

In matrix form, Eq. (5.3.6) becomes

(ΨTW̆Ψ + 2q́IpF
)γ = ΨTW̆yo, (5.3.7)

where W̆ = diag(w̆1, w̆2, . . . , w̆N). Let γ̂(q́) be the solution of Eq. (5.3.6).

Since (ΨTW̆Ψ + 2q́IpF
) is invertible, we have

γ̂(q́) = (ΨTW̆Ψ + 2q́IpF
)−1ΨTW̆yo. (5.3.8)
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Let θ = W̆1/2Ψ and zo = W̆1/2yo. Hence, Eq. (5.3.8) can be written as

γ̂(q́) = (θT θ + 2q́IpF
)−1θTzo. (5.3.9)

Since (θT θ + 2q́IpF
)−1θTzo = θT (θθT + 2q́IN)−1zo, we obtain

γ̂(q́) = θT (θθT + 2q́IN)−1zo

= ΨTW̆1/2(W̆1/2ΨΨTW̆1/2 + 2q́IN)−1W̆1/2yo

= ΨTW̆1/2(W̆1/2KW̆1/2 + 2q́IN)−1W̆1/2yo. (5.3.10)

The prediction of y, say ỹMR, is given by

ỹMR := ȳ1N + Ψγ̂(q́)

= ȳ1N + ΨΨTW̆1/2(W̆1/2KW̆1/2 + 2q́IN)−1W̆1/2yo

= ȳ1N + KW̆1/2(W̆1/2KW̆1/2 + 2q́IN)−1W̆1/2yo, (5.3.11)

where ȳ = 1
N
1T

Ny. The residual between y and ỹ is given by

ˆ̃e := y − ỹMR. (5.3.12)

As mentioned before that the IRLS is a widely used technique in the robust

method based on M-estimation. Unfortunately, we cannot use the IRLS to

obtain the estimator of γ since we do not know Ψ explicitly. The estimator

of γ is required to obtain the prediction by the R-KRR. Alternatively, we

use the prediction value ỹ to obtain the prediction by the R-KRR. As we see

that prediction value ỹ depends upon W̆, W̆ depends upon the residual, the

residual depends on ỹ. An iterative solution to obtain ỹ is therefore required.

Furthermore, the prediction by the R-KRR is given by

gr−krr(r̃)(x) := ȳ +
N∑

i=1

ciκ(x,xi), (5.3.13)
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where gr−krr(r̃) is a function from Rp to R and

(
c1 c2 . . . cN

)T

= W̆1/2(W̆1/2KW̆1/2 + 2q́IN)−1W̆1/2yo.

5.3.2 R-KRR’s Algorithm

We summarize the procedure in Subchapter 5.3.1 to obtain the prediction by

R-KRR [52].

Algorithm:

1. Given (yi, xi1, xi2, . . . , xip), i = 1, 2, . . . , N .

2. Calculate ȳ and yo = (IN − 1
N
1N1T

N)y.

3. Choose a kernel κ : Rp ×Rp → R, ρ : R→ R and a positive number q́.

4. Construct Kij = κ(xi,xj) and K = (Kij).

5. Find the prediction value of y:

(a) Select an initial prediction value of y, say ỹ
(0)
MR, by OLS.

(b) At each iteration t, calculate residual ˆ̃e
(t−1)

= y − ỹ(t−1), ˆ̃e
(t−1)
i =

(ˆ̃e
(t−1)

)i, w̆
(t−1)
i = w̆(ˆ̃e

(t−1)
i ), and W̆(t−1) = diag(w̆

(t−1)
1 , w̆

(t−1)
2 , . . . , w̆

(t−1)
N ).

(c) Find the new prediction value

ỹ
(t)
MR = ȳ1N + KW̆

1/2
(t−1)(W̆

1/2
(t−1)KW̆

1/2
(t−1) + 2q́IN)−1W̆

1/2
(t−1)yo.

Step (b) and (c) are repeated until the prediction value converges.

Let the prediction value is convergence at t̂-th iteration.

6. Calculate:

c̃ =
(
c̃1 c̃2 . . . c̃N

)T

= W̆
1/2

(t̂−1)
(W̆

1/2

(t̂−1)
KW̆

1/2

(t̂−1)
+ 2q́IN)−1W̆

1/2

(t̂−1)
yo.

7. Given a vector x ∈ Rp, the prediction by R-KRR is given by
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gr−krr(r̃)(x) = ȳ +
∑N

j=1 c̃iκ(x,xj),

Note that the above algorithm works under the assumption
∑N

i=1 ψ(xi) =

0. When
∑N

i=1 ψ(xi) 6= 0, we have only to replace K by KN throughout the

steps of the algorithm.
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Chapter 6

Case Studies

In this chapter, we present the performances of our proposed methods (See

Table 1.1). We wrote the programs of our proposed methods by using Matlab

R2007a. In Subchapter 6.1, we compare ordinary linear regression (OLR),

principal component regression (PCR), ridge regression (RR), the revised

KPCR, kernel ridge regression (KRR) and other nonlinear regressions. In

Subchapter 6.2, we show that both of KPCR and KRR can be inappropriate

to be used in regression model with variance of random errors having unequal

values in diagonal elements, while both of WLS-KPCR and WLS-KRR give

better results than that of WLS-LR, KPCR and KRR. In Subchapter 6.3,

we present the comparisons between robust linear regression, KPCR, KRR,

R-KPCR and R-KRR in regression model with the observation contaminated

by outliers.

6.1 Case Studies for The Revised KPCR

In these case studies, we used the Gaussian kernel κ(x,y) = exp(−‖x−y‖2
%

),

the polynomial kernel κ(x,y) = (xTy)d and the sigmoid kernel κ(x,y) =

tanh(r1(x
Ty)r2 + θ), where %, d, r1, r2 and θ are parameters of the kernel

functions.
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6.1.1 The Household Consumption Data

As an illustration of the problem introduced by multicollinearity, we consider

the household consumption data which are given in Table 6.1 [5]. The OLR

of the household consumption data is given by

yi = β0 + β1xi1 + β2xi2 + ei (6.1.1)

where yi is the i -th household consumption expenditures, xi1 is the i -th

household income and xi2 is the i -th household wealth. In this study, ei is

a real number generated by a normally distributed random noise with zero

mean and standard deviation 0.01.

Table 6.1: The household consumption data.
yi 70 65 90 95 110 115 120 140 155 150
xi1 80 100 120 140 160 180 200 220 240 260

xi2 810 1009 1273 1425 1633 1876 2052 2201 2435 2686

The prediction by OLR is given by

folr(x1, x2) = 24.7807 + 0.9359x1 − 0.0419x2. (6.1.2)

The eigenvalues of XTX of the household consumption data are λ1 = 3.4032e+

007, λ2 = 6.7952e + 001 and λ3 = 1.0165. We obtain λ1

λ1
= 1, λ2

λ1
=

1.99667e − 006 and λ2

λ1
= 2.9868e − 008. Hence, multicollineary exists on

the X of the household consumption data. The 95% confident interval of β2

in Eq (6.1.2) is [−0.2331, 0.1485] which contains include zero. It means that

we cannot be confident whether x2 makes contribution to Eq (6.1.2) or not.

Let us use the principal component regression (PCR) to the household

consumption data. Note that the mean of yi, xi1 and xi2 are 111, 170 and
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1740, respectively. The matrix Z of the household consumption data is

Z =




−90 640

−70 839

−50 1103

−30 1255

−10 1463

10 1706

30 1882

50 2031

70 2265

90 2516




,

and the eigenvalues of Z are λ̂1 = 3.8525e + 005 and λ̂2 = 7.5329. Hence,

we obtain λ̂1

λ̂1
= 1, λ̂2

λ̂1
= 1.9553e − 005. The normalized eigenvectors corre-

sponding to λ̂1 = 1.8621e + 003 and λ̂2 = 8.2338 are (0.09746 0.9952)T and

(−0.9952 0.0975)T . As we see that multicollinearity exists on Z. To avoid

the effects of multicollinearity, PCR only uses the eigenvector corresponding

to λ̂1. The prediction by principal component regression (PCR) is given by

fpcr(x1, x2) = 111 + (x1 − 170 x2 − 1740)(0.09746 0.9952)T 0.0496

= 111 + (x1 − 170 x2 − 1740)(0.0048 0.0494)T ,

= 24.2280 + 0.0048x1 + 0.0494x2. (6.1.3)

The 95% confident interval of β1 in Eq (6.1.3) is [0.0409, 0.0581]. According

to the t-test, we can be confident to accept the value 0.0496 as the estimator

of β1. It implies that x1 and x2 make contribution to Eq (6.1.3). When we

use ridge regression, the prediction by RR with c = 20 is given by

frr(x1, x2) = 1.1945 + 0.6236x1 + 0.0008x2. (6.1.4)

Let us now use the revised KPCR to the household consumption data.
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Note that the eigenvalues of K of the household consumption data are λ̃1 =

λ̃2 = . . . = λ̃9 = 1.0000 and λ̃10 = 0.0000. The prediction by the revised

KPCR with the Gaussian kernel (% = 5) is given by

gkpcr(x1, x2) = 111− 40.9912κ((x1, x2), (80, 810))− 46.001κ((x1, x2), (100, 1009))

−21.0064κ((x1, x2), (120, 1273))− 15.9753κ((x1, x2), (140, 1425))

−0.9636κ((x1, x2), (160, 1633)) + 3.9886κ((x1, x2), (180, 1876))

+9.0012κ((x1, x2), (200, 2052)) + 28.9829κ((x1, x2), (220, 2201))

+44.0127κ((x1, x2), (240, 2435)) + 38.9518κ((x1, x2), (260, 2686)).

(6.1.5)

The prediction by the revised KPCR only used the first nine nonlinear prin-

cipal components corresponding to κ to avoid the effects of multicollinearity.

The RMSE of OLR, PCR, RR and KPCR are 5.6960, 6.2008, 9.4442 and

0.0021, respectively.

Besides that, we can use the Akaike Information Criterion (AIC) to select

the best model among the four models. Readers may consult other statistics

books for the detailed discussion, see for example [41, 42]. The AIC of the

linear model is given by

AIC = N ln(2πσ̂2) + N + 2(p + 1) (6.1.6)

where σ̂2 the estimator of σ2 (See Appendix C). For example, the unbiased

estimator of σ2 in Eq. (6.1.1) is 1
N

(y − ŷ)T (y − ŷ). A model is selected as

the best model when it has the smallest AIC among other models. However,

selection of the best model by using AIC can be inappropriate since AIC does

not use a set of testing data in its calculation. The AIC of OLR, PCR, RR

and the revised KPCR model are 72.7589, 71.1182, 109.3479 and -215.0172,

respectively. According to those values, the revised KPCR model is the best

for the household consumption data.
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6.1.2 The Sinc Function

The toy data were constructed by the sinc function

f(x) =




| sin(x)|
|x| for x 6= 0,

1 for x = 0.
(6.1.7)

The toy data were constructed by the Eq. (6.1.7) with xi1 = −10 + 0.2 ×
(i − 1), yi = f(xi1) + éi, i = 1, 2, . . . , N , where N is equal to 101, y =

(y1 y2 . . . yN)T and f := (f(x11) f(x21) . . . f(xN1))
T . The number éi

is a real number generated by a random noise. We assume that the random

noise is normally distributed with zero mean and standard deviation σ1 ∈
[0, 1]. We also generated another set of data for the predictions by the linear

regression, the Nadaraya-Watson regression and the revised KPCR. The set

of data was also constructed by the Eq. (6.1.7) with x̂j1 = −10 + 0.25 ×
(j − 1), ŷj = f(x̂j1) + êj, j = 1, 2, . . . , M , where M is equal to 81, ŷ :=

(ŷ1 ŷ2 . . . ŷM)T and f̂ := (f(x̂11) f(x̂21) . . . f(x̂M1))
T . The number êj

is a real number generated by a normally distributed random noise with zero

mean and standard deviation σ2 ∈ [0, 1]. The set of the data (yi, xi1) and set

of the data (ŷj, x̂j1) are called the training data set and the testing data set,

respectively.

To test the performance of the three methods, we generated Q sets of the

training data and the testing data. Call the set of (y
(k)
i , xi1) and the set of

(ŷ
(k)
j , x̂j1), k = 1, 2, . . . , Q, the kth training data set and the kth testing data

set, respectively, where y
(k)
i = f(xi1) + é

(k)
i , ŷ

(k)
j = f(x̂j1) + ê

(k)
j , é

(k)
i is a real

number generated by a normally distributed random noise with zero mean

and standard deviation σ1, and ê
(k)
j is a real number generated by a normally

distributed random noise with zero mean and standard deviation σ2. Let

ý(k) and ´̂y(k) be the predictions of f and f̂ corresponding to the kth training

data set and the kth testing data set by the revised KPCR, respectively. The

RMSE for the kth training data set and for the kth testing data set by the

revised KPCR are given by 1√
N
‖ý(k)−f‖ and 1√

M
‖´̂y(k)− f̂‖, respectively. The

mean of RMSEs (MRMSE ) for the training data sets and for the testing data
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Table 6.2: The comparison of the linear regression, Nadaraya-Watson re-
gression and the revised KPCR for the Sinc function data (N-W: Nadaraya-
Watson, ]: N-W with the Bowman’s and Azzalini’s method, §:N-W with the
Silverman’s method).

Noise
σ1

MRMSE

(σ2)
OLR N-W Revised KPCR Kernel r̃

0 0.3516 0.0222] 5.0679e-004 Gaussian 34
(0.5) (0.3513) (0.0222)] (5.1257e-004) % = 1
0.02 0.3516 0.0221] 0.0133
(0.5) (0.3513) (0.0221)] (0.0134)
0.2 0.3535 0.0598] 0.0967
(0.5) (0.3532) (0.0598)] (0.0966)
0 0.2662§ 3.6712e-004 Gaussian 16
(0.5) (0.2824)§ (3.7534e-004) % = 5
0.02 0.2628§ 0.0084
(0.5) (0.2790)§ (0.0085)
0.2 0.2885§ 0.0835
(0.5) (0.3079)§ (0.0835)
0 1.6912e-004 Gaussian 11
(0.5) (1.7086e-004) % = 10
0.02 0.0085
(0.5) (0.0085)
0.2 0.0511
(0.5) (0.0513)
0.02 0.3134 Polynomial 1
(0.5) ( 0.3131) d = 2
0.02 0.3364 Polynomial 1
(0.5) (0.3360) d = 4
0.02 0.1066 Sigmoid 8
(0.5) (0.6895) r1 = 2,r2 = 2

θ = 0.1
0.02 0.1116 Sigmoid 9
(0.5) (0.6337) r1 = 2,r2 = 4

θ = 0.1
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sets are given by 1
Q
√

N

∑Q
k=1 ‖ý(k)−f‖ and 1

Q
√

M

∑Q
k=1 ‖´̂y

(k)− f̂‖, respectively.

In this study we set Q to 1000. The RMSEs (MRMSEs) for the linear

regression and the Nadaraya-Watson regression are calculated in the same

manner.
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Figure 6.1: The linear regression (green), Nadaraya-Watson Regression (blue,
ĥ1ba = 0.6987) and the revised KPCR (red and r̃ = 11) by applying the
Gaussian kernel with % = 10 for the first toy data. The black circles are
the original training (testing) data. The black dots are the original training
(testing) data by adding the random noise. The standard deviation of the
noise for the training data is 0.2 and for the testing data is 0.5: (a) training
data (b) testing data.

To estimate the Nadaraya-Watson regression, we used the Matlab pro-

gram which was construted by Yi Cao [6]. In this program, Yi Cao used the

function

κ1(u) =
1√
2π

exp(−1

2
u2)

and h1 is estimated by the Bowman’s and Azzalini’s method [4]. The esti-

mator of h1 by Bowman’s and Azzalini’s method, say ĥ1ba, is given by

ĥ1ba =
√

h1xh1y,

where h1x = 1
0.6745

median(|x1−median(x1)|)( 4
3N

)0.2 and h1y = 1
0.6745

median(|y−
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Figure 6.2: The linear regression (green), Nadaraya-Watson Regression (blue,
ĥ1s = 2.4680) and the revised KPCR (red and r̃ = 11) by applying the
Gaussian kernel with % = 10 for the first toy data. The standard deviation
of the noise for the training data is 0.2 and for the testing data is 0.5: (a)
training data (b) testing data.

median(y)|)( 4
3N

)0.2. Another choice of the estimator of h1 is

ĥ1s = 1.06ŝN−1/5,

where ŝ =
√

1
N−1

∑N
i=1(xi1 − x̄1) and x̄1 = 1

N

∑N
i=1 xi1. We refer to ĥ1s as

the estimator of h1 by Silverman’s method [16].

The comparison of the three methods is shown in Table 6.2, where the

standard deviations and the MRMSEs of the training data sets are repre-

sented without parentheses while the standard deviations and the MRMSEs

of the testing data sets are represented with parentheses. According to this

study, the revised KPCR together with the Gaussian kernel provides the

small enough MRMSEs. Two plots of the prediction of linear regression,

the Nadaraya-Watson regression and the revised KPCR for the toy data are

given in Figure 6.1 and Figure 6.2.
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Table 6.3: Growth of the Son of the Count de Montheillard
Age
(yr,
mth
[day]

Height
(cm)

Age
(yr,
mth
[day]

Height
(cm)

0 51.4 9,0 137.0
0,6 65.0 9,7[12] 140.1
1,0 73.1 10,0 141.6
1,6 81.2 11,6 141.9
2,0 90.0 12,0 149.9
2,6 92.8 12,8 154.1
3,0 98.8 13,0 155.3
3,6 100.4 13,6 158.6
4,0 105.2 14,0 162.9
4,7 109.5 14,6[10] 169.2
5,0 111.7 15,0[2] 175.0
5,7 111.7 15,6[8] 177.5
6,0 117.8 16,3[8] 181.4
6,6[19] 122.9 16,6[6] 183.3
7,0 124.3 17,0[2] 184.6
7,3 127.0 17,1[9] 185.4
7,6 128.9 17,5[5] 186.5
8,0 130.8 17,7[4] 186.8
8,6 134.3
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Figure 6.3: The linear regression (green), Nadaraya-Watson Regression
(blue) and the revised KPCR (red, % = 5 and r̃ = 19) for the growth of
the son of the Count de Montbeillard. The black circles are the given data:
(a) Nadaraya-Watson Regression with ĥ1ba = 9.1208 (b) Nadaraya-Watson
Regression with ĥ1s = 2.8747.

6.1.3 Growth of the Son of the Count de Montbeillard

We use a subset of the famous set of observation taken on the height of the

son of the Count de Montbeillard between 1959 and 1977. Only the first ten

years of data were used in this analysis. The growth of the son of the Count

de Montbeillard data are given in the Table 6.3 [42]. A plot of the prediction

of linear regression, Nadaraya-Watson regression and the revised KPCR for

this data is given in Figure 6.3. The comparison of the linear regression, the

revised KPCR, KRR and Nadaraya-Watson regression are shown in Table

6.4.

6.1.4 The Puromycin Data

In this case study, we want to predict the reaction velocity and substrate

concentration for the puromycin data. The reaction velocity (y) and sub-

strate concentration for puromycin (x) are given in the Table 6.5 [41]. A plot

of the prediction of linear regression, Nadaraya-Watson regression and the
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Table 6.4: The comparison of the linear regression, the revised KPCR, KRR,
and N-W regression (N-W: Nadaraya-Watson, ]: N-W with the Bowman’s
and Azzalini’s method, §:N-W with the Silverman’s method).

Data Model RMSE
The son of the Count Linear regression 5.8055
de Montbeillard The revised KPCR (% = 5, r̃ = 14) 1.3856

KRR(% = 5, c̃ = 0.1) 3.8689
N-W regression] 25.9011
N-W regression§ 8.5353

The puromycin data Linear regression 28.2062
The revised KPCR (% = 1, r̃ = 3) 10.7231
KRR(% = 5, c̃ = 0.00001) 65.8873
N-W regression] 49.7743
N-W regression§ 28.9019

The radioactive tracer data Linear regression 0.0991
The revised KPCR (% = 5, r̃ = 8) 0.0002
KRR(% = 5, c̃ = 1) 0.0004
N-W regression] 0.0086
N-W regression§ 0.1182

Table 6.5: The Puromycin Data

i xi yi

1 0.02 76
2 0.02 47
3 0.02 97
4 0.06 107
5 0.11 123
6 0.11 139
7 0.22 159
8 0.22 152
9 0.56 191
10 0.56 201
11 1.10 207
12 1.10 200
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Figure 6.4: The linear regression (green), Nadaraya-Watson Regression
(blue) and the revised KPCR (red, % = 5 and r̃ = 19) for the puromycin
data. The black circles are the given data: (a) Nadaraya-Watson Regression
with ĥ1ba = 2.3170 (b) Nadaraya-Watson Regression with ĥ1s = 0.2571.

revised KPCR for this data is given in Figure 6.4. The comparison of the

linear regression, the revised KPCR, KRR and Nadaraya-Watson regression

are shown in Table 6.4.

6.1.5 The Radioactive Tracer Data

In this case study, we consider the radioactive tracer data. The radioactive

tracer data are given in the Table 6.6 [42]. A plot of the prediction of linear

regression, Nadaraya-Watson regression and the revised KPCR for this data

is given in Figure 6.5. The comparison of the linear regression, the revised

KPCR, KRR and Nadaraya-Watson regression are shown in Table 6.4.

6.1.6 The Linear Distributed Data

In this case study, we observed the toy data which were constructed by the

linear function

f(x) = 3 + 2x x ∈ [−1, 2]. (6.1.8)
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Table 6.6: Radioactive Tracer Data.

i
xi

(hours)
yi

1 0.33 0.03
2 2 0.01
3 3 0.14
4 5 0.21
5 8 0.30
6 12 0.40
7 24 0.54
8 48 0.66
9 72 0.71
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Figure 6.5: The linear regression (green), Nadaraya-Watson Regression
(blue) and the revised KPCR (red, % = 5 and r̃ = 19) for the radioac-
tive tracer data. The black circles are the given data: (a) Nadaraya-
Watson Regression with ĥ1ba = 9.1208 (b) Nadaraya-Watson Regression with
ĥ1s = 1.1079.
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Figure 6.6: The linear regression (green), Nadaraya-Watson Regression (blue,
ĥ1ba = 4.5724) and the revised KPCR (red and r̃ = 8) by applying the
Gaussian kernel with % = 20 for the second toy data. The black circles are
the original training (testing) data. The black dots are the original training
(testing) data by adding the random noise. The standard deviation of the
noise for the training data is 2 and for the testing data is 2: (a) training data
(b) testing data.

The training data were constructed by the Eq. (6.1.8) with xi1 = 0.25× (i−
1), yi = f(xi1)+ éi, i = 1, 2, . . . , 81. The testing data were also constructed by

the Eq. (6.1.8) with x̂j1 = 0.3× (j−1), ŷj = f(x̂j1)+ êj, j = 1, 2, . . . , 67. The

comparison of the linear regression, the revised KPCR and the Nadaraya-

Watson regression are shown in Table 6.7. A plot of the prediction of linear

regression, the Nadaraya-Watson regression and the revised KPCR for this

toy data is given in Figure 6.6.

6.1.7 The Cars and Chickens Data

In this case study, we used the stock of cars in the Netherlands (period 1965-

1989) and the weight of a certain kind of female chickens in [23]. The data

of the stock of cars and the weight of female chickens are shown in the Table

6.8 and Table 6.9, respectively; and used the Gaussian kernel for the revised

KPCR. Jukic et al. [23] used the Gompertz function given below to obtain
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Table 6.7: The comparison of the linear regression, Nadaraya-Watson regres-
sion and the revised KPCR for the linear distributed data (N-W: Nadaraya-
Watson, ]: N-W with the Bowman’s and Azzalini’s method, §:N-W with the
Silverman’s method).

Noise
σ1

MRMSE

(σ2)
OLR N-W Revised KPCR Kernel r̃

0 9.0152e-015 3.5066] 0.0526 Gaussian 34
(0.5) (8.89042e-015) (3.4591)] (0.0529) % = 1
0.02 3.4740e-003 3.5134] 0.0540
(0.5) (3.4282e-003) (3.4659)] (0.0553)
0.2 0.0138 3.5953] 0.1342
(0.5) (0.0139) (3.5485)] (0.1366)
0 0.2662§ 0.0788 Gaussian 11
(0.5) (0.2824)§ (0.0754) % = 10
0.02 0.2704§ 0.0792
(0.5) (0.2872)§ (0.0758)
0.2 0.2870§ 0.1034
(0.5) (0.3027)§ (0.1039)

Table 6.8: The stock of cars (expressed in Thousands) in the Netherlands
(period 1965-1989, xi1 is year - 1965 and yi represents the stock of cars.)

xi1 0 1 2 3 4 5 6 7 8
yi 1273 1502 1696 1952 2212 2465 2702 2903 3080
xi1 9 10 11 12 13 14 15 16 17
yi 3214 3399 3629 3851 4056 4312 4515 4594 4630
xi1 18 19 20 21 22 23 24
yi 4728 4818 4901 4950 5118 5251 5371

Table 6.9: The weight of a certain kind of female chickens observed once a
week (xi1 in week and yi in kg).

xi1 1 2 3 4 5 6 7 8 9
yi 0.147 0.357 0.641 0.980 1.358 1.758 2.159 2.549 2.915
xi1 10 11 12 13
yi 3.251 3.510 3.740 3.925
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Figure 6.7: The linear regression (green), Nadaraya-Watson Regression
(blue) and the revised KPCR (red, % = 5 and r̃ = 19) for the stock of
cars in Netherland. The black circles are the given data: (a) Nadaraya-
Watson Regression with ĥ1ba = 62.8357 (b) Nadaraya-Watson Regression
with ĥ1s = 4.0981.
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Figure 6.8: The linear regression (green), Nadaraya-Watson Regression
(blue) and the revised KPCR (red, % = 5 and r̃ = 10) for the weight of female
chickens. The black circles are the given data: (a) Nadaraya-Watson Regres-
sion with ĥ1ba = 1.7682 (b) Nadaraya-Watson Regression with ĥ1s = 2.4715.

82



the nonlinear regressions for these real data:

q(x, a, b, c) = exp (a− b exp (−cx)), b, c > 0, a ∈ R, (6.1.9)

We refer to the nonlinear regression proposed by Jukic et al. as the Jukic’s

regression. In this study, we compare the performance of the linear regres-

sion, the revised KPCR, KRR Nadaraya-Watson regression and the Jukic’s

regression for these real data.

The RMSEs by the revised KPCR for the stock of cars and the weight

of female chickens are 1.9623e-012 and 6.8926e-016, respectively, when % is

equal to one. However, the predictions by the revised KPCR seem to be an

overfitting, i.e., it provides the very small RMSE for the given data, but the

testing data do not obtain so small RMSE as the given data did. According

to our case studies, the overfitting can be avoided by setting % to five. The

comparison of the linear regression, the revised KPCR, KRR, Nadaraya-

Watson regression and the Jukic’s regression are shown in Table 6.10. We

see that the RMSEs by the revised KPCR are smaller than that of the linear

regression, KRR, Nadaraya-Watson regression and the Jukic’s regression. A

plot of the prediction of linear regression, Nadaraya-Watson regression and

the revised KPCR for the stock of cars data is given in Figure 6.7, while a

plot of the prediction of linear regression, Nadaraya-Watson regression and

the revised KPCR for the weight of female chickens data is given in Figure

6.8.

6.2 Case Study for WLS-KPCR and WLS-

KRR

There are several methods to estimate the weight wi [30, 14, 27, 41]. Here,

we use the method based on replication to estimate the weight wi. First, we

arrange the data x in order of increasing yi. Then, we make several groups,

say M (< N) groups, of the ordered data. Let the kth group, k = 1, 2, . . . , M ,

83



Table 6.10: The comparison of the linear regression, the revised KPCR, KRR,
N-W regression and the Jukic’s regression (N-W: Nadaraya-Watson, ]: N-
W with the Bowman’s and Azzalini’s method, §:N-W with the Silverman’s
method).

Data Model RMSE
The stock of cars Linear regression 205.8677

The revised KPCR (% = 5, r̃ = 19) 7.8016
KRR(% = 5, c̃ = 103) 29.4920
The Jukic’s regression 63.2097
N-W regression] 1.2359e+003
N-W regression§ 246.5681

The weight of female chickens Linear regression 0.1023
The revised KPCR (% = 5, r̃ = 10) 0.0040
KRR(% = 5, c̃ = 1) 0.1230
The Jukic’s regression 0.0141
N-W regression] 0.1452
N-W regression§ 0.2662

Table 6.11: The restaurant foods sales data (yi × 100)

Obs. 1 2 3 4 5 6 7 8
x 3.00 3.150 3.085 5.225 5.350 6.090 8.925 9.015
y 81.464 72.661 72.344 90.743 98.588 96.507 126.574 114.133

9 10 11 12 13 14 15 16
8.885 8.950 9.00 11.345 12.275 12.400 12.525 12.310

115.814 123.181 131.434 140.564 151.352 146.426 130.963 144.630
17 18 19 20 21 22 23 24

13.700 15.000 15.175 14.995 15.050 15.200 15.150 16.800
147.041 179.021 166.200 180.732 178.187 185.304 155.931 172.579

25 26 27 28 29 30
16.500 17.830 19.500 19.200 19.000 19.350
188.851 192.424 203.112 192.482 218.715 214.317
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Figure 6.9: A plot of the residual and its corresponding predicted value for
training data: (a) ordinary linear regression model, (b) WLS KPCR.

contains {(ýîk, x́îk)} for some î = 1, 2, . . . , N where ýîk ∈ {y1, y2, . . . , yN} and

x́îk ∈ {x1, x2, . . . , xN}. Let ¯́xk and s2
k be the average of {x́îk} and variance of

{ýîk}, respectively. Then, we make the prediction from the set {(¯́xk, s
2
k)}, say

f1(x) = ĉ0 + ĉ1x, where f1 is a function from R to R and ĉ0, ĉ1 ∈ R. Further,

we calculate the estimated variance of yi by using the predictor f1(xi). The

weight wi is chosen inversely from f1(xi). When f1(xi) is equal to zero, wi

is set to be one. The procedure to obtain the WLS KPCR’s weights and

the WLS KRR’s weights are straightforward as the explained procedure. We

just replace yi by yoi where yoi is the ith element of yo.

In this case study, we use the Gaussian kernel and the average monthly

income from food sales (y) and the corresponding annual advertising expenses

(x) for 30 restaurants which are given in Table 6.11 [27]. We use some

of the data to test the prediction by the ordinary linear regression, WLS

regression, KPCR and WLS KPCR. Note that the plot of the residual ei and

the corresponding ŷi is useful to check the assumption of constant variance.

The plot of ei and ŷi is shown in Figure 6.9 (a). Figure 6.9 (a) shows that

the variation of the residuals increases significantly as the prediction values

increase. Hence, the assumption of constant variance is not met.
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Table 6.12: The RMSE of OLR, WLS-LR, KPCR, KRR, WLS-KPCR and
WLS KRR for the restaurant foods sales data.

Model RMSE
M=2 M=4 M=5

Training ordinary linear regression 869.8845 869.8845 869.8845
data KPCR (% = 0.5, r̃= 18) 601.3838 601.3838 601.3838

KPCR (% = 1, r̃= 17) 624.2270 624.2270 624.2270
KRR (% = 0.5, c̃ = 10−8) 29729.3585 29729.3585 29729.3585
KRR (% = 1, c̃ = 10−8) 33302.2060 33302.2060 33302.2060
WLS linear regression 0.3834 0.5471 0.6958
WLS KPCR (% = 0.5, r̆= 18) 0.2769 0.4178 0.5258
WLS KPCR (% = 1, r̆=17) 0.2874 0.4336 0.5457
WLS-KRR (% = 0.5, c̃ = 10−8) 0.2976 0.4279 0.5275
WLS-KRR (% = 1, c̃= 17) 0.3095 0.4436 0.5465

Testing ordinary linear regression 834.9586 834.9586 834.9586
data KPCR (% = 0.5, r̃=18) 689.8944 689.8944 689.8944

KPCR (% = 1, r̃=17) 721.4072 721.4072 721.4072
KRR (% = 0.5, c̃ = 10−8) 29617.2494 29617.2440 29617.2494
KRR (% = 1, c̃ = 10−8) 28415.9128 28415.9128 28415.9128
WLS linear regression 0.5380 1.2599 0.5639
WLS KPCR (% = 0.5, r̆=18) 0.3973 0.7893 0.4314
WLS KPCR (% = 1, r̆=17) 0.4229 0.8984 0.4573
WLS-KRR (% = 0.5, c̃ = 10−8) 0.4499 0.9033 0.4432
WLS-KRR (% = 1, c̃ = 10−8) 0.4648 0.9739 0.4605
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We can also see that the residual ei has a relatively large number. This

implies that RMSEolr is also a large number. For the sake of comparison,

the values of M are chosen to be two, four and five. For instance M = 2,

it means that the ordered data is divided into two groups where each group

contains 50 percentage of the ordered data. The plot of residual e2i and

its corresponding prediction value ẑoi with M = 2 and % = 1 is shown in

Figure 6.9 (b). In comparison to the plot in Figure 6.9 (a), it is much more

improved since the residual e2i has a much smaller number than ei. Beside

that, Figure 6.9 (b) shows a residual plot with no systematic pattern around

zero. It seems that the assumption of constant variance is satisfied for the

data.

The results of this study are given in Table 6.12. Note that, multi-

collinearity exists in the regression matrix for both of the ordinary linear

regression model and the WLS regression model. In Table 6.12, we can see

that the WLS KPCR and WLS KRR significantly decreases the RMSEs of

OLR, KPCR and KRR.
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Figure 6.10: A plot of predictions for the linear regression (Green), robust
linear regression (Magenta-dash line), KPCR (Blue) and R-KPCR (Red)
with % and r̃ equal to 5 and 10, respectively. The robust regression methods
used the Huber function with k is equal to 2. The black dots are the toy
data by adding the random noise: (a) training data, (b) testing data.
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Figure 6.11: A plot of predictions for the robust linear regression (Magenta-
dash line), KRR (Blue) and R-KRR (Red) with % and q̃ are equal to 2.5 and
0.1, respectively. The robust regression methods used the Huber function
with k is equal to 2. The black dots are the toy data with random noise: (a)
training data, (b) testing data.

6.3 Case Study for R-KPCR and R-KRR

6.3.1 The Sine Function with Outliers

In this case study, we use the Gaussian kernel and the toy data constructed

by the function

f(x) = 2.5 sin x, (6.3.1)

with xi1 = −2π + 0.2× i for i = 0, 1, . . . , 62; and

yi =





f(xi1) + éi if i ∈ {0, 1, . . . , 62} \ {5, 40, 55},
15 + é5 if i = 5,

−15 + é40 if i = 40,

−15 + é55 if i = 55.

(6.3.2)
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where éi, é5, é40 and é55 are real numbers generated by a normally distributed

random noise with zero mean and standard deviation σ1 ∈ [0, 1]. The set

of the data (yi, xi1) is used as the training data set. Here, y5, y40 and y55

are the outliers of the training data. We also generated another set of data

for the predictions by robust linear regression, KPCR, KRR, R-KPCR and

R-KRR. It was also constructed by the Eq. (6.3.1) with x̌j1 = −2π +0.25× j

for j = 0, 1, . . . , 50; and

y̌j =





f(x̌j1) + ěj if j ∈ {0, 1, . . . , 50} \ {5, 20},
9 + ě5 if j = 5,

−10 + ě20 if j = 20,

(6.3.3)

where ěj, ě5 and ě20 are also real numbers generated by a normally distributed

random noise with zero mean and standard deviation σ2 ∈ [0, 1]. The set of

the data (y̌j, x̌j1) is used as the testing data set. Here, y̌5 and y̌20 are the

outliers of the testing data.

Then, we generated 1000 sets of the training data and the testing data to

test the performance of the five methods. For the sake of comparison, we set

σ1 and σ2 are equal to 0.2 and 0.25, respectively. A plot of the predictions of

the robust linear regression, KPCR and R-KPCR corresponding to the toy

data are shown in Figure 6.10, while a plot of the predictions of the robust

linear regression, KRR and R-KRR corresponding to the toy data are shown

in Figure 6.11. The averages of RMSEs of the five methods are given in Table

6.13. Compared to robust linear regression, KPCR and KRR; R-KPCR and

R-KRR yield the better results as shown in Table 6.13.
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Table 6.13: Comparison of the robust linear regression, KPCR, KRR, R-
KPCR and R-KRR.

Model RMSE
Training Testing

Tukey robust linear regression 0.5331 0.5306
biweighted KPCR (ρ = 1, r̂ = 21) 2.5968 2.0875
function KPCR (ρ = 2.5, r̂ = 14) 2.8100 1.9047

KRR (% = 1, q̃ = 0.1) 7.1038 3.4783
KRR (% = 2.5, q̃ = 0.1) 8.0810 3.0135
R-KPCR (% = 1, ŕ = 21) 0.1461 0.1518
R-KPCR (% = 2.5, ŕ = 14) 0.1627 0.1523
R-KRR (% = 1, q̃ = 0.1) 0.1782 0.1617
R-KRR (% = 1, q̃ = 0.5) 0.1801 0.1641
R-KRR (% = 2.5, q̃ = 0.1) 0.1782 0.1617
R-KRR (% = 2.5, q̃ = 0.5) 0.1795 0.1631

Huber robust linear regression 1.6909 2.0350
function KPCR (ρ = 1, r̂ = 21) 2.5960 2.0821

KPCR (ρ = 2.5, r̂ = 14) 2.7875 1.8995
KRR (% = 1, q̃ = 0.1) 2.6624 1.8932
KRR (% = 2.5, q̃ = 0.1) 2.8427 1.7359
R-KPCR (% = 1, ŕ = 21) 1.1763 0.7520
R-KPCR (% = 2.5, ŕ = 14) 1.1540 0.7217
R-KRR (% = 1, q̃ = 0.1) 1.2088 0.7246
R-KRR (% = 1, q̃ = 0.5) 1.1692 0.7634
R-KRR (% = 2.5, q̃ = 0.1) 1.3207 0.7250
R-KRR (% = 2.5, q̃ = 0.5) 1.2015 0.7635
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6.3.2 The Sinc Function with Outliers

In this case study, we fit the toy data constructed by the Sinc function

Eq. (6.1.7) with xi1 = −7 + 0.2× i for i = 0, 1, . . . , 70; and

yi =





f(xi1) + éi if i ∈ {0, 1, . . . , 70} \ {5, 20},
13 + é5 if i = 5,

−14 + é20 if i = 20.

(6.3.4)

where éi, é5 and é20 are real numbers generated by a normally distributed

random noise with zero mean and standard deviation σ1 ∈ [0, 1]. The set of

the data (yi, xi1) is used as the training data set. Here, y5 and y20 are the

outliers of the training data. The testing set is constructed by the Eq. (6.3.1)

with x̌j1 = −5π + 0.25× j for j = 0, 1, . . . , 40; and

y̌j =





f(x̌j1) + ěj if j ∈ {0, 1, . . . , 40} \ {8, 30},
15 + ě8 if j = 8,

−24 + ě30 if j = 30,

(6.3.5)

where ěj, ě8 and ě30 are also real numbers generated by a normally distributed

random noise with zero mean and standard deviation σ2 ∈ [0, 1]. Here, y̌5

and y̌20 are the outliers of the testing data.

We also generated 1000 sets of the training data and the testing data to

test the performance of the five methods. For the sake of comparison, we

also set σ1 and σ2 to 0.2 and 0.25, respectively. A plot of the predictions of

the robust linear regression, KPCR and R-KPCR corresponding to the toy

data are shown in Figure 6.12, while a plot of the predictions of the robust

linear regression, KRR and R-KRR corresponding to the toy data are shown

in Figure 6.13. The averages of RMSEs of the five methods are given in Table

6.14. Compared to robust linear regression, KPCR and KRR; R-KPCR and

R-KRR also yield the better results as shown in Table 6.14.
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Figure 6.12: A plot of predictions for the linear regression (Green), robust
linear regression (Magenta-dash line), KPCR (Blue) and R-KPCR (Red)
with % and r̃ equal to 5 and 10, respectively. The robust regression methods
used the Huber function with k is equal to 2. The black dots are the toy
data by adding the random noise: (a) training data, (b) testing data.
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Figure 6.13: A plot of predictions for the robust linear regression (Magenta-
dash line), KRR (Blue) and R-KRR (Red) with % and q̃ are equal to 5 and
0.1, respectively. The robust regression methods used the Huber function
with k is equal to 2. The black dots are the toy data with random noise: (a)
training data, (b) testing data.
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Table 6.14: Comparison of the robust linear regression, KPCR, KRR, R-
KPCR and R-KRR.

Model RMSE
Training Testing

Tukey robust linear regression 0.2383 0.2830
biweighted KPCR (ρ = 1, r̂ = 24) 1.8669 4.9884
function KPCR (ρ = 2.5, r̂ = 18) 1.9676 4.8796

KRR (% = 1, q̃ = 0.1) 3.6380 23.9891
KRR (% = 2.5, q̃ = 0.1) 4.0974 22.5408
R-KPCR (% = 1, ŕ = 24) 0.0686 0.0901
R-KPCR (% = 2.5, ŕ = 14) 0.0685 0.0901
R-KRR (% = 1, q̃ = 0.1) 0.1370 0.1803
R-KRR (% = 1, q̃ = 0.5) 0.1370 0.1803
R-KRR (% = 2.5, q̃ = 0.1) 0.1370 0.1803
R-KRR (% = 2.5, q̃ = 0.5) 0.1370 0.1803

Huber robust linear regression 1.0202 1.4842
function KPCR (ρ = 1, r̂ = 24) 1.8642 5.0004

KPCR (ρ = 2.5, r̂ = 16) 1.9660 4.8587
KRR (% = 1, q̃ = 0.1) 3.6297 24.0610
KRR (% = 2.5, q̃ = 0.1) 4.0933 22.6309
R-KPCR (% = 1, ŕ = 24) 0.8539 1.3466
R-KPCR (% = 2.5, ŕ = 16) 0.8459 1.3530
R-KRR (% = 1, q̃ = 0.1) 1.0506 1.3533
R-KRR (% = 1, q̃ = 0.5) 1.0246 1.3538
R-KRR (% = 2.5, q̃ = 0.1) 1.0603 1.3523
R-KRR (% = 2.5, q̃ = 0.5) 1.0263 1.355
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Chapter 7

Conclusions

7.1 Conclusions

KPCR is a novel method to perform a nonlinear regression analysis. However,

the previous KPCR still has theoretical difficulties in the procedure to derive

the KPCR and in its choice rule of the retained number of PCs. In this

dissertation, we revised the procedure of the previous KPCR and showed

that the difficulties are eliminated by our revised KPCR. Regarding our case

studies, the revised KPCR together with the Gaussian kernel provides the

small enough RMSEs. The revised KPCR with the Gaussian kernel gives

the better results than that of the ordinary linear regression and the Jukic’s

regression for the given data which are nonlinearly distributed. The revised

KPCR with an appropriate parameter of the Gaussian kernel also gives better

results than the Nadaraya-Watson regression.

In some cases, however, we face the regression model with variance of ran-

dom errors having unequal values in diagonal elements. WLS is widely used

to handle the limitations. However, applying WLS yields a linear prediction

model and there is no guarantee that the effects of multicollinearity can be

avoided by applying this method. Although KPCR and KRR can be used

to handle the limitations of the linearity and the effect of multicollinearity,

but KPCR and KRR can still be inappropriate since KPCR and KRR were

constructed by the assumption that the variance of random errors having

equal values in its diagonal elements. In this dissertation, we proposed WLS
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KPCR and WLS KRR for the regression model with unequal variance of ran-

dom errors. These methods yield nonlinear prediction model and can avoid

the effects of multicollinearity. In our case study, the WLS KPCR and WLS

KRR yield the better results that of the OLR, WLS-LR, KPCR and KRR.

If the outliers are contained in the observed data, the predictions of OLR,

KPCR and KRR can also be inappropriate to be used. Fomengko et al. [13]

proposed a nonlinear robust prediction based on the M-estimation where

their method needs a specific nonlinear regression model in advance. In

many situations, however, an appropriate nonlinear regression model for a

set of data is unknown in advance. Hence, their method has limitations

in applications. In this dissertation, we proposed R-KPCR and R-KRR to

obtain a nonlinear robust prediction where our proposed method does not

need to specify a nonlinear model in advance. Our case studies showed that

both of R-KPCR and R-KRR yield the better results than that of the robust

linear regression, KPCR and KRR.
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APPENDIX

A Review of Linear Algebra and Random Vec-

tors

This appendix summarizes some basic concepts from linear and matrix al-

gebra that are related to some important statistics concepts with emphasis

on random variable, expected value and random vectors (matrices). Read-

ers may consult other linear algebra, matrices and statistics books for the

detailed discussion, see for example [1, 2, 15, 21, 25, 43, 46].

A.1 Eigenvalue and Eigenvector

Definition A.1. Let A be an p × p square matrix. A nonzero vector x in

Rp is called an eigenvector of A if Ax is a scalar multiple of x, that is

Ax = λx

for some scalar λ. The scalar λ is called an eigenvalue of A, and x is said to

be an eigenvector of A corresponding to λ.

A.2 Orthogonal Projection

Definition A.2. LetW be a finite-dimensional subspace of an inner product

space V . A vector u in V is said to be orthogonal to W if it orthogonal to
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every vector in W , and the set of all vectors in V that are orthogonal to W
is called the orthogonal complement of W and is denoted by W⊥.

Definition A.3. LetW be a finite-dimensional subspace of an inner product

space V and u be a vector in V . A vector w1 in V is said to be orthogonal

projection on of u on W if w1 is in W and < (u −w1),w2 >= 0 for every

w2 in W . Then, w1 is denoted by projWu.

Theorem A.4. If W is a finite-dimensional subspace of an inner product

space V, then every vector u in V can be expressed in exactly one way as

u = projWu + w2 (A.1)

where projWu is in W and w2 is in W⊥.

A.3 Best Approximation-Least Squares

Theorem A.5. If W is a finite-dimensional subspace of an inner product

space V, and if u is a vector in V, then projWu is the best approximation to

u from W in the sense that

‖u− projWu‖ ≤ ‖u−w‖ (A.2)

for every w in W that is different from projWu.

A.4 Symmetric Matrix

Symmetric matrices have a lot of interesting and aesthetically pleasing prop-

erties with respect to eigenvalue decomposition. A sample of the most im-
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portant results that form the background for our analysis is given here.

Theorem A.6. If A is an p× p matrix, then the following are equivalent.

(1) A is orthogonally diagonalizable.

(2) A has an orthonormal set of n eigenvectors.

(3) A is symmetric.

Theorem A.7. If A is a symmetric matrix, then:

(1) The eigenvalues of A are all real numbers.

(2) Eigenvectors from different eigenvalues are orthogonal.

Definition A.8. Let A be an p × p matrix. A is said to be a positive

definite if xTAx > 0 for all x ∈ Rp \ {0}, is said to be a positive semidefinite

if xTAx ≥ 0 for all x ∈ Rp.

Theorem A.9. A is a symmetric matrix and positive semidefinite matrix,

then all of the eigenvalues of A are nonnegative real numbers.

A.5 Random Vectors and Matrices

We define random variable, random vector and random matrix that are used

in the subsequences chapters. We start with definition of experiment. Ex-

periment is defined as any process of observation or measurement. Then,

the results of an experiment are called the outcomes of the experiment. A

sample space is a set of all possible outcomes of an experiment and denoted

by Ω. A random variable is defined as function from Ω to R. Let X be a

random variable with probability density function f(x). The expected value
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of X, denoted by E(X), is defined as

E(X) =





∑
x∈Rg(X) xf(x) if X is a discrete random variable,

∫
x∈R xf(x)dx if X is a continuous random variable,

where Rg(X) is a range of X.

A random vector is a vector whose elements are random variables. Sim-

ilarly, a random matrix is a matrix whose elements are random variables.

The expected value of random vector (matrix) is the matrix consisting of the

expected values of each of its elements.

B Theorems and Lemmas

Lemma B.1. Let S = {x1,x2, . . . ,xN} be a set of vectors in Rp, X̃ =(
x1 x2 . . . xN

)T

and C = 1
N

∑N
i=1 xix

T
i . Suppose λ̂ 6= 0 and v̂ ∈ Rp\{0}.

If λ̂ and v̂ satisfy λv = Cv, then λ̂ and v̂ also satisfy λxT
k v = xT

k Cv, for

k = 1, . . . , N , and v ∈ span {x1,x2, . . . ,xN}.

Proof. Suppose λ̂ and v̂ satisfy λv = Cv,

⇒ λ̂v̂ = Cv̂

⇒ (a) λ̂xT
k v̂ = xT

k Cv̂, for k = 1, . . . , N .

(b) v̂ = 1
λ
Cv̂, since λ̂ 6= 0.

⇒ v̂ = 1
λ

1
N

∑N
i=1 xix

T
i v̂ =

∑N
i=1

1
Nλ

(xT
i v̂)xi.

Let αi = 1
Nλ

xT
i v̂,

⇒ v̂ =
∑N

i=1 αixi.

⇒ v̂ ∈ span {x1,x2, . . . ,xN}.
⇒ λ̂ and v̂ satisfy λxT

k v = xT
k Cv, for k = 1, . . . , N , and v ∈ span {x1,x2, . . . ,xN}.

B.1 Proof of Theorem 2.2.1

Proof. We prove (1) ⇒ (2), (2) ⇒ (3) and (3) ⇒ (1).

(1) ⇒ (2):
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Suppose λ̂ and â satisfy λa = C̃a.

⇒ λ̂ and â satisfy λψ(xk)
Ta = ψ(xk)

T C̃a, for k = 1, . . . , N ,

and a ∈ span {ψ(x1), ψ(x2), . . . , ψ(xN)} (By Lemma B.1).

⇒ λ̂ and â satisfy λψ(xk)
Ta = ψ(xk)

T C̃a, for k = 1, . . . , N ,

and a =
∑N

i=1 biψ(xi) for some b =
(
b1 b2 . . . bN

)T

∈ RN \ {0}.
⇒ λ̂ and â satisfy λψ(xk)

T
∑N

i=1 biψ(xi) = ψ(xk)
T C̃

∑N
i=1 biψ(xi),

for k = 1, . . . , N , and a =
∑N

i=1 biψ(xi) for some b ∈ RN \ {0}.
⇒ λ̂ and â satisfy λ

∑N
i=1 biψ(xk)

T ψ(xi) =
∑N

i=1 biψ(xk)
T C̃ψ(xi),

for k = 1, . . . , N , and a =
∑N

i=1 biψ(xi) for some b ∈ RN \ {0}.
⇒ λ̂ and â satisfy λN

∑N
i=1 biψ(xk)

T ψ(xi) =
∑N

i=1 biψ(xk)
T

∑N
j=1 ψ(xj)ψ(xj)

T ψ(xi),

for k = 1, . . . , N , and a =
∑N

i=1 biψ(xi) for some b ∈ RN \ {0}.
Since

∑N
i=1 biψ(xk)

T ψ(xi) = (Kb)k and∑N
i=1 biψ(xk)

T
∑N

j=1 ψ(xj)ψ(xj)
T ψ(xi) = (K2b)k for k = 1, . . . , N ,

where (Kb)k is the kth element of Kb and (K2b)k

is the kth element of K2b.

⇒ λ̂ and â satisfy λN(Kb)k = (K2b)k, for k = 1, . . . , N ,

and a =
∑N

i=1 biψ(xi) for some b ∈ RN \ {0}.
⇒ λ̂ and â satisfy λNKb = K2b and a =

∑N
i=1 biψ(xi) for some b ∈ RN\{0}.

⇒ λ̂ and â satisfy λNKb = K2b and a = ΨTb for some b ∈ RN \ {0}.
(2) ⇒ (3):

Suppose λ̂ and â satisfy λNKb = K2b and a = ΨTb for some

b =
(
b1 b2 . . . bN

)T

∈ RN \ {0}.
⇒ λ̂NKb = K2b and â = ΨTb for some b ∈ RN \ {0}.
⇒ ∃

b=(b1 b2 . . . bN )T∈RN\{0}
λ̂NKb = K2b and â = ΨTb.

Since K is symmetric,

⇒ ∃p1,p2,...,pN∈{p|p is an eigenvector of K} {p1,p2, . . . ,pN} is an orthonormal

basis for RN .

Let λi be the eigenvalue of K belonging to pi, for i = 1, . . . , N .

⇒ λipi = Cpi, for i = 1, . . . , N .

Since b ∈ RN \ {0},
⇒ ∃α1,α2,...,αN∈R b =

∑N
i=1 αipi.
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Case 1: λi > 0 for i = 1, . . . , N .

⇒ λ̂NK
∑N

i=1 αipi = K2
∑N

i=1 αipi and â = ΨTb

for some b ∈ RN \ {0}.
⇒ λ̂N

∑N
i=1 αiKpi =

∑N
i=1 αiK

2pi and â = ΨTb

for some b ∈ RN \ {0}.
⇒ λ̂N

∑N
i=1 αiλipi =

∑N
i=1 αiλ

2
i pi and â = ΨTb

for some b ∈ RN \ {0}.
⇒ ∑N

i=1(λ̂Nαiλi−αiλ
2
i )pi = 0 and â = ΨTb for some b ∈ RN \ {0}.

Since {p1, . . . ,pN} is linearly independent,

⇒ (λ̂Nαiλi − αiλ
2
i ) = 0, (i = 1, . . . , N), and â = ΨTb

for some b ∈ RN \ {0}.
⇒ λi(λ̂Nαi − αiλi) = 0, (i = 1, . . . , N), and â = ΨTb

for some b ∈ RN \ {0}.
Since λi > 0 for i = 1, . . . , N ,

⇒ (λ̂Nαi − αiλi) = 0, (i = 1, . . . , N), and â = ΨTb

for some b ∈ RN \ {0}.
⇒ λ̂Nαi = αiλi, (i = 1, . . . , N), and â = ΨTb

for some b ∈ RN \ {0}.
⇒ λ̂Nαipi = αiλipi, (i = 1, . . . , N), and â = ΨTb

for some b ∈ RN \ {0}.
⇒ λ̂N

∑N
i=1 αipi =

∑N
i=1 αiλipi =

∑N
i=1 αiKpi and â = ΨTb

for some b ∈ RN \ {0}.
Since b =

∑N
i=1 αipi,

⇒ λ̂Nb = Kb and â = ΨTb for some b ∈ RN \ {0}.
⇒ λ̂ and â satisfy λN b̃ = Kb̃ and a = ΨT b̃, for some b̃ ∈ RN \ {0}.

Case 2: λ1 ≥ λ2 ≥ . . . ≥ λr > λr+1 = . . . = λN = 0.

⇒ λ̂NK
∑N

i=1 αipi = K2
∑N

i=1 αipi and â = ΨTb

for some b ∈ RN \ {0}.
⇒ λ̂NK(

∑r
i=1 αipi +

∑N
i=r+1 αipi) = K2(

∑r
i=1 αipi +

∑N
i=r+1 αipi),

and â = ΨTb for some b ∈ RN \ {0}.
Let v1 =

(
v11 v12 . . . v1N

)T

=
∑r

i=1 αipi
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and v2 =
(
v21 v22 . . . v2N

)T

=
∑N

i=r+1 αipi.

⇒ b = v1 + v2 =
(
v11 + v21 v12 + v22 . . . v1N + v2N

)T

and Kv2 =
∑N

i=r+1 αiKpi = 0.

⇒ ∑N
i=1 v2i(K)ki = 0 for k = 1, 2, . . . , N .

⇒∑N
i=1 v2iψ(xk)

T ψ(xi) = 0 for k = 1, 2, . . . , N .

⇒ψ(xk)
T

∑N
i=1 v2iψ(xi) = 0 for k = 1, 2, . . . , N .

We claim that
∑N

i=1 v2iψ(xi) = 0 (Why?).

Suppose
∑N

i=1 v2iψ(xi) 6= 0.

⇒ (
∑N

i=1 v2iψ(xi))
T (

∑N
j=1 v2jψ(xj)) 6= 0.

⇒ v21ψ
T (x1)

∑N
j=1 v2jψ(xj)+v22ψ

T (x2)
∑N

j=1 v2jψ(xj)+ . . .

v2NψT (xN)
∑N

j=1 v2jψ(xj) 6= 0

⇒ 0 6= 0 (Contradiction).

⇒ λ̂NK(v1 +v2) = K2(v1 +v2) and â = ΨTb =
∑N

i=1(v1i +v2i)ψ(xi)

for some b = v1 + v2 ∈ RN \ {0}.
Since Kv2 = 0 ⇒ K2v2 = 0; and by the fact

∑N
i=1 v2iψ(xi) = 0,

⇒ λ̂NKv1 = K2v1 and â =
∑N

i=1 v1iψ(xi) for some v1 ∈ RN \ {0}.
⇒ λ̂NK

∑r
i=1 αipi = K2

∑r
i=1 αipi and â =

∑N
i=1 v1iψ(xi) for some

v1 ∈ RN \ {0}.
⇒ λ̂N

∑r
i=1 αiKpi =

∑r
i=1 αiK

2pi and â =
∑N

i=1 v1iψ(xi) for some

v1 ∈ RN \ {0}.
⇒ λ̂N

∑r
i=1 αiλipi =

∑r
i=1 αiλ

2
i pi and â =

∑N
i=1 v1iψ(xi)

for some v1 ∈ RN \ {0}.
⇒ ∑r

i=1(λ̂Nαiλi − αiλ
2
i )pi = 0 and â =

∑N
i=1 v1iψ(xi)

for some v1 ∈ RN \ {0}.
Since {p1, . . . ,pr} is linearly independent.

⇒ (λ̂Nαiλi − αiλ
2
i ) = 0, (i = 1, . . . , r), and â =

∑N
i=1 v1iψ(xi)

for some v1 ∈ RN \ {0}.
⇒ λi(λ̂Nαi − αiλi) = 0, (i = 1, . . . , r), and â =

∑N
i=1 v1iψ(xi)

for some v1 ∈ RN \ {0}.
Since λi > 0 for i = 1, . . . , r,

⇒ (λ̂Nαi − αiλi) = 0, (i = 1, . . . , r), and â =
∑N

i=1 v1iψ(xi)

for some v1 ∈ RN \ {0}.
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⇒ λ̂Nαi = αiλi, (i = 1, . . . , r), and â =
∑N

i=1 v1iψ(xi)

for some v1 ∈ RN \ {0}.
⇒ λ̂Nαipi = αiλipi, (i = 1, . . . , r), and â =

∑N
i=1 v1iψ(xi)

for some v1 ∈ RN \ {0}.
⇒ λ̂N

∑r
i=1 αipi =

∑r
i=1 αiλipi =

∑r
i=1 αiKpi and â =

∑N
i=1 v1iψ(xi)

for some v1 ∈ RN \ {0}.
Since v1 =

∑r
i=1 αipi,

⇒ λ̂Nv1 = Kv1 and â =
∑N

i=1 v1iψ(xi)

for some v1 ∈ RN \ {0}.
⇒ λ̂ and â satisfy λNv1 = Kv1 and a =

∑N
i=1 v1iψ(xi)

for some v1 ∈ RN \ {0}.
⇒ λ̂ and â satisfy λN b̃ = Kb̃ and a =

∑N
i=1 b̃iψ(xi)

for some b̃ ∈ RN \ {0}.
⇒ λ̂ and â satisfy λN b̃ = Kb̃ and a = ΨT b̃ for some b̃ ∈ RN \ {0}.

Case 3: λ1 = λ2 = . . . = λr = λr+1 = . . . = λN = 0.

⇒ Kb =
∑N

i=1 αiKpi = 0.

⇒ ∑N
i=1 bi(K)ki = 0 for k = 1, 2, . . . , N .

⇒∑N
i=1 biψ(xk)

T ψ(xi) = 0 for k = 1, 2, . . . , N .

⇒ψ(xk)
T

∑N
i=1 biψ(xi) = 0 for k = 1, 2, . . . , N .

⇒ â =
∑N

i=1 biψ(xi) = 0 (Why?).

Suppose
∑N

i=1 biψ(xi) 6= 0.

⇒ (
∑N

i=1 biψ(xi))
T (

∑N
j=1 bjψ(xj)) 6= 0.

⇒ b1ψ
T (x1)

∑N
j=1 bjψ(xj) + b2ψ

T (x2)
∑N

j=1 bjψ(xj) + . . .

bNψT (xN)
∑N

j=1 bjψ(xj) 6= 0

⇒ 0 6= 0.

(Contradiction)

(3) ⇒ (1):

λ̂ and â satisfy λN b̃ = Kb̃ and a = ΨT b̃, for some b̃ ∈ RN \ {0},
⇒ λ̂N b̃ = Kb̃ and â = ΨT b̃, for some b̃ ∈ RN \ {0},
⇒ λ̂NΨT b̃ = ΨTKb̃ and â = ΨT b̃, for some b̃ ∈ RN \ {0},
⇒ λ̂NΨT b̃ = ΨTΨΨT b̃ and â = ΨT b̃, for some b̃ ∈ RN \ {0},
⇒ λ̂N â = ΨTΨâ,
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⇒ λ̂â = C̃â,

⇒ λ̂ and â satisfy λa = C̃a.

B.2 Proof of Lemma 3.1.1

Proof. In 3.1, we have defined Z = (IN − 1
N
1N1T

N)X̃ and yo = (IN −
1
N
1N1T

N)y. Let B = (IN − 1
N
1N1T

N). The matrix B is a symmetric and

idempotent matrix, since B = BT and BB = B. Hence, we have Z = BX̃

and yo = By. This implies

ZTyo = ZTBy

= X̃TBTBy

= X̃TBBy (symmetric).

= X̃TBy (idempotent).

= X̃TBTy (symmetric).

= (BX̃)Ty

= ZTy

Since

U =
(
U(r) U(p̂−r) U(p−p̂)

)

=
(
ZA(r) ZA(p̂−r) ZA(p−p̂)

)
,

we obtain U(p̂−r) = ZA(p̂−r). This implies,

UT
(p̂−r)yo = (ZA(p̂−r))

Tyo.

= AT
(p̂−r)Z

Tyo.

= AT
(p̂−r)Z

Ty.

= (ZA(p̂−r))
Ty.

= UT
(p̂−r)y.
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B.3 Proof of Lemma 4.1.1

Proof. As mentioned in 3.2, we assume that
∑N

i=1 ψ(xi) = ΨT1N = 0. This

implies 1
N
1N1T

NΨ = O. Hence, we have Ψ = (IN − 1
N
1N1T

N)Ψ and yo =

(IN − 1
N
1N1T

N)y. Let B = (IN − 1
N
1N1T

N). The matrix B is a symmetric and

idempotent matrix, since B = BT and BB = B. Hence, we have Ψ = BΨ

and yo = By. This implies

ΨTyo = ΨTBy

= ΨTBTBy

= ΨTBBy (symmetric).

= ΨTBy (idempotent).

= ΨTBTy (symmetric).

= (BΨ)Ty

= ΨTy

Since

Ũ =
(
Ũ ˜(r) Ũ(p̂F−r̃) Ũ(pF−p̂F )

)

= ΨÃ

= Ψ
(
Ã ˜(r) Ã(p̂F−r̃) Ã(pF−p̂F )

)

=
(
ΨÃ ˜(r) ΨÃ(p̂F−r̃) ΨÃ(pF−p̂F )

)
,

we obtain Ũ(r̃) = ΨÃ(r̃). This implies

ŨT
(r̃)yo = (ΨÃ(r̃))

Tyo.

= ÃT
(r̃)Ψ

Tyo.

= ÃT
(r̃)Ψ

Ty.

= (ΨÃ(r̃))
Ty.

= ŨT
(r̃)y.
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B.4 Proof of Lemma 5.1.1

Proof. Note that if E is invertible matrix, we have the following statements.

• If EA = EB, then A = B.

• If AE = BE, then A = B.

It is evident that (ΨTΨ + c̃IpF
) invertible matrix. Then,

(ΨTΨ + c̃IpF
)(ΨTΨ + c̃IpF

)−1ΨTy = ΨTy (B.1)

(ΨTΨ + c̃IpF
)ΨT (ΨΨT + c̃IN)−1y = (ΨTΨΨT + c̃IpF

ΨT )(ΨΨT + c̃IN)−1y

= (ΨTΨΨT + c̃ΨT )(ΨΨT + c̃IN)−1y

= ΨT (ΨΨT + c̃IN)(ΨΨT + c̃IN)−1y

= ΨTy. (B.2)

By letting E = (ΨTΨ+c̃IpF
), A = (ΨTΨ+c̃IpF

)−1ΨTy and B = ΨT (ΨΨT +

c̃IN)−1y, we have proven Lemma 5.1.1.

C AIC for KPCR

Let consider the KPCR model (4.1.14) again

Yo = Ũ(r̃)ϑ(r̃) + ˜̃ε, (C.1)

where ˜̃ε is normally and independently distributed with mean 0 and constant

variance σ2, or ˜̃ε is distributed as N(0, σ2IN). The normal density for the

errors is

s(˜̃εi) =
1

σ
√

2π
exp(− 1

2σ2
˜̃εi) for i=1,2,. . . , N (C.2)

The likelihood function of ˜̃ε1, ˜̃ε2, . . . , ˜̃εN is

L(˜̃ε,ϑ(r̃), σ
2) = ΠN

i=1s(˜̃εi) =
1

(2π)N/2σN
exp(− 1

2σ2
˜̃ε

T ˜̃ε). (C.3)
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Since ˜̃ε = Yo − Ũ(r̃)ϑ(r̃), the likelihood can be written as

L(Yo, Ũ(r̃),ϑ(r̃), σ
2) =

1

(2π)N/2σN
exp(− 1

2σ2
(Yo−Ũ(r̃)ϑ(r̃))

T (Yo−Ũ(r̃)ϑ(r̃))).

The log of the likelihood function is

ln L(Yo, Ũ(r̃),ϑ(r̃), σ
2) = −N

2
ln(2πσ2)− 1

2σ2
(Yo−Ũ(r̃)ϑ(r̃))

T (Yo−Ũ(r̃)ϑ(r̃)).

It is evident that for a fixed value of σ the log-likehood is maximized

when the term

(Yo − Ũ(p̂F )ϑ(r̃))
T (Yo − Ũ(r̃)ϑ(r̃))

is minimized. Therefore, the maximum-likelihood estimator of ϑ(r̃) is

ϑ̂(r̃) = (Ũ
T

(r̃)Ũ(r̃))
−1Ũ

T

(r̃)Y. (C.4)

and the maximum-likelihood estimator of σ2 is

σ̂2 =
(Yo − Ũ(r̃)ϑ̂(r̃))

T (Yo − Ũ(r̃)ϑ̂(r̃))

N
. (C.5)

Furthermore, the Akaike Information Criteria (AIC) is defined by

AIC = −2 ln(Lmax) + 2t̃ (C.6)

where ln(Lmax) is the maximized value of the corresponding likelihood func-

tion and t̃ is the number of parameters in the statistical model. Hence, the

AIC for KPCR is

AICkpcr = N ln(2πσ̂2) + N + 2r̃. (C.7)
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