
Adaptive Control based on

Adjustable Evaluation Function

Graduate School of Systems and Information Engineering

University of Tsukuba

March, 2007

Agus Naba

Acknowledgments

First of all, an enormous credit is due to Kazuo Miyashita, Ph.D., my advisor for

four years. I have benefited tremendously from his guidance and support. Without

his great patience, close collaboration and careful guidance, I would not be able to

accomplish my doctor study and this dissertation. I would like to thank Prof. Seiichi

Nishihara who helped me for things related to academic affairs. I would like also to

thank Prof. Sadaaki Miyamoto, Prof. Seiji Yasunobu and Prof. Yukio Fukui. While

serving as committee members, they provided excellent technical advice to make the

dissertation a more coherent document. Thanks is due to all members of the committee

for countless hours of document reading and editting.

I would like to thank Dr. Haruhisa Kurokawa, the group leader of the laboratory of

the Distributed System Design Research Group of AIST where I worked for three and a

half years. While having his own heavy works, he helped and shared to me his valuable

experiences in doing good research and writing. I am also grateful to all members,

secretaries, and technical staff of the laboratory for their kindness and willingness

to help me anytime that make me feel at home. Having many useful interactions,

academic, and otherwise in Tsukuba, I owe a special thanks to all of my tutors, friends,

and others that I could not mention one by one.

I am deeply indebted to my parents and all of brother and sisters who provided

support and motivation. I wish also to thank my parents-in-law. Finally, I devoted

this dissertation to my beloved wife, daughter and boy.

iii

Abstract

Every control design involves manipulating a controller so that a controlled plant be-

haves as desired. Various methodologies for manipulating the controller for certain

well-defined classes of control problems have been well developed and proven. Despite

great efforts, similar techniques are not available for more general classes of control

problems involving nonlinear systems. Incorporating adaptive methods for manipulat-

ing the controller has been a widely used alternative.

In many adaptive control system designs, the control objective is defined as to

minimize the plant output error (i.e., the error between a goal and an actual plant

state), assuming that smaller plant output errors imply better instantaneous control

performances or immediate rewards. However, in many control problems, executing

the actions that are predicted to result in smaller plant output errors only can mislead

to non-goal states. This is because smaller plant output errors do not always imply

better instantaneous control performances, i.e., the plant output error is not always an

evaluative information.

In Reinforcement Learning (RL), the evaluative information about action perfor-

mances is assumed not readily available. In contrast with a customary in adaptive

control designs where the actions are rewarded based on the control performance mea-

sure defined a priori by an engineer, RL views that the actions must be rewarded by

the environment, not by the engineer. RL rewards the actions based on a value func-

tion, i.e, a function that represents ”goodness” of a state or a state-action. The value

function is learned only from the long-term consequences of executing actions (i.e.,

being given a reward or a penalty) in every iteration, and then used to decide control

actions. A precise value function simply recommends to take an action that can lead to

v

the next state with the highest value. In general, a certain defect of RL is that many

time-consuming trials-and-errors are often required to learn a precise value function.

In the dissertation, the author presents alternative approaches to solve the above

problems. In general, the developed approaches are inspired by a policy search ap-

proach of RL in which a policy (i.e., a mapping from state to action) is represented

using an independent function with its own parameters. The policy search approach

tunes the policy parameters to improve the control performance as measured with the

value function being learned. Similarly, the developed approaches tune the controller

to improve the control performance as measured with the evaluation function. The

evaluation function approppriate for the developed approaches is required to

i) represent stable dynamics of the closed loop system (i.e., consisting of the plant

and the controller) in term of the control performance, implying that it can predict

the actions that lead to maximum total reward in the long run.

ii) provide a direct measure of its gradient with respect to the action by which tuning

of the controller parameters using the gradient method is possible.

Such an evaluation function differs from the control performance measure widely used

in many adaptive control designs. It includes prediction of the long-term consequences

of executing action, while the control performance measure in those many adaptive

control designs does not. The author supposes its role as similar to the role of the

value function in RL.

Although finding the appropriate evaluation function seems as difficult as obtaining

the precise value function in RL, major points made in this dissertation is that

i) the evaluation function that satisfies the above requirements can be approximated,

ii) approximation errors in the evaluation function can be coped with through on-line

tuning of the approximate evaluation function,

iii) using the approximate evaluation function, the adaptive control schemes can be

practical, reliable, and efficient.

To justify those claims, the author carried out several experiments using two types of

the adaptive control schemes:

1) adaptive control with a fixed approximate evaluation function,

2) adaptive control with an approximate evaluation function adjusted online.

The first type of the proposed adaptive control is supposed to work for simple control

problems in which the closer state to the goal state implies that the smaller actions are

required. For the simple control problems, the evaluation function is often relatively

easy to approximate and readily available, and therefore, it does not need to be learned.

The second type is supposed to work for more complex control problems with the

vi

assumption that the plant state is continuous everywhere in a state space and imprecise

plant knowledge for the engineer to make a ”good” guess of initial controller parameters

is available. Approximation errors of the evaluation function is coped with through

online adjustment. However, the adjustment of the approximate evaluation function

does not need to wait for the long-term consequences of executing actions, i.e., the

rewards from the plant, rather it uses readily available information about the state, the

action, and the result of executing the action, i.e., the next state. Such an approach

saves computation time for finding appropriate controller parameters. Finally, the

author applies the proposed adaptive control methods to solve two benchmark control

problems: a pole balancing problem and a cart-pole balancing problem. Experimental

results on both control problems show that the first type of the proposed adaptive

control schemes is effective for solving the pole balancing problem, but inapplicable for

solving the cart-pole balancing problem. Nevertheless, the second type of the proposed

adaptive control schemes is proved to be effective for solving the cart-pole balancing

problem.

vii

Table Of Contents

Acknowledgments iii

Abstract v

Table Of Contents ix

List of Tables xiii

List of Figures xv

1 Introduction 1

1.1 Problem . 1

1.2 Objective . 5

1.3 Strategy . 7

1.4 Organization of Dissertation . 10

2 Adaptive Control and Reinforcement Learning 11

2.1 Plant Knowledge Issue . 11

2.2 Training Information . 12

2.3 Adaptive Control . 15

2.3.1 Model-Reference Adaptive Control (MRAC) 16

2.3.1.1 Gradient Method . 17

2.3.1.2 Lyapunov Method . 20

2.3.2 Self-Tuning Control (STC) . 23

ix

2.3.3 Comparing MRAC and STC . 24

2.4 Reinforcement Learning . 25

2.4.1 Basic Structure . 26

2.4.2 Value-Funtion Approach . 27

2.4.3 Policy Search Approach . 29

2.4.4 Defects of Reinforcement Learning 31

2.5 Comparing Adaptive Control and Reinforcement Learning 31

3 Adaptive Control with Fixed Approximate Evaluation Function 35

3.1 Introduction . 35

3.2 Architecture . 36

3.3 Approximate Evaluation Function . 37

3.4 Coping with Approximation Errors . 39

3.5 Linear Controller with Approximated Policy Search Approach (LCAPS) 41

3.5.1 Linear State Feedback Controller 41

3.5.2 Experimental Results . 42

3.5.2.1 Set-point Problems . 44

3.5.2.2 Tracking Problems . 44

3.5.2.3 Swinging-up Problems 45

3.6 Fuzzy Controller with Approximated Policy Search Approach (FCAPS) 50

3.6.1 Fuzzy Controller . 50

3.6.2 Experimental Results . 51

3.6.2.1 Set-point Problems . 52

3.6.2.2 Tracking Problems . 52

3.6.2.3 Swinging-up Problems 55

3.7 Analisys of Results . 58

4 Adaptive Control with On-line Tuning of Evaluation Function 61

4.1 General Architecture . 61

4.2 TAC based on Partially Adjustable Evaluation Function 62

4.2.1 Problem Statement . 62

4.2.2 Evaluation Function . 63

4.2.3 Approximate evaluation function 64

4.2.4 Algorithm . 65

4.2.4.1 Update rule of H . 66

4.2.4.2 Update Rule of w . 67

x

4.2.5 Experimental Results . 68

4.2.5.1 Initialization of Controller Parameters 69

4.2.5.2 Simulation Results . 70

4.2.5.3 Defects of TAC based on PEF 76

4.3 TAC based on Fully Adjustable Evaluation Function 76

4.3.1 Evaluation Function . 77

4.3.2 Approximate Evaluation Function 78

4.3.3 Algorithm . 79

4.3.3.1 Update rule of Q . 80

4.3.3.2 Update rule of w . 83

4.3.4 Experimental Results . 86

4.3.4.1 Stabilization Problem 87

4.3.4.2 Swinging-up Problem 95

4.3.4.3 Control of Virtual Plant 96

4.4 Discussion . 101

5 Concluding Remarks 105

5.1 Summary of Dissertation . 105

5.2 Future Work . 107

Appendices: Software Listing 109

A LCAPS and FCAPS . 110

B TAC/FEF . 114

C Cart-pole dynamics . 120

D Gaussian Fuzzy Inference System . 123

E Supporting Functions . 125

F Control of ODE virtual cart-pole plant 126

REFERENCES 147

xi

List of Tables

4.1 Parameters of Cart-Pole . 97

4.2 ODE Parameters . 97

xiii

List of Figures

1.1 Philosophy of the desired adaptive control design. The design is desired to work

in between two design philosophies, i.e., the philosophies of a typical adaptive

control and RL. 6

2.1 Controller training problem. The controller needs to be trained by a good

”teacher” that supplies high quality training information to the controller. . . 12

2.2 ”Teacher” in controller training with (a) Supervised Learning (b) Distal Learn-

ing (c) Reinforcement Learning . 13

2.3 Model Reference Adaptive Control. ym: model reference output, yr: reference

or command signal, y: plant output, u = fw(yr, y): plant input, w: adjustable

controller parameter vector, e: plant output error. 16

2.4 Self-tuning controller whose parameters are determined using online estimated

plant parameters. 24

2.5 Basic structure of reinforcement learning control problem. In the theory of

reinforcement learning, the controller corresponds to an agent and the plant-

corresponds to an environment. 26

2.6 Value function approach. 27

2.7 Policy search approach. 29

2.8 Indirect method of proposed adaptive control. 33

3.1 Control with Approximated Policy Search Approach 36

3.2 CAPS with failure detector. 40

3.3 Cart-pole plant . 43

xv

3.4 LCAPS/FD for solving set-point problems: (a) angular responses, (b)

actions . 45

3.5 LCAPS/FD for solving tracking problems: (a) angular responses, (b)

actions . 46

3.6 LCAPS/FD for solving swinging-up and set-point problems: (a) angular

responses, (b) actions . 47

3.7 LCAPS/FD for solving swinging-up and tracking problems: (a) angular

responses, (b) actions . 48

3.8 FCAPS/FD for solving set-point problems: (a) angular responses, (b)

actions . 53

3.9 FCAPS/FD for solving tracking problems: (a) angular responses, (b)

actions . 54

3.10 FCAPS/FD for solving swinging-up and set-point problems: (a) angular

responses, (b) actions . 56

3.11 FCAPS/FD for solving swinging-up and tracking problems: (a) angular

responses, (b) actions . 57

4.1 Two-stage Adaptive Control . 62

4.2 TAC based on PEF used to solve cart-pole balancing problem with

θ(0) = 25 deg and x(0) = −0.8 m. 71

4.3 TAC based on PEF used to solve cart-pole balancing problem with

θ(0) = 25 deg and x(0) = 0.8 m. 72

4.4 TAC based on PEF used to solve cart-pole balancing problem with

θ(0) = 40 deg and x(0) = 0.8 m. 73

4.5 TAC based on PEF used to solve cart-pole balancing problem with

θ(0) = 45 deg and x(0) = 0.8 m. 74

4.6 TAC based on PEF used to solve cart-pole balancing problem with

θ(0) = 50 deg and x(0) = 0.8 m. 75

4.7 TAC/Q for various Q(0) used to solve cart-pole balancing problem with

initial pole angle of 35 deg and initial cart position of 0.8 m. 88

4.8 TAC/FEF for various Q(0) used to solve cart-pole balancing problem

with initial pole angle of 35 deg and initial cart position of 0.8 m. 89

4.9 TAC based on FEF used to solve cart-pole balancing problem with

θ(0) = 40 deg and x(0) = 0.8 m. 90

4.10 TAC based on FEF used to solve cart-pole balancing problem with

θ(0) = 45 deg and x(0) = 0.8 m. 91

xvi

4.11 TAC based on FEF used to solve cart-pole balancing problem with

θ(0) = 50 deg and x(0) = 0.8 m. 92

4.12 TAC/FEF for θ(0) = 55 deg and x(0) = 0.8 m. 93

4.13 TAC/FEF for solving swinging-up problem. 94

4.14 Virtual cart-pole plant . 97

4.15 TAC/FEF under ODE for solving stabilization problem 98

4.16 Control of ODE cart-pole plant subject to perturbations, i.e., the base

is inclined and a box is thrown to the pole 99

4.17 TAC/FEF under ODE with perturbations, i.e., the base is inclined and

a box is thrown to the pole . 100

xvii

CHAPTER 1

Introduction

1.1 Problem

A goal of every control design is to manipulate a controller so that a controlled plant

behaves as desired. By the term ”plant” in the dissertation the author means a generic

term for a system controllable by the manipulated controller. Various methodologies

for designing the controllers for certain well-defined classes of control problems have

been well developed and proven by control theorists since the early nineteenth cen-

tury. Most of those methods are designed for solving control problems involving linear

processes and certain types of cost functions, such as quadratic performance index.

The controllers developed with those methods have been proven stable, have desired

response characteristics, or perform optimally. However, despite great efforts, similar

techniques are not available for more general classes of control problems involving non-

linear systems [1]. Incorporating adaptive methods into the controller has been one

alternative to solve those control problems.

Conventional control techniques are developed based on mathematical model of the

plant to be controlled. Those techniques work under the assumption that the plant

model accurately replicates all relevant aspects of the plant behavior. This implies

that the controller designed using those techniques should be able to perform well

with the real plant. Consequently, the controller performance critically depends on the

accuracy of the plant model. And, we can predict that when the controller exhibits poor

1

performance in the real applications, it is most likely due to uncertainty or unmodelled

dynamics of the controlled plant. In many control problems, however, it is difficult

to model the plant precisely. In these cases, the engineer usually relies on heuristics

and the engineer’s experiences in modelling the plant. The engineer also sometimes

directly designs the controller without reference to any explicit plannt model, instead

with domain-qualitatively specific knowledge of the plant behavior. Again, the engineer

heavily relies on heuristics to determine the desired controller. Thus, the above facts

strengthen the need of incorporating the adaptive methods into the controller.

There was extensive research on adaptive control since a half-century ago. Never-

theless, the adaptive control remains by no means a mature field where many developed

approaches and algoritms are of ad hoc nature and good systematic approaches are still

lacking [2]. In many adaptive control designs [2–6], a desired behavior of the plant is

defined in terms of a setpoint or reference trajectory, respectively corresponding to a

regulation problem in which a plant output has to stay at the setpoint, and a tracking

problem in which the plant output has to follow the reference trajectory. In achieving

that desired plant behavior, the common assumption made in those adaptive control

designs is that the plant output errors (i.e., between an actual plant state and the

set-point or the reference trajectory) getting smaller are direct indications that the

actions taken are ”correct”, i.e., they will lead to the goal state eventually. Otherwise,

the actions are to be ”blamed”. Or equivalently, smaller plant output errors are as-

sumed to imply better instantaneous control performances or immediate rewards, and

vice versa. Because the plant output errors are readily available, whatever an action it

takes, the controller always knows without any ”effort” whether the action is correct or

to be blamed, only based on the plant output error due to application of that action.

With these assumptions, the control objective is then defined simply as to minimize

the plant output errors all times. There is no need to try a variety of other actions

once an action is predicted to result in the smallest plant output error at the next time

step.

In his book [7], Sutton gives an excellent illustration that minimizing error every

time step is not the only way to achieve the goal state. Call the action predicted to

result in the smallest plant output error at the next time step as a ”greedy” action.

If we think that a greedy action is the ”best” action to take to lead to the goal state,

we are said exploiting our current knowledge of ”value” of the actions. If instead we

select one of the nongreedy actions despite we know the greedy action, then we are said

exploring our current knowledge of the value of the actions because this enables us to

improve our estimate of the nongreedy action’s value. Exploitation is the right thing

2

to do to find the ”best” action only at a time instant, but exploration may produce

smaller total plat output errors in the long run. For example, suppose that the greedy

action’s value is certainly known. While, several other actions are estimated to be

almost good but with uncertainty. The uncertainty applies when at least one of those

other actions is probably actually better than the greedy action, but we don’t know

which one. In such a situation, it may be better to explore the nongreedy actions and

discover which of them are better than the greedy action. That is, the total plant

output errors are larger in the short run, during exploration, but getting smaller in

the long run because the exploration enables us to discover the better actions that

can be exploited further. This can be referred to as ”conflicting” between exploration

and exploitation [7]. The above concept and its applications are also discussed in

detail in [8–11] based on reinforcement learning (RL) framework. They convinces us

that executing the actions that are predicted to result in smaller plant output errors

only can mislead to non-goal states. This is because the plant output errors are more

instructional rather than evaluative, i.e., smaller plant output errors do not always

imply better instantaneous control performances.

In RL, the evaluative information about action performances (i.e., the value of

the action) is assumed not readily available and not simply equivalent to the plant

output errors. In contrast with a customary in adaptive control designs where the

actions are rewarded based on the control performance measure provided a priori by

an engineer, RL views that the actions must be rewarded by the environment, not by

the engineer [12, 13]. The reward is usually a weak evaluative feedback information,

such as simply a failure or success signal. Using the received rewards, RL learns on-line

a value function, i.e., a function that represents ”goodness” of a state or a state-action.

The value function is originally of the form of look-up tables from which a policy (i.e.,

a mapping of states to optimal actions) is then deduced.

However, in general, any learning method including RL is of a fundamental prob-

lem that has been called the ”credit-assignment” problem by artificial intelligence re-

searchers. That is the problem of determining what individual actions or in general

what parts of a complex interacting set of mechanisms, decisions, or actions deserve

credit or blame for improvement or decrement in the overall performance of the learning

system. The credit-assignment problem is especially acute when evaluative feedback

occurs infrequently, for instance, upon the completion of a long sequence of actions [7,8].

Such a problem leads to a certain defect of RL, i.e., many time-consuming trials-and-

errors are often required to learn the precise value function.

3

There have been large applications of RL to solve the control problems. The value-

function approach has been the dominant approach which requires the use of function

approximators such as neural networks, decision-trees, or instance-based methods to

generalize the value-function [14]. All function approximation effort need to involve

estimating and generalizing the value function. An action selection policy is then

represented implicitly as the ”greedy” policy with respect to the estimated values, e.g.,

as the policy that selects in each given state the action with the highest estimated value.

The value-function approach has lead to many successful applications, but with several

limitations. It is limited to find deterministic policies that make it only best applied to

the control problems with constant goal states. The action selection policy can be very

sensitive to an arbitrarily small change in the estimated value, which has been identified

as a main obstacle to establishing convergence assurances of algorithms following the

value-function approach. The examples of the approach with such shortcomings are Q-

Learning, Sarsa, and dynamic programming methods [15–17]. Those approaches have

been proved unable to converge to any policy for simple function approximators [14].

Alternatives to function approximation in RL have been algorithms based on ”actor-

critic” or policy-iteration architecture (see [8, 10, 11, 14, 18–20]) where the policy is

represented using an independent function approximator with its own parameters. For

short, such algortihms are referred to as a policy search approach in the dissertation.

Using a gradient method, the policy search approach updates the policy parameters

approximately proportional to a gradient of a performance measure with respect to

those policy parameters. The performance measure is an approximation of the value

function. The use of the gradient method is simply due to the fact that a precise value

function simply recommends to take an action that can lead to the next state with

the highest value, which is similar to the property of a Lyapunov function. A certain

disadvantage of the policy search approach (also, of RL in general) is that the approach

must learn the value function first. To obtain the best approximation of the value

function, however, the approach requires time-consuming trial-and-error interactions

between the controller and the plant. In addition, while accuracy of the value function

is not guaranteed during the learning process, the gradient method requires precise

value function anyway.

4

In the dissertation, the author presents alternative approaches to solve the above

problems. In general, the proposed approaches are inspired by the policy search ap-

proach of RL but expected applicable for solving adaptive control1 problems that in-

volve modifying the controller to improve the control performance as measured with an

evaluation function. The evaluation function is required to have a similar role as the

role of the value function in RL, but readily available and used, or when it is not readily

available, it can be improved through adaptive tuning without time-consuming trials-

and-errors as in RL. However, it is impossible that we can obtain a general appropriate

evaluation function which can be used to measure the control performance of any adap-

tive control. Therefore, finding an appropriate evaluation function and specifying the

type of the adaptive tuning problems that can use that appropriate evaluation function

are the main problems to be solved first in designing the adaptive control based on the

proposed approaches.

1.2 Objective

In general, the author desires an adaptive control that ”combines” two distinct design

philosophies, i.e., the philosophies of classical adaptive control and RL. The classical

adaptive control is usually not time-consuming due to not relying on the long-term

rewards to improve the control performances, but its applicability is often limited

with its representational inflexibility due to a presupposed plant model structure. In

contrast, RL does not necessarily presuppose any plant model structure, i.e., it is model-

free, and therefore, it is of high applicability. But, it relies entirely on the long-term

value function to improve the control performance which leads to low efficiency. The

adaptive control developed in the dissertation is desired to have increased applicability

and efficiency as illustrated in Figure 1.1.

Although difficult to achieve during the author’s doctor study, a final target of

the author’s research is to design adaptive control with the above properties where a

controller is tuned using a gradient method to improve control performance as measured

with an evaluation function. The most important task in achieving that target is to

1In the adaptive control designs, there is a customary to separate the tuning problems from the
adaptation problems. In the tuning problems it is assumed that the parameters of the plant to be
controlled are constant; in the adaptation problems it is assumed that the parameters are changing [2].
Although allowing the plant parameters to vary considerably slower than the parameter adaptation [3],
most adaptive control methods are designed for the former problems. In the adaptive control problems
considered in the dissertation, the unknown plant parameters are assumed constant or almost constant

(or, very slowly-changing), i.e., they are more suited to deal with the tuning problems.

5

Figure 1.1: Philosophy of the desired adaptive control design. The design is desired to work

in between two design philosophies, i.e., the philosophies of a typical adaptive control and RL.

find the appropriate evaluation function. The evaluation function approppriate for the

adaptive control developed in the dissertation is required to

i) represent stable dynamics of the closed loop system (i.e., consisting of the plant

and the controller) in term of the control performance, implying that it can predict

the actions that lead to maximum total reward in the long run.

ii) provide a direct measure of its gradient with respect to the action by which tuning

of the controller parameters using the gradient method is possible.

Such an evaluation function differs from the control performance measure widely used in

many adaptive control designs, i.e., it includes prediction of the long-term consequences

of executing action, while the control performance measure in those many adaptive

control designs does not. The author supposes its role as similar to the role of the

value function in RL.

Although finding the appropriate evaluation function seems as difficult as obtaining

the precise value function in RL, major points made in this dissertation is that for

certain types of control tuning problems

i) the evaluation function that satisfies the above requirements can be approximated,

so that it is readily available and usable for evaluating and improving the controller

in the adaptive control,

ii) approximation errors in the evaluation function can be coped with through on-line

tuning of the approximate evaluation function,

6

iii) using the approximate evaluation function, the adaptive control schemes can be

practical, reliable, and efficient.

Those certain type of the control problems are briefly described in the following section

that outlines the strategies the author uses to accomplish the research objectives.

1.3 Strategy

The controller can be trained using a supervised learning method, i.e., the method that

learns from examples, provided that good examples of control actions that improve the

control performance as measured with the evaluation function are available. When the

examples of the control actions are not known, appropriate behavior of the controller

needs to be inferred from observations of the appropriate evaluation function. In such

cases, two different classes of learning control methods to train the controller can be

used, i.e., indirect2 method and direct method [1]. The indirect method involves con-

structing a model of the evaluation function in a form that can be readily used to

generate information for training the controller. Its implementation consists of two

stages: constructing an adequate model of the evaluation function, which is similar to

a problem of finding the precise value function in RL, and using the model to gener-

ate information for training the controller. In contrast, the direct method does not

rely on the evaluation function of a certain model, rather a general form evaluation

function. It involves actively applying to the plant random actions or the actions cho-

sen stochastically and observing the consequences on the evaluation function. Policy

search approach of RL [8, 14, 22] is one example of the direct method, which can be

used to better describe how the direct method works. In the policy search approach

of RL, the value function is not constructed using a certain model associated with any

specific plant model or closed loop dynamics, rather a model-free scalar function of the

reward received at the next time step plus a properly discounted value of the next state-

optimal actions. After perturbing the the plant using the actions chosen randomly or

deduced from the value function being learned, the approach observes consequences of

executing those actions on the value function, uses those consequences to update the

value function, and then updates the controller based on the updated value function.

2Adaptive control literatures [2,3,5,21] also uses the terms ”indirect” and ”direct” in control design
methods, where the former term refers to determination of the controller parameters from a plant
model constructed on-line via system identification, while the latter term refers to determination of
the controller parameters without contructing an explicit plant model. The definition of both terms
the dissertation refers to is the same as given by Gullapalli [1] who uses both terms in the RL designs
for control.

7

A potential disadvantage of such a direct method is that the value function obtained

through active perturbation can be less reliable to represent the stable dynamics of the

closed loop system in terms of the long-term control performance measures, implying

that the controller updated based on it can produce the actions that mislead to non-

goal states. While, learning the precise value function requires many time-consuming

trials-and-errors. In such situations, the direct method is often slower than the indirect

method.

In the dissertation, as the attempts to obtain the aforementioned desired adaptive

control, the author developes two types of the adaptive control schemes:

1) adaptive control with a fixed approximate evaluation function,

2) adaptive control with an approximate evaluation function adjusted online.

Both types of the proposed adaptive control are implemented using an approach similar

to the indirect method. The difference is that the evaluation function is represented

using a model3 that can provide a direct measure of its gradient with respect to control

action, rather than be used to generate requisite information for training the controller.

The gradient is then used to tune the controller parameters.

The first type of the proposed adaptive control is supposed to work for simple control

problems in which the closer state to the goal state implies that the smaller actions

are required. For the simple control problems, the evaluation function is often readily

available or unavailable but relatively easy to approximate using a simple evaluation

model. Therefore, it does not need to be learned.

The second type is supposed to work for more complex control problems with the

assumption that the plant state is continuous everywhere in a state space without

drastical changes between time steps and imprecise plant knowledge for the engineer to

make a ”good” guess of initial controller parameters is available. Using those assump-

tions, the evaluation function is approximated using a model more general than that of

the evaluation function in the first type of the proposed adaptive control. Nevertheless,

for the complex control problems, parameters of the approximate evaluation function

model are difficult to determine a priori. Hence, online adjustment of the evaluation

functionn is necessary to cope with approximation errors and impreciseness of the eval-

uation function parameters. However, the adjustment of the approximate evaluation

function does not need to wait for the long-term consequences of executing actions, i.e.,

the rewards from the plant, rather it uses readily available information about the state,

3In the dissertation, by ”model” the author means a model that represents a stable dynamics of
a closed loop system (consisting of the plant and the controller) in terms of long-term future control
performance measures.

8

the action, and the result of executing the action, i.e., the next state. Such an approach

saves computation time for finding appropriate controller parameters. Finally, the au-

thor applies the proposed adaptive control methods to solve two benchmark control

problems: a pole balancing problem and a cart-pole balancing problem.

The idea of tuning the approximate evaluation function online and then using it for

tuning the controller is not new as it can be found in many literatures (see [23–31])

which developed the methods for finding appropriate actions based on adaptive critic

approach and approximate dynamic programming (AC/ADP). AC/ADP is essentially

a juxtaposition of RL and Dynamic Programming (DP) ideas [31]. While DP derives

the control actions via the optimal value function, AC/ADP utilizes an approximation

of the optimal value function as the evaluation function to adjust the controller. De-

spite its successful applications to reduce inefficiency of RL, the adaptive control using

AC/ADP is limited by the need of ”crafting” an appropriate utility function (i.e., equiv-

alent to the reward function in RL, except that the reward function is not ”crafted”

by the engineer but provided by the environment). The utility function is the only

source of information required in AC/ADP to improve the approximate value function,

which is defined simply as equal to the utility value plus the discounted approximate

value of the next state or the next state-action. The utility function is often simply

defined as a Eucleadian distance (or, the error) from the goal state [23,26]. Therefore,

it is potential to cause the same control difficulties as in the classical adaptive control

methods whose goals are simply to minimize the error. Alternatively, different relative

weightings might be used for some of the error components as done in [29,30] for specific

control problems. However, other research of [31] provides examples of situations where

seemingly minor changes in formulation of the utility function resulted in a dramati-

cally different ADP convergence behavior and a controller design. Generally, defining

an approparite utility function even for a specific control problem is not always an easy

task. A common practice to cope with this problem is by performing some trial-and-

error modifications of the utility function. The architecture of the adaptive control

developed in the dissertation is inspired by that of the policy search approach of RL.

But, the proposed adaptive control is designed not to rely on any utility or reward func-

tion to improve the approximate evaluation function. Nevertheless, no trial-and-error

is required to improve the approximate evaluation function. Thus, it should be more

practical and efficient than the adaptive control in those aforementioned literatures.

9

1.4 Organization of Dissertation

The relative merits of the typical adaptive control and RL are discussed in Chapter

2, where the author elaborates the tradeoffs between consequences due to the usage

of readily available but non evaluative feedback information in the typical adaptive

control design and those due to the usage of unreadily available but evaluative feedback

information in RL. Detailed comparison of both approaches are also discussed at the

last section of that chapter. The first type of the proposed adaptive control schemes,

i.e., the adaptive control with a fixed approximate evaluation function, is presented in

Chapter 3, followed with experimental results of its application to the pole-balancing

problem using two types of controller, i.e., a linear state feedback controller and a fuzzy

controller. Chapter 3 ends with the analysis of the experimental results. In Chapter

4, the author describes in detail the second type of the proposed adaptive control

schemes, i.e., the adaptive control with on-line tuning of the approximate evaluation

function. That chapter starts with explaining a general architecture of the proposed

second type adaptive control, and a description of two types of the evaluation function

used. The proposed second type adaptive control designs using the two types of the

evaluation functions are then described in detail, followed by experimetal results of their

applications to the cart-pole balancing problem. Chapter 4 ends with the discussion

of the experimental results, comparisons between all the adaptive control developed in

the dissertation and other past research. Finally, in Chapter 5 the author concludes

the dissertation.

10

CHAPTER 2

Adaptive Control and Reinforcement Learning

This chapter reviews the fields underlying the discussion throughout this dissertation.

Several important achievements on the traditional adaptive control as well as their

limitations are identified. The notion of optimality and ways of learning optimal pol-

icy, which depend on the concept of value attributed to state and state-action, is then

discussed. The discussion is focused on an overview of policy search methods of rein-

forcement learning in general and related work on gradient methods in policy search in

particular.

2.1 Plant Knowledge Issue

A good understanding of a plant to be controlled is required by most advanced control

methods where the plant dynamics is represented using Laplace transfer functions or

differential equations. In many control problems, however, the plant dynamics may be

too complex or its physical process is not well understood. Quantitative knowledge

of the plant is then not available. This is referred to as a ”black box” problem. In

other control problems, some knowledge of the plant is available but we are not sure

about its accuracy. This is referred to as a ”gray box” problem. The last case is when

quantitative knowledge of the plant is available. It is often a relatively simple task to

design a controller for the plant in this case because we can use well-established control

methods and tools. This is referred to as a ”white box” problem [6].

11

Most learning methods, including RL, deal with the ”black box” problem. In this

chapter, discussion regarding the learning methods is focused on RL to obtain an

understanding how importance the philosophy behind RL to be introduced into the

adaptive control designs.

Figure 2.1: Controller training problem. The controller needs to be trained by a good ”teacher”

that supplies high quality training information to the controller.

On the other hand, most adaptive control methods deal with the ”gray box” prob-

lems, each of which has its own defects, depending on what assumption about ”gray

knowledge” of the plant is made to enable the adaptive control method to work. Adap-

tive control problems discussed in the dissertation fall into the ”gray box” problem.

They are discussed in detail in Chapter 3 and 4. This chapter discusses existing adap-

tive control methods as the background for the proposed adaptive control discussed

in both next chapters. However, in general, when designing any controller it is an

essential requirement to know in advance what kind of information will be available

to the controller. Therefore, the following sections start with a discussion regarding

types of the information available in various kinds of control problems and its affects

to controller design and performance.

2.2 Training Information

Every adaptive controller is required to manipulate plant input so that the plant behav-

ior meets specified control objective. To accomplish such a task, the controller needs to

be trained by a good ”teacher” that supplies high quality information (see Fig.1 2.1).

Finding the good teacher is a difficult task. On the other hand, the quality degree,

1Whether the controller training problem is open-loop or closed loop, it depends on the defini-
tion of the controller input, which can be separated from the definition of the ”teacher”. Hence, to
avoid unnecessary details, the controller training problem is described with an incomplete diagram in

12

to which the available training information is informative about control performance,

critically influences the controller’s training [1, 32].

(a) Supervised Learning

(b) Distal Learning

(c) Reinforcement Learning

Figure 2.2: ”Teacher” in controller training with (a) Supervised Learning (b) Distal Learning

(c) Reinforcement Learning

By several researchers [1,10,21,33–36], the quality of the training information sup-

plied by the teacher is used as the criterion to classify approaches for training the

controller, namely, two of them are supervised learning and reinforcement learning

(RL) [1]. In the supervised learning, the teacher provides the controller for each given

plant state with target actions (see Figure 2.2(a)). When executed at the given plant

states, those target actions need to be assured to lead the desired behavior of the plant

Figure 2.1, i.e., of an ”open-loop”, but it should be a closed-loop in the complete diagram. Similar
simplified descriptions are also used in the explanations that follow.

13

in terms of control performances. The supervised learning involves ”memorizing” those

target actions by minimizing the discrepancies between actual and the target actions

(i.e., the action errors). Thus, the main task of the teacher in supervised learning is to

tell the controller the right actions to improve the control performances. That is, the

teacher’s role is instructional.

In contrast, the teacher’s role in RL is more evaluative rather than instructional [1,

21]. Because of such a role, the teacher in RL is sometimes called a critic. As can

be seen in Figure 2.2(c), based on reward for the action the teacher or the critic in

RL usually provides the controller simply with a scalar evaluation, leaving it to the

controller to discover appropriate actions in order to obtain better evaluations in the

future. The critic is required to provide the scalar evaluation that indicates how good

the action taken is, not whether the action taken is the best or the worst one. But, it

does not necessarily explicitly know the appropriate controller function, rather it needs

to know the characteristics of the desired control behavior regardless of whatever type

of the controller used.

Other researchers, Jordan and Rumelhart [37], define an intermediate approach for

training the controller that shares aspects of both supervised learning and RL, i.e.,

learning with a distal teacher or simply the author calls it a distal learning (see Fig-

ure 2.2(b)). The term ”distal” means as ”far from the point of origin”. And, the term

”a distal teacher” means the teacher that provides the training information pertain-

ing to distal information (i.e., the plant output errors), instead of to the actions [1].

The actions are proximal variables; that is, the variables that the controller controls

directly, while the plant output errors are distal variables, the variables that the con-

troller controls indirectly through the intermediary of the proximal variables [37]. The

distal learning assumes target values are available for the distal variables but not for

the proximal variables. This is exactly the case for most control designs, including

adaptive control design, because many control problems are formulated either as the

regulation problem, in which a plant output has to stay at the setpoint, or as the

tracking problem, in which the plant output has to follow the reference trajectory.

Despite using different qualities of the training information, the tasks in both su-

pervised and distal learning are considered as similar in [1]. Viewing the plant and

the critic in RL as a composite system whose ”output” is the evaluation provided by

the critic, Gullapalli [1] also regards the tasks in RL as special cases of the tasks in

the distal learning. With this perspective, the distal ”error” in the RL tasks is then

assumed to be any negative value if the critic’s evaluation is to be minimized and any

positive value if the critic’s evaluation is to be maximized.

14

2.3 Adaptive Control

Most of control methods have been well developed for solving certain well-defined

classes of control problems involving linear processes and certain types of cost func-

tions. The controller in those control techniques are constructed based on mathemat-

ical model of the plant to be controlled. Common assumption made is that the plant

model accurately replicates all relevant aspects of the plant behavior, and the con-

troller designed using those techniques should be able to perform well with the real

plant. Consequently, the controller performance critically depends on the accuracy of

the plant model. While there are no similar techniques developed for general classes

of nonlinear control problems despite substantial efforts, in most control problems it is

difficult to model the plant precisely. Incorporating adaptive methods in constructing

the controller has been one alternative to solve those control problems.

The adaptive control methods typically assume a plant model structure. The basic

idea behind the adaptive control is to estimate on-line the uncertain or unknown plant

parameters (or equivalently, the corresponding controller parameters), and use those

estimated parameters to compute the control action [3]. Therefore, an adaptive control

system can be considered as a control system with on-line parameter estimation. Based

on characteristic of the plant parameters to be estimated, it is a customary to separate

the parameter estimation problems as the tuning problem and the adaptation problem.

When the true parameters of the plant to be controlled are constant, the parameter

estimation problem is the tuning problem, otherwise the adaptation problem. Although

in practise many control problems include the unknown plants whose paramaters are

time-varying, most of the adaptive control methods are developed for solving the tuning

problem. This is to avoid mathematical difficulties. Consequently, for those adaptive

methods to be applicable in the practise, the time-varying plant parameters must vary

considerably slower than the parameter adaptation.

In the following, the author discusses two main approaches widely used for con-

structing and training the adaptive controller, i.e., model-reference adaptive control

method and self-tuning method. The discussion of the former method is accompanied

by the approaches commonly used for determining adaptation rules for adjusting the

controller parameters, i.e., the gradient method and Lyapunov method. Examples of

their applications are also provided to show the difficulties of their implementation in

the real practices.

15

2.3.1 Model-Reference Adaptive Control (MRAC)

MRAC was originally developed to solve a control problem in which the specifications

of desired closed loop behavior are given in terms of a reference model. A general

configuration of MRAC can be represented by Figure 2.3. MRAC is composed of four

parts: a plant whose parameters are unknown, the reference model that generates the

desired plant output, a feedback controller containing adjustable parameters, and an

adaptation rule for updating the adjustable parameters of the controllers.

The plant in MRAC is typically assumed to have a known structure of the plant,

but its parameters are unknown. For linear plants, ”known structure” means that

the number of ”poles” and ”zeros” of the linear differential equation of the plant are

assumed to be known, but the locations of the poles and the zeros are unknown. For

nonlinear plants, it is equivalent to a known structure of the dynamics equation, but

its parameters are not known.

Figure 2.3: Model Reference Adaptive Control. ym: model reference output, yr: reference

or command signal, y: plant output, u = fw(yr, y): plant input, w: adjustable controller

parameter vector, e: plant output error.

The reference model is used to specify how the plant outputs should ideally respond

to the desired outputs. In other words, the model is used to generate a desired trajec-

tory the plant output should track as closely as possible. The choice of the reference

model is an important part of the MRAC design, implying that the reference model can

be choosen arbitrarily. The choice of the reference model has to fullfil two requirements.

It should reflect the desired control performance specifications in terms of such as time

constant or rise time, settling time, overshoot, or frequency domain characteristics. On

16

the other hand, those desired performance specifications must be achievable, implying

there must be some inherent constraints on the the reference model structure, i.e., in

terms of order and relative degree of the model with respect to the assumed structure

of the plant model.

The controller is of adjustable parameters. In general, MRAC requires the controller

to have perfect tracking capacity so that tracking convergence is possible. That is,

when the exactly known parameters of the plant are available and used to construct

the controller, the controller should make the plant output identical to the output of the

reference model. The controller is said to be linearly parameterized if it is constructed

linear in terms of the adjustable paramaters. Most adaptive control designs use linearly

parameterized controller, i.e., the linear state feedback controller.

The adaptation rule is required to adjust the controller parameters so that the

plant output is driven to the reference model output as closely as possible. That is,

the objective of the adaptation is to make the tracking error converge to zero. There

are many formalisms that can be used to develop the adaptation rules in MRAC. Two

of them are discussed here, i.e., the gradient method and the Lyapunov method.

2.3.1.1 Gradient Method

The gradient method is a fundamental idea in MRAC. The basic idea behind the gradi-

ent method is as follows. Assume that we attempt to adjust the controller parameters

so that the errors between the outputs of the plant and the reference model converge

to zero. Let us use e to denote the errors and w to denote the controller parameter

vector to be adjusted. Then, define the criterion

J(w) =
1

2
e2, (2.1)

assuming that smaller J(w) implies better control performance of MRAC, and there-

fore, w are considered appropriate. To make J(w) small, the parameter vector w is

changed in the direction of the negative gradient of J , i.e.,

ẇ = −γ
∂J

∂w
= −γe

∂e

∂w
, (2.2)

where w is an element of the parameter vector w = {w} and γ denotes an adaptation

rate. The derivative ∂e/∂w is called sensitivity derivative of the system. It can be

evaluated under the assumption that the true parameters w are constant or changing

much more slowly than other parameters in the system. The update rule of (2.2), where

17

∂e/∂w is the sensitivity derivative, is commonly referred to as MIT rule. This name

is chosen because the MIT rule is the result of the work done at the Instrumentation

Laboratory in Massachusetts Institute of Technology (MIT) [2].

In the MRAC designs it is common to represent the criterion in term of the error

e. The first MRAC was implemented to minimize the criterion

J(w) = |e|

and the update rule becomes

ẇ = −γ
∂e

∂w
sign(e).

Moreover, the gradient update rule is sometimes implemented in even simpler form

ẇ = −γ sign
(∂e

∂w

)

sign(e),

which is called the sign-sign algorithm.

For clarity, the application of the gradient method to the MRAC designs are illus-

trated in the following examples (see [2] for more examples).

Example 2.1:

The MRAC design developed in this example is exactly what Figure 2.3 describes. Assume

that the plant dynamics is of a model structure

ẏ = −ay + bu, (2.3)

where u is a control variable, y the plant output, a and b are constants. Suppose that the plant

is desired to behave according to the reference model:

ẏm = −amym + bmyr, (2.4)

where yr is the reference signal. The reference model output can be represented as

ym =
bm

p + am

yr,

where p = d/dt is the differential operator. There is a caveat in choosing the design paramater

am. If am > a, dynamics of the desired model is ”faster” than that of the plant, and vice versa.

This implies that am cannot be chosen arbitrarily, i.e., its choice needs some a priori knowledge

of the plant.

18

Suppose that the controller can be determined as

u = cyr − dy,

where

c =
bm

b
, d =

am − a

b

are the controller parameters. Using such a controller, the plant output corresponds to

y =
bc

p + a + bd
yr.

The control design problem is to make the plant output y ”follow” the reference model output

ym. This problem is solved by adjusting c and d so that (a + bd)→ am and bc→ bm.

Define the error

e = y − ym.

The sensitivity derivatives are obtained by taking the partial derivatives of the error with

respect to c and d, i.e.,

∂e

∂c
=

b

p + a + bd
yr

∂e

∂d
= −

b2c

(p + a + bd)2
yr = −

b

p + a + bd
y.

(2.5)

Hence, the determination of the adaptation rules for adjusting c and d using the gradient

approach seems straightforward. However, those sensitivity derivatives in (2.5) cannot actually

be used to determine the adaptation rules for adjusting c and d because they require a and b

to be known. Approximations are therefore required to obtain realizable parameter adaptation

rules (see [2] for the heuristic approximations that may be used).

The above simple example applies only to the linear plants. It shows that the

gradient method can be used to implement the adaptation rules for MRAC. However,

solving adaptation rules using the gradient approach is a hard task, despite under

the assumption that a linear model structure of the plant is known. Adaptive control

theorists have devoted considerable attention to determining the adaptation rules using

some approximations based on heuristic approaches.

Despite its limitations, the gradient method based on the MIT rule has been claimed

to be applicable to optimization of more general criterion function than the criterion

of (2.1). In the MRAC designs, it is implemented using a straightforward principle.

Specify first a model and a controller with adjustable parameters, and the control

performance is given as a criterion function defined a priori. The adaptation rules

for updating the controller parameters are obtained by computing the gradient of the

19

criterion function with respect to the parameters and making the changes of the pa-

rameters in the negative gradient of the criterion function. Such an approach has the

same problems as the MIT rule, i.e., the plant model parameters need to be known.

To make this unrealistic approach realizable, some approximations have to be made as

well.

2.3.1.2 Lyapunov Method

Many well-developed approaches are available for the stability analysis of linear, time-

invariant control systems, such as Nyquist stability method and Routh’s stability

method. However, it is extremely difficult or impossible to perform stability analy-

sis for nonlinear systems and/or time-varying systems. Lyapunov introduced a direct

method (a.k.a. Lypunov’s second method) to investigate the stability of a solution to

continuous-time nonlinear systems [2, 3, 38]. The author simply uses the term ”Lya-

punov method” in this dissertation to refer to the Lyapunov’s second method.

From a point of view of the classical theory of mechanics, it is intuitively under-

standable that a vibratory system is stable if its total energy (in the form of a positive

function) continually decreases (which means that the energy function must have nega-

tive time derivative) until an equilibrium state is reached. Based on this fact, Lyapunov

makes a generalization that if the system has an asymtotically stable equilibrium, then

the stored energy of the system decays as time increases until it finally reaches its

minimum value at the equilibrium state. However, there is no straighforward way of

defining an ”energy function”. To overcome this difficulty, a fictitious energy function

called a Lyapunov function is introduced by Lyapunov. This idea is more general than

that of the energy function and more widely applicable where Lyapunov function is not

necessarily unique. Any scalar function satisfying the hypotheses of Lyapunov’s stabil-

ity theorem (to be given later) can serve as Lyapunov functions. For simple systems,

it is sometimes easy to guess or approximate suitable Lyapunov functions. But, this is

not true for complicated systems.

Lyapunov function depends on the state variables x1, x2, · · · , xn, and time t. It is

denoted by V (x1, x2, · · · , xn, t) or simply V (x, t) or V (x) (i.e., when Lyapunov function

does not include t explicitly). The Lyapunov method focuses on dealing with the sign

behavior of V and that of its derivatives. Those signs give us information regarding

the stability or asymtotic stability without requiring us to solve the stability problems

directly based on the system dynamics, either linear or nonlinear. The formalism of

the Lyapunov method is given below.

20

Suppose that a system is described by

ẋ = f(x, t) (2.6)

where x denote the system state and

f(0, t) = 0, for all t.

For the above system, define a Lyapunov function candidate V (x) (in the form of a

scalar function) with an equilibrium point at x = x̄ that satisfies the conditions

1. V (x) is continuous and differentiable everywhere in state space,

2. V (x) > V (x̄) for all x in state spape and x 6= x̄.

The Lyapunov function candidate, V , is a Lyapunov function if

V̇ (x) ≤ 0 for all x in state space. (2.7)

This implies that the Lyapunov function is a ”bowl”-shaped funtion with an unique

equilibrium point of state. It has trajectories that never move up the surface of the

bowl, rather always move downward on the bowl surface. The above definition of the

Lyapunov function facilitates the following Lyapunov’s stability theorem [2,3, 38–40]:

Theorem 1 If V is a Lyapunov function that exists for the system (2.6), then the

system is stable. When V̇ (x) < 0, then the system is asymtotically stable.

Although the Lyapunov method is very useful and powerful for dealing with stabil-

ity problems of nonlinear systems, there is no straighforward method or step-by-step

method to find suitable Lyapunov function, leaving the stability analysis of many non-

linear systems remains as a hard task. Considerable ingenuity and experience prove

to be very important in determining the stability of many nonlinear systems using

the Lyapunov method. And in general, none of adaptive control based on analyti-

cally derived fixed Liapunov functions can be regarded as universally applicable. In

summary, the Lyapunov method is only an alternative way to investigate the system

stability. Nevertheless, it might be able to answer the question regarding the stability

of nonlinear systems when other methods fail.

21

The following example illustrates the applications of the Lyapunov method to the

MRAC design for a linear plant. It uses the same case as in the previous example.

Example 2.2:

Consider the same problem as in Example 2.1. The task now is to determine the adaptation

rules for updating c and d based on the Lyapunov method. Introduce the error:

e = y − ym.

Subtituting the assumption model of (2.3) and the reference model of (2.4) into time derivative

of e, we obtain

ė = −ame + (am − a− bd)y + (bd− bm)yr.

When a and b are known, we can set the best controller parameters as c = b/bm and d =

(am − a)/b (i.e., equivalent to am = a + bd and bm = bc) so that we obtain

ė = −ame,

i.e., the error goes to zero. Actually, this implies existence of a Lyapunov function of the form

V (e) =
1

2
e2.

The proof is trivial. Taking time derivative of V (e), we obtain

V̇ (e) = eė = −ame2 < 0,

that means that e goes to zero asymtotically.

Because a and b are not known, the controller parameters c = b/bm and d = (am− a)/b are

not realizable. The problem in the MRAC design is to adjust c and d (equivalent to adjusting a

and b) so that e goes to zero. At the same time, it is desired that (a + bd)→ am and bc→ bm,

i.e., the plant is desired to ”follow” the reference model. To solve this problem, first introduce

a Lyapunov function candidate:

V (e, c, d) =
1

2

(

e2 +
1

bγ
(bd + a− am)2 +

1

bγ
(bc− bm)2

)

.

Taking time derivative of V (e, c, d), we obtain

V̇ = eė +
1

γ
(bd + a− am)ḋ +

1

γ
(bc− bm)ċ

= −ame2 +
1

γ
(bd + a− am)(ḋ− γye)

+
1

γ
(bc− bm)(ċ + γyre).

22

If c and d are adjusted according to the following rules

ċ = −γyre,

ḋ = γye,

we obtain

V̇ = −ame2 < 0,

which implies that V → 0 as t→∞, equivalent to e→ 0, (a + bd)→ am and bc→ bm.

The above example shows that the Lyapunov method can be used to implement the

adaptation rules for the MRAC design for the simple linear plant. As in the previous

example, however, the above MRAC design method is limited by the need to assume

a known structure of the linear plant model. In addition, even if the assumption

plant model used is simple, the above MRAC design method involves defining quite

complicated Lyapunov function candidate from which the adaptation rules for updating

the controller parameters need to be found. From a practical point of view, the problem

of finding suitable Lyapunov function analytically becomes more and more difficult as

one tries to control more and more complex nonlinear systems.

2.3.2 Self-Tuning Control (STC)

Using known model plant parameters, non-adaptive control methods determine a set of

desired controller parameters associated with desired control performance. In adaptive

control, controller parameters adjusted all the time are desired to converge to that

set of the desired controller parameters even when the plant model is unknown. An

adaptive control with this property is called self-tuning control (STC).

Under the assumption that a model structure of the plant is known but its para-

maters are unknown, the basic idea behind STC is to separate the estimation of the

unknown plant model parameters from the design of the controller (see Figure 2.4).

The unknown parameters are estimated on-line using recursive estimation methods.

Although being estimated, those parameters are treated as if they are true. This idea

is referred to as certainty equivalence principe. The estimation of the parameters can

be considered simply as the problem of finding a set of parameters that fits input-

output data from the plant. This is different from parameter adaptation in MRAC

where the parameters are adjusted so that the error between the output of the plant

and the reference model converges to zero. Many methods are available for estimating

the parameters of linear plant models. The most popular estimation method is the

least squares method and its extensions.

23

Figure 2.4: Self-tuning controller whose parameters are determined using online estimated

plant parameters.

The desired specifications of the closed loop system in STC are determined based

on the online estimated plant model parameters. This is done in the block ”design” in

Figure 2.4. The choice of the control design method used in the block ”design” depends

on the desired specifications of the closed loop system. Many control design methods

are available for linear plants, such as pole-placement, PID, LQR (Linear Quadraric

Control), and minimum variance control.

In the STC designs, determining the controller parameters from the estimated plant

model parameters is called indirect method. In contrast, it is possible to eliminate the

need of translating the estimated plant model parameters into the control parameters.

Note that the parameters of the controller and the plant are related to each other for

a specific control method. This means that the plant model may be reparameterized

using the controller parameters (which are also unknown, of course). After reparam-

eterization of the plant model, standard techniques for estimating the plant model

parameters are used. This approach is referred to as direct method since there is no

need of translating the estimated plant model parameters into the control parameters.

The similar way can be used to consider the indirect method and the direct method in

MRAC [3].

2.3.3 Comparing MRAC and STC

The above discussions describe how MRAC and STC are developed from different per-

spectives. While in the MRAC designs the desired specifications of the closed loop

24

system are included in the definition of the reference model, in STC the desired speci-

fications of the closed loop system are determined based on the online estimated plant

model parameters. To achieve the desired specifications, the parameters in MRAC

systems are updated so as to minimize the error between the plant output and the

reference model output, while in STC systems updated so as to fit the input-output

measurement data from the plant. This implies that the STC systems are more heavily

dependent on appropriateness of the assumption plant model than the MRAC systems.

Consequently, the controller performance of the STC systems critically depends on the

accuracy of the estimated plant model. In contrast, this is not neccessarily the case

for the MRAC systems because they only focus on minimizing the plant output error,

not fitting the assumption plant model with the actual plant. Despite their differences,

both MRAC and STC are related each other. As can be seen from Figures 2.3 and 2.4,

they have two loops, one for control and another for parameter estimation. According

to a theoretical viewpoint, MRAC and STC controller can be placed under a unified

framework [2,3]. Finally, certain similarity of them is that they are limited by the need

of assuming a known fixed structure of the plant dynamics model.

2.4 Reinforcement Learning

The aforementioned adaptive control designs (and, control designs in general) assume

that the plant output errors (i.e., between the actual plant output and the model

output) are direct indications for control performances, i.e, smaller plant output error

is direct indication for better control performance. Under this assumption, the control

objective is then defined simply as to minimize the plant output errors all times. There

is no need to try a variety of other actions that might be better to take once an action

is predicted to result in the smallest plant output error at the next time step. As

discussed in Chapter 1, however, executing the actions that are predicted to result in

smaller plant output errors only might mislead to non-goal states. This is because the

plant output error is purely instructive feedback. It only says about whether the action

was correct or incorrect, that is, whether it was a best action or not, but it does not

tell how good the action was. The notion of ”how good” here refers to future plant

output errors that can be expected due to executing the action. In other words, the

plant output errors do not always imply appropriate instantaneous control performance

measures. Reinforcement learning (RL) has been an alternative way of dealing with

this issue.

25

As discussed previously, the most important feature distinguishing RL from other

types of learning as well as adaptive control is that it uses evaluative feedback that

evaluates the actions taken rather than instructs by giving correct actions (or, target

plant outputs). Evaluative feedback indicates how good the action taken is, but it does

not tell whether the action is the best or the worst one. Using evaluative feedback, RL

does not necessarily take the actions that minimize the plant output errors in the short

run, because it can predict and take the actions that will result in much smaller plant

output errors in the long run. Brief explanation of RL is given as follows.

2.4.1 Basic Structure

Plant

Controller

reward r

action u state s

Figure 2.5: Basic structure of reinforcement learning control problem. In the theory of re-

inforcement learning, the controller corresponds to an agent and the plantcorresponds to an

environment.

A standard model of reinforcement learning is depicted in Figure 2.5. The author

represents a basic structure of RL for solving control problems using two components:

a controller and a plant. In the theory of RL, the controller corresponds to an agent

and the plant corresponds to an environment. Note that the ”controller” in Figure 2.5

includes the critic. Therefore, it not only produces actions but also evaluates the actions

it executes. The ”plant” not only produces outputs but also rewards for the actions

applied to it.

At a discrete time step t, given a state st, the controller applies an action ut to

the plant and receives a reward rt+1 in the next time step t + 1. Let 0 < γ < 1 be a

discount factor against a future reward. The goal of the controller is to find an optimal

policy that determines a sequence of actions ~ut = (ut, ut+1, ut+2, ...) maximizing the

total amount of the discounted reward received in the long run:

V (st) = max
~ut

∞
∑

k=0

γkrt+1+k (2.8)

26

which is referred to as a value function.

By its definition in (2.8), the value function tells what is good in the long run, in

contrast with the reward that tells what is good in an immediate consequence. That

is, the reward represents the immediate, intrinsic desirability of plant states, and the

value represents the long-term desirability of states after taking into account the states

that are likely to follow, and the rewards available in those states. For example, a state

might be always of a low immediate reward but still of a high value if it is regularly

followed by other states that yield high rewards. Or, the opposite could be true.

We can say that the rewards are primaries, whereas the values, as predictions of

the rewards, are secondaries. There could be no values without rewards, and the

only purpose of estimating the values is to achieve more reward. Nevertheless, the

controller are most concerned only with the values when deciding and evaluating the

actions. Actions must be chosen so that the states are of highest values, not highest

rewards, because these actions result in the greatest amount of rewards over the long

run [7].

There are two distinct ways of finding the optimal policy based on the value func-

tion, i.e., value-function approach and policy-search approach, that are explained in the

following.

2.4.2 Value-Funtion Approach

reward r

action u state s

TD Method

Value Function

(Policy)

Action Selection
Method

update

Figure 2.6: Value function approach.

27

The equation (2.8) defines a state-value function measuring the maximum possible

sum of rewards the controller could receive when it starts from st and performs a

sequence of actions ~ut. This function is the solution of the following Bellman equation:

V (st) = max
ut

[rt+1 + γV (υ(st, ut))] , (2.9)

where υ(st, ut) = st+1 is a plant dynamics function.

From (2.9), one can deduce the optimal policy:

u∗(st) = arg max
ut

[rt+1 + γV (υ(st, ut))] . (2.10)

When the controller is not given the plant dynamics υ(st, ut), the equation (2.10)

is useless. Alternatively, the controller can use a state-action-value function (a.k.a.

Q-function):

Q(st, ut) = rt+1 + γQ(st+1, u
∗(st+1)), (2.11)

where u∗(st+1) is the optimal policy deduced by

u∗(st+1) = arg max
ut+1

Q(st+1, ut+1). (2.12)

Initially, the optimal policy is not available when the Q-function is not learned

yet. As the controller interacts with the plant, the Q-function is updated using the

Temporal Difference (TD) method [41]. To improve the Q-values during learning, the

action cannot always be picked up from the current optimal policy. Random actions

of a small fraction, ǫ, of the time must also be chosen for exploration. Such action

selection method is known as an ǫ-greedy action selection. Figure 2.6 describes how all

these processes interact in the controller.

Using the TD method, an update formula for the Q-function is as follows:

Q(st, ut)← Q(st, ut) + αδt, (2.13)

where α is a learning rate, and δt is a TD error:

δt = rt+1 + γQ(st+1, u
∗(st+1))−Q(st, ut). (2.14)

The above formulas only hold for a discrete representation of states and actions. The

Q-function can be simply represented by a look-up table that maps a state-action pair

28

to its value. If states and actions are represented continuously, a function approximator

such as a neural network must be used as the Q-function. In such a case, the TD method

is used to update the weights (not a Q-value) of the Q-function approximator.

Let QΩ be a function approximator of the Q-function with a weight vector Ω = {ω}.

The TD method updates ω of the Q-function QΩ as follows:

ωt ← ωt + ηδtGt

Gt ← λγGt +
∂QΩt

(st, ut)

∂ωt
,

(2.15)

where η is a learning rate and 0 ≤ λ ≤ 1.

2.4.3 Policy Search Approach

reward r

action u state sValue Function

Gradient Method

Policy

update

TD Method

Figure 2.7: Policy search approach.

Figure 2.7 describes how the controller works based on the policy search approach.

In the value function approach, the action-selection policy is implicitly represented

by the estimated value function. But, in the policy search approach, the policy is

directly approximated with its own parameters and can be represented by any function

approximator such as a neural network or a fuzzy system, whose input is a state of the

plant and whose output is an action to the plant.

Like in the value function approach, the controller using the policy search approach

must first estimate the value function. But, the value function is not directly used to

29

decide an action. Instead, it is used as an evaluation function for tuning the parameters

of the policy.

Let u = πw(s) be a policy with a parameter vector w = {w} and ρ be the perfor-

mance measure that may be represented as a function of the TD-error (i.e., ρ(δ)) or

the Q-function (i.e., ρ(Q)). Using ρ(δ) as the evaluation function to be minimized, the

policy search approach updates w by a gradient descent method as follows:

wt ← wt − η
∂ρ(δt)

∂wt
(2.16)

(see [20] for its details and modified versions).

Similarly, using ρ(Q) as the evaluation function to be maximized, the policy search

approach updates w by a gradient ascent method as follows:

wt ← wt + η
∂ρ(Q(st, ut))

∂wt

(2.17)

(see [14] for an example of the exact solution of ∂ρ(Q(st, ut))/∂wt).

Alternatively, using ρ(Q) as the evaluation function under the assumptions that

both ∂ρ(Q)/∂u and ∂u/∂w exist, the policy search approach can update w as follows:

wt ← wt + η
∂ρ(Q(st, ut))

∂ut

∂ut

∂wt
. (2.18)

Berenji and Khedkar [10,11] have proposed an update rule similar to (2.18). They

used V (st) as the evaluation function to be maximized to tune the weights of the policy

using the following update rule:

wt ← wt + η
∂V (st)

∂ut

∂ut

∂wt

. (2.19)

Based on the update rule (2.19), the goal of executing action ut is to maximize V (st).

Since the partial derivative ∂V (st)/∂ut does not exist, it is unclear how to compute

∂V (st)/∂ut in (2.19). Nevertheless, in [10], under the assumption that V (st) is quite

indirectly dependent on ut, ∂V (st)/∂ut is approximated as follows:

∂V (st)

∂ut
≈
△V (st)

△ut
=

V (st)− V (st−1)

ut − ut−1
. (2.20)

It seems that the update rule (2.19) is not efficient to improve the weights of the

policy. In (2.19), while the accuracy of V (st) is not guaranteed during the learning

30

process, the computation of ∂V (st)/∂ut requires accurate value of V (st). On the other

hand, V (st) only represents the value of the state st, whatever the action ut is applied.

Hence, there will be situations where we can not assume that V (st) is dependent on

ut either directly or indirectly. When such situations occur, we can not use even the

approximation of ∂V (st)/∂ut.

2.4.4 Defects of Reinforcement Learning

Despite many successful applications of reinforcement learning using the above ap-

proaches [8, 10, 11, 22, 23, 36, 42], reinforcement learning has several difficulties when

applied to the control problem, which are as follows:

1. The value function is not readily available. To obtain the best approximation of

the value function, the controller must do many trial-and-error interactions with

the plant.

2. When the value function approach is used, action selection can be very sensitive

to an arbitrarily small change in the estimated value function.

3. An optimal value function is only associated with a fixed goal state, and in turn the

optimal actions derived from the value function are only best applied to achieve

the fixed goal state. Consequently, when the goal state is changed, the current

optimal value function may be no longer useful for the controller to determine

the optimal actions.

2.5 Comparing Adaptive Control and Reinforcement Learn-

ing

Adaptive control and RL are distinct in the ways of improving control performances.

Adaptive control is not time-consuming due to not relying on the long-term evaluations

(rather plant output errors) to improve the control performances. But, its applicability

is typically limited due to presupposing a plant model structure that must meet very re-

strictive assumptions. In contrast, RL does not necessarily presuppose any plant model

structure, i.e., it is model-free, and therefore, it is of high applicability. But, it relies

entirely on the long-term values of states or states-actions to improve control perfor-

mances, which leads to low efficiency of RL in terms of time-consuming trials-and-errors

required for estimating value function. Thus, the distinct ways of improving control

performance make adaptive control and RL distinct in applicability and efficiency.

31

As discribed above, methods for solving adaptive control problems can be divided

into two classes: indirect method and direct method. The former refers to a method in

which parameters of the controller are to be computed from those of the plant model

estimated online. The latter refers to a method in which parameters of the plant model

to be estimated on-line is reparameterized using those of the controller so that there

is no need to translate the parameters of the plant model into those of the controller.

Thus, both methods are essentially the same.

Somewhat different way can be used for classifying methods for solving control

problems involving RL. Basically, the methods for solving control problems involving

RL are required to infer appropriate control actions from the evaluation function that

do not pertain to the target actions or plant outputs directly. To accomplish such a

task, a method for bridging the gap between training information that is sufficiently

available but less evaluative and training information that is evaluative but not suf-

ficiently available is necessary. Researcher have categorized the methods for bridging

this gap into two classes [1]. Direct method, i.e., the method that involves actively ap-

plying actions chosen stochastically and observing the consequences on the evaluation

function of a general form (i.e., independent of the plant model). Indirect method, i.e.,

the method that involves constructing a model of the evaluation function in a form

that can be readily used to generate requisite information for training the controller.

The term ”model” in indirect method refers to an evaluation function model that in-

cludes the plant model and the critic. Implementation of indirect method consists of

two stages: constructing an adequate model of the evaluation function, and using the

model to generate the training information required to modify the control behavior.

Based on the above way of classifying the methods for solving control problems involv-

ing RL, all the aforementioned descriptions of RL refer to direct method because the

value function used as the evaluation function is of a general form, i.e, not associated

with a certain plant dynamics.

Advantages of direct method over indirect method are straightforward. They do

not entail the cost of constructing evaluation function model. Therefore, they are

computationally simple and no delay in training the controller. They might be able to

perform well even if the plant is non-stationary (i.e., its parameters are changing) as

they rely only upon the plant itself to obtain requisite training information for updating

the controller. However, in general, a potential disadvantage of direct method is that

the evaluation function obtained through active perturbation can be less reliable to

represent the stable dynamics of the closed loop system in terms of the long-term

control peerformance measures. This implies that the controller updated based on it

32

can produce the actions that mislead to non-goal states. On the other hand, learning

the precise value function requires many time-consuming trials-and-errors. In such

situations, the direct method is often slower than the indirect method.

Actually, indirect method is perceived as having advantages over direct method

when the evaluation function model is available a priori. An accurate model implic-

itly provides with substantial information regarding the plant to be controlled. If an

adequate model is not known, it may be constructed in various ways, but then it is

improved through interactions with the plant.

Figure 2.8: Indirect method of proposed adaptive control.

Although it is clear from the above discussion that each method has its own ad-

vantages and disadvantages and that no method is universally applicable, the author

mimics indirect methods in RL in presenting new adaptive control schemes in the

dissertation. As mentioned in Chapter 1, the main objective of the dissertation is to

present alternative adaptive control by ”combining” design philosophies of classical

adaptive control and RL. As described in Figure 2.8, the alternative adaptive con-

trol involves modifying the controller behavior so that its control performances get

improved as measured with an evaluation function model. The author supposes the

model in Figure 2.8 as an approximation of the actual value function. The model pro-

duces its output only based on the state, the action, and the result of executing the

action (i.e., the next state), but not based on the actual rewards. Implementation of

such an approach for designing adaptive control is discussed in Chapter 3 and 4.

33

CHAPTER 3

Adaptive Control with Fixed Approximate Evaluation Function

The limitations of typical adaptive control and RL discussed the previous chapter

motivate the author to seek alternative approach for tuning a controller. This chapter

presents an alternative approach for tuning a controller for simple control problems for

which we can approximate a value function of the problem state or state-action. The

approach is an intermediate result of the author’s work.

3.1 Introduction

In reality, many control problems can be modeled as a combination of simple sub-

problems. When a problem is relatively simple, a human engineer can make an easy

guess about ”goodness”’ of problem state using its distance to the goal state. And,

the action must be close to zero in the steady states near the goal state. For such a

problem, instead of using RL, the author assumes that we can use the distance of the

problem states to the goal state and actions as an approximated evaluation function for

tuning the controller. The controller is tuned with the gradient method in its parameter

space. Since the value function of the problem states does not need to be learned, this

method can be readily applied to a problem with the changing goal.

Of course, the prerequisite about availability of the approximated evaluation func-

tion restricts applicability of the proposed method. But, the purpose of this chapter

is to show that, for a simple control problem such as a pole-balancing problem, the

35

controller can be tuned efficiently and smoothly using the conjectured evaluation func-

tion and a simple parameter tuning algorithm. Two kinds of controller tuned with

that simple parameter tuning algorithm, i.e., a state feedback controller and a fuzzy

controller, are discussed in this chapter.

Various kinds of adaptive method for tuning state feedback controller and fuzzy

controller have been also proposed in many literatures (see [5,43–49]). Those methods

require the plant model with known structure. The adaptive control method presented

in this chapter is a novel model-free approach by which the overall control scheme does

not depend on any plant structure (see [50–52]).

3.2 Architecture

Figure 3.1: Control with Approximated Policy Search Approach

Figure 3.1 describes general architecture of the controller tuning method presented

in this chapter. In the dissertation, the method is called CAPS (Controller with Ap-

proximated Policy Search). Specific name is used to call the method when the controller

is replaced with a certain kind of controller. When the controller is replaced with a

state feedback controller, the method is called by LCAPS (Linear Controller with Ap-

proximated Policy Search). When the controller is replaced with a fuzzy controller, the

method is called by FCAPS (Fuzzy Controller with Approximated Policy Search).

36

CAPS tunes parameters of the controller based on the evaluation function. But, it

does not use the Q-function as the evaluation function because considerable efforts are

required for learning the Q-function even for a simple control problem. Instead, it rep-

resents an approximated evaluation function as a function of a Euclidean distance from

a goal state and a weighted action, which is assumed readily available and exploitable.

In general, the architecture of CAPS is similar to the policy search approach described

in Fig. 2.7. The difference is that CAPS is not required to learn the evaluation function.

3.3 Approximate Evaluation Function

Let us use u = fw(s) to denote either the state feedback controller or the fuzzy controller

where w = {w} is a parameter vector. In CAPS, initially all the elements of w of fw

are set to zero, which makes fw far from the optimum at the beginning. The gradient

method is used to adjust the values of w, and to make fw the optimal policy by tuning

w, a ”good” evaluation function is needed.

In many adaptive control designs [2–6], the ”good” evaluation function is defined

a priori. The common assumption made is that the plant output errors (i.e., between

actual and desired plant state) getting smaller are direct indications that the actions

taken are ”correct”, i.e., they will lead to the goal state eventually. Otherwise, the

actions are to be ”blamed”. In other words, those adaptive control designs assume a

priori that smaller plant output errors imply better instantaneous control performances

or immediate rewards, and vice versa.

In general, the author thinks that typical evaluative information expected after

executing an action should be at least a function of the action itself, a state at which

the action is executed, and the result of executing the action, i.e., the next state. Based

on this philosohy, the plant output errors should be considered as non-evaluative. And,

for this reason, in many control problems executing the actions that are predicted to

result in smaller plant output errors only can mislead to non-goal states. Actually, this

is exactly the issue addressed in RL. As discussed in Section 2.4, several researchers

proposed different forms of the evaluation function good for control using RL. But, in

their research, the evaluation functions are based on the learned value function, which

the author thinks are unsuitable for the control problems.

For CAPS, rather than using a learned value function (or the Bellman residual)

as an evaluation function, the author developes an approximated value function of the

form:

P (s(t), u(t)) =
1

2
(e2(s(t +△t)) + αu(t)2), (3.1)

37

where e(s(t +△t)) denotes a Euclidean distance between a next state s(t +△t) and a

goal state. t denotes continuous time. △t is elapsed time between time steps. α is a

weighting factor for an action u(t)(i.e., fw(s(t))) executed at the state s(t).

In proposing P (s(t), u(t)), the author is motivated by the aforementioned philoso-

phy of the typical evaluative information. The author supposes that P (s(t), u(t)) has a

role similar to the state-action-value function Q(s(t), u(t)). Given s(t), CAPS derives

the action u(t) and executes it, and its performance is represented as P (s(t), u(t)).

But, CAPS does not know the performance P (s(t), u(t)) before it obtains the result of

applying u(t) to the plant, i.e., the next state s(t+△t). CAPS uses P (s(t), u(t)) as the

evaluation function at the next time step t +△t to evaluate the action u(t) executed

at s(t) and then updates the weights of its controller. CAPS assumes that smaller

P (s(t), u(t)) implies better performance. And, in the steady states near the goal state

the actions u(t) must be close to zero.

Of course, the evaluation function P restricts applicability of CAPS. It is supposed

to be useful when the control problem is simple, i.e., the closer state to the goal state

implies that the smaller actions are required. Nevertheless, a certain advantage of the

evaluation function P is its simplicity. When an appropriate definition of the Euclidean

distance of the problem states can be determined, it can be readily used to optimize

the policy by the gradient method. But, of course, it is not a ”true” value function and

may not be a ”good” evaluation function.

Given a precise value function, an optimal action is the action that leads to the next

state with the highest value of the state or the state-action. This means that we can

directly go to the goal state along the shortest trajectory on the value function. But

this is not true if we use P instead of the correct value function. Sometimes, even if a

current state is close enough to the goal state, the shortest trajectory on P may be not

the best path to go. And, this is most likely true in the complicated control problems

with the twisted value function surface. Nevertheless, many realistic control problems

can be thought of having a smooth value function, especially in the neighborhood of

the goal states. Hence, a simple approximated value function P still has a chance of

being used as an approximated evaluation function to tune an action-selection policy.

CAPS learns to produce appropriate actions by adjusting w(t) using the evaluation

function P (s(t), u(t)). This adjusment of w(t) takes effect on both the action u(t) =

f
w(t)(s(t)) and the evaluation function P (s(t), u(t)). In the following explanation, for

clarity, we use the notation P
w(t) in place of P (s(t), u(t)) to represent how good w(t)

38

at the state s(t), and rewrite (3.1) as follows:

P
w(t) =

1

2
D2(t), D(t) =

√

e2(s(t +△t)) + αu(t)2. (3.2)

CAPS in Fig. 3.1 adjusts an element of w(t) by using a gradient descent method

as follows:
dw(t)

dt
= −η

∂P
w(t)

∂w(t)
, (3.3)

where η is a positive-definite step size, and w(t) denotes an element of w at time t.

This is a natural strategy if the partial derivative of P
w(t) with respect to w(t) exists.

In such a case, w(t) can usually be assured to converge to a local optimal point of the

evaluation function P
w(t). Unfortunately, it is impossible to get this derivative. To

solve this problem, the author applies the following chain rule:

∂P
w(t)

∂w(t)
= D(t)

∂D(t)

∂w(t)
= D(t)

∂D(t)

∂u(t)

∂u(t)

∂w(t)
. (3.4)

In this equation, ∂u(t)/∂w(t) depends on the kind of controller used. For simplicity,

the author uses φw(t) to denote this partial derivative.

The partial derivative ∂D(t)/∂u(t) is still difficult to compute because the plant

dynamics function is not given. Hence, the partial derivative is approximated as,

∂D(t)

∂u(t)
≈
△D(t)

△u(t)
=

D(t)−D(t−△t)

u(t)− u(t−△t)
. (3.5)

Substituting this approximation into (3.4), and using (3.3), we obtain the following

update rule:

w(t +△t) = w(t)− ηD(t)
△D(t)

△u(t)
φw(t)△t. (3.6)

Tha author calls the method of tuning w based on the update rule (3.6) as the

Approximated Gradient Descent Method (AGDM).

3.4 Coping with Approximation Errors

Equation (3.5) is a crude approximation because any state change between consecutive

time steps is missed and ignored. Hence, the update rule (3.6) needs modifications to

cope with the approximation errors.

In Equation (3.5), when u(t) − u(t − △t) becomes very small as the plant state

approaches to the goal state, the approximated gradient might get unacceptable. To

39

Figure 3.2: CAPS with failure detector.

avoid such deleterious influences of possible errors in Equation (3.5) when tuning the

values of w(t), we change the update rule (3.6) as follows:

w(t +△t) = w(t)− ηD(t) sign
(△D(t)

△u(t)

)

φw(t)△t. (3.7)

In this update rule, only slight changes are made to the values of w(t +△t), no matter

how big the value of △D(t)/△u(t) is.

And, Figure 3.2 depicts the modified CAPS where a failure detector is introduced

to tune w(t) only when it is necessary and appropriate. The failure detector outputs 1

whenever the evaluation function P
w(t) is getting worse, and outputs 0 otherwise. Let

f(t) be a symbol for such outputs, then we can define f(t) as follows:

f(t) =

{

1, if P
w(t) > P

w(t−△t),

0, otherwise.
(3.8)

By incorporating the failure detector, the AGDM updates w(t) as follows:

w(t +△t) = w(t)− f(t)ηD(t) sign
(△D(t)

△u(t)

)

φw(t)△t. (3.9)

40

The intuitive explanation on the role of f(t) is as follows: If a current state is

getting closer to the goal state, then the value P
w(t) must be decreasing and it means

the current w(t) is “good”. In such a good situation, it is reasonable to keep w(t)

unchanged by setting f(t) = 0 because any attempt to update w(t) might make the

situation worse. On the contrary, if the current state is stepping away from the goal

state, then the value P
w(t) must be increasing. It means the current w(t) is ”bad” and

must be updated to decrease P
w(t) by setting f(t) = 1.

The update rule of (3.9) is generic in that it is applicable for tuning any kind

of controller provided that the derivative of the action with respect to the controller

parameters (i.e., φw(t)) is given. In the following sections, the author discusses appli-

cations of the update rule of (3.9) for adjusting the linear state feedback controller and

the fuzzy controller.

3.5 Linear Controller with Approximated Policy Search

Approach (LCAPS)

In LCAPS, actions are produced by a linear state feedback controller. This section

discusses first the defintion of the linear state feedback controller, followed by the

derivation of update rule for the linear state feedback controller in LCAPS. Simula-

tion results of applying LCAPS for solving a bencmark problem, i.e., a pole-balancing

problem, are then given.

3.5.1 Linear State Feedback Controller

As implied by its name, the linear state feedback controller is linear in state feedback. In

control theory, the term ”state” refers to a state of a dynamic plant, or more general, a

dynamic system. Ogata [38] defines the state of the dynamic system as the smallest set

of variables (called state variables) such that the knowledge of these variables at t = t0,

together with the knowledge of the system input for t ≥ t0, completely determines

the behavior of the plant for any time t ≥ t0. Such a definition of the state is by

no means limited to physical systems, rather also applicable to biological, economics,

social systems, and others.

Further, the term ”state variables” means the variables making up the smallest set

of variables that determine the state of the dynamic system. Suppose that at least

n variabels s1, s2, s3, · · · , sn are required to completely describe the dynamic system

behavior so that once the system input is given for t ≥ t0 and the initial state at t = t0

41

is specified, the future state of the system is completely determined. These n variabels

constitute a set of state variables.

Other term related to the term ”state” is state vector. If the n state variables

s1, s2, s3, · · · , sn are used to completely describe the system behavior, then they are con-

sidered as the n components of a state vector that can be written as s = [s1 s2 s3 · · · sn]T .

Thus, the state vector determines uniquely the system state s(t) for all t ≥ t0, once the

state at t = t0 is given and the system input for t ≥ t0 is specified. In many control

literatures, ”state vector” is rarely mentioned, rather simply ”state” to refer to the

state vector.

Generally, the state need not be composed of physically measurable or observable

state variables. Any variable that does not represent physically measurable quantity

can be chosen as a state variable. Nevertheless, in real control, it is convenient to

choose only easily measurable quantities for the state variables. Many control methods

require completely measureable state variables.

In the dissertation, by the linear state feedback controller the author means a

controller that computes its output simply as a total sum of all weighted state variables

of the state feedback. This definition implies that for the controller to produce its

outputs, all state variables must be measurable. Let w(t) = {w(t)} denote a weight

column vector of the linear state feedback controller at time t. Similarly, let s(t) =

{s(t)} denote a column state vector of the plant. Using the above definition, the linear

state feedback controller can be written as follows

u(t)(s(t)) = w(t)T s(t). (3.10)

From (3.10), we obtain

φw(t) =
∂u(s(t))

∂w(t)
= s(t). (3.11)

Hence, the update rules for tuning the linear state feedback controller in LCAPS can

be obtained by substituting φw(t) of (3.11) into (3.9).

3.5.2 Experimental Results

To evaluate performances of LCAPS, a cart-pole balancing plant as shown in Fig. 3.3

is used as a benchmark problem for the experiments. The cart-pole plant has four

state variables: s1 = θ (angle of pole with the vertical), s2 = θ̇ (pole angular velocity),

s3 = x (cart position on a track), and s4 = ẋ (cart velocity). But, in this simulation,

only the first two state variables are taken into consideration to make comparison with

42

the past research results [23, 36, 42]. Dynamic equation of the cart-pole plant are as

follows:
ṡ1(t) = s2(t),

ṡ2(t) =

g sin s1(t) + cos s1(t)

(

−u(t)−mls2
2(t) sin s1(t)

mc + m

)

l

(

4

3
−

m cos2 s1(t)

mc + m

) ,

ṡ3(t) = s4(t),

ṡ4(t) =
u(t) + ml

(

s2
2(t) sin s1(t)− ṡ2(t) cos s1(t)

)

mc + m
,

(3.12)

where g represents the acceleration of gravity, mc is the cart mass, m is the pole mass,

l is the half-pole length, and u is the force applied to the cart. In (3.12), the coefficients

of friction of the pole on the cart and the cart on the track are ignored. The cart-pole

plant dynamics of (3.12) is almost linear when the pole angle is near the upright position

and the cart is near the center. In contrast, its nonlinearity increases drastically when

the pole angle is of large values.

m c

mg
l

u(+)

x

θ(+)

0

Figure 3.3: Cart-pole plant

For these experiments, the cart-pole plant parameters are set as follows. g =

9.81 ms−2, mc = 1.0 kg, m = 0.1 kg, and l = 0.5 m. The above cart-pole plant

dynamics were then simulated using the 4th-order Runge-Kutta method with a time

step of △t = 10 ms.

In the experiments, the author considers three types of problems: (1) Set-point

problems where the goal state is fixed, (2) Tracking problems where the goal state is

43

changing, and (3) Swinging-up problems where the goal state is fixed or changing, but

the pole is in a downward position at rest initially.

In this section, the linear state feedback controller using the update rule (3.7) is

referred to as LCAPS, and the system with a failure detector using the update rule

(3.9) is referred to as LCAPS/FD.

All the elements of w in the linear state feedback controller in LCAPS are initialized

to zero and the controller output is limited within the range of [−20, 20] N. The learning

rate is chosen as η = 5000, while α is set to 1×10−5, except for the swinging-up problems

where α is set to 1× 10−6.

3.5.2.1 Set-point Problems

In the set-point problems, the goal is to balance the pole in an upright position (i.e.,

θgoal = 0 deg and θ̇goal = 0 deg/s).

The angular responses due to the application of both LCAPS and LCAPS/FD to

the plant are shown in Fig. 3.4(a). These graphs show that LCAPS/FD successfully

balanced the pole initialized at 30 deg, but LCAPS failed.

The effectiveness of applying the failure detector in LCAPS/FD can be shown also

in the produced action behaviors. LCAPS/FD (see the graph in Fig. 3.4(b)) produces

smooth action behaviors, so that LCAPS/FD is able to generate the action sequence

that is suitable for realistic control.

3.5.2.2 Tracking Problems

The second set of experiments are concerned with the tracking problem in which the

desired θ is changing. In this simulation, we set the trajectory of θ to be tracked

by FCAPS as Θ(t) = (π/30) sin(t) rad. With this trajectory, the pole periodically

oscillates around the vertical position with the maximum deviation of π/30 rad.

Figure 3.5(a) shows the angular responses of both LCAPS’s in the tracking prob-

lems. The graphs show that LCAPS/FD controlled the pole successfully to follow the

desired trajectory, but LCAPS failed.

In the tracking problems, the effectiveness of applying the failure detector in LCAP-

S/FD can also be shown in the produced action behaviors. Like in the set-point

problems, LCAPS/FD (see the graph in Fig. 3.5(b)) produces smooth action be-

haviors. The actions in Fig. 3.5(b) do not converge to zero but oscillate slightly

around zero because the goal state oscillates around zero to follow the desired trajec-

tory Θ(t) = (π/30) sin(t).

44

0 10 20 30 40 50 60 70 80
Time (s)

-10

0

10

20

30

40

50

60

70

θ
(d

eg
)

Set-point
LCAPS
LCAPS/FD

θ(0) = 30 deg

(a)

0 10 20 30 40 50 60 70 80
Time (s)

-30

-15

0

15

30

45

u
(N

)

LCAPS/FD

(b)

Figure 3.4: LCAPS/FD for solving set-point problems: (a) angular responses, (b)
actions

3.5.2.3 Swinging-up Problems

In the swinging-up problems, the pole pointing downward at rest initially (i.e., θ0 =

1800 and θ̇0 = 0 rad/s) must be swung up and then balanced in an upright position

or kept following a desired trajectory. This goal is the same as that of the set-point or

tracking problems. In this section, since LCAPS failed in both types of the problems,

we focus on the experiments with LCAPS/FD only.

45

0 10 20 30 40 50 60 70 80
Time (s)

-10

0

10

20

30

40

50

60

70

θ
(d

eg
)

Desired Trajectory
LCAPS
LCAPS/FD

θ(0) = 30 deg

(a)

0 10 20 30 40 50 60 70 80
Time (s)

-30

-15

0

15

30

45

u
(N

)

LCAPS/FD

(b)

Figure 3.5: LCAPS/FD for solving tracking problems: (a) angular responses, (b) ac-
tions

In the swinging-up problems, it will be very difficult for LCAPS/FD to achieve the

same goal of the set-point or tracking problems directly. The simplest way to solve this

problem is to swing the pole progressively higher from its rest downward position until

it reaches a region where LCAPS/FD can work well. To implement this idea, the pole

46

0 10 20 30 40 50 60 70 80
Time (s)

-30

0

30

60

90

120

150

180

210

240

270

θ
(d

eg
)

Set-point
LCAPS/FD

θ(0) = 180 deg

(a)

0 10 20 30 40 50 60 70 80
Time (s)

-30

-15

0

15

30

45

u
(N

)

LCAPS/FD

(b)

Figure 3.6: LCAPS/FD for solving swinging-up and set-point problems: (a) angular
responses, (b) actions

is swung up by applying the following swinging actions:

u =

{

−10 N, ∀ 90 deg < θ < 270 deg and θ̇ < 0 deg /s

10 N, ∀ 90 deg < θ < 270 deg and θ̇ ≥ 0 deg /s.
(3.13)

And then, LCAPS/FD is applied only when the angle of the pole is within |θ| < 60 deg

in which we assume that LCAPS/FD can work well.

47

0 10 20 30 40 50 60 70 80
Time (s)

-30

0

30

60

90

120

150

180

210

240

270

θ
(d

eg
)

Desired Trajectory
LCAPS/FD

θ(0) = 180 degθ(0) = 180 deg

(a)

0 10 20 30 40 50 60 70 80
Time (s)

-30

-15

0

15

30

45

u
(N

)

LCAPS/FD

(b)

Figure 3.7: LCAPS/FD for solving swinging-up and tracking problems: (a) angular
responses, (b) actions

When the pole is entering the range |θ| < 60 deg for the first time, LCAPS/FD

is given the ”initial condition” of angle |θ0| ≈ 60 deg . But, we cannot know a priori

the ”initial condition” of θ̇ at this time, because it depends on the total amount of

energy pumped to the pole by the swinging actions in (3.13). This amount of energy

can be determined through experiments only. Intuitively, we can say that LCAPS/FD

tends to fail to balance the pole, given too high values of θ̇. To avoid this problem, we

48

must be careful in setting the value of the swinging action for each situation in (3.13),

because either too weak or too strong swinging actions may result in too high angle

velocity of the pole. If the swinging actions are too weak, the pole takes long time

to swing up and enters the region |θ| < 60 deg . And, swinging the pole for too long

time will pump very large energy to it. On the contrary, if the swinging actions are

too strong, the pole will also receive very large energy in much shorter time. And, in

both cases, the angle velocity of the pole θ̇ becomes very high when the pole enters the

region |θ| < 60 deg .

Several researchers in the past have proposed the energy control approaches to

solve the swinging-up problems (see [53, 54]). The energy control approach regards

the acceleration of the cart as the control action to meet the goal. Using such a

control action, the pole is moved from its rest downward position to its upright position

by controlling its energy instead of controlling its angle and velocity directly. The

sequence of actions must result in an accumulated energy that corresponds to the

upright position. When the accumulated energy is larger or less than an amount of

the energy corresponding to the upright position, it must be decreased or increased by

applying the decreased or increased acceleration of the cart accordingly.

Despite its ease to implement, the energy control approach cannot apply its actions

to the cart directly. This approach demands a precise dynamics function of the plant to

convert its planned control action to the actual driving force that is readily applied to

the cart. This convertion is not as simple as multiplying the acceleration with the mass

of the cart, since it must include the mass, angle and angle velocity of the pole as well

(see [54] for its detail). Whereas, LCAPS/FD produces the driving force directly that

is readily applied to the cart without including any dynamics function of the plant.

Figures 3.6(a) and 3.7(a) show the angular responses of LCAPS/FD in the swinging

up problems followed by the set-point and tracking problems, respectively. The graphs

in both figures show that, by applying the actions in (3.13), the angle of the pole

could be moved to the desired region after about 2.0 seconds. Afterward, LCAPS/FD

succeeded to balance the pole in the upright position and keep it following the desired

trajectory. Figures 3.6(b) and 3.7(b) show the actions for the angular responses in

Fig. 3.6(a) and 3.7(a), respectively. The graphs in both figures show smooth action

behaviors produced by LCAPS/FD.

49

3.6 Fuzzy Controller with Approximated Policy Search

Approach (FCAPS)

A fuzzy controller has been employed in a wide range of control problems. However,

tuning fuzzy rules used in the fuzzy controller still remains as a difficult task for its

successful application to practical problems. For this reason, developing a self-learning

fuzzy controller is of keen interest to many researchers [5, 43–49]. In this section, an

alternative sel-tuning fuzzy controller called FCAPS is discussed. The first discussion

is regarding the fuzzy controller structure. Simulation results of applying FCAPS for

solving the pole-balancing problem are then given.

3.6.1 Fuzzy Controller

There are two alternatives for tuning the fuzzy controller. The first is structural learn-

ing in which only the number of rules, which is dependent of the number of fuzzy sets

per state variable, is tuned. The second is parametric learning in which only the pa-

rameters of the fuzzy controller are tuned. In this paper, the parameters of the fuzzy

controller mean the fuzzy set positions of both the input parts (or, IF-parts) and the

output parts (THEN-parts) of the fuzzy rule.

Simultaneous application of both learning methods are possible only at the expense

of a very large search space and a complex performance evaluation surface. Parametric

learning alone has a difficult problem to be solved: when the output of the fuzzy

controller is incorrect, it can be corrected by tuning the parameters in either input

or output parts of the rules. It is difficult to tell which part contributes the incorrect

output and should be updated. To avoid this problem, only the parameters of the

output part are tuned in this research and the structure of the fuzzy controller is given

as follows.

The input of the fuzzy controller is a state s of the plant. Let n be a size of the state

s. For the i-th state variable si (i = 1, 2, 3, ..., n), we define pi fuzzy sets or membership

functions, each of which is denoted by Ali
i (li = 1, 2, 3, ..., pi). The fuzzy controller

is constructed with all possible combinations of the predefined membership functions,

i.e., we will have
∏n

i=1 pi rules, each of which is:

IF s1 is Al1
1 and ... and sn is Aln

n

THEN f(s) is W l1...ln , (3.14)

50

where W l1...ln denotes a fuzzy set label of the output part. In this research, a mem-

bership function Ali
i of the state variable si is represented by a Gaussian function

µ
A

li

i

(si), and the parameters of the output part are represented by an adjustable vec-

tor w = {wl1...ln}.

Using a product inference system, singleton fuzzifier, and center of average defuzzi-

fier [5], the fuzzy controller can be written in the following form:

u(s) =

∑p1

l1=1 ...
∑pn

ln=1 wl1...ln(
∏n

i=1 µ
A

li

i

(si))
∑p1

l1=1 ...
∑pn

ln=1(
∏n

i=1 µ
A

li

i

(si))
. (3.15)

From this equation, φw(t) can be easily calculated as follows:

φw(t) =
∂u(t)

∂w(t)
=

∏n
i=1 µ

A
li

i

(si)
∑p1

li=1 ...
∑pn

ln=1(
∏n

i=1 µ
A

li

i

(si))
. (3.16)

Hence, the update rules for tuning the linear state feedback controller in FCAPS can

be obtained by substituting φw(t) of (3.16) into the aforementioned generic update rules

of CAPS.

3.6.2 Experimental Results

To evaluate performances of FCAPS, the pole-balancing plant as shown in Fig. 3.3 with

the dynamics of (3.12) is used as the benchmark problem for the experiments. For the

state variables: s1 = θ and s2 = θ̇, we define five Gaussian membership functions (i.e.,

p1 = p2 = 5), with the centers at {−30,−20, 0, 20, 30} deg and {−60,−30, 0, 30, 60}

deg/s, respectively, and standard deviations: {20, 10, 10, 10, 20} deg and {30, 15, 10, 15, 30}

deg/s, respectively. Note that beyond the range [-30,30] deg for θ and [-60,60] deg/s

for θ̇, the state variables will be assigned with the maximum degree of membership

(i.e., 1.0). All the elements of w in the fuzzy controller are initialized to zero and the

controller output is limited within the range of [−30, 30] N. The learning rate is chosen

as η = 5000, while α is set to 1× 10−5.

By defining five membership functions for each state variables, the controller pa-

rameter vector w will have the size of 25. Given big number of controller parameters,

the surface of the evaluation function becomes very complex where it may have many

local optima which make FCAPS difficult to find optimum w. And, since we do not

introduce any prior knowledge of the plant to initialize w (instead, all its elements are

simply set to zero), FCAPS will have a heavy burden of adjusting w initially.

51

There have been many proposed methods to balance the pole [5,43]. They include

prior knowledge of the plant and reduce the number of parameters of the fuzzy controller

to make tuning easier. In addition, they use the normalized values of the state variables

to reduce the search space of controller parameters.

But, we are not primarily interested in solving pole-balancing problem using FCAPS.

Instead, we simply set the controller parameters as explained above intentionally to

make the problem of balancing the pole more difficult. This will give us a fair evaluation

of FCAPS againts difficult control problems. While a variety of well-developed adap-

tive tuning method can be (and has been) successfully applied to the pole-balancing

problem, they may not be applicable to the problem with the simple setting explained

above.

In the experiments, we consider three types of problems: (1) Set-point problems

where the goal state is fixed, (2) Tracking problems where the goal state is changing,

and (3) Swinging-up problems where the goal state is fixed or changing, but the pole is

in a downward position at rest initially.

In this section, the fuzzy controller system using the update rule (3.7) is referred

to as FCAPS, and the system with a failure detector using the update rule (3.9) is

referred to as FCAPS/FD.

3.6.2.1 Set-point Problems

In the set-point problems, the goal is to balance the pole in an upright position (i.e.,

θgoal = 0 deg and θ̇goal = 0 deg/s).

The angular responses due to the application of both FCAPS and FCAPS/FD to

the plant are shown in Fig. 3.8(a). These graphs show that FCAPS/FD successfully

balanced the pole initialized at 30 deg, but FCAPS failed.

The effectiveness of applying the failure detector in FCAPS/FD can be shown also

in the produced action behaviors. FCAPS/FD (see the graph in Fig. 3.8(b)) produces

smooth action behaviors, so that FCAPS/FD is able to generate the action sequence

that is suitable for realistic control.

3.6.2.2 Tracking Problems

The second set of experiments are concerned with the tracking problem in which the

desired θ is changing. In this simulation, we set the trajectory of θ to be tracked

by FCAPS as Θ(t) = (π/30) sin(t) rad. With this trajectory, the pole periodically

oscillates around the vertical position with the maximum deviation of π/30 rad.

52

0 10 20 30 40 50
Time (s)

-10

0

10

20

30

40

50

60
θ

(d
eg

)

Set-point
FCAPS
FCAPS/FD

θ(0)= 30 deg

(a)

0 10 20 30 40 50
Time (s)

-30

-15

0

15

30

45

u
(N

)

FCAPS/FD

(b)

Figure 3.8: FCAPS/FD for solving set-point problems: (a) angular responses, (b)
actions

53

0 10 20 30 40 50
Time (s)

-10

0

10

20

30

40

50

60
θ

(d
eg

)

Desired Trajectory
FCAPS
FCAPS/FD

θ(0)= 30 deg

(a)

0 10 20 30 40 50
Time (s)

-30

-15

0

15

30

45

u
(N

)

FCAPS/FD

(b)

Figure 3.9: FCAPS/FD for solving tracking problems: (a) angular responses, (b) ac-
tions

54

Figure 3.9(a) shows the angular responses of both FCAPS’s in the tracking prob-

lems. The graphs show that FCAPS/FD controlled the pole successfully to follow the

desired trajectory, but FCAPS failed.

In the tracking problems, the effectiveness of applying the failure detector in FCAP-

S/FD can also be shown in the produced action behaviors. Like in the set-point prob-

lems, FCAPS/FD (see the graph in Fig. 3.9(b)) produces smooth action behaviors. The

actions in Fig. 3.9(b) do not converge to zero but oscillate slightly around zero because

the goal state oscillates around zero to follow the desired trajectory Θ(t) = (π/30) sin(t)

rad.

3.6.2.3 Swinging-up Problems

In the swinging-up problems, the pole pointing downward at rest initially (i.e., θ0 = 180

deg and θ̇0 = 0 rad/s) must be swung up and then balanced in an upright position or

kept following a desired trajectory. This goal is the same as that of the set-point or

tracking problems. In this section, since FCAPS failed in both types of the problems,

we focus on the experiments with FCAPS/FD only.

The initial angle of the pole pointing downward is far beyond the range of θ defined

in FCAPS/FD (i.e., [-30,30] deg). Therefore, in the swinging-up problems, it will be

very difficult for FCAPS/FD to achieve the same goal of the set-point or tracking prob-

lems directly. The simplest way to solve this problem is to swing the pole progressively

higher from its rest downward position until it reaches a region where FCAPS/FD can

work well. To implement this idea, the pole is swung up by applying the following

swinging actions of (3.13). And then, FCAPS/FD is applied only when the angle of

the pole is within |θ| < 60 deg in which we assume that FCAPS/FD can work well.

When the pole is entering the range |θ| < 60 deg for the first time, FCAPS/FD

is given the ”initial condition” of angle |θ0| ≈ 60 deg. But, we cannot know a priori

the ”initial condition” of θ̇ at this time, because it depends on the total amount of

energy pumped to the pole by the swinging actions in (3.13). This amount of energy

can be determined through experiments only. Intuitively, we can say that FCAPS/FD

tends to fail to balance the pole, given too high values of θ̇. To avoid this problem, we

must be careful in setting the value of the swinging action for each situation in (3.13),

because either too weak or too strong swinging actions may result in too high angle

velocity of the pole. If the swinging actions are too weak, the pole takes long time

to swing up and enters the region |θ| < 60 deg. And, swinging the pole for too long

time will pump very large energy to it. On the contrary, if the swinging actions are

55

0 10 20 30 40 50
Time (s)

-30

0

30

60

90

120

150

180

210

240

270
θ

(d
eg

)
Set-point
FCAPS/FD

θ(0)= 180 degθ(0)= 180 degθ(0)= 180 deg

(a)

0 10 20 30 40 50
Time (s)

-30

-15

0

15

30

45

u
(N

)

FCAPS/FD

(b)

Figure 3.10: FCAPS/FD for solving swinging-up and set-point problems: (a) angular
responses, (b) actions

56

0 10 20 30 40 50
Time (s)

-30

0

30

60

90

120

150

180

210

240

270
θ

(d
eg

)
Desired Trajectory
FCAPS/FD

θ(0)= 180 degθ(0)= 180 degθ(0)= 180 degθ(0)= 180 degθ(0)= 180 degθ(0)= 180 deg

(a)

0 10 20 30 40 50
Time (s)

-30

-15

0

15

30

45

u
(N

)

FCAPS/FD

(b)

Figure 3.11: FCAPS/FD for solving swinging-up and tracking problems: (a) angular
responses, (b) actions

57

too strong, the pole will also receive very large energy in much shorter time. And, in

both cases, the angle velocity of the pole θ̇ becomes very high when the pole enters the

region |θ| < 60 deg.

Figures 3.10(a) and 3.11(a) show the angular responses of FCAPS/FD in the swing-

ing up problems followed by the set-point and tracking problems, respectively. The

graphs in both figures show that, by applying the actions in (3.13), the angle of the

pole could be moved to the desired region after about 1.5 seconds. Afterward, FCAP-

S/FD succeeded to balance the pole in the upright position and keep it following the

desired trajectory. Figures 3.10(b) and 3.11(b) show the actions for the angular re-

sponses in Fig. 3.10(a) and 3.11(a), respectively. The graphs in both figures show

smooth action behaviors produced by FCAPS/FD.

3.7 Analisys of Results

An accurate evaluation function can represent the dynamics of the system (the plant

and the controller). Given any state of the plant, the accurate evaluation function can

tell the controller the best action to take because it can predict the result of executing

actions precisely.

The accuracy of the evaluation function P
w(t) is not guaranteed. But, using P

w(t),

both LCAPS and FCAPS have succeeded to produce the actions that lead to the goal

state. We can analyze the experiment results using the Lyapunov’s theorem.

In the author’s control problem, the vector {s(t), u(t)} corresponds to the state

x(t) of (2.6). And, both the plant and the controller are treated as a single system

corresponding to the system described by (2.6). This system has a goal state of s = 0

and u = 0.

By its definition in (3.1), it is obvious that P
w(t) is a positive definite function. Now,

suppose that its time derivative Ṗ
w(t) is always negative. Then, as time increases the

value of P
w(t) gets smaller and smaller, i.e., P

w(t) < P
w(t−△t). Finally, P

w(t) approaches

to zero, and therefore both the state s(t) and the action u(t) converge to zero. Hence,

we can say that P
w(t) is a good evaluation function to find the best trajectory toward

the goal state when it can be tuned to satisfy the Lyapunov stability conditions.

Based on the above explanation, it seems that both LCAPS and FCAPS produced

good experiment results because they succeeded to make the approximated evaluation

function P
w(t) satisfy the Lyapunov stability conditions (i.e., by making the controller

parameters appropriate).

58

In the experiments, FCAPS is given 625 parameters of the fuzzy controller while

LCAPS only 2 parameters of the linear state feedback controller. The simulation results

presented in this chapter show that FCAPS is better than LCAPS. Thus, those results

correspond to the fact that the more number of the controller parameters enables the

controller to have more resources and resolution, i.e., it can keep producing appropriate

actions, given seemingly same states.

59

CHAPTER 4

Adaptive Control with On-line Tuning of Evaluation Function

The effectiveness of a fixed approximated value function as an evaluation function has

been empirically proved in the previous chapter. However, in general it is difficult or

even impossible that we can find an appropriate evaluation function that can be used

to measure a control performance of any adaptive control. This chapter presents TAC

(Two-stage Adaptive Control), i.e., an adaptive control scheme that tunes a controller

with a gradient method using an approximate evaluation function adjusted on-line.

4.1 General Architecture

Figure 4.1 decribes the architecture of TAC. In general, TAC is supposed to work with

the assumption that the plant state is continuous everywhere in a state space and im-

precise plant knowledge that enables the engineer to make a ”good” guess of initial

controller parameters is available. Approximation errors of the evaluation function

are coped with through online adjustment. The adjustment of the approximate eval-

uation function need not to be done through many time-consuming trials and errors.

Therefore, TAC is expected to save computation time in finding appropriate controller

parameters.

General architecture of TAC as shown in Figure 4.1 can be considered as similar

to the policy search approach of RL. The difference is that rather than learning the

61

Figure 4.1: Two-stage Adaptive Control

value function the developed TAC simply uses an approximate evaluation function for

tuning a controller with the gradient-based method.

The author proposes two types of the approximate evaluation function to be ad-

justed on-line. 1) Partially adjustable Evaluation Function (PEF). 2) Fully adjustable

Evaluation Function (FEF). Based on the type of the evaluation function, the author

classifies TAC in two types: 1) TAC/PEF that stands for TAC based on PEF. 2)

TAF/FEF that stands for TAC based on FEF.

4.2 TAC based on Partially Adjustable Evaluation Func-

tion

4.2.1 Problem Statement

Consider an unknown nonlinear plant

ṡ(t) = h(s(t), u(t)), h(0, 0) = 0, (4.1)

where s(t) = [s1(t) ... sn(t)]T ∈ Rn and u(t) ∈ R respectively represent a state vector

and a scalar input of the plant. R denotes a real number set. s(t) is assumed completely

62

available for measurement. Without loss of generality, a goal state to be achieved is

defined at s = 0. The plant (4.1) is controlled using a linear state feedback contoller

u(t) = wT (t)s(t), (4.2)

where w(t) = [w1(t) ... wn(t)]T ∈ Rn is a parameter vector. For the above closed loop

system, the author defines a Lyapunov function candidate

J(t) = sT (t)H(t)s(t), (4.3)

where H(t) is a positive-definite matrix. This function J is used to represent the

evaluation function for TAC.

4.2.2 Evaluation Function

Define a scalar function

L(t) = J̇(t) + sT (t)Qs(t) + αu2(t)

= sT (t)Ḣ(t)s(t) + ṡT (t)H(t)s(t) + sT (t)H(t)ṡ(t)+

sT (t)Q̇s(t) + αu2(t),

(4.4)

where α is a positive constant and Q is a positive definite constant matrix. Suppose

that α, positive definite matrices Q and H(t), and a time derivative of H(t) (i.e., Ḣ(t))

are determined a priori so that L(t) = 0 is obtained, or equivalently,

J̇(t) = −(sT (t)Qs(t) + αu2(t)). (4.5)

When (4.5) is satisfied everywhere in the state space s for all t, then J(t) is a Lyapunov

function, i.e., J(t) → 0 as t → ∞ is guaranteed, and therefore, the controller u(t) is

said appropriate.

To achieve (4.5), Q and H(t) can not be chosen arbitrarily. This is because stable

control of certain plants requires certain appropriate controllers. In addition, state

convergences of those certain plants to the goal state do not necessarily imply L(t) = 0.

In other words, state convergences of those certain plants are not necessarily associated

with certain α, Q and H(t) that leads L(t) = 0. Thus, to force states of a certain plant

to follow state trajetories implied by L(t) = 0, the author thinks there must exist

matrices Q and H(t) associated with stable control of the plant (i.e., Q and H(t) lead

L(t)) = 0 for all t).

63

For TAC/PEF to work for a given plant, it is assumed that the plant state con-

vergence to the goal state can be associated with certain appropriate matrices Q and

H(t) that lead L(t) = 0. Because it is difficult or even impossible to solve L(t) = 0 to

derive those matrices Q and H(t) to be used then to solve the good controller, a goal

of TAC/PEF is relaxed to find u(t) that makes L(t) as close to zero as possible.

By its definition in (4.4), L(t) may approach zero by one or both of the following

two ways:

1) both J̇(t) and (sT (t)Qs(t) + αu2(t)) approach zero at the same time,

2) J̇(t) (of negative values) converges to −(sT (t)Qs(t) + αu2(t)).

By the first way, the condition (sT (t)Qs(t) + αu2(t)) → 0 is sufficient to imply that

s → 0, regardless of whatever J̇(t). By the second way, as J(t) is positive definite

the negative J̇(t) implies that J(t) is a Lyapunov function, i.e., it also implies s → 0.

Thus, we have

s→ 0 as L(t)→ 0. (4.6)

Hence, the author considers L(t) getting closer to zero as direct indication for good

control performance. Due to a good property of L(t) in 4.6, the author considers

P (t) =
1

4
L2(t)

as an ”good” evaluation function to be minimized in TAC/PEF.

4.2.3 Approximate evaluation function

When appropriate Q, H(t), and Ḣ(t) are available and P (t) is computable, the TAC/PEF’s

main task will be only modifying the controller behavior (i.e., represented by w(t) and

ẇ(t)) to improve control performance as measured by the evaluation function P (t).

Particularly when the plant model is given, modification of the controller parameters

that improves control performance as measured by P (t) can be done off-line. The ap-

propriate Q(t), H(t), and Ḣ(t) are not known yet, and even if they are available, P (t)

is not computable because ṡ(t) is unknown.

To overcome those problems, the author uses an approximate version of P (t) as

the evaluation function. To approximate P (t), the auhtor first assumes that ṡ(t) is

continuous everywhere in the state space without drastic changes so that it can be

estimated by

ˆ̇s(t) =
s(t)− s(t−∆t)

∆t
, (4.7)

where ∆t is an elapsed time between time steps.

64

Then, the auhtor assumes that the plant can only be controlled stably (i.e., by

making L(t) get closer to zero) when appropriate Q can be determined a priori and a

”good” guess of H(0) is available. The ”good” guess of H(0) is required so that H(t)

need not to be adjusted with drastic changes between time steps. The change rate of

H(t) between time steps is equivalent to Ḣ(t). In other words, the better estimation of

H(0) should allow TAC to set Ḣ(t) with smaller values that can make L(t) get closer

to zero. Based on such assumptions, the author considers that the term sT (t)Ḣ(t)s(t)

of L(t) (see (4.4)) is so small (i.e., compared to total amount of all other terms of L(t))

that it can be ignored. Then, L(t) can be approximated with

L̂(t) = ˆ̇sT (t)H(t)s(t) + sT (t)H(t)ˆ̇s(t) + sT (t)Qs(t) + αu2(t). (4.8)

Using (4.8), the author proposes an approximate version of the ”ideal” evaluation

function P (t) as follows

P̂ (t) =
1

4
L̂2(t). (4.9)

The author calls the approximate evaluation function of (4.9) Partially adjustable Eval-

uation Function (PEF).

4.2.4 Algorithm

Using PEF as the evaluation function, TAC/PEF works according to the following

steps:

Algorithm 1:

i) determine Q and α by trials-and-errors

ii) initialize s(0), w(0) and H(0)

iii) set t = 0

iv) while t < maximum time do

1) get s(t) and execute u(t) = wT (t)s(t)

2) adjust H(t) using an update rule of H

3) update PEF using the adjusted H(t)

4) tune w(t) using an update rule of w

5) t = t + ∆t

v) end.

65

4.2.4.1 Update rule of H

Let elements of H(t) be represented as {hij(t)}, i, j = 1, ..., n. The elements of H are

adjusted to minimize (4.9) with the following gradient descent method:

dhij(t)

dt
= −ηh

∂P̂ (t)

∂hij(t)
(4.10)

where ηh is an adaptation rate. Using the chain rule, we can write

∂P̂ (t)

∂hij(t)
=

∂P̂ (t)

∂L̂(t)

∂L̂(t)

∂hij(t)
. (4.11)

Using L̂(t) of (4.8), it can be shown that

∂L̂(t)

∂hij(t)
= ˆ̇si(t)sj(t) + si(t)ˆ̇sj(t). (4.12)

From (4.12) and (4.11), (4.10) can be solved to obtain an adaptation law for tuning

hij(t) as follows:

hij(t + ∆t) = hij(t)−
ηh

2
L̂(t)(ˆ̇si(t)sj(t) + si(t)ˆ̇sj(t))∆t. (4.13)

The adaptation law (4.13) is required to keep H(t) positive definite. No update is done

when L̂(t) = 0.

Tuning H with (4.13) only might make H non-positive definite. This undesired con-

dition will make L̂(t) step away from zero, and therefore, the control objective becomes

more difficult to achieve. To overcome this problem, the author proposes a heuristic

approach for tuning H(t) as follows:

Algorithm 2:

i) T← H(t); H(t) is copied to T = {tij}

ii) FOR i, j = 1, .., n:

tij ← tij −
ηh

2
L̂(t)(ˆ̇si(t)sj(t) + si(t)ˆ̇sj(t))∆t

iii) IF T is positive definite:

THEN H(t + ∆t)← T

ELSE H(t + ∆t)← H(t).

66

Given an initial positive definite H(0), Algorithm 2 guarantees that a resultant H(t)

is positive definite. The author uses Sylvester’s criterion [38] to determine whether H

is positive definite.

4.2.4.2 Update Rule of w

The controller parameter vector w is adjusted with the following gradient descent

method:
dwi(t)

dt
= −ηw

∂P̂ (t)

∂wi(t)
(4.14)

where ηw is an adaptation rate. In (4.14), P̂ (t) is computed using H(t) adjusted with

Algorithm 2.

Using the chain rule, we obtain

∂P̂ (t)

∂wi(t)
=

1

2
L̂(t)

∂L̂(t)

∂u(t)

∂u(t)

∂wi(t)
. (4.15)

We have that
∂s(t)

∂u(t)
= 0,

∂H(t)

∂u(t)
= 0, and

∂Q

∂u(t)
= 0

that reduces a computation of ∂L̂(t)/∂u(t) to

∂L̂(t)

∂u(t)
=

(∂ˆ̇s(t)

∂u(t)

)T

H(t)s(t) + sT (t)H(t)
∂ˆ̇s(t)

∂u(t)
+ 2αu(t). (4.16)

In (4.16), ∂ˆ̇s(t)/∂u(t) is an estimation of ∂ṡ(t)/∂u(t), i.e., how large the change rate

of ṡ(t) (not s(t)) due to the change of u(t) between time steps. ∂ṡ(t)/∂u(t) is not

necessarily proportional to the change rate of s(t). This implies that drastic changes of

s(t) do not necessarily imply drastic changes on ∂ṡ(t)/∂u(t). The changes of ∂ṡ(t)/∂u(t)

depend on the plant dynamics.

However, as the plant dynamics is assumed unknown, the approximation of ∂ṡ(t)/∂u(t)

remains difficult to solve. To cope with this problem, the author imposes an additional

restriction upon TAC/PEF to work. TAC/PEF is supposed to work for the control

problem in which any change of u(t) will not cause drastic changes of ṡ(t), i.e., the

ratio between ∆ṡ(t) and ∆u(t) is so small that it allows us to ignore

(∂ˆ̇s(t)

∂u(t)

)T

H(t)s(t) and sT (t)H(t)
∂ˆ̇s(t)

∂u(t)

67

in (4.16). When this assumptions holds, we obtain

∂L̂(t)

∂u(t)
≈ 2αu(t). (4.17)

From (4.14)-(4.17), an update rule the controller parameters is obtained as follows:

wi(t + ∆t) = wi(t)− ηwαL̂(t)u(t)
∂u(t)

∂wi(t)
∆t. (4.18)

The update rule of (4.18) updates wi as long as L̂, u, and ∂u/∂wi have non-zero

values. On the contrary, although u and ∂u/∂wi have non-zero values, the update rule

of (4.14) updates nothing when L̂(t) = 0. In general, (4.14) is of a generic form for a

class of adaptation laws which can be exactly derived as long as a derivative of u with

respect to its parameters is given. For the linear state feedback controller considered

in TAC/PEF, ∂u(t)/∂wi(t) = si(t).

4.2.5 Experimental Results

To evaluate its effectiveness, TAC/PEF is applied to a cart-pole balancing problem.

A physical description of the cart-pole plant is described in Fig. 3.3. Unlike the pole

balancing problem considered in the previous chapter, The cart-pole balancing problem

is similar to the pole balancing problem except that the cart must also be maintained

at a center or a desired position. Simulations in this section use the same dynamic

equation of the cart-pole plant as given in (3.12).

In the experiments, the author sets the cart-pole plant parameters: g = 9.81 ms−2,

mc = 1.0 kg, m = 0.1 kg, and l = 0.5 m. The above cart-pole plant dynamics were then

simulated using the 4th-order Runge-Kutta method with a time step of △t = 10 ms

where the controller output is limited within the range of [−20, 20] N. The simulation

was stopped when |θ| > 90o.

To control the above cart-pole plant using TAC/PEF, the state vector of the plant

is chosen as s(t) = [s1(t) s2(t) s3(t) s4(t)]
T and assumed completely observable. In

contrast, two elements of ṡ(t), i.e., ṡ2(t) and ṡ4(t), are assumed to be unobservable.

Both unknown elements are estimated as ṡ2(t) ≈ ˆ̇s2(t) = (s2(t) − s2(t −△t))/△t and

ṡ4(t) ≈ ˆ̇s4(t) = (s4(t)− s4(t−△t))/△t. Together with ṡ1(t) = s2(t) and ṡ3(t) = s4(t),

both estimated elements are then collected into an estimated vector of ṡ(t), i.e., ˆ̇s(t) =

68

[s2(t) ˆ̇s2(t) s4(t) ˆ̇s4(t)]
T . Note that, hence, we have

∂ˆ̇s(t)

∂u(t)
=
[

0
∂ ˆ̇s2(t)

∂u(t)
0

∂ ˆ̇s4(t)

∂u(t)

]T

,

which supports the aforementioned restriction, i.e., ∂ˆ̇s(t)/∂u(t) is ignored in TAC/PEF.

The author carried out experiments comparing three types of control. 1) Non-

Adaptive Control (NAC) where w is kept constant. 2) TAC/H where w is tuned on-line

based on PEF but H of PEF is kept constant. 3) TAC/PEF. The adaptation rates

are chosen as ηw = 2.0 and ηh = 0.0004, an initial time derivative of the plant state as

ˆ̇s(0) = 0, and an initial matrix H as H(0) = diag(1, 1, 1, 1). After some trial-and-error,

the author set α = 0.001 and Q = diag(1, 1, 1, 1).

4.2.5.1 Initialization of Controller Parameters

Despite unknown nature of the cart-pole plant model, it is possible for TAC to use

imprecise knowledge of the plant behavior for initialization of the controller parameters.

Based on Fig. 3.3, positive (negative) pole angle is clockwise (counterclockwise), the

positive (negative) cart position is in the right (left) side of the origin, and the positive

(negative) force u is toward the right (left). Intuitively, we can assume that when the

pole is not balanced and the cart is not centered, the control of the pole angle should

be prioritized over that of the cart position.

When the angle and angular velocity of the pole are positive, a positive force should

be applied to the cart. Thereby, the pole rotates counterclockwise and the cart moves

toward the right. When the angle and angular velocity of the pole are negative, a

negative force should be applied to the cart. Consequently, the pole rotates clockwise

and the cart moves toward the left.

After the pole is nearly upright while its angular velocity decreases, the control of

the cart position should be strengthened. When the position and velocity of the cart are

positive, the cart should be moved slightly rightward by applying small positive force,

causing the pole to rotate counterclockwise. In such a situation, the pole rotation must

reach a negative angle such that it can trigger the control of the pole angle to produce

a larger negative force, causing the cart to move leftward toward the origin while the

pole rotates clockwise toward the upright position. In contrast, when the position and

velocity of the cart are negative, the cart should be moved slightly leftward by applying

a small negative force, thereby causing the pole to rotate clockwise. In such a situation,

the pole rotation must reach a positive angle such that it can trigger the control of the

69

pole angle to produce a larger positive force, causing the cart to move rightward toward

the origin, while the pole rotates counterclockwise toward the upright position.

The above description suggests that the parameters of the controller should be set

to positive values according to importance degrees of the state variables. Unfortunately,

precise importance degrees of the state variables are unknown. Nevertheless, we can

infer that the pole angle has the highest importance degree among other state variables.

Based on such imprecise knowledge, the controller parameters are initialized as w(0) =

[50 5 5 5]T .

4.2.5.2 Simulation Results

Figures 4.2 and 4.3 show the simulation results for the initial pole angle θ(0) = 25 deg

at two opposite initial cart positions, i.e., x(0) = −0.8 m and x(0) = 0.8 m. Intuitively,

when both initial pole angle and cart position have the same sign, the control of the

cart-pole plant is more difficult than when both have opposite signs. That intuition is

proven by the fact that NAC succeeded to balance the pole and center the cart when

x(0) = −0.8 m but failed when x(0) = 0.8 m despite its actions reach the lower and

upper limits of the actions (i.e., [-20,20] N). However, given the same initial conditions

as in NAC, both TAC/H and TAC/PEF succeeded to balance the pole and center the

cart. For the successful cases of all the controllers as shown in Fig. 4.2, NAC has much

worse performance than both TAC/H and TAC/PEF in all terms: the pole angle,

the cart position, and the action. It seems that there is no significant difference of

performances of TAC/H and TAC/PEF.

Figures 4.4 and 4.5 show the simulation results for the initial pole angles larger than

θ(0) = 25 deg. With the initial pole angles of 40 deg and 45 deg, the cart-pole plant

behaves highly nonlinear where the pole tends to fall down easily and quickly if no

enough action is applied. To solve such initial condition problems, NAC produced the

maximum actions that forced the pole to become upright very quickly. But, it seems

NAC kept the maximum actions too long which made the pole continue to rotate fast

and therefore it felt down counterclockwise eventually.

Given the same initial control problems, TAC/H also produces the maximum pos-

itive actions. The pole then rotates counterclockwise quickly. When the pole is near

upright (i.e., around 0 deg), the control of the pole angle reduces around ”zero”. But,

at the same time the controls of other state variables (i.e., the pole angular velocity,

the cart position and its velocity), which produce negative actions, cause the pole to

slowly rotate counterclockwise until around −20 deg. The TAC/H’s actions that cause

70

0 2 4 6 8 10

-30

-15

0

15

30
Po

le
 A

ng
le

 (
de

g)
NAC
TAC/H
TAC/PEF

0 2 4 6 8 10

-1

-0.5

0

0.5

C
ar

t P
os

iti
on

 (
m

)

0 2 4 6 8 10
Time (s)

-20

-10

0

10

20

A
ct

io
n

(N
)

Figure 4.2: TAC based on PEF used to solve cart-pole balancing problem with θ(0) =
25 deg and x(0) = −0.8 m.

71

0 2 4 6 8 10

-30

-15

0

15

30
Po

le
 A

ng
le

 (
de

g)

NAC
TAC/H
TAC/PEF

0 2 4 6 8 10

-1

0

1

2

C
ar

t P
os

iti
on

 (
m

)

0 2 4 6 8 10
Time (s)

-20

-10

0

10

20

A
ct

io
n

(N
)

Figure 4.3: TAC based on PEF used to solve cart-pole balancing problem with θ(0) =
25 deg and x(0) = 0.8 m.

72

0 5 10 15

-50

-25

0

25

50
Po

le
 A

ng
le

 (
de

g)
NAC
TAC/H
TAC/PEF

0 5 10 15

-3

-1.5

0

1.5

3

C
ar

t P
os

iti
on

 (
m

)

0 5 10 15
Time (s)

-20

-10

0

10

20

A
ct

io
n

(N
)

Figure 4.4: TAC based on PEF used to solve cart-pole balancing problem with θ(0) =
40 deg and x(0) = 0.8 m.

73

0 5 10 15

-50

-25

0

25

50
Po

le
 A

ng
le

 (
de

g)

NAC
TAC/H
TAC/PEF

0 5 10 15

-3

-1.5

0

1.5

3

C
ar

t P
os

iti
on

 (
m

)

0 5 10 15
Time (s)

-20

-10

0

10

20

A
ct

io
n

(N
)

Figure 4.5: TAC based on PEF used to solve cart-pole balancing problem with θ(0) =
45 deg and x(0) = 0.8 m.

74

0 5 10 15

-50

-25

0

25

50
Po

le
 A

ng
le

 (
de

g)
NAC
TAC/H
TAC/PEF

0 5 10 15

-3

-1.5

0

1.5

3

4.5

C
ar

t P
os

iti
on

 (
m

)

0 5 10 15
Time (s)

-20

-10

0

10

20

A
ct

io
n

(N
)

Figure 4.6: TAC based on PEF used to solve cart-pole balancing problem with θ(0) =
50 deg and x(0) = 0.8 m.

75

all these occur change from maximum positive to negative (i.e., until around −12 N,

the lowest TAC/H’s action) and then approach zero. After applications of these ac-

tions, the pole turns back to rotate clockwise to approach 0 deg. Afterward, however,

in Figure 4.4 the TAC/H’s actions make the pole keep rotating clockwise and counter-

clockwise with its angle being larger and larger, while the cart keeps moving to the left

and the right with the distance being farther and farther from the center. For a larger

initial pole angle as shown in Figure 4.5 the TAC/H’s actions failed soon at control of

the cart-pole plant.

Comparing their actions, it is clearly seen that NAC and TAC/H behave ”op-

positely” but either of both leads bad performances. Both figures show that the

TAC/PEF’s actions behave ”in between” those of NAC and TAC/H. Given the ini-

tial pole angles of 40 and 45, TAC/PEF also produces the maximum positive actions.

The pole then rotates counterclockwise quickly. But, the TAC/PEF’s actions are not

too large as those of NAC and not too small as those of TAC/H, which make the pole

angle gets the lowest value of around −40 deg. Thus, TAC/PEF finally succeeded to

balance the pole while maintaining the cart at the center. However, TAC/PEF failed

at control for the larger initial pole angle 45 deg as shown in Figure 4.6.

4.2.5.3 Defects of TAC based on PEF

Despite its successful application to solve the cart-pole balancing problem, the author

notices some limitations of TAC based on PEF as follows:

1) The appropriateness of PEF is heavily dependent on many parameters, i.e., Q and

H, which are seem. In other words, it implies a heavy burden of parameter initial-

ization to enable TAC/PEF to work well.

2) It is unclear what the physical meaning of Q and H. This leads no clear way of

how to better set Q and H.

3) An appropriate PEF requires a positive definite J that converges to zero when the

plant state converges to the goal state. The appropriate J requires an appropriate

positive definite H. This is exactly a problem of finding a Lyapunov function J ,

which is difficul to solve for almost all complex control problems.

4.3 TAC based on Fully Adjustable Evaluation Function

Those limitations of PEF motivate the author to develope another type of the eval-

uation function for TAC which is discussed in this section. The author considers the

76

same unknown nonlinear plant of (4.1) to be controlled with the state linear feedback

controller (4.2).

4.3.1 Evaluation Function

Define a scalar function

J(t) = u2(t) + sT (t)Q(t)s(t), (4.19)

where Q(t) ∈ Rn×n is a n×n matrix whose i, j-th element is denoted with qij(t), i, j =

1, ..., n. Or equivalently,

J(t) = sT (t)H(t)s(t),

where

H(t) = w(t)wT (t) + Q(t). (4.20)

An i, j-th element of H(t) is denoted with

hij(t) = wi(t)wj(t) + qij(t), i, j = 1, ..., n.

Both matrices Q(t) and H(t) are non-singular but need not to be positive definite.

The author assumes that an approximated value function in TAC can be defined

as follows

P (t) =
1

2
L(t)2, (4.21)

where

L(t) = J̇(t) + kJ(t)

= sT (t)Ḣ(t)s(t) + ṡT (t)H(t)s(t) + sT (t)H(t)ṡ(t) + ksT (t)H(t)s(t),
(4.22)

Ḣ(t) = 2w(t)ẇT (t) + Q̇(t),

and k > 0. When P (t) = 0 is obtained we obtain L(t) = 0, or equivalently,

J̇(t) = −kJ(t), (4.23)

which implies J(t) → 0 as t → ∞ with a time constant of 1/k. When J(t) is posi-

tive definite, then J(t) is a Lyapunov function. Otherwise, J(t) is an oscillating but

approaching-to-zero function. The author supposes k as a design parameter that rep-

resents a desired speed of convergence of J(t) to zero, i.e., setting larger k means we

want J(t) to converge faster, and vice versa. Lower and upper bounds of k that can

77

be chosen depend on the plant behavior, i.e., how quickly the plant state can be made

converge to the goal state at which the action should be zero, corresponding to how

quickly J(t) can be made converge to zero.

In TAC, for P (t) of (4.21) to be a good approximation of the value function, P (t)

is required to have a property as follows: P (t)→ 0 implies s(t) = {si(t)} gets closer to

the goal state along the trajectories implied by the following dynamics:

ṡi(t) = −kisi(t) ; ki > 0, i = 1, · · · , n. (4.24)

From (4.24), it follows that s→ 0 as t→∞. To obtain such a property of P (t), H(t)

of (4.20) can not be chosen arbitrarily. This is because P (t) → 0 (or, L(t) → 0) does

not always indicate s(t)→ 0 when (4.24) does not apply. Thus, the dynamics of (4.24)

has a role as an evaluator for the appropriateness of P (t).

The author supposes P (t) with the above property has a role similar to the role

of the state-action-value function of RL. A smaller value of P (t) represents a better

performance of an action u(t) executed at s(t), corresponding to a higher value of

state-action {s(t), u(t)} in RL. P (t) is not known until the result of applying u(t) to

the plant (i.e., the next state), is obtained. In P (t), the next state is included in ṡ(t).

In RL, an optimal state-action-value function tells the controller the best action to

take at any given state so that a maximum reward will be received in the long run.

An optimal value of the state-action itself is equal to the reward received at the next

time step plus a properly discounted value of the next state-optimal actions. Therefore,

taking actions deduced from the optimal state-action value function will lead to the

goal state at which the maximum total amount of rewards will be obtained [7, 42]. In

TACF, P (t) is used as the evaluation function at the next time step to evaluate the

action u(t) executed at s(t) and then update the controler parameters. Thus, an action

in TAC/FEF that should be taken at a given state s(t) is the action u(t) by which P (t)

gets smallest.

4.3.2 Approximate Evaluation Function

When appropriate Q(t) and Q̇(t) are available and P (t) is computable, the TAC’s

main task will be only modifying the controller behavior (i.e., represented by w(t) and

ẇ(t)) to improve control performance as measured by the evaluation function P (t).

Particularly when the plant model is given, modification of the controller parameters

that improves control performance as measured by P (t) can be done off-line. However,

78

the appropriate Q(t) and Q̇(t) are not available yet, and even if they are available,

P (t) is not computable because ṡ(t) is unknown.

For TAC, the author defines an approximated version of P (t). To approximate

P (t), the author first assumes that ṡ(t) is continuous everywhere in the state space so

that it can be estimated by the following forward difference equation

ˆ̇s(t) =
s(t + ∆t)− s(t)

∆t
. (4.25)

Estimation of ṡ(t) in (4.25) can be done at time t + ∆t at which s(t + ∆t) is known.

Then, the author assumes that the plant can only be controlled stably when we can

make ”good” guess of H(0) so that TAC does not need to adjust H(t) with drastic

changes between time steps. The change rate of H(t) between time steps is equivalent

to Ḣ(t). In other words, the author assumes that the better estimation of H(0) should

allow TAC to set Ḣ(t) with smaller values that can make L(t) get closer to zero.

Based on such assumptions, the author considers that the term sT (t)Ḣ(t)s(t) of L(t)

(see (4.22)) is so small (i.e., compared to total amount of all other terms of L(t))) that

it can be ignored. Then, the author approximates L(t) with

L̂(t) = ˆ̇sT (t)H(t)s(t) + sT (t)H(t)ˆ̇s(t) + ksT (t)H(t)s(t). (4.26)

Using (4.26), the author approximates P (t) with

P̂ (t) =
1

2
L̂(t)2. (4.27)

and calls it Fully adjustable Evaluation Function (FEF). Using that FEF, TAC is

referred to as TAC/FEF.

4.3.3 Algorithm

TAC/FEF works according to the following steps:

Algorithm 3:

i) set k and initialize w(0), Q(0), and s(0).

ii) execute u(0) = w(0)T s(0)

iii) set t = ∆t

iv) while t < maximum time do

1) get s(t)

79

2) adjust Q(t) using update rule of Q

3) update FEF using the adjusted Q(t)

4) tune w(t) using update rule of w

5) execute u(t) = wT (t)s(t) determined using the tuned w(t)

6) t = t + ∆t

v) end.

4.3.3.1 Update rule of Q

Let denote τ = t−∆t. An update rule of the elements of Q is derived using a gradient-

descend method as follows:

qij(t) = qij(τ)− ηq
∂P̂ (t)

∂qij(t)

∣

∣

∣

∣

t=τ

∆t

= qij(τ)− ηqL̂(τ)
∂L̂(t)

∂qij(t)

∣

∣

∣

∣

t=τ

∆t,

(4.28)

where ηq > 0 is an adaptation rate. Because

∂H(t)

∂qij(t)
=

∂(w(t)wT (t) + Q(t))

∂qij(t)
=

∂Q(t)

∂qij(t)
,

we obtain

∂L̂(t)

∂qij(t)
= ˆ̇s(t)

∂H(t)

∂qij(t)
s(t) + sT (t)

∂H(t)

∂qij(t)
ˆ̇s(t) + ksT (t)

∂H(t)

∂qij(t)
s(t)

= ˆ̇s(t)
∂Q(t)

∂qij(t)
s(t) + sT (t)

∂Q(t)

∂qij(t)
ˆ̇s(t) + ksT (t)

∂Q(t)

∂qij(t)
s(t)

=
∑n

i

∑n
j

(

ˆ̇si(t)sj(t) + si(t)ˆ̇sj(t) + ksi(t)sj(t)
)

so that

∂L̂(t)

∂qij(t)

∣

∣

∣

∣

t=τ

=
∑n

i

∑n
j

(

ˆ̇si(τ)sj(τ) + si(τ)ˆ̇sj(τ) + ksi(τ)sj(τ)
)

.

Updated by the adaptation law of (4.28), Q(t) might make H(t) = w(t)wT (t)+Q(t)

singular. On the other hand, the tuning of Q(t) is required to make P (t) get improved

while implying that (4.24) applies al the times. To solve these problems, a heuristic

approach for tuning Q(t) is proposed as follows:

80

qij(t)← qij(τ)−l(t)ηqS(t)

(

n
∑

i

n
∑

j

(

ˆ̇si(τ)sj(τ)+si(τ)ˆ̇sj(τ)+ksi(τ)sj(τ)
)

)

∆t, (4.29)

where l(t) is a ”lie” detector defined as follows:

l(t) =

0, if |det(H(τ))| > ǫH and sign(ˆ̇J(τ)) 6= sign(J(τ))

and sign(ˆ̇si(τ)) 6= sign(si(τ)), (i = 1, · · · , n),

1, otherwise,

(4.30)

and S(t) is a ”stuck” detector defined as follows:

S(t) =

{

sign(L(τ)), if l(t) = 1 and |L(τ)| ≤ ǫL

L(τ), otherwise,
(4.31)

where ǫH and ǫL are small positive constants, and

ˆ̇J(τ) = ˆ̇sT (τ)H(τ)s(τ) + sT (τ)H(τ)ˆ̇s(τ).

Given an initial nonsingular H(0) = w(0)wT (0) + Q(0), the heuristic update rule

of (4.29) guarantees that the tuned H(t) = w(t)wT (t) + Q(t) is nonsingular. The

singularity of H(t) is determined from its determinant, i.e., H(t) is considered as non-

singular if det(H(t)) > ǫH , otherwise singular. The heuristic update rule (4.29) keeps

Q(t) unchanged (i.e., by setting l(t) = 0) when H(τ) = w(τ)wT (τ) + Q(τ) is nonsin-

gular and

sign(ˆ̇J(τ)) 6= sign(J(τ)) (4.32)

and

sign(ˆ̇si(τ)) 6= sign(si(τ)) (i = 1, · · · , n). (4.33)

The condition of (4.32) is derived from (4.24). Note that without loss of generality,

whatever ki > 0 in (4.24), the oppposite signs of ṡi(t) and si(t) for all the times are

sufficient to imply that s(t) be lying on a stable trajectory implied by (4.24). Thus,

when the condition of (4.32) applies for all the times, s(t) converges to the goal state.

Similarly, the opposite signs of J(t) and J̇(t) are sufficient to imply that J(t) converges

to zero (or equivalently, FEF converges to zero). In the following explanation, by the

stable trajectory the author means the trajectory implied by the condition of (4.33).

81

The intuitive explanation for the role of the ”lie” detector of (4.30) is as follows:

if FEF is decreasing but a current state is not on the stable trajectory, meaning that

FEF is telling a ”lie” that a current control performance is good, but actually it is bad.

Similarly, if FEF is increasing but the current state is on the stable stable trajectory,

meaning FEF is also telling the ”lie” that a current control performance is ”bad”, but

actually it is good. When either of these occurs, Q of FEF is considered as ”bad”

and needs to be tuned (i.e., l(t) should be set to 1). Thus, l(t) = 1 corresponds to

FEF telling the ”lie”. In contrast, if FEF is decreasing and the current state is on

the stable trajectory, meaning that FEF is telling a ”truth” that the current control

performance is really good. Similarly, if FEF is increasing and the current state is

not on the stable trajectory, meaning that FEF is also telling the ”truth” that the

current control performance is really bad. When either of these occurs, Q of FEF is

considered as ”good” and it is reasonable to keep it unchanged (i.e., l(t) should be

set to 0), except when Q is singular. Thus, l(t) = 0 corresponds to FEF telling the

”truth”. In the heuristic update rule (4.29), Q is kept unchanged (i.e., by setting

l(t) = 0) only when Q is nonsingular, FEF is decreasing and the current state is on the

stable trajectory. Note that although FEF is increasing and the current state is not on

the stable trajectory, we cannot assure that the current state is really a bad state that

never leads to better next states later. In other words, although the current state is not

on the stable trajectory, it might ease the adaptive control to find much better states

later. For this reason, although Q is nonsingular, FEF is increasing and the current

state is not on the stable trajectory, the heuristic update rule of (4.29) tunes Q (by

setting l(t) = 1).

As explained above, when l(t) = 1, then Q(t) needs be adjusted. However, there

might be a condition at which even if l(t) = 1 but L(t) is already zero. Using the original

adaptation law of (4.28) for tuning Q(t), that condition implies that the tuning of Q(t)

gets stuck, while s(t) diverges from the goal state. To prevent such a condition from

happening, the author introduces the ”stuck” detector S(t) (see (4.31)) in the heuristic

update rule of (4.29). Using the ”stuck” detector, the update rule of (4.29) keeps on

adjusting Q(t) when |L(t)| < ǫL.

82

4.3.3.2 Update rule of w

An update rule of the elements of w(t) is derived using the gradient-descend method

as follows:

wi(t) = wi(τ)− ηw
∂P̂ (t)

∂wi(t)

∣

∣

∣

∣

t=τ

∆t

= wi(τ)− ηwL̂(τ)
∂L̂(t)

∂wi(t)

∣

∣

∣

∣

t=τ

∆t,

(4.34)

where ηw > 0 is an adaptation rate. In (4.34), P̂ (t) is computed using Q(t) adjusted

with the heuristic update rule of (4.29).

To compute ∂L̂(t)/∂wi(t) in (4.34), L̂(t) in (4.26) is first rewritten as

L̂(t) = ˆ̇sT (t)H(t)s(t) + sT (t)H(t)ˆ̇s(t) + ksT (t)
(

w(t)wT (t) + Q(t)
)

s(t)

= ˆ̇sT (t)H(t)s(t) + sT (t)H(t)ˆ̇s(t) + k
(

u2(t) + sT (t)Q(t)s(t)
)

.
(4.35)

Using L̂(t) in (4.35), we can compute

∂L̂(t)

∂u(t)
=

∂ˆ̇sT (t)

∂u(t)
H(t)s(t) + ˆ̇s(t)

∂H(t)

∂u(t)
s(t) + ˆ̇sT (t)H(t)

∂s(t)

∂u(t)
+

∂sT (t)

∂u(t)
H(t)ˆ̇s(t) + sT (t)

∂H(t)

∂u(t)
ˆ̇s(t) + sT (t)H(t)

∂ˆ̇s(t)

∂u(t)
+

k

(

2u(t) +
∂sT (t)

∂u(t)
Q(t)s(t) + sT (t)

∂Q(t)

∂u(t)
ˆ̇s(t) + sT (t)Q(t)

∂s(t)

∂u(t)

)

.

(4.36)

Because s(t) and Q(t) are independent of u(t), we have that

∂s(t)

∂u(t)
= 0,

∂Q(t)

∂u(t)
= 0,

which make ∂L̂(t)/∂u(t) of (4.36) reduces to

∂L̂(t)

∂u(t)
=

∂ˆ̇sT (t)

∂u(t)
H(t)s(t) + sT (t)H(t)

∂ˆ̇s(t)

∂u(t)
+ ˆ̇s(t)

∂H(t)

∂u(t)
s(t)+

sT (t)
∂H(t)

∂u(t)
ˆ̇s(t) + 2ku(t).

(4.37)

83

From (4.2), (4.37) and applying the chain rule, ∂L̂(t)/∂wi(t) in (4.34) is computed as

follows

∂L̂(t)

∂wi(t)
=

∂L̂(t)

∂u(t)

∂u(t)

∂wi(t)

=

[

∂ˆ̇sT (t)

∂u(t)
H(t)s(t) + sT (t)H(t)

∂ˆ̇s(t)

∂u(t)
+ 2ku(t)

]

∂u(t)

∂wi(t)
+

ˆ̇s(t)
∂H(t)

∂wi(t)
s(t) + sT (t)

∂H(t)

∂wi(t)
ˆ̇s(t).

(4.38)

From (4.2), ∂u(t)/∂wi(t) = si(t).

∂ˆ̇s(t)/∂u(t) in (4.38) is approximated as follows

∂ˆ̇s(t)

∂u(t)
≈

(ˆ̇s(t)− ˆ̇s(t−∆t))

∆u(t)
, (4.39)

where ˆ̇s(.) is computed using (4.25) and

∆u(t) =

ǫu , if |∆u(t)| ≤ ǫu and ∆u(t) ≥ 0

−ǫu , if |∆u(t)| ≤ ǫu and ∆u(t) < 0

∆u(t) , otherwise,

(4.40)

where ǫu is a small positive constant and ∆u(t) = u(t)− u(t−∆t). The constant ǫu is

introduced to avoid a division by zero in (4.39), i.e., when ∆u(t) = 0. The author uses

the approximation of ∂ˆ̇s(t)/∂u(t) in (4.39) with the assumption that ṡ(t) is continuous

everywhere in the state space without drastic changes even if u(t) is changed drastically.

This is actually the aforementioned assumption required to estimate ṡ except the change

of u(t) is included.

84

∂H(t)/∂wi(t) in (4.38) is solved as follows. First of all, write

w(t)wT (t) =

. · · · . w1(t)wi(t) . · · · .

...
...

...
...

...

. . wi−1(t)wi(t) . .

wi(t)w1(t) · · · wi(t)wi−1(t) w2
i (t) wi(t)wi+1(t) · · · wi(t)wn(t)

. . wi+1(t)wi(t) . .

...
...

...
...

...

. · · · . wn(t)wi(t) . · · · .

,

(4.41)

where only elements of the i-th row and i-th column of w(t)wT (t) are shown. Note

that elements that are not shown in (4.41) do not contain wi.

Using (4.41) and the fact that

∂Q(t)

∂wi(t)
= 0, (4.42)

we can compute

∂H(t)

∂wi(t)
=

∂(w(t)wT (t) + Q(t))

∂wi(t)

=
∂(w(t)wT (t))

∂wi(t)

=

0 · · · 0 w1(t) 0 · · · 0
...

...
...

...
...

0 0 wi−1(t) 0 0

w1(t) · · · wi−1(t) 2wi(t) wi+1(t) · · · wn(t)

0 0 wi+1(t) 0 0
...

...
...

...
...

0 · · · 0 wn(t) 0 · · · 0

.

(4.43)

We obtain

ˆ̇sT (t)
∂H(t)

∂wi(t)
s(t) =si(t)

n
∑

j 6=i

wj(t)ˆ̇sj(t) + ˆ̇si(t)

2wi(t)si(t) +

n
∑

j 6=i

wj(t)sj(t)

 . (4.44)

85

Similarly,

sT (t)
∂H(t)

∂wi(t)
ˆ̇s(t) =ˆ̇si(t)

n
∑

j 6=i

wj(t)sj(t) + si(t)

2wi(t)ˆ̇si(t) +

n
∑

j 6=i

wj(t)ˆ̇sj(t)

 . (4.45)

Adding (4.45) to (4.44), we obtain

ˆ̇sT (t)
∂H(t)

∂wi(t)
s(t) + sT (t)

∂H(t)

∂wi(t)
ˆ̇s(t) = 2

(

wi(t)si(t)ˆ̇si(t)+

∑n
j 6=i wj(t)

(

si(t)ˆ̇sj(t) + ˆ̇si(t)sj(t)
)

)

.
(4.46)

Hence, the author approximates ∂L̂(t)/∂wi(t)
∣

∣

t=τ
in (4.34) by substituting (4.40)

and (4.46) into (4.38) and then replacing the argument t with τ .

4.3.4 Experimental Results

This subsection presents the experiment results of controlling the cart-pole plant with

three types of control methods. (1) Non-Adaptive Control (NAC), where w is kept

constant. (2) TAC/Q, where w is tuned on-line based on FEF but Q of FEF is

kept constant. (3) TAC/FEF. In the experiments, three types of control problems

are considered. (1) Stabilization Problem, e.g., the problem of balancing the pole and

keeping it upright and at the same time maintaining the cart position at a center (i.e.,

the same cart-pole balancing problem as in the previous experiments). (2) Swinging-up

Problem, e.g., the same as the stabilization problem except that the pole is pointing

downward initially. (3) Control of Virtual Cart-Pole Plant in which the cart-pole plant

is a virtual plant developed using ODE (Open Dynamics Engine) Software. The last

control problem involves both stabilization and swinging-up problem.

The same as in TAC/FEF, in TAC/FEF the state vector of the plant is chosen

as s(t) = [s1(t) s2(t) s3(t) s4(t)]
T and assumed completely observable. Two elements

of ṡ(t), i.e., ṡ2(t) and ṡ4(t), are assumed to be unobservable but estimated as ṡ2(t) ≈

ˆ̇s2(t) = (s2(t +△t)− s2(t))/△t and ṡ4(t) ≈ ˆ̇s4(t) = (s4(t +△t)− s4(t))/△t. Together

with ṡ1(t) = s2(t) and ṡ3(t) = s4(t), both estimated elements are then collected into

an estimated vector of ṡ(t), i.e., ˆ̇s(t) = [s2(t) ˆ̇s2(t) s4(t) ˆ̇s4(t)]
T . Hence, we also have

∂ˆ̇s(t)

∂u(t)
=
[

0
∂ ˆ̇s2(t)

∂u(t)
0

∂ ˆ̇s4(t)

∂u(t)

]

.

Non-zero elements of ∂ˆ̇s(t)/∂u(t) are computed using (4.39).

86

The design parameters are chosen as ηw = 3.0 × 10−8, ηq = 1.2 × 10−6, k = 100,

ǫu = 0.2, ǫH = 1.0, and ǫL = 1.0. An initial time derivative of the plant state is set to

ˆ̇s(0) = 0. The controller parameters are initialized the same as in the experiments with

TAC/PEF, i.e., w(0) = [50 5 5 5]T . To keep w(t) consistent (i.e., all of its elements

are positive) and not to become infinite due to badly tuned, elements of w(t) are kept

within the range [1, 10] except for w1(t) within the range [1, 60].

4.3.4.1 Stabilization Problem

The experiments comparing the performances of TAC based on FEF for various Q(0)

were first carried out to find the ”best” initial matrix Q(0). Figures 4.7 and 4.8 show

the experiment results of the responses of the cart-pole plant controlled with TAC/Q

and TAC/FEF using the initial matrices of Q(0) set to 0, 10I, and 70I, where I denotes

an identity matrix. The initial pole angle is 35 deg and the initial cart position is 0.8 m.

TAC/Q succeeded for all those initial matrices Q(0) except for Q(0) = 70I. In contrast,

TAC/FEF succeeded for all those initial matrices. Good performances obtained either

using TAC/Q or TAC/FEF seem due to the cart-pole balancing problem for the above

initial conditions is not difficult to solve. The best performance of both TAC/Q and

TAC/FEF is obtained when Q(0) = 10I. These experiments results obviously imply

that Q(0) cannot be chosen arbitrarily, rather it must be within a certain range. In

the following explanations, only the simulation results using Q(0) = 10I and the initial

cart position is 0.8 m are given.

Figures 4.9 and 4.10 show the simulation results for the initial pole angles of θ(0) =

40 deg and θ(0) = 45. TAC/FEF keeps good performance for all those initial conditions.

Compared to the simulation results of TAC based on PEF shown in Figures 4.4 and 4.5

where the initial conditions are the same, the performances of TAC/PEF and TAC/FEF

seem to be similar. The differences are seen in performances when the parameters of the

evaluation function (i.e., PEF and FEF) are kept unchanged. TAC/H only succeeded

for θ(0) = 40 deg (see Figure 4.4), otherwise failed. Despite TAC/H succeeded, its

performance is much worse than TAC/Q (see Figure 4.9). These results seem to imply

that initial FEF is better than initial PEF. The goodness of the initial PEF is dependent

on Q and H(0) of L̂(t) in (4.8). While, the goodness of FEF is determined by H(0) =

w(0)wT (0) + Q(0). Note that the definition of H in FEF is totally different from that

in PEF.

Figure 4.11 and 4.12 shows the good performance of TAC/FEF even for the large

initial pole angles, i.e., θ(0) = 50 and 55 deg, respectively. As shown in Figure 4.6,

87

0 2 4 6 8 10

-45

-30

-15

0

15

30

45

60
Po

le
 A

ng
le

 (
de

g)

Q(0)=0
Q(0)=10I
Q(0)=70I

0 2 4 6 8 10

-1

0

1

2

C
ar

t P
os

iti
on

 (
m

)

0 2 4 6 8 10
Time (s)

-20

-10

0

10

20

A
ct

io
n

(N
)

Figure 4.7: TAC/Q for various Q(0) used to solve cart-pole balancing problem with
initial pole angle of 35 deg and initial cart position of 0.8 m.

88

0 2 4 6 8 10

-45

-30

-15

0

15

30

45

60
Po

le
 A

ng
le

 (
de

g)
Q(0)=0
Q(0)=10I
Q(0)=70I

0 2 4 6 8 10

-1

0

1

2

C
ar

t P
os

iti
on

 (
m

)

0 2 4 6 8 10
Time (s)

-20

-10

0

10

20

A
ct

io
n

(N
)

Figure 4.8: TAC/FEF for various Q(0) used to solve cart-pole balancing problem with
initial pole angle of 35 deg and initial cart position of 0.8 m.

89

0 5 10 15

-50

-25

0

25

50
Po

le
 A

ng
le

 (
de

g)

NAC
TAC/Q
TAC/FEF

0 5 10 15

-1.5

0

1.5

3

C
ar

t P
os

iti
on

 (
m

)

0 5 10 15
Time (s)

-20

-10

0

10

20

A
ct

io
n

(N
)

Figure 4.9: TAC based on FEF used to solve cart-pole balancing problem with θ(0) = 40
deg and x(0) = 0.8 m.

90

0 5 10 15

-50

-25

0

25

50
Po

le
 A

ng
le

 (
de

g)
NAC
TAC/Q
TAC/FEF

0 5 10 15

-1.5

0

1.5

3

C
ar

t P
os

iti
on

 (
m

)

0 5 10 15
Time (s)

-20

-10

0

10

20

A
ct

io
n

(N
)

Figure 4.10: TAC based on FEF used to solve cart-pole balancing problem with θ(0) =
45 deg and x(0) = 0.8 m.

91

0 5 10 15

-50

-25

0

25

50
Po

le
 A

ng
le

 (
de

g)

NAC
TAC/Q
TAC/FEF

0 5 10 15

-3

-1.5

0

1.5

3

4.5

C
ar

t P
os

iti
on

 (
m

)

0 5 10 15
Time (s)

-20

-10

0

10

20

A
ct

io
n

(N
)

Figure 4.11: TAC based on FEF used to solve cart-pole balancing problem with θ(0) =
50 deg and x(0) = 0.8 m.

92

0 10 20 30

-60

-30

0

30

55
Po

le
 A

ng
le

 (
de

g)

TAC/Q
TAC/FEF

0 10 20 30

-7.5

-5

-2.5

0

2.5

5

7.5

C
ar

t P
os

iti
on

 (
m

)

0 10 20 30
Time (s)

-20

-10

0

10

20

A
ct

io
n

(N
)

Figure 4.12: TAC/FEF for θ(0) = 55 deg and x(0) = 0.8 m.

93

0 5 10 15

0

60

120

180

240

300

Po
le

 A
ng

le
 (

de
g)

TAC/FEF

0 5 10 15

-1.5

0

1.5

3

C
ar

t P
os

iti
on

 (
m

)

0 5 10 15
Time (s)

-20

-10

0

10

20

A
ct

io
n

(N
)

Figure 4.13: TAC/FEF for solving swinging-up problem.

94

TAC/PEF failed for θ(0) = 50. These results proved that TAC/FEF is better than

TAC/PEF in term of the initial pole angle.

4.3.4.2 Swinging-up Problem

In the swinging-up problem, the pole pointing downward at rest initially (i.e., θ(0) =

1800 and θ̇(0) = 0 deg/s) must be swung up and then balanced in an upright position

and at the same time the cart must be maintained at a center position. Since NAC and

TAC/Q are much worse than TAC/FEF in the previous experiments, in this section,

the author focuses on the experiments with TAC/FEF only.

It will be very difficult for TAC/FEF to solve the swinging-up problem directly.

The simplest way to solve this problem is similar to that used by FCAPS/FD, i.e., to

swing the pole progressively higher from its rest downward position until it reaches a

region where TAC/FEF can work well. To implement this idea, the pole is swung up

by applying the following actions:

u =

20 N, if θ(0) = 180 deg,

us, if cos(θ(t)) < cos(135),

0 N, if cos(135) < cos(θ(t)) < cos(60),

(4.47)

where us is the swinging actions as follows:

us =

0 N, if θ(t) < 180 deg and θ̇(t) < 0 deg/s,

or θ(t) > 180 deg and θ̇(t) > 0 deg/s,

10 N, if θ(t) < 180 deg and θ̇(t) > 0 deg/s,

−10 N, if θ(t) > 180 deg and θ̇(t) < 0 deg/s.

(4.48)

In (4.47), u = 20 N is applied when the pole is pointing downward at rest initially.

The swinging actions are applied as long as cos(θ(t)) < cos(135). No action is applied

when cos(135) < cos(θ(t)) < cos(60). Then, TAC/FEF is applied only when cos(θ(t)) >

cos(60) (or equivalently, |θ| < 60 deg) in which the author assumes that TAC/FEF can

work well. Note that the swinging actions of (4.47) is different form the swinging

actions of (3.13) that is only applicable for solving the pole-swinging and balancing

problem with CAPS which ignored the cart position. The swinging actions of (4.47)

are defined after trials and errors that can prevent the cart position too far moving

away from the center. They are required to enable TAC/FEF to work well once the

pole angle enters the range |θ(t)| < 60 deg,

95

When the pole is entering the range |θ| < 60 deg for the first time, TAC/FEF is

only given the ”initial condition” of angle |θ(0)| ≈ 60 deg. But, we cannot know a

priori the ”initial conditions” of x(0), θ̇(0) and ẋ(0) at this time, because it depends

on the total amount of energy pumped to the pole by the swinging actions in (4.47).

This amount of energy can be determined through experiments only. Intuitively, we

can say that TAC/FEF tends to fail to balance the pole and to center the cart, given

too high values of θ̇(0) and ẋ(0). To avoid this problem, we must be careful in setting

the value of the swinging action for each situation in (4.47), because either too weak

or too strong swinging actions may result in too high velocity of the pole angle and the

cart. If the swinging actions are too weak, the pole takes long time to swing up and

enters the region |θ(t)| < 60 deg. And, swinging the pole for too long time will pump

very large energy to it. On the contrary, if the swinging actions are too strong, the

pole will also receive very large energy in much shorter time. While it remains unclear

how the cart behaves in both cases, the angle velocity of the pole θ̇(t) becomes very

high when the pole enters the region |θ(t)| < 60 deg.

Figures 4.13 shows the responses of TAC/FEF in the swinging up problem. By

applying the actions in (4.47), the pole angle could be moved to the desired region

after about 3 s, while the cart moved away from the center. Afterward, TAC/FEF

succeeded to keep both the pole upright and the cart at the center.

4.3.4.3 Control of Virtual Plant

Using the ODE software, the author developed a virtual cart-pole plant and calls it

an ODE cart-pole plant (see Appendix for the source code). Figure 4.14 shows a

construction of the plant developed using the ODE sofware. The control of the ODE

cart pole plant is done by applying action (i.e., force in Newton) to the center of the

cart’s mass but kept parallel to the base. Table 4.1 gives the parameters used in the

construction of the ODE cart-pole plant. Table 4.2 gives the parameters used by ODE

to simulate ”real” world of the experiment. Briefly, Error Reduction Parameter (ERP)

and Constraint Force Mixing (CFM) are two parameters that need to be set properly

in ODE to control the spongyness and springyness of the joint. In the ODE cart-pole

plant construction, the author uses a hinge joint to connect the pole to the arm and

the arm to the cart. In ODE, a positive vertical force is upward, therefore the gravity

acceleration is of a negative sign.

Simulation of the control of the ODE cart-pole plant uses the following design

parameters: ηw = 3× 10−8, ηq = 2× 10−6, k = 100, ǫu = 0.1, ǫH = 1.0, and ǫL = 1.0.

96

An initial time derivative ˆ̇s(0) of the plant state is set to 0. The controller parameters

are initialized the same as in the experiments with TAC/PEF, i.e., w(0) = [50 5 5 5]T .

All elements of w(t) are kept within the range [1, 10] except for w1(t) within the range

[1, 60].

Figure 4.14: Virtual cart-pole plant

Table 4.1: Parameters of Cart-Pole
Item Size (m3) Mass (kg)

Cart 0.30 x 0.20 x 0.14 1.00

Pole 0.02 x 0.02 x 1.00 0.10

Arm 0.02 x 0.25 x 0.02 0.05

Table 4.2: ODE Parameters
Gravity acceleration -9.8 m/s2

Error Reduction Parameter (ERP) 0.9
Constraint Force Mixing (CFM) 0.1
Friction Coefficient between cart and base 0.00001

97

0 5 10 15 20

-30

0

30

5055
Po

le
 A

ng
le

 (
de

g)
θ(0) = 50 deg
θ(0) = 55 deg

0 5 10 15 20

-6

-3

0
0.8

3

6

C
ar

t P
os

iti
on

 (
m

)

0 5 10 15 20
Time (s)

-20

-10

0

10

20

A
ct

io
n

(N
)

Figure 4.15: TAC/FEF under ODE for solving stabilization problem

Figures 4.15 shows the simulation results of applying TAC/FEF for solving the

stabilization problem of the ODE cart-pole plant for the initial pole angles of θ(0) = 50

deg and θ(0) = 55 and the initial cart position of x(0) = 0.8 m. TAC/FEF keeps good

performance for both those initial conditions. These experiment results are slightly

different from those of TAC/FEF in the previous experiments using the source code of

98

Figure 4.16: Control of ODE cart-pole plant subject to perturbations, i.e., the base is
inclined and a box is thrown to the pole

the cart pole dynamics created by the author. These differences seems due to the fact

that the ODE cart pole plant does not behave exactly the same as the the author’s cart

pole dynamics. In addition, the difference is a matter of choice of parameter control

design considered as ”good” for each dynamics which is generally only based on trial

and error.

Figure 4.17 shows the simulation result for TAC/FEF successfully solving the swing-

ing up and then stabilization problem of the ODE cart-pole plant even if the cart pole

dynamics is subject to pertubations (see Figure 4.16 for the illustration of this control).

To obtain that result, the pole was swung up by applying the following actions:

u =

20 N, if θ(0) = 180 deg,

us, if cos(θ(t)) < cos(155),

0 N, if cos(135) < cos(θ(t)) < cos(60),

(4.49)

which is similar to (4.47) except that us of (4.48) is applied when cos(θ(t)) < cos(155)

(or equivalently, 155 deg < θ(t) < 255 deg). TAC/FEF is then applied when the pole

99

0 5 10 15 206.5 8.5
Time (s)

-100

-50

0

50

100

150

180
200

250

300

Pole Angle (deg)
Cart Position (x 0.01 m)
Action (x 0.2 N)

Figure 4.17: TAC/FEF under ODE with perturbations, i.e., the base is inclined and a
box is thrown to the pole

angle θ(t) enters the range cos(θ(t)) < cos(60) within which the author assumes that

TAC/FEF under ODE can work well.

The swinging actions generated using (4.49) lead θ(t) entering cos(θ(t)) < cos(60)

after about 5 s. While TAC/FEF is not yet completely balancing the pole and main-

taining the cart at the center, the cart-pole plant is subject to several perturbations.

A free box is thrown to the pole at the time of 6.5 s. The mass of the free box is 0.4

kg, initially positioned at about as high as the upper end of the pole and then hitted

by a force of 100 N. At the time of 8.5 s, the base is inclined by about 4 deg counter-

clockwise. Then, once again at the time of 10 s, the free box from the same position

and with the same force is thrown to the pole. As can be seen in Figure 4.17, throwing

the box to the pole results in more perturbation than inclining the base. Despite these

perturbations, TAC/FEF keeps working well and completely balancing the pole and

maintaining the cart at the center after about 17 s.

100

The perturbation due to the inclined base could be simply overcome by adding an

extra force to the force generated by TAC/FEF, i.e.,

[total mass of cart, pole and arm]× g × sin[inclination angle]. (4.50)

This success seems due to the fact that when the base is inclined the cart can be

thought of being given a perturbation of a horizontal force of

−[total mass of cart, pole and arm]× g × sin[inclination angle]. (4.51)

The forces of (4.51) and (4.50) have the same but opposite-signed values. Hence, the

extra force of (4.50) can be thought of having a role to ”cancel” the perturbing force

of (4.51).

4.4 Discussion

The way of finding the appropriate actions in both TAC/PEF and TAC/FEF can be

considered as similar to that of the policy iteration in RL [7]. In the policy iteration of

RL, once a policy gets improved due to following state trajectories recommended by a

value function, we can then compute the value function and improve it again to yield an

even better policy. In both TAC/PEF and TAC/FEF, once the controller parameters

get improved, the better actions are produced that make PEF and FEF get improved.

Then, the improved PEF and FEF lead to even better controller parameters.

Representing H(t) = wT (t)w(t) + Q(t) should make the burden of initialization of

H(0) in FEF not as hard as that in PEF. In FEF, when we have a ”good” guess of

Q(0), the initialization problem is only to find ”good” guess of w(0). This is not the

case for PEF that requires a ”harder” effort for initialization of its parameters due to

the fact that PEF has more parameters to be determined, i.e., Q, H(t), and w(t) that

are not related each other.

A typical appropriate evaluation function includes not only the action and the state

at which that action is executed, but also the result of executing the action. This is

true for a state-action value function widely used in RL where a precise state-action

value function is defined as equal to the reward received at the next time step plus

a properly discounted value of the succeeding state-optimal actions. However, that is

not true for PEF that does not include any result of executing the action. In contrast,

because FEF includes the action, the state, and the result of executing the action (i.e.,

the next state), we can suppose that FEF has a role similar to the state-action-value

101

function of RL. The simulation results show that the appropriate actions could be

found through an adaptive tuning of the controller parameters that minimizes FEF.

This means that the smaller value of FEF represents the better performances of the

action u(t) executed at s(t), and hence, it should correspond to the higher value of the

state-action {s(t), u(t)} in RL.

We can summarize comparisons of all the developed adaptive control methods as

follows. CAPS is the most practical method among others because it need not to be

given any good initial controller parameters, i.e., the initial controller parameters can be

simply set to zero. However, for CAPS to work well, it requires the fixed approximate

evaluation function defined based a priori assumption. Therefore, its dependency on

the appropriate evaluation function is much stronger than TAC. And as approximating

the fixed appropriate evaluation function a priori is possible only for a certain simple

control problem, the applicability of CAPS is limited.

In contrast, TAC/PEF is applicable to the control problem more general than

that considered in CAPS. In addition, TAC/PEF is only weakly dependent on the

appropriate initial PEF as it can improve PEF on-line. However, TAC/PEF has a

heavy burden of parameter initialization, i.e., it requires ”good” guess of the initial

parameters of both the controller and PEF. Also, for TAC/PEF to work well, it is

required to make PEF a Lyapunov function which is a difficult or even impossible task

to accomplish in most real complex control problems.

Finally, TAC/FEF is developed to overcome the limitations of TAC/PEF. TAC/FEF

is better than TAC/PEF in terms of initial parameters of FEF that are not necessarily

set with ”good” guess and its applicability that is more practical. In addition, the

simulations results show that TAC/FEF works better than TAC/PEF.

There have been large applications of the RL concept to design adaptive control

as can be found in many literatures (see [23–31]). Those past research developed

the methods for finding appropriate actions based on adaptive critic approach and ap-

proximate dynamic programming (or, AC/ADP for short). AC/ADP is essentially a

juxtaposition of RL and Dynamic Programming (DP) ideas [31]. While DP derives

the control actions via the optimal value function, AC/ADP utilizes an approximation

of the optimal value function as the evaluation function to adjust the controller. De-

spite its successful applications to reduce inefficiency of RL, the adaptive control using

AC/ADP is limited by the need of ”crafting” an appropriate utility function (i.e., equiv-

alent to the reward function in RL, except that the reward function is not ”crafted”

by the engineer but provided by the environment). The utility function is the only

source of information required in AC/ADP to improve the approximate value function,

102

which is defined simply as equal to the utility value plus the discounted approximate

value of the next state or the next state-action. The utility function is often simply

defined as a Eucleadian distance (or, the error) from the goal state [23,26]. Therefore,

it is potential to cause the same control difficulties as in the classical adaptive control

methods whose goals are simply to minimize the error. Alternatively, different rela-

tive weightings might be used for some of the error components as done in [29,30] for

specific control problems. However, other research of [31] provides examples of situa-

tions where seemingly minor changes in formulation of the utility function resulted in

a dramatically different ADP convergence behavior and a controller design. Generally,

defining an approparite utility function even for a specific control problem is not always

an easy task. A common practice to cope with this problem is by performing some

trial-and-error modifications of the utility function. TAC/PEF and TAC/FEF do not

rely on any utility or reward function to improve the approximate evaluation function.

Nevertheless, in the author’s experiments no trial-and-error is required to improve the

approximate evaluation function and good results were obtained. Thus, the author

argues that both TACs are more practical and efficient than the adaptive control in

those aforementioned literatures.

103

CHAPTER 5

Concluding Remarks

5.1 Summary of Dissertation

In the introduction, an evaluation function appropriate for guiding a controller to pro-

duce appropriate actions for a closed loop system has been defined as a function that

represents a stable dynamics of the closed loop system. The evaluation function is

also required to provide a direct measure of its gradient with respect to the action by

which tuning of the controller parameters using a gradient method is possible. In this

dissertation, the author has focused on showing that for certain types control problems,

the evaluation function that satisfies the above requirements can be approximated, ap-

proximation errors in the evaluation function can be coped with through on-line tuning

of the approximate evaluation function, and using that approximate evaluation func-

tion the appropriate actions can be determined in the adaptive control schemes whose

architecture is almost the same as that of a policy search approach of reinforcement

learning (RL). The author argues that the approaches to find appropriate actions based

on the approximate evaluation functions proposed in the dissertation can be considered

as the better alternatives than those of RL in terms of a higher efficiency but still of a

high applicability to certain types of complex control problems provided that imprecise

plant behavior is available.

In Chapter 3, the author dealt with a certain type of control problem in which

the closer state to the goal state implies that the smaller actions are required. For

105

such a control problem, an approximated value function could be defined a priori. It is

also readily used as an approximate evaluation function for evaluating and tuning the

controller to produce the appropriate actions in an adaptive control scheme referred

to as Control with Approximated Policy Search Approach (CAPS). No tuning of the

approximate evaluation function is done in CAPS. A pole-balancing problem seems to

fall into that certain type of the control problem solvable with CAPS. This is proved by

the good results obtained shown in Chapter 3. Those good results are obtained either

using a linear state-feedback controller or a fuzzy controller. The use of the fuzzy

controller leads to much better results than those obtained with the state-feedback

linear controller, but at the price of a heavy burden of tuning more fuzzy controller

parameters.

Further, the author presented two types of the evaluation functions for a two-stage

adaptive control (TAC) in which the evaluation functions and the controller are tuned

in sequence. The first type is a partially adjustable evaluation function (PEF) and the

second type is a fully adjustable evaluation function (FEF). To test its effectiveness,

TAC was applied to solve a cart-pole balancing problem. The simulation results shown

in Chapter 4 proved that using the proposed heuristic approaches TAC has improved

both types of the evaluation functions through on-line tuning. And, despite being

tuned, those evaluation functions could be used to evaluate and tune the controller to

result in the appropriate actions that could keep the pole upright and the cart at a

center position.

Comparisons of all the developed adaptive control methods can be summarized as

follows. CAPS is the most practical method among others because it need not to be

given any good initial controller parameters. However, it requires the fixed approximate

evaluation function defined based on a priori assumption that makes its dependency

on the appropriate evaluation function much stronger than TAC. This restricts the

applicability of CAPS to more complex problems.

TAC based on PEF (i.e., TAC/PEF) is applicable to the control problem more

general than that considered in CAPS. TAC/PEF is only weakly dependent on the

appropriate initial PEF as it can improve PEF on-line. However, it has a heavy burden

of initialization of the initial parameters of both the controller and PEF. Also, it needs

to make PEF become a Lyapunov function which is a difficult or even impossible task

to accomplish in most real control problems.

TAC based on FEF (TAC/FEF) could overcome the limitations of TAC/PEF.

TAC/FEF is more practical and works better than TAC/PEF.

106

5.2 Future Work

As discussed in Chapter 1, the author desires adaptive control that ”combines” two dis-

tinct philosophies, i.e., those of classical adaptive control and Reinforcement Learning

(RL), as illustrated in Figure 1.1. However, all the proposed adaptive control have not

reflected the desired adaptive control for solving wide range of control problems. The

applicability of the proposed adaptive control (i.e., TAC in particular) is higher than

conventional adaptive control and its efficiency is higher than RL when the restrictive

assumptions are satisfied. The most restrictive assumption required in TAC is that we

can make ”good” guess of initial parameters of the evaluation function, particularly

those of controller. Such an assumption is possible to satisfy when we have ”good”

understanding of plant behavior.

The author’s future work will combine TAC with RL. RL is first applied. TAC

is then applied to speed up RL when RL results in ”good” controller parameters.

Such a strategy should eliminate the need of making ”good” guess of initial controller

parameters. Further, we can hope that strategy will really work based on two distinct

philosophies, i.e., those of classical adaptive control and RL, where high applicability

and efficiency as illustrated in Figure 1.1 can be achieved.

107

Appendices: Software Listing

These appendices contain most of the source codes used to generate the experiment

results presented in this dissertation. Those source codes are implementations of

1. LCAPS and FCAPS

2. TAC/FEF

3. Cart-pole dynamics

4. Gaussian Fuzzy Inference System

5. Supporting Functions

6. Control of a virtual cart-pole plant.

All codes are written in C and C++. The source code of LCAPS and FCAPS needs

to include the source codes of Cart-pole dynamics, Gaussian Fuzzy Inference System,

and Supporting Functions. While, the source code of TAC/FEF needs to include

the source codes of Cart-pole dynamics and Supporting Functions. Source code of

the control of the virtual cart-pole plant is written using the libraries of ODE (Open

Dynamics Engine). ODE is an open source available on-line at http://www.ode.org.

It is of high performance libraries for simulating rigid body dynamics, fully featured,

stable, mature and platform independent with an easy to use C/C++ API.

109

A LCAPS and FCAPS

#include <i o s tr eam . h>

#include <s t d l i b . h>

#include <gauss fuzzy . h>

#include <ipendulum . h>

#include <myfunc . h>

#define MAX STEP 8000

int main (int argc , char ∗argv []) {

float t , u , o ld u , du ,D, old D ,dD,P, oldP ,M[4] , e [4] , f ,ym, l r , a lpha u ;

float s t a t e [4] , ns [4] , k [4] ;

int step , t r i a l , i , f l a g ;

float c o i []={ −30 .0 , −20 .0 , 0 . 0 , 20 . 0 , 30 . 0 ,

−60 .0 , −30 .0 ,0 .0 ,30 .0 ,60 .0 } ;

float sd []={ 2 0 . 0 , 1 0 . 0 , 1 0 . 0 , 1 0 . 0 , 2 0 . 0 ,

3 0 . 0 , 1 5 . 0 , 1 0 . 0 , 1 5 . 0 , 3 0 . 0 } ;

int pos [] ={−1 ,0 ,0 ,0 ,1 ,

−1 ,0 ,0 ,0 ,1} ;

GaussFuzzy ∗ FCS = new GaussFuzzy(co i , sd , pos ,5 ,5 ,−1 ,−1) ;

FCS−>SetPar (0 . 0) ;

IPendulum ∗ Pole = new IPendulum ;

Pole−>GetState (s t a t e) ;

FILE ∗ p f i l e ;

char fname [2 5 6] ;

if (argc !=7){

p r i n t f (”Syntax : %s <option1> <theta0> <x0> <option2> <l r > <ց

alpha u >\n” , argv [0]) ;

/∗ ∗

o p t i o n 1 :

f d s : s e t p o i n t p r ob l em , w i t h f a i l u r e d e t e c t o r

f d t : t r a c k i n g p r ob l em , w i t h f a i l u r e d e t e c t o r

110

g d s : s e t p o i n t p r ob l em , w i t h o u t f a i l u r e d e t e c t o r

g d t : t r a c k i n g p r ob l em , w i t h o u t f a i l u r e d e t e c t o r

o p t i o n 2 :

f c : f u z z y c o n t r o l l e r

l c : l i n e a r c o n t r o l l e r

l r : a d a p t a t i o n r a t e

∗ ∗/

return 0 ;

}

if (argv [1] [0]== ’ f ’ && argv [1] [1]== ’d ’ && argv [1] [2]== ’ s ’) {

f l a g = 0 ;

}else if (argv [1] [0]== ’ f ’ && argv [1] [1]== ’d ’ && argv [1] [2]== ’ t ’ց

) {

f l a g = 1 ;

}else if (argv [1] [0]== ’ g ’ && argv [1] [1]== ’d ’ && argv [1] [2]== ’ s ’ց

) {

f l a g = 2 ;

}else if (argv [1] [0]== ’ g ’ && argv [1] [1]== ’d ’ && argv [1] [2]== ’ t ’ց

) {

f l a g = 3 ;

}

l r = a to f (argv [5]) ;

a lpha u = a to f (argv [6]) ;

s p r i n t f (fname , ”%s−%s−%s−%4.0f−%8.6 f . dat ” , argv [1] , argv [2] , argvց

[4] , l r , a lpha u) ;

p f i l e = fopen (fname , ”w”) ;

s t a t e [0] = a to f (argv [2]) / rad ;

s t a t e [1] = 0 .0/ rad ;

s t a t e [2] = a to f (argv [3]) ;

s t a t e [3] = 0 . 0 ;

Pole−>SetState (s t a t e) ;

t = u = 0 . 0 ;

if (f l a g == 1 | f l a g == 3) {

111

e [0] = s t a t e [0]−ym;

e [1] = s t a t e [1]−M PI/30 .0∗ cos (t) ;

}else if (f l a g == 0 | f l a g == 2) {

e [0] = s t a t e [0] ;

e [1] = s t a t e [1] ;

}

e [2] = s t a t e [2] ;

e [3] = s t a t e [3] ;

D = sq r t (s t a t e [0] ∗ s t a t e [0]+ s t a t e [1] ∗ s t a t e [1]+ alpha u ∗u∗u) ;

P = 0.5∗D∗D;

k [0]=k [1]= 0 . 0 ;

s tep = 0 ;

while (s tep < MAX STEP)

{

ym = M PI/30 .0∗ s i n (t) ;

if (f l a g == 1 | | f l a g == 3){ // T r a c k i n g

f p r i n t f (p f i l e , ”%8.3 f %10.5 f %8.3 f %8.3 f \n” , t , s t a t e [0] ∗ rad , ց

ym∗ rad , u) ; // T r a c k i n g P r o b l em

p r i n t f (”%8.3 f %10.5 f %8.3 f %8.3 f %8.3 f \n” , t , s t a t e [0] ∗ rad , ց

ym∗ rad , s t a t e [2] , u) ; // T r a c k i n g P r o b l em

}else if (f l a g == 0 | | f l a g == 2){ // S e t P o i n t

f p r i n t f (p f i l e , ”%8.3 f %10.5 f %8.3 f %8.3 f \n” , t , s t a t e [0] ∗ radց

, 0 . 0 , u) ; // S e t P o i n t P r ob l em

p r i n t f (”%8.3 f %8.3 f %8.3 f %8.3 f \n” , t , s t a t e [0] ∗ rad , 0 . 0 , u) ; ց

// S e t P o i n t P r o b l em

}

if (f abs (s t a t e [0]) > 60 .0/ rad) {

if (f abs (s t a t e [0])> 0 .5∗M PI &&

fabs (s t a t e [0])< 1 .5∗M PI & s ta t e [1] < 0 . 0) {

u = −10.0;

}else if (f abs (s t a t e [0])> 0 .5∗M PI &&

fabs (s t a t e [0])< 1 .5∗M PI & s ta t e [1] >= 0 . 0) {

u = 10 . 0 ;

}else {

u = 0 . 0 ;

112

}

Pole−>NextState (u) ;

Pole−>GetState (s t a t e) ;

D=sq r t (s t a t e [0] ∗ s t a t e [0]+ s t a t e [1] ∗ s t a t e [1]+ alpha u ∗u∗u) ;

if (f l a g == 1 | f l a g == 3) {

e [0] = s t a t e [0]−ym;

e [1] = s t a t e [1]−M PI/30 .0∗ cos (t) ;

}else if (f l a g == 0 | f l a g == 2){

e [0] = s t a t e [0] ;

e [1] = s t a t e [1] ;

}

e [2] = s t a t e [2] ;

e [3] = s t a t e [3] ;

}else{

o ld u=u ;

if (argv [4] [0]== ’ f ’ && argv [4] [1]== ’ c ’) { // f c a p s

u = FCS−>FIS (e) ;

}else{ // l c a p s

u = k [0] ∗ e [0]+k [1] ∗ e [1] ;

}

u = sa t (u , 2 0 . 0) ;

du = u−o ld u ;

if (du >= 0 .0) {du = 1 . 0 ; } else { du = −1.0;}

Pole−>NextState (u) ;

Pole−>GetState (s t a t e) ;

if (f l a g == 1 | | f l a g == 3){

e [0] = s t a t e [0]−ym;

e [1] = s t a t e [1]−M PI/30 .0∗ cos (t) ;

}else if (f l a g == 0 | | f l a g == 2){

e [0] = s t a t e [0] ;

e [1] = s t a t e [1] ;

}

e [2] = s t a t e [2] ;

113

e [3] = s t a t e [3] ;

old D=D;

D = sq r t (e [0] ∗ e [0]+ e [1] ∗ e [1]+ alpha u ∗u∗u) ;

dD = D−old D ;

if (dD >= 0 .0) {dD = 1 . 0 ; } else { dD = −1.0;}

oldP=P;

P = 0 .5 ∗ D ∗ D;

f = 0 . 0 ;

if (P > oldP) { f = 1 . 0 ; }

if (argv [4] [0]== ’ f ’ && argv [4] [1]== ’ c ’){ // f c a p s

for (i =0; i<FCS−>num rules ; i++){

if (argv [1] [0]== ’ f ’ & argv [1] [1]== ’d ’){

FCS−>w[i] −= l r ∗ f ∗D∗dD/du∗FCS−>p s i [i]∗ dt ;

}else{

FCS−>w[i] −= l r ∗D∗dD/du∗FCS−>p s i [i]∗ dt ;

}

}else{ // l c a p s

if (argv [1] [0]== ’ f ’ & argv [1] [1]== ’d ’){

k [0] −= l r ∗ f ∗D∗dD/du∗e [0] ∗ dt ;

k [1] −= l r ∗ f ∗D∗dD/du∗e [1] ∗ dt ;}

else{

k [0] −= l r ∗D∗dD/du∗e [0] ∗ dt ;

k [1] −= l r ∗D∗dD/du∗e [1] ∗ dt ;

}

}

}

}

s tep++;

t +=dt ;

}

f c l o s e (p f i l e) ;

return EXIT SUCCESS;

}

B TAC/FEF

#include <i o s tr eam . h>

114

#include <s t d l i b . h>

#include <ipendulum . h>

#include <myfunc . h>

#define MAX STEP 4000

#define ns 4 // s t a t e s i z e

int main (int argc , char ∗argv []) {

int i , j , s tep ;

bool l i e=true ;

float t , s t a t e [ns] ,

// s t a t e [0] : a n g l e

// s t a t e [1] : a n g l e v e l o c i t y

// s t a t e [2] : p o s i t i o n o f t h e c a r t

// s t a t e [3] : v e l o c i t y o f c a r t

u , o ld u , du , mindu=0.2 ,L , J , Jdot , Lu ,

e [ns] , e dot [ns] , o l d e [ns] , o l d e do t [ns] ,

dsdotdu [ns] , th0 , x0 ,w[ns] , dw [ns] ,

k=10.0 , lrw , l rq , detH ,

l , // ” l i e ” d e t e c t o r

S ; // ” s t u c k ” d e t e c t o r

float H[ns∗ns] ,Q[ns∗ns] ;

float I [ns∗ns]= { 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 } ;

IPendulum ∗ Pole = new IPendulum ;

Pole−>GetState (s t a t e) ;

if (argc < 6){

p r i n t f (”Syntax : %s theta0 x0 lrw l r q k \n” , argv [0]) ;

return 0 ;

}

115

th0=a to f (argv [1]) / rad ;

x0=a to f (argv [2]) ;

lrw = a to f (argv [3]) ;

l r q = a to f (argv [4]) ;

k = a to f (argv [5]) ;

s t a t e [0] = th0 ;

s t a t e [1] = 0 . 0 ;

s t a t e [2] = x0 ;

s t a t e [3] = 0 . 0 ;

Pole−>SetState (s t a t e) ;

t = 0 . 0 ;

u = 0 . 0 ;

FILE ∗ p f i l e ;

char fname [2 5 6] ;

s p r i n t f (fname , ”%s%3.1 f−%3.1f−%6.4f−%6.4f−%6.4 f . dat ” , ” tac ” ,

s t a t e [0] ∗ rad , s t a t e [2] , lrw , l rq , k) ;

p f i l e = fopen (fname , ”w”) ;

// S e t t i n g i n i t i a l c o n t r o l l e r p a r a m e t e r s

w[0]=5 0 . 0 ;w[1]= 5 . 0 ;w[2]= 5 . 0 ;w[3]= 5 . 0 ;

// S e t t i n g i n i t i a l e v a l u a t i o n f u n c t i o n p a r a m e t e r s

cpyvec (I , ns∗ns ,Q) ;

mvec (1 0 . 0 ,Q, ns∗ns) ;

for (i =0; i<ns ; i++){

for (j =0; j<ns ; j++){

H[i ∗ns+j]=(w[i]∗w[j]+Q[i ∗ns+j]) ;

}

}

s tep = 0 ;

while (s tep < MAX STEP) {

116

// Get s t a t e

Pole−>GetState (s t a t e) ;

cpyvec (s ta te , ns , e) ;

if (s tep==0) {

cpyvec (e , ns , o l d e) ;

o ld u=u ;

}

e dot [0] = e [1] ; e dot [1] = (e [1]− o l d e [1]) /dt ;

e dot [2] = e [3] ; e dot [3] = (e [3]− o l d e [3]) /dt ;

if (s tep==0) { cpyvec (e dot , ns , o l d e do t) ;}

du=u−o ld u ;

if (f abs (du)<=mindu && du >=0) du = mindu ;

if (f abs (du)<=mindu && du <0) du = −mindu ;

o ld u=u ;

dsdotdu [0]= 0 . 0 ;

dsdotdu [1]=(e dot [1]− o l d e do t [1]) ∗dt/du ;

dsdotdu [2]= 0 . 0 ;

dsdotdu [3]=(e dot [3]− o l d e do t [3]) ∗dt/du ;

// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ E v a l u a t e Q ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

// S e t t i n g H = ww ’ + Q

for (i =0; i<ns ; i++){

for (j =0; j<ns ; j++){

H[i ∗ns+j]=(w[i]∗w[j]+Q[i ∗ns+j]) ;

}

}

detH= H[0∗ ns +0]∗(H[1∗ ns+1]∗H[2∗ ns+2]−H[2∗ ns+1]∗H[1∗ ns +2])

−H[0∗ ns +1]∗(H[1∗ ns+0]∗H[2∗ ns+2]−H[2∗ ns+0]∗H[1∗ ns +2])

+H[0∗ ns +2]∗(H[1∗ ns+0]∗H[2∗ ns+1]−H[2∗ ns+0]∗H[1∗ ns +1]) ;

J=sqrvec (o ld e ,H, o ld e , ns) ;

Jdot = sqrvec (e dot ,H, o ld e , ns)+sqrvec (o ld e ,H, e dot , ns) ;

Lu=old u ∗ o ld u+sqrvec (o ld e ,Q, o ld e , ns) ;

117

L = Jdot+k∗Lu ;

// Tun i n g Q

if ((f abs (detH) >1.0) &&

((J<0.0 && Jdot >0.0) | | (J>0.0 && Jdot <0.0)) &&

((o l d e [0] >0 .0 && e dot [0] <0 .0 && o ld e [2] >0 .0 && e dotց

[2] <0 .0) | |

(o l d e [0] >0 .0 && e dot [0] <0 .0 && o ld e [2] <0 .0 && e dotց

[2] >0 .0) | |

(o l d e [0] <0 .0 && e dot [0] >0 .0 && o ld e [2] >0 .0 && e dotց

[2] <0 .0) | |

(o l d e [0] <0 .0 && e dot [0] >0 .0 && o ld e [2] <0 .0 && e dotց

[2] >0 .0))) {

l i e=false ;

l=S=0.0 ;

}else{

l i e=true ;

l =1.0 ;

if (f abs (L) <1.0) {

S=sgn (L) ;

}else{

S=L ;

}

}

for (i =0; i<ns ; i++){

for (j =0; j<ns ; j++){

Q[i ∗ns+j]−= l ∗S∗1 .0 e−6∗ l r q ∗(e dot [i]∗ o l d e [j]+ o l d e [i ց

]∗ e dot [j]+k∗ o l d e [i]∗ o l d e [j]) ∗dt ;

}

}

// ∗ ∗ ∗ ∗ ∗ ∗ ∗ E v a l u a t e w ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

// S e t t i n g H = ww ’ + Q

for (i =0; i<ns ; i++){

for (j =0; j<ns ; j++){

H[i ∗ns+j]=(w[i]∗w[j]+Q[i ∗ns+j]) ;

}

118

}

J=sqrvec (o ld e ,H, o ld e , ns) ;

Jdot = sqrvec (e dot ,H, o ld e , ns)+sqrvec (o ld e ,H, e dot , ns) ;

Lu=old u ∗ o ld u+sqrvec (o ld e ,Q, o ld e , ns) ;

L = Jdot+k∗Lu ;

// Tun i n g w

for (i = 0 ; i< ns ; i++){

dw[i]=2 .0∗ (e dot [i]∗w[i]∗ o l d e [i]+k∗ o ld u ∗ o l d e [i]) ;

for (j =0; j<ns ; j++){

if (j != i) {

dw[i]+=2.0∗w[j] ∗ (o l d e [i]∗ e dot [j]+ e dot [i]∗ o l d e [jց

]) ;

}

}

dw[i]+=o ld e [i] ∗ (sqrvec (dsdotdu ,H, o ld e , ns)+sqrvec (o ld e ,H, ց

dsdotdu , ns)) ;

w[i]−=1.0e−8∗ lrw ∗L∗dw[i]∗ dt ;

}

w[0]= sat2 (w[0] , 1 . 0 , 6 0 . 0) ;

w[1]= sat2 (w[1] , 1 . 0 , 1 0 . 0) ;

w[2]= sat2 (w[2] , 1 . 0 , 1 0 . 0) ;

w[3]= sat2 (w[3] , 1 . 0 , 1 0 . 0) ;

cpyvec (e , ns , o l d e) ;

cpyvec (e dot , ns , o l d e do t) ;

// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ D e t e r m i n e and E x e c u t e A c t i o n

u=0.0 ;

for (i =0; i<ns ; i++){

u+= w[i]∗ e [i] ;

}

u = sa t (u , 2 0 . 0) ;

if (l i e) {

p r i n t f (”%8.3 f %8.3 f %8.3 f %8.3 f %8.3 f %8.3 f %8.3 f %8.3 f − Q ց

i s tuned !\n” , t , e [0] ∗ rad , e [2] , u ,w[0] ,w[1] ,w[2] ,w [3]) ;

119

}else{

p r i n t f (”%8.3 f %8.3 f %8.3 f %8.3 f %8.3 f %8.3 f %8.3 f %8.3 f \n” , tց

, e [0] ∗ rad , e [2] , u ,w[0] ,w [1] ,w[2] ,w [3]) ;

}

// E x e c u t i n g a c t i o n

Pole−>NextState (u) ;

if (f abs (e [0]) > 90 .0/ rad) break ;

f p r i n t f (p f i l e , ”%8.3 f %8.3 f %8.3 f %8.3 f \n” , t , s t a t e [0] ∗ rad , s t a t eց

[2] , u) ;

s tep++;

t +=dt ;

}

f c l o s e (p f i l e) ;

return EXIT SUCCESS;

}

C Cart-pole dynamics

#include ” ipendulum . h”

#define g 9 .8 // g r a v i t y a c c .

#define mc 1 .0 // mas s o f c a r t

#define m 0.1 // mas s o f p o l e

#define to ta l m (mc+m)

#define l 0 . 5 // a h a l f o f p o l e l e n g t h

#define mu c 0 .0 // c o e f f i c i e n t o f f r i c t i o n

#define mu p 0 .0 // c o e f f i c i e n t o f f r i c t i o n

IPendulum : : IPendulum () {

s t a t e [0]= s t a t e [1]=

s t a t e [2]= s t a t e [3]= 0 . 0 ;

ang l e a cc = 0 . 0 ;

pos acc = 0 . 0 ;

Mc = mc ;

Mp = m;

M = Mc+Mp;

Lp = l ;

}

120

void IPendulum : : SetState (float ∗ s) {

int i ;

for (i =0; i <4; i++){ s t a t e [i] = s [i] ; }

}

void IPendulum : : GetState (float ∗ s) {

int i ;

for (i =0; i <4; i++){ s [i]= s t a t e [i] ; }

}

float IPendulum : : theta2dot (float theta , float theta dot , float x dot ց

, float u)

{

float y2dot , temp , cos theta , s i n th e t a ;

co s the ta = cos (theta) ;

s i n th e t a = s i n (theta) ;

temp = Lp∗(4.0/3.0−Mp∗ co s the ta ∗ co s the ta /M) ;

y2dot=(g∗ s i n th e t a+co s the ta ∗(−u−Mp∗Lp∗ the ta do t ∗ the ta do t ∗ s i n th e t aց

+mu c∗ sgn (x dot)) /M−mu p∗ the ta do t /(Mp∗Lp)) /temp ;

return y2dot ;

}

float IPendulum : : x2dot (float theta , float theta dot , float theta acc , ց

float x dot , float u)

{

float pos2dot , cos theta , s i n th e t a ;

co s the ta = cos (theta) ;

s i n th e t a = s i n (theta) ;

pos2dot = (u+Mp∗Lp∗(the ta do t ∗ the ta do t ∗ s in the ta−the ta acc ∗ց

co s the ta)−mu c∗ sgn (x dot)) /M;

return pos2dot ;

}

121

void IPendulum : : NextState (float f o r c e)

{

// 4 th − o r d e r Runge −Kut t a I n t e g r a t i o n Method

float h6 , h2 , h , S [4] , k1 , k2 , k3 , k4 ,

l1 , l2 , l3 , l4 ,m1,m2,m3,m4, n1 , n2 , n3 , n4 , the ta acc ;

h = dt ; h2 = dt / 2 . 0 ; h6 = dt / 6 . 0 ;

k1 = s ta t e [1] ;

the ta acc = theta2dot (s t a t e [0] , s t a t e [1] , s t a t e [3] , f o r c e) ;

l 1 = the ta acc ;

m1 = s ta t e [3] ;

n1 = x2dot (s t a t e [0] , s t a t e [1] , theta acc , s t a t e [3] , f o r c e) ;

S [0] = s t a t e [0]+ h2∗k1 ;

S [1] = s t a t e [1]+ h2∗ l 1 ;

S [2] = s t a t e [2]+ h2∗m1;

S [3] = s t a t e [3]+ h2∗n1 ;

k2 = S [1] ;

the ta acc = theta2dot (S [0] , S [1] , S [3] , f o r c e) ;

l 2 = the ta acc ;

m2 = S [3] ;

n2 = x2dot (S [0] , S [1] , theta acc , S [2] , f o r c e) ;

S [0] = s t a t e [0]+ h2∗k2 ;

S [1] = s t a t e [1]+ h2∗ l 2 ;

S [2] = s t a t e [2]+ h2∗m2;

S [3] = s t a t e [3]+ h2∗n2 ;

k3 = S [1] ;

the ta acc = theta2dot (S [0] , S [1] , S [3] , f o r c e) ;

l 3 = the ta acc ;

m3 = S [3] ;

n3 = x2dot (S [0] , S [1] , theta acc , S [2] , f o r c e) ;

S [0] = s t a t e [0]+h∗k3 ;

S [1] = s t a t e [1]+h∗ l 3 ;

S [2] = s t a t e [2]+h∗m3;

S [3] = s t a t e [3]+h∗n3 ;

k4 = S [1] ;

the ta acc = theta2dot (S [0] , S [1] , S [3] , f o r c e) ;

122

l 4 = the ta acc ;

m4 = S [3] ;

n4 = x2dot (S [0] , S [1] , theta acc , S [2] , f o r c e) ;

s t a t e [0] += h6∗(k1+2.0∗k2+2.0∗k3+k4) ;

s t a t e [1] += h6∗(l 1 +2.0∗ l 2 +2.0∗ l 3+l 4) ;

s t a t e [2] += h6∗(m1+2.0∗m2+2.0∗m3+m4) ;

s t a t e [3] += h6∗(n1+2.0∗n2+2.0∗n3+n4) ;

}

D Gaussian Fuzzy Inference System

#include <math . h>

#include ” gauss fuzzy . h”

GaussFuzzy : : GaussFuzzy (float COI [] ,

float SD [] , int POS[] , int s0 , int s1) {

int i , j , k , l , n o r u l e =0;

num state = 2 ;

num rules = s0 ∗ s1 ;

num labels = s0+s1 ;

map0 = new int [num rules] ;

map1 = new int [num rules] ;

p s i = new float [num rules] ;

w = new float [num rules] ;

c o i = new float [num labels] ;

sd = new float [num labels] ;

pos = new int [num labels] ;

for (i =0; i<s0 ; i++)

for (j=s0 ; j<s0+s1 ; j++){

map0 [no r u l e]= i ;

map1 [no r u l e]= j ;

w[no r u l e] = 0 . 0 ;

no r u l e++;

}

123

for (i =0; i<num labels ; i++){

c o i [i]=COI [i] ;

sd [i]=SD[i] ;

pos [i]=POS[i] ;

}

}

float GaussFuzzy : : Gauss (float x , float c , float sd , int pos) {

float m;

m = exp(−((x−c) / sd ∗(x−c) / sd)) ;

if ((x < c && pos == −1) | | (x > c && pos == 1))

m = 1 . 0 ;

return m;

}

#define rad 57.2957795130

float GaussFuzzy : : FIS (float ∗ s) {

float F ;

int i ;

t o t p s i = 0 . 0 ;

for (i = 0 ; i < num rules ; i++){

p s i [i]= Gauss (s [0] , c o i [map0 [i]] / rad , sd [map0 [i]] / rad , pos [map0 [i ց

]]) ∗Gauss (s [1] , c o i [map1 [i]] / rad , sd [map1 [i]] / rad , pos [map1 [i]]) ;

t o t p s i += ps i [i] ;

}

F = 0 . 0 ;

for (i = 0 ; i < num rules ; i++){

p s i [i] /= t o t p s i ;

F += ps i [i]∗w[i] ;

}

return F ;

}

void GaussFuzzy : : SetPar (float par) {

for (int i = 0 ; i < num rules ; i++){w[i] = par ;}

124

}

E Supporting Functions

void s ta te cpy (float ∗ s , int l , float ∗ d) {

for (int i =0; i<l ; i++) d [i] = s [i] ;

}

float s a t (float x , float b) {

float v ;

if (f abs (x) < b) {v = x ;}

if (x <= −b) {v = −b ;}

if (x >= b) {v = b ;}

return v ;

}

float sa t2 (float x , float a , float b) {

float v ;

if (x > a && x < b) {v = x ;}

if (x <= a) {v = a ;}

if (x >= b) {v = b ;}

return v ;

}

float sgn (float x) {

float s ;

if (x >= 0 . 0) { s =1.0 ;}

else { s = −1.0;}

return s ;

}

void cpyvec (float ∗ s , int l , float ∗ d) {

for (int i =0; i<l ; i++)

d [i] = s [i] ;

}

float sqrvec (float ∗ x , float ∗ G, float ∗y , int n) {

int i , j ;

float q = 0 . 0 ;

for (i =0; i<n ; i++){

for (j =0; j<n ; j++){

q += x [i]∗G[i ∗n+j]∗ y [j] ;

}

}

return q ;

}

125

void mvec (float a , float ∗ q , int n) {

for (int j =0; j<n ; j++){

q [j]= a∗q [j] ;

}

}

F Control of ODE virtual cart-pole plant

#include <ode/ode . h>

#include <draws tu f f / draws tu f f . h>

#include <i o s tr eam . h>

// s e l e c t c o r r e c t d r a w i n g f u n c t i o n s

#ifdef dDOUBLE

#define dsDrawBox dsDrawBoxD

#define dsDrawSphere dsDrawSphereD

#define dsDrawCylinder dsDrawCylinderD

#define dsDrawCappedCylinder dsDrawCappedCylinderD

#endif

#define dt 0 .01

#define z o f f s e t 1 . 1 // h e i g h t o f p i l a r (i n m e t e r)

static dReal ba s e l eng th =6.0 ;

#define ba s e th i c k 0 .1

#define rad 57.2957795130

#define CLENGTH 0 .2 // c a r t l e n g t h −> y a x i s (b l u e)

#define CWIDTH 0 .3 // c a r t w i d t h −> x a x i s (r e d)

#define CHEIGHT 0.14 // c a r t h e i g h t

#define CSTARTZ z o f f s e t +0.5∗(ba s e th i c k+CHEIGHT) // z p o s o f c a r t ց

f r om b a s e

#define CMASS 1 // c a r t mas s

#define aLENGTH 0.25 // arm l e n g t h

#define aWIDTH 0.02 // arm w i d t h

#define aHEIGHT 0.02 // arm h e i g h t

#define aSTARTZ (CSTARTZ+0.5∗CHEIGHT) // z p o s o f arm f r om b a s e

#define aMASS 0 .05 // arm mas s

126

#define PLENGTH 0.02 // p o l e l e n g t h

#define PWIDTH 0.02 // p o l e w i d t h

#define PHEIGHT 1 .0 // p o l e h e i g h t

#define PSTARTZ (CSTARTZ+0.5∗CHEIGHT+0.5∗PHEIGHT) // z p o s o f p o l e ց

f r om b a s e

#define PMASS 0 .1 // p o l e mas s

static dWorldID world ;

static dSpaceID space ;

static dBodyID body [4] ;

static dGeomID box [4] ;

static dJointID j o i n t [5] ;

static dJointGroupID contactgroup ;

static dGeomID ground ;

static dGeomID p i l a r ;

static dSpaceID cp space ;

static dReal cppos [3] [3] ;

static dReal cp s i z e [3] [3] ;

static dReal cpmass [3] ;

static dReal alpha =0.0 ;

struct MyObject {

dBodyID body [3] ; // t h e b o d i e s

dGeomID geom [3] ; // g e o m e t r i e s r e p r e s e n t i n g t h e b o d i e s

} ;

static MyObject Base ;

static dSpaceID base space ;

static dReal bpos [3] [3] ;

static dReal b s i z e [3] [3] ;

static const dReal ∗ c pos ; // c a r t p o s i t i o n

static const dReal ∗ a pos ; // arm p o s .

static const dReal ∗p pos ; // p o l e p o s .

#define ns 4

static int con =−1;

static dReal t ,

s t a t e [ns] , o l d s t a t e [ns] , u , o ld u , du , dsdotdu [ns] ,

e [ns] , o l d e [ns] , e dot [ns] , dw [ns] ,

k=10.0 , theta0 =0.0 , x0=0.0 , theta00 , x00 ,

127

xsp =0.0 , // d e s i r e d x

lrw , l rq , detH , a lpha u =0.001 f ;

static bool swing=false ;

FILE ∗ p f i l e ;

char fname [2 5 6] ;

static dReal w0 [ns] ;

static dReal w[ns] ;

static dReal H0 [4 ∗ 4] ;

static dReal H[4 ∗ 4] ;

static dReal Q[4 ∗ 4] ;

static dReal Q0 [ns∗ns] ,T[ns∗ns] ;

static dReal I [ns∗ns]=

{ 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 } ;

static float f r ont1 xyz [] = {4 .401 f , 0 . 0 1 f , 3 . 3 1 0 0 f } ;

static float f r ont1 hpr [] = {−180.0000f ,−25.5000 f , 0 . 0 0 0 0 f } ;

static float f r ont2 xyz [] = {2 .5600 f , 3 . 7 5 0 2 f , 2 . 3 1 0 0 f } ;

static float f r ont2 hpr [] = {−131.0000f ,−22.5000 f , 0 . 0 0 0 0 f } ;

static float f r ont3 xyz [] = {2 .259 f ,−4.097 f , 2 . 0 9 0 f } ;

static float f r ont3 hpr [] = {126 .5 f ,−10.5 f , 0 . 0 f } ;

static float f a r xy z [] = {6 .0 f ,−0.0699 f , 2 . 4 3 0 0 f } ;

static float f r o n t xy z [] = {3 .4808 f , 0 . 0 0 0 1 f , 2 . 4 3 0 0 f } ;

static float f r o n t hp r [] = {180.0000 f ,−25.0000 f , 0 . 0 0 0 0 f } ;

static void nearCa l lback (void ∗data , dGeomID o1 , dGeomID o2) {

int i , n , numc ;

dBodyID b1 = dGeomGetBody(o1) ;

dBodyID b2 = dGeomGetBody(o2) ;

const int N = 10 ;

128

dContact contact [N] ;

n = dCo l l i de (o1 , o2 ,N,& contact [0] . geom , sizeof (dContact)) ;

if (n > 0) {

for (i =0; i<n ; i++) {

contact [i] . s u r f a c e . mode =

dContactSoftERP | dContactSoftCFM | dContactApprox1 ;

if (o1== ground | | o2 == ground) {

contact [i] . s u r f a c e .mu = 0 . 5 ;

}else{

contact [i] . s u r f a c e .mu = 0 .00001 ;

}

contact [i] . s u r f a c e . s o f t e r p = 0 . 9 ;

contact [i] . s u r f a c e . s o f t c fm = 0 . 1 ;

dJointID c=dJointCreateContact (world , contactgroup ,& contact [i ց

]) ;

dJointAttach (c , dGeomGetBody(contact [i] . geom . g1) ,

dGeomGetBody(contact [i] . geom . g2)) ;

}

}

if (numc = dCo l l i de (o1 , o2 ,N,& contact [0] . geom , sizeof (dContact))) ց

{

dMatrix3 RI ;

dRSetIdent i ty (RI) ;

const dReal s s [3] = { 0 . 0 2 , 0 . 0 2 , 0 . 0 2 } ;

for (i =0; i<numc ; i++) {

dJointID c=dJointCreateContact (world , contactgroup , contact+i)ց

;

dJo intAttach (c , b1 , b2) ;

}

}

}

void mvec (dReal a , dReal ∗ q , int n) {

for (int j =0; j<n ; j++){

q [j]= a∗q [j] ;

}

}

129

dReal s a t (dReal x , dReal b) {

dReal v ;

v= x ;

if (f abs (x) < b) {v = x ;}

if (x <= −b) {v = −b ;}

if (x >= b) {v = b ;}

return v ;

}

dReal sa t2 (dReal x , dReal a , dReal b) {

dReal v ;

if (x > a && x < b) {v = x ;}

if (x <= a) {v = a ;}

if (x >= b) {v = b ;}

return v ;

}

void s ta te cpy (dReal ∗ s , int l , dReal ∗ d) {

int i ;

for (i =0; i<l ; i++) d [i] = s [i] ;

}

dReal sqrvec (dReal ∗ x , dReal ∗ G, dReal ∗y , int n) {

int i , j ;

dReal Q;

dReal ∗ q = (dReal ∗) mal loc (n∗sizeof (dReal)) ;

for (i =0; i<n ; i++){

q [i] = 0 . 0 ;

for (j =0; j<n ; j++){

q [i]+= G[i ∗n+j]∗ y [j] ;

}

}

Q = 0 . 0 ;

for (i =0; i<n ; i++){

Q+=x [i]∗ q [i] ;

}

f r e e (q) ;

return Q;

130

}

static void i n i t s im () {

int i , j ;

dMatrix3 R;

dReal lp ;

dMass m;

lp= 0 .5∗PHEIGHT; // a h a l f l e n g t h o f POLE

dJointGroupEmpty (contactgroup) ;

for (i =0; i <3; i++){

dBodyDestroy (body [i]) ;

dGeomDestroy (box [i]) ;

dBodyDestroy (Base . body [i]) ;

dGeomDestroy (Base . geom [i]) ;

}

dGeomDestroy (p i l a r) ;

dJointDestroy (j o i n t [0]) ;

dJointDestroy (j o i n t [1]) ;

dJointDestroy (j o i n t [2]) ;

dJointDestroy (j o i n t [3]) ;

dJointDestroy (j o i n t [4]) ;

// SIZE and POS o f CART−POLE

//CART S i z e

cp s i z e [0] [0] =CLENGTH;

cp s i z e [0] [1] =CWIDTH;

cp s i z e [0] [2] =CHEIGHT;

//ARM S i z e

cp s i z e [1] [0] =aLENGTH;

cp s i z e [1] [1] =aWIDTH;

cp s i z e [1] [2] =aHEIGHT;

//POLE S i z e

cp s i z e [2] [0] =PLENGTH;

131

cp s i z e [2] [1] =PWIDTH;

cp s i z e [2] [2] =PHEIGHT;

//CART Pos

cppos [0] [0] = 0 . 0 ;

cppos [0] [1] = x0 ;

cppos [0] [2] =CSTARTZ−0.5∗ ba se l eng th ∗ s i n (alpha) ;

//ARM Pos

cppos [1] [0] = 0 . 5 ∗ (aLENGTH−CLENGTH) ;

cppos [1] [1] = x0 ;

cppos [1] [2] = cppos [0] [2]+ 0 . 5 ∗ cp s i z e [0] [2] ;

//POLE Pos

cppos [2] [0] = (aLENGTH−CLENGTH) +0.5∗CLENGTH;

cppos [2] [1] = cppos [0] [1] + lp ∗ s i n (theta0) ;

cppos [2] [2] = cppos [0] [2]+ 0 . 5 ∗CHEIGHT+lp ∗ cos (theta0) ;

//MASS

cpmass [0]=CMASS;

cpmass [1]=aMASS;

cpmass [2]=PMASS;

//CART−POLE S p a c e

cp space = dSimpleSpaceCreate (space) ;

dSpaceSetCleanup (cp space , 0) ;

//CREATE BODY and GEOM o f CART−POLE

dMassSetZero(&m) ;

for (i =0; i <3; i++){

body [i]=dBodyCreate (world) ;

if (i==2){

dRSetIdent i ty (R) ;

dRFromAxisAndAngle (R,1 ,0 ,0 ,− theta0) ;

dBodySetRotation (body [i] ,R) ;

}

dBodySetPos it ion (body [i] , cppos [i] [0] , cppos [i] [1] , cppos [i] [2]) ;

dMassSetBox (&m,1 2 0 0 . 0 f , c p s i z e [i] [0] , c p s i z e [i] [1] , c p s i z e [i] [2]) ց

;

132

dMassAdjust (&m, cpmass [i]) ;

dBodySetMass (body [i] ,&m) ;

box [i] = dCreateBox (0 , c p s i z e [i] [0] , c p s i z e [i] [1] , c p s i z e [i] [2]) ;

dGeomSetBody (box [i] , body [i]) ;

dSpaceAdd (cp space , box [i]) ;

}

// c a r t − p o l e j o i n t

j o i n t [0] = dJointCreateHinge (world , 0) ;

dJointAttach (j o i n t [0] , body [0] , body [1]) ;

a pos = dBodyGetPosition (body [1]) ;

dJointSetHingeAnchor (j o i n t [0] , a pos [0] , a pos [1] , a pos [2]) ;

dJointSetHingeAxis (j o i n t [0] , 1 , 0 , 0) ;

j o i n t [1] = dJointCreateHinge (world , 0) ;

dJointAttach (j o i n t [1] , body [1] , body [2]) ;

p pos = dBodyGetPosition (body [2]) ;

dJointSetHingeAnchor (j o i n t [1] , p pos [0] , a pos [1] , a pos [2]) ;

dJointSetHingeAxis (j o i n t [1] , 1 , 0 , 0) ;

// BASE SIZE and POS

b s i z e [0] [0] =CLENGTH;

b s i z e [0] [1] = base l eng th ;

b s i z e [0] [2] = ba s e th i c k ;

b s i z e [1] [0] = 0 . 0 2 ;

b s i z e [1] [1] = base l eng th ;

b s i z e [1] [2] = ba s e th i c k +0.02 ;

b s i z e [2] [0] = 0 . 0 2 ;

b s i z e [2] [1] = base l eng th ;

b s i z e [2] [2] = ba s e th i c k +0.02 ;

bpos [0] [0] = 0 . 0 ;

bpos [0] [1] = 0 . 0 ;

bpos [0] [2] = z o f f s e t −0.5∗ ba se l eng th ∗ s i n (alpha) ;

bpos [1] [0]= − (0 . 5∗CLENGTH+0.5∗ b s i z e [1] [0]+ 0 . 0 0 0 0) ;

bpos [1] [1] = 0 . 0 ;

133

bpos [1] [2] = bpos [0] [2] + 0 . 0 1 ;

bpos [2] [0] = (0 . 5 ∗CLENGTH+0.5∗ b s i z e [2] [0]+ 0 . 0 0 0 0) ;

bpos [2] [1] = 0 . 0 ;

bpos [2] [2] = bpos [0] [2] + 0 . 0 1 ;

//BASE S p a c e

ba se space = dSimpleSpaceCreate (space) ;

dSpaceSetCleanup (base space , 0) ;

//CREATE BODY and GEOM o f BASE

for (i =0; i <3; i++){

Base . body [i] = dBodyCreate (world) ;

dRSetIdent i ty (R) ;

dRFromAxisAndAngle (R, 1 , 0 , 0 , alpha) ;

dBodySetRotation (Base . body [i] ,R) ;

dBodySetPos it ion (Base . body [i] , bpos [i] [0] , bpos [i] [1] , bpos [iց

] [2]) ;

dMassSetBox (&m, 1 . 0 f , b s i z e [i] [0] , b s i z e [i] [1] , b s i z e [i] [2]) ;

dMassAdjust (&m, 1 . 0 f ∗ b s i z e [i] [0] ∗ b s i z e [i] [1] ∗ b s i z e [i] [2]) ;

dBodySetMass (Base . body [i] ,&m) ;

Base . geom [i] = dCreateBox (0 , b s i z e [i] [0] , b s i z e [i] [1] , b s i z e [iց

] [2]) ;

dGeomSetBody (Base . geom [i] , Base . body [i]) ;

dSpaceAdd (base space , Base . geom [i]) ;

}

j o i n t [2] = dJointCreateHinge (world , 0) ;

dJointAttach (j o i n t [2] , 0 , Base . body [0]) ;

dJointSetHingeAnchor (j o i n t [2] , bpos [0] [0] , ba s e l eng th ∗0 .5 , z o f f s e t)ց

;

dJo intSetHingeAxis (j o i n t [2] , 1 , 0 , 0) ;

j o i n t [3] = dJointCreateHinge (world , 0) ;

dJointAttach (j o i n t [3] , 0 , Base . body [1]) ;

dJointSetHingeAnchor (j o i n t [3] , bpos [0] [0] , ba s e l eng th ∗0 .5 , z o f f s e t+ց

b s i z e [1] [2] ∗ 0 . 5) ;

dJointSetHingeAxis (j o i n t [3] , 1 , 0 , 0) ;

j o i n t [4] = dJointCreateHinge (world , 0) ;

134

dJointAttach (j o i n t [4] , 0 , Base . body [2]) ;

dJointSetHingeAnchor (j o i n t [4] , bpos [0] [0] , ba s e l eng th ∗0 .5 , z o f f s e t+ց

b s i z e [1] [2] ∗ 0 . 5) ;

dJointSetHingeAxis (j o i n t [4] , 1 , 0 , 0) ;

p i l a r = dCreateBox (space ,CLENGTH+bs i z e [1] [0] + b s i z e [2] [0] , 0 . 1 , ց

z o f f s e t −0.5∗ ba se th i ck −0.5∗ ba se l eng th ∗ s i n (alpha)) ;

dGeomSetPosition (p i l a r , 0 . 0 , 0 . 0 , 0 . 5 ∗ (z o f f s e t −0.4∗ ba se th i ck −0.5∗ց

ba se l eng th ∗ s i n (alpha))) ;

// r e c o r d i n i t i a l s t a t e

s t a t e [0]= theta0 ;

s t a t e [1]= 0 . 0 ;

s t a t e [2]= x0 ;

s t a t e [3]= 0 . 0 ;

// S e t t i n g i n i t i a l c o n t r o l l e r p a r a m e t e r s

w[0]=5 0 . 0 ;w[1]= 5 . 0 ;w[2]= 5 . 0 ;w[3]= 5 . 0 ;

// S e t t i n g i n i t i a l Q

s ta te cpy (I , ns∗ns ,Q) ;

mvec (1 0 . 0 ,Q, ns∗ns) ; // s e t Q=0

for (i =0; i<ns ; i++){

w0 [i]=w[i] ;

for (j =0; j<ns ; j++){

H[i ∗ns+j]=(w[i]∗w[j]+Q[i ∗ns+j]) ;

}

}

s ta te cpy (H, ns∗ns ,H0) ;

s ta t e cpy (Q, ns∗ns ,Q0) ;

u=0.0 ;

p r i n t f (” i n i t i a l : theta=%3.0 f deg ; x= %3.1 f m\n” , theta0 ∗rad , x0) ;

p r i n t f (”w=[%3.1 f \ t%3.1 f \ t%3.1 f \ t%3.1 f]\n\n” ,w[0] ,w [1] ,w [2] ,wց

[3]) ;

}

char l o c a s e (char c) {

135

if (c >= ’A’ && c <= ’Z ’) return c − (’ a ’− ’A ’) ;

else return c ;

}

static void command (int cmd) {

float xyz [3] ;

float hpr [3] ;

const dReal ∗ p i l a r p o s ;

const dReal ∗ base pos ;

const dReal ∗ q ;

static int p ;

dReal zp i l a r , a ;

dMass m;

cmd = lo c a s e (cmd) ;

if (cmd == ’v ’) {

if (p < 3) {p++;} else {p=0;}

if (p == 0){

s ta te cpy (f r ont xyz , 3 , xyz) ;

s ta t e cpy (f r ont hpr , 3 , hpr) ;

}else if (p==2){

s ta te cpy (f ront2 xyz , 3 , xyz) ;

s ta t e cpy (f ront2 hpr , 3 , hpr) ;

}else if (p==3){

s ta te cpy (f ront3 xyz , 3 , xyz) ;

s ta t e cpy (f ront3 hpr , 3 , hpr) ;

}else if (p==1){

s ta te cpy (fa r xyz , 3 , xyz) ;

s ta t e cpy (f r ont hpr , 3 , hpr) ;

}

dsSetViewpoint (xyz , hpr) ;

}else if (cmd==’− ’) {

xyz [0]+=0.5 f ;

xyz [1]+=0.5 f ;

dsSetViewpoint (xyz , hpr) ;

}else if (cmd==’+’) {

xyz [0]−=0.5 ;

xyz [1]−=0.5 ;

136

dsSetViewpoint (xyz , hpr) ;

}else if (cmd== ’k ’) {

dsGetViewpoint (xyz , hpr) ;

p r i n t f (”pos : %8.3 f %8.3 f %8.3 f \n” , xyz [0] , xyz [1] , xyz [2]) ;

p r i n t f (”view : %8.3 f %8.3 f %8.3 f \n” , hpr [0] , hpr [1] , hpr [2]) ;

}else if (cmd==’ s ’) {

theta0 =180.0/rad ;

x0=x00 ;

}else if (cmd==’ a ’) {

theta0=theta00 ;

x0=x00 ;

}else if (cmd==’ z ’) {

theta0 =0.0 ;

x0=0.0 ;

}else if (cmd==’ i ’) {

theta0+=5.0/rad ;

}else if (cmd==’u ’) {

theta0−=5.0/rad ;

}else if (cmd==’p ’) {

x0+=0.2;

}else if (cmd==’ o ’) {

x0−=0.2;

}else if (cmd==’ j ’) {

xsp=−1.0;

}else if (cmd==’ l ’) {

xsp =1.0 ;

}else if (cmd == ’ c ’) {

con = 1 ;

}else if (cmd == ’b ’) {

q = dBodyGetQuaternion (Base . body [0]) ;

a = 2 .0∗ acos (q [0]) ; // i n c l i n a t i o n a n g l e o f b a s e

base pos=dBodyGetPosition(Base . body [0]) ;

p i l a r p o s=dGeomGetPosition (p i l a r) ;

z p i l a r =p i l a r p o s [2] − (0 . 5∗ ba se l eng th ∗ tan (a+0.2/ rad)−(z o f f s e t −ց

base pos [2])) ;

dGeomDestroy (p i l a r) ;

p i l a r = dCreateBox (space ,CLENGTH+bs i z e [1] [0] + b s i z e [2] [0] , 0 . 1 , ց

z p i l a r ∗ 2 . 0) ;

dGeomSetPosition (p i l a r , 0 . 0 , 0 . 0 , z p i l a r) ;

}else if (cmd == ’n ’) {

137

q = dBodyGetQuaternion (Base . body [0]) ;

a = 2 .0∗ acos (q [0]) ; // i n c l i n a t i o n a n g l e o f b a s e

base pos=dBodyGetPosition(Base . body [0]) ;

p i l a r p o s=dGeomGetPosition (p i l a r) ;

z p i l a r =p i l a r p o s [2]+ (0 . 5∗ ba se l eng th ∗ tan (a+0.1/ rad)−(z o f f s e t −ց

base pos [2])) ;

dGeomDestroy (p i l a r) ;

p i l a r = dCreateBox (space ,CLENGTH+bs i z e [1] [0] + b s i z e [2] [0] , 0 . 1 , ց

z p i l a r ∗ 2 . 0) ;

dGeomSetPosition (p i l a r , 0 . 0 , 0 . 0 , z p i l a r) ;

}else if (cmd == ’d ’) { // t h r ow a f r e e box t o t h e p o l e

if (dBodyIsEnabled (body [3]) && dGeomIsEnabled (box [3])) {

dBodyDestroy (body [3]) ;

dGeomDestroy (box [3]) ;

}

body [3] = dBodyCreate (world) ;

dBodySetPos it ion (body [3] , 0 . 9 5 ∗CLENGTH, 0 . 5 , 1 . 8 ∗CSTARTZ) ;

dMassSetBox (&m,5 0 0 . 0 f , 0 . 5 ∗CLENGTH, 0 . 5 ∗CWIDTH, 0 . 5 ∗CHEIGHT) ;

dBodySetMass (body [3] ,&m) ;

box [3] = dCreateBox (space , 0 . 5 ∗CLENGTH, 0 . 5 ∗CWIDTH, 0 . 5 ∗CHEIGHT) ;

dGeomSetBody (box [3] , body [3]) ;

dBodyAddForceAtRelPos(body [3] , 0 . 0 , − 1 0 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0) ;

}else if (cmd == ’ e ’) {

if (dBodyIsEnabled (body [3]) && dGeomIsEnabled (box [3])) {

dBodyDestroy (body [3]) ;

dGeomDestroy (box [3]) ;

}

}else if (cmd == ’x ’) {

con = −1;

}else if (cmd == ’ r ’) {

i n i t s im () ;

}

}

static void s t a r t () {

float xyz [3] ;

float hpr [3] ;

s ta t e cpy (f r ont xyz , 3 , xyz) ;

s ta t e cpy (f r ont hpr , 3 , hpr) ;

dsSetViewpoint (xyz , hpr) ;

138

}

dReal sgn (dReal x) {

dReal s ;

if (x >= 0 . 0) { s =1.0 ;}

else { s = −1.0;}

return s ;

}

static void simLoop (int pause) {

int i , j ;

static int s tep ;

static int c a t ch po l e =0;

const dReal ∗Vx;

const dReal ∗Va ;

const dReal ∗ po l e po s ;

const dReal ∗ c a r t po s ;

const dReal ∗ q ;

dReal a , x , v , uy , uz ;

static dReal s t ep s t o sw =0.0 ;

static int d i r e c t i o n ;

dReal mindu = 0 . 1 ; // minimum du

dReal L , J , Jdot , Lu , l , S ;

if (! pause) {

dsSetCo lor (0 , 0 , 2) ;

Vx = dBodyGetLinearVel (body [0]) ;

Va = dBodyGetAngularVel (body [2]) ;

c a r t po s = dBodyGetPosition(body [0]) ;

po l e po s = dBodyGetPosition(body [2]) ;

q = dBodyGetQuaternion (Base . body [0]) ;

a = 2 .0∗ acos (q [0]) ; // i n c l i n a t i o n a n g l e o f b a s e

s t a t e [1] = −Va [0] ;

if (s tep==0) { s t a t e [0] = theta0 ;}

139

else { s t a t e [0]+= s ta t e [1] ∗ dt ;}

x = ca r t po s [1] ;

s t a t e [2] = x ;

v = Vx [1] ;

s t a t e [3] = v ;

// p e r t u r b by t h r o w i n g a f r e e box

if (s tep==650 | | s tep ==1000) command(’d ’) ;

// p e r t u r b by c h a n g i n g t h e i n c l i n a t i o n a n g l e o f t h e b a s e by 5 ց

d e g c o u n t e r c l o c k w i s e

if (step >=850 && step <860) command(’b ’) ;

if (con==1 && step==0 && s ta t e [0]== 180 .0/ rad) {

if (x0<0){u= 20 . 0 ;}

else {u= −20.0;}

} else if (con == 1 && cos (s t a t e [0]) < cos (155 .0/ rad)) {

if (s t a t e [0] < 180 .0/ rad && s ta t e [1] < 0 .0) u=0.0 ;

if (s t a t e [0] < 180 .0/ rad && s ta t e [1] > 0 .0) u=10.0 ;

if (s t a t e [0] > 180 .0/ rad && s ta t e [1] < 0 .0) u=−10.0;

if (s t a t e [0] > 180 .0/ rad && s ta t e [1] > 0 .0) u=0.0 ;

} else if (con ==1 && cos (s t a t e [0])> cos (60 . 0/ rad)) {

s t a t e [2]−=xsp ; // c h a n g e t h e d e s i r e d c a r t p o s i t i o n

s ta te cpy (s ta te , ns , e) ;

if (c a t ch po l e==0) { // F i r s t t i m e p o l e e n t e r s t h e ց

o p e r a t i n g a n g l e r e g i o n o f TAC/FEF

s ta te cpy (e , ns , o l d e) ;

e dot [0] = e [1] ; e dot [1] = (e [1]− o l d e [1]) /dt ;

e dot [2] = e [3] ; e dot [3] = (e [3]− o l d e [3]) /dt ;

}

c a t ch po l e++;

du=u−o ld u ;

if (f abs (du)<=mindu && du >=0) du = mindu ;

if (f abs (du)<=mindu && du <0) du = −mindu ;

o ld u=u ;

dsdotdu [0]= 0 . 0 ;

140

dsdotdu [1]=(e [1]− o l d e [1]− e dot [1] ∗ dt) /du ;

dsdotdu [2]= 0 . 0 ;

dsdotdu [3]=(e [3]− o l d e [3]− e dot [3] ∗ dt) /du ;

s ta te cpy (e , ns , o l d e) ;

e dot [0] = e [1] ; e dot [1] = (e [1]− o l d e [1]) /dt ;

e dot [2] = e [3] ; e dot [3] = (e [3]− o l d e [3]) /dt ;

// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ E v a l u a t e Q ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

// S e t t i n g H = ww ’ + Q

for (i =0; i<ns ; i++){

for (j =0; j<ns ; j++){

H[i ∗ns+j]=(w[i]∗w[j]+Q[i ∗ns+j]) ;

}

}

detH= H[0∗ ns +0]∗(H[1∗ ns+1]∗H[2∗ ns+2]−H[2∗ ns+1]∗H[1∗ ns +2])−Hց

[0∗ ns +1]∗(H[1∗ ns+0]∗H[2∗ ns+2]−H[2∗ ns+0]∗H[1∗ ns +2])+H[0∗ nsց

+2]∗(H[1∗ ns+0]∗H[2∗ ns+1]−H[2∗ ns+0]∗H[1∗ ns +1]) ;

J=sqrvec (o ld e ,H, o ld e , ns) ;

Jdot = sqrvec (e dot ,H, o ld e , ns)+sqrvec (o ld e ,H, e dot , ns) ;

L = Jdot+k∗J ;

if ((f abs (detH) >1.0) &&

((J < 0 .0 && Jdot >0.0) | | (J>0.0 && Jdot <0.0)) &&

((e [0] <0 .0 && e dot [0] >0 .0 && e [2] <0.0 && e dot [2] >0 .0 ց

) | | (e [0] <0.0 && e dot [0] >0 .0 && e [2] >0.0 && e dotց

[2] <0 .0) | | (e [0] >0.0 && e dot [0] <0 .0 && e [2] <0.0 &&ց

e dot [2] >0 .0) | | (e [0] >0.0 && e dot [0] <0 .0 && e [2] ց

>0.0 && e dot [2] <0 .0))) {

l=S=0.0 ;

} else {

l =1.0 ;

if (f abs (L) <1.0) {

S=sgn (L) ;

}else{

S=L ;

}

141

}

for (i =0; i<ns ; i++){

for (j =0; j<ns ; j++){

Q[i ∗ns+j]−=l ∗1 .0 e−6∗ l r q ∗S∗(e dot [i]∗ o l d e [j]+ o l d e [i]∗ց

e dot [j]+k∗ o l d e [i]∗ o l d e [j]) ∗dt ;

}

}

// ∗ ∗ ∗ ∗ ∗ ∗ ∗ E v a l u a t e w ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

// S e t t i n g H = ww ’ + Q

for (i =0; i<ns ; i++){

for (j =0; j<ns ; j++){

H[i ∗ns+j]=(w[i]∗w[j]+Q[i ∗ns+j]) ;

}

}

J=sqrvec (o ld e ,H, o ld e , ns) ;

Jdot = sqrvec (e dot ,H, o ld e , ns)+sqrvec (o ld e ,H, e dot , ns) ;

Lu=old u ∗ o ld u+sqrvec (o ld e ,Q, o ld e , ns) ;

L = Jdot+k∗J ;

// Tun i n g w

for (i = 0 ; i< ns ; i++){

dw [i]=2 .0∗ (e dot [i]∗w[i]∗ o l d e [i]+k∗ o ld u ∗ o l d e [i]) ;

for (j =0; j<ns ; j++){

if (j != i) {

dw[i]+=2.0∗w[j] ∗ (o l d e [i]∗ e dot [j]+ e dot [i]∗ o l d e [j]) ;

}

}

dw [i]+=o ld e [i] ∗ (sqrvec (dsdotdu ,H, o ld e , ns)+sqrvec (o ld e ,H, ց

dsdotdu , ns)) ;

w[i] −=1.0e−8∗ lrw ∗L∗dw[i]∗ dt ;

}

w[0]= sat2 (w[0] , 1 . 0 , 6 0 . 0) ;

w[1]= sat2 (w[1] , 1 . 0 , 1 0 . 0) ;

w[2]= sat2 (w[2] , 1 . 0 , 1 0 . 0) ;

w[3]= sat2 (w[3] , 1 . 0 , 1 0 . 0) ;

142

u=w[0] ∗ e [0] ;

for (i =1; i<ns ; i++){

u+= w[i]∗ e [i] ;

}

u = sa t (u , 2 0 . 0) ;

}else {

u=0.0 ;

}

uy=(u+(CMASS+aMASS+PMASS) ∗9 .8∗ s i n (a)) ∗ cos (a) ; // h o r i z o n t a l ց

a c t i o n

uz=(u+(CMASS+aMASS+PMASS) ∗9 .8∗ s i n (a)) ∗ s i n (a) ; // v e r t i c a l ց

a c t i o n

if (con==−1 | | c a r t po s [0] < −CWIDTH∗0 .5 | | c a r t po s [0] > ց

CWIDTH∗0 .5 | | x < −ba se l eng th ∗0 .5 | | x > ba se l eng th ∗ 0 . 5){

uz=uy=0.0 ;

}

// App l y A c t i o n t o t h e Ca r t body

dBodyAddForceAtRelPos(body [0] , 0 . 0 , uy , uz , 0 . 0 , 0 . 0 , 0 . 0) ;

p r i n t f (”%7.2 f %7.3 f %7.3 f %7.3 f %7.3 f %7.3 f %7.3 f %7.3 f %7.3 f \nց

” , t , e [0] ∗ rad , e [2] , u ,w[0] ,w [1] ,w [2] ,w [3] , a∗ rad) ;

dSpaceCo l l ide (space ,0 ,& nearCa l lback) ;

dWorldStep (world , dt) ;

dJointGroupEmpty (contactgroup) ;

// Sa v e d a t a f o r s w i n g i n g up p r o b l e m

if (swing && step <4000 && x > −ba se l eng th ∗0 .5 && x < ց

ba se l eng th ∗ 0 . 5){

f p r i n t f (p f i l e , ”%8.3 f %8.3 f %8.3 f %8.3 f \n” , t , s t a t e [0] ∗ rad ,ց

s t a t e [2] ∗ 1 0 0 . 0 , u ∗ 5 . 0) ;

}else // Sa v e d a t a f o r non− s w i n g i n g up p r o b l e m

if (! swing && step <4000 && fabs (s t a t e [0]) < 90 .0/ rad) {

f p r i n t f (p f i l e , ”%8.3 f %8.3 f %8.3 f %8.3 f \n” , t , s t a t e [0] ∗ rad ,ց

s t a t e [2] , u) ;

}

s tep ++;

143

t+=dt ;

}else{

s tep =0;

t =0.0 ;

f c l o s e (p f i l e) ;

p f i l e = fopen (fname , ”w”) ;

}

dsSetCo lor (1 8 8 . 0 / 2 5 5 . 0 , 1 4 3 . 0 / 2 5 5 . 0 , 1 4 3 . 0 / 2 5 5 . 0) ; // (0 , 1 , 1) ;

dsSetTexture (DSWOOD) ;

dReal c s i d e s [3] = {CLENGTH,CWIDTH,CHEIGHT} ;

dsDrawBox (dBodyGetPosition(body [0]) , dBodyGetRotation (body [0]) ,ց

c s i d e s) ;

dsSetCo lor (1 , 0 , 0) ;

dReal a s i d e s [3] = {aLENGTH,aWIDTH,aHEIGHT} ;

dsDrawBox (dBodyGetPosition(body [1]) , dBodyGetRotation (body [1]) ,ց

a s i d e s) ;

dsSetCo lor (2 5 0 . 0 / 2 5 5 . 0 , 2 5 0 . 0 / 2 5 5 . 0 , 2 1 0 . 0 / 2 5 5 . 0) ;

dsSetCo lor (1 . 0 , 1 . 0 , 1 . 0) ;

dReal p s i d e s [3] = {PLENGTH,PWIDTH,PHEIGHT} ;

dsDrawBox (dBodyGetPosition(body [2]) , dBodyGetRotation (body [2]) ,ց

p s i d e s) ;

// f r e e box

dsSetCo lor (1 . 0 , 1 . 0 , 1 . 0) ;

dReal o s i d e s [3] = {0 .5∗CLENGTH, 0 . 5 ∗CWIDTH, 0 . 5 ∗CHEIGHT} ;

dsDrawBox (dBodyGetPosition(body [3]) , dBodyGetRotation (body [3]) ,ց

o s i d e s) ;

dsSetCo lor (1 0 0 . 0 / 2 5 5 . 0 , 1 4 9 . 0 / 2 5 5 . 0 , 2 3 7 . 0 / 2 5 5 . 0) ;

dVector3 s s ;

dGeomBoxGetLengths (p i l a r , s s) ;

dsDrawBox (dGeomGetPosition (p i l a r) , dGeomGetRotation (p i l a r) , s s) ;

for (i =0; i < 3 ; i++) {

if (i==0) dsSetCo lor (1 ,1 ,224/255) ;

else dsSetCo lor (0 . 3 3 3 , 1 . 0 , 0 . 9) ;

dsDrawBox (dBodyGetPosition(Base . body [i]) , dBodyGetRotation (Baseց

. body [i]) , b s i z e [i]) ;

}

144

}

int main (int argc , char ∗∗ argv)

{

int i ;

if (argc < 9){

p r i n t f (”\nSyntax : %s <−1,1> ba se l eng th theta0 x0 lrw l r q k ց

alpha \n%s” , argv [0] , ”\n −1: c on t r o l o f f , 1 : c o n t r o l on \n ց

alpha : i n c l i n a t i o n ang le o f base (in rad)\n”) ;

return 0 ;

}

con = a to i (argv [1]) ;

ba s e l eng th=a to f (argv [2]) ;

theta0 = a to f (argv [3]) / rad ;

x0 = a to f (argv [4]) ;

lrw = a to f (argv [5]) ;

l r q = a to f (argv [6]) ;

k = a to f (argv [7]) ;

alpha=a to f (argv [8]) / rad ;

theta00=theta0 ;

x00=x0 ;

if (a t o f (argv [3]) >=175.0 && a to f (argv [3]) <185.0) swing=true ;

s p r i n t f (fname , ”%s%3.1 f−%3.1f−%3.1f−%3.1f−%4.0f−%3.1 f . dat ” , ” tac ” ,

theta0 ∗ rad , x0 , lrw , l rq , k , alpha) ;

p f i l e = fopen (fname , ”w”) ;

// s e t u p p o i n t e r s t o d r a w s t u f f c a l l b a c k f u n c t i o n s

dsFunctions fn ;

fn . v e r s i o n = DS VERSION;

fn . s t a r t = &s t a r t ;

fn . s tep = &simLoop ;

fn . command = &command ;

fn . stop = 0 ;

fn . pa th to t e x tu r e s = ” t ex tu r e s ” ;

// c r e a t e w o r l d

world = dWorldCreate () ;

space = dHashSpaceCreate (0) ;

145

contactgroup = dJointGroupCreate (0) ;

dWorldSetGravity (world ,0 ,0 , −9 .8) ;

ground = dCreatePlane (space , 0 , 0 , 1 , 0) ;

//CART−POLE BODY AND GEOM

body [0] = dBodyCreate (world) ; // c a r t

body [1] = dBodyCreate (world) ; // arm

body [2] = dBodyCreate (world) ; // p o l e

box [0] = dCreateBox (0 , 1 . 0 , 1 . 0 , 1 . 0) ; // c a r t

box [1] = dCreateBox (0 , 1 . 0 , 1 . 0 , 1 . 0) ; //

box [2] = dCreateBox (0 , 1 . 0 , 1 . 0 , 1 . 0) ;

//CREATE FREE BOX BODY AND GEOM

body [3] = dBodyCreate (world) ; // f r e e box

box [3] = dCreateBox (0 , 1 . 0 , 1 . 0 , 1 . 0) ; // f r e e box

dBodyDestroy (body [3]) ; // f r e e box

dGeomDestroy (box [3]) ;

j o i n t [0] = dJointCreateHinge (world , 0) ;

j o i n t [1] = dJointCreateHinge (world , 0) ;

j o i n t [2] = dJointCreateHinge (world , 0) ;

j o i n t [3] = dJointCreateHinge (world , 0) ;

j o i n t [4] = dJointCreateHinge (world , 0) ;

// C r e a t e BASE

for (i =0; i <3; i++){

Base . body [i] = dBodyCreate (world) ;

Base . geom [i]=dCreateBox (0 , 1 . 0 , 1 . 0 , 1 . 0) ;

}

p i l a r = dCreateBox (space , 1 . 0 , 1 . 0 , 1 . 0) ;

i n i t s im () ;

dsSimulationLoop (argc , argv ,2∗352 ,2∗288 ,& fn) ;

f c l o s e (p f i l e) ;

dJointGroupDestroy (contactgroup) ;

dSpaceDestroy (space) ;

dWorldDestroy (world) ;

return 0 ;

}

146

REFERENCES

[1] V. Gullapalli, “Reinforcement learning and its application to control,” Ph.D. dis-

sertation, University of Massachusetts, Amherst, MA, 1992.

[2] K. J. Åström and B. Witternmark, Adaptive Control. Addison-Wesley Publishing

Company, 1989.

[3] J.-J. E. Slotine and W. Li, Applied nonlinear control. Englewood Cliffs New

Jersey: Prentice Hall, 1991.

[4] S. S. Sastry and A. Isidory, “Adaptive control of linearizable systems,” IEEE

Transactions on Automatic Control, vol. 34, pp. 1123–1131, 1989.

[5] L.-X. Wang, A COURSE IN FUZZY SYSTEMS AND CONTROL. New Jersey:

Prentice-Hall International, Inc., 1997.

[6] G. S.-X. Cheng, Folsom, and Calif, “Model-free adaptive process control,” 2000.

[Online]. Available: http://www.freepatentsonline.com

[7] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cam-

bridge, MA: MIT Press, 1998.

[8] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive elements

that can solve difficult learning control problems,” IEEE Trans. Syst., Man, Cy-

bern., vol. 13, no. 5, pp. 834–846, 1983.

[9] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Ma-

chine Learning, vol. 3, pp. 9–44, 1988.

147

[10] H. R. Berenji and P. Khedkar, “Learning and tuning fuzzy logic controllers through

reinforcement,” IEEE Trans. Neural Networks, vol. 3, no. 5, pp. 724–740, 1992.

[11] ——, “Using fuzzy logic for performance evaluation in reinforcement learning,”

International Journal of Approximate Reasoning, no. 18, pp. 131–144, 1998.

[12] T. Landelius and H. Knutsson, “Reinforcement learning adaptive control and ex-

plicit criterion maximization,” Computer Vision Laboratory, SE-581 83 Linköping,

Sweden, Report LiTH-ISY-R-1829, 1996.

[13] E. Trulsson and L. Ljung, “Adaptive control based on explicit criterion minimiza-

tion,” Automatica, vol. 21, pp. 385–399, 1985.

[14] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient meth-

ods for reinforcement learning with function approximation,” Advances in Neural

Information Processing System 12, pp. 1057–1063, 2000.

[15] L. C. Baird, “Residual algorithms: Reinforcement learning with function approx-

imation,” in Proc. of the Twelfth Int. Conf. on Machine Learning, M. Kaufman,

Ed., 1995, pp. 30–37.

[16] G. J. Gordon, “Stable function approximator in dynamic programming,” in Proc.

of the Twelfth Int. Conf. on Machine Learning, M. Kaufman, Ed., 1995, pp. 261–

268.

[17] D. P. Bertsekas and J. N. Tsikilis, Neuro-Dynamic Programming. Athena Scien-

tific, 1996.

[18] C. W. Anderson, “Strategy learning with multilayer connectionist representa-

tions,” in Proc. the Fourt International Workshop on Machine Learning, Irvine,

CA, 1987, pp. 103–114.

[19] H. Kimura and S. Kobayashi, “An analysis of actor/critic algorithms using eli-

gibility traces: Reinforcement learning with imperfect value functions,” in Proc.

ICML-98, 1998, pp. 278–286.

[20] L. Baird and A. Moore, “Gradient descent for general reinforcement learning,”

Advances in Neural Information Processing Systems 11, 1999.

[21] A. Zomaya, “Reinforcement learning for the adaptive control of nonlinear sys-

tems,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 24, no. 2, pp.

357–363, 1994.

148

[22] L. Peshkin, “Reinforcement learning by policy search,” Ph.D. dissertation, Brown

University,Providence, RI, 2001.

[23] A. O. Esogbue, W. E. Hearnes, and Q. Song, “A reinforcement learning fuzzy

controller for set-point regulator problems,” in Proc. of the FUZZ-IEEE ’96 Con-

ference, vol. 3, New Orleans, LA, 1996, pp. 2136–2142.

[24] D. Prokhorov, R. Santiago, and D. Wunsch, “Adaptive critic designs: A case study

for neurocontrol,” Neural Networks, vol. 8(9), pp. 1367–1372, 1995.

[25] D. Prokhorov and D. Wunsch, “Adaptive critic designs,” IEEE Transactions on

Neural Networks, vol. 8(5), pp. 997–1007, 1997.

[26] D. Prokhorov, “Adaptive critic designs and their application,” Ph.D. dissertation,

Texas Tech University, 1997.

[27] P. J. Werbos, “Stable adaptive control using new critic designs,” in Proc. SPIE

Vol. 3728, p. 510-579, Ninth Workshop on Virtual Intelligence/Dynamic Neural

Networks, T. Lindblad, M. L. Padgett, and J. M. Kinser, Eds., Mar. 1999, pp.

510–579.

[28] G. G. Lendaris and L. J. Schultz, “Controller design (from scratch) using ap-

proximate dynamic programming,” in Proc. of IEEE International Symposium on

Intelligent Control (IEEE-ISIC) 2000, Patras, Greece, July 2000.

[29] G. G. Lendaris, L. J. Schultz, and T. T. Shannon, “Adaptive critic design for

intelligent steering and speed control of a 2-axle vehicle,” in Proc. of International

Joint Conference on Neural Networks (IJCNN) 2000, Italy, July 2000.

[30] T. T. Shannon and G. G. Lendaris, “A new hybrid critic training method for ap-

proximate dynamic programming,” in Proc. of the World Congress of the Systems

Sciences 2000, Toronto, Canada, July 2000.

[31] J. Si, A. Barto, W. Powell, and D. Wunsch, Handbook of Learning and Approximate

Dynamic Programming. IEEE Press John Wiley and sons, Inc., 2004.

[32] A. G. Barto, “Some learning task from a control perspective,” University of Mas-

sachusetts, Amherst, MA, COINS Technical Report 91-122, 1991.

[33] S. Horikawa, T. Furuhashi, S. Okuma, and Y. Uchikawa, “A fuzzy controller using

a neural network and its capability to learn expert’s control rules,” in Proc. Int.

Conf. Fuzzy Logic Neural Networks, Iizuka, Japan, July 1990, pp. 103–106.

149

[34] H. Nomura, I. Hayashi, and N. Wakami, “A self-tuning method of fuzzy control by

descent method,” in Proc. IFSA’91, 1rst Int. Fuzzy Syst. Assoc. World Congress,

1991, pp. 155–158.

[35] C. Lin and C. S. G. Lee, “Neural-network-based fuzzy logic control and decision

system,” IEEE Trans. Comput., vol. 40, pp. 1320–1336, 1991.

[36] L. Jouffe, “Fuzzy inference system learning by reinforcement method,” IEEE

Trans. Syst., Man, Cybern. C, vol. 28, no. 3, pp. 338–355, 1998.

[37] M. I. Jordan, “Forward models: Supervised learning with a distal teacher,” Cog-

nitive Science, vol. 16, pp. 307–354, 1992.

[38] K. Ogata, Modern Control Engineering. Englewood Cliffs New Jersey: Prentice

Hall, 1997.

[39] W. J. Rugh, Linear System Theory. Prentice-Hall International, Inc., 2nd edition,

1996.

[40] C.-T. Chen, Linear System Theory and Design. Holt, Rinehart, and Winston,

Inc., 1984.

[41] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Ma-

chine Learning, vol. 3, pp. 9–44, 1988.

[42] J. C. Santamaria, R. R. Sutton, and A. Ram, “Experiment with reinforcement

learning in problems with continuous state and action spaces,” Adaptive Behavior,

vol. 6, no. 2, pp. 163–218, 1998.

[43] S. K. Oh, W. Pedrycz, S. B. Rho, and T. C. Ahn, “Parameters estimation of fuzzy

controller and its application to inverted pendulum,” Engineering Applications of

Artificial Intelligence, vol. 17, pp. 37–60, 2004.

[44] Y. Y. Nazaruddin, A. Naba, and T. H. Liong, “Modified adaptive fuzzy control

system using universal supervisory controller,” in Proc. of SCI/ISAS 2000, vol. IX,

Orlando, USA, July 2000.

[45] F. Hsu and L. Fu, “A novel adaptive fuzzy variable structure control for a class of

nonlinear uncertain systems via backstepping,” Fuzzy sets and systems, vol. 122,

pp. 83–106, 2001.

150

[46] C. Liang and J. Su, “A new approach to the design of fuzzy sliding mode con-

troller,” Fuzzy sets and systems, vol. 139, pp. 111–124, 2003.

[47] S. Tong and H. Li, “Direct adaptive fuzzy output tracking control of nonlinear

systems,” Fuzzy sets and systems, vol. 128, pp. 107–115, 2002.

[48] C.-K. Lin, “A reinforcement learning adaptive fuzzy controller for robots,” FUZZY

sets and system, vol. 137, pp. 339–352, 2003.

[49] J. Park, G. Park, S. Kim, and C. Moon, “Direct adaptive self-structuring fuzzy

controller for nonaffine nonlinear system,” Fuzzy sets and systems, vol. 153, pp.

429–445, 2005.

[50] A. Naba and K. Miyashita, “Tuning fuzzy controller using approximated eval-

uation function,” in Proc. of the 4th IEEE International Workshop WSTST05,

Muroran, Japan, May 2005, pp. 113–122.

[51] ——, “Gadient-based tuning of fuzzy controller with approximated evaluation

function,” in Proc. of Eleventh International Fuzzy Systems Association (IFSA)

World Congress, Beijing, China, July 2005, pp. 671–676.

[52] ——, “FCAPS: Fuzzy controller with approximated policy search approach,” Jour-

nal of Adv. Comput. Intelligence and Intelligent Informatics, vol. 1, no. 1, pp.

84–92, 2006.

[53] K. J. Åström and K. Furuta, “Swinging up a pendulum by energy control,” Au-

tomatica, vol. 36, pp. 287–295, 2000.

[54] C. C. Chung and J. Hauser, “Nonlinear control of a swinging pendulum,” Auto-

matica, vol. 31, pp. 851–862, 1995.

151

