A Study on Requirement Adaptable
Browsing and Querying Schemes for

Structured Documents

Doctoral Program in Engineering

University of Tsukuba

2001, March
SHINAGAWA Norihide

7 M
lT!:

By

£

A

i

H

01301633

Acknowledgments

I do not have the words to express my deepest gratitude to Professor Hiroyuki
Kitagawa, my supervisor. I could not have begun my research if he had not
accepted me as one of his students when I was new to this area. 1 discussed
possible subjects for research with him, and I told him I took an interest in
document processing and management. Then, he suggested that I focus on
structured documents. Without his vision and guidance, I would not have
studied the utilization of structured documents. IHe has given me constructive
suggestions, precise criticism, and kind encouragement at all times. Because
he always puts his heart into study and education, I have been able to enjoy

the research fully.

I have been studying at the database laboratory of the University of
Tsukuba. I am grateful to Assistant Professor Yoshiharu Ishikawa. He has
given me instructive advice a number of times. I am also thankful to Professor

Nobuo Ohbo and Assistant Professor Kiminori Utsunomiya for their constant

encouragement. I would also like to thank Doctor Atsuyuki Morishima and
other members of the laboratory. I have asked them a great many things in

my laboratory life; ever pleasant, they have always helped me.

Finally, I am grateful to the members of my dissertation committee for of-
fering comments to improve this dissertation. Professor Hiroyuki Kitagawa,
Professor Nobuo Ohbo, Professor Yoshihiko Ebihara, Professor Seiichi Nishi-

hara, and Professor Mikio Yamamoto served on my dissertation committee.

i1

Abstract

The rapid advances of world wide web (WWW) technology have made a
huge amount of information available over the Internet. Information on the
WWW is usually provided as structured HTML and XML documents. It
has, therefore, become more and more important to use and manage these

structured documents efficiently.

Both browsing and querying are generally used to access and identify use-
ful information contained in a huge number of documents. Individual users
have their own application-specific requirements, which should be respected
in the querying and browsing environments. In this sense, requirement adapt-

ability is a desirable feature for querying and browsing schemes.
When users browse documents, they have interests related to their aims.
The WWW environment comprises a huge number of documents, some of

which may be very large. This makes it difficult for users to identify sub-

1ii

structures and regions relevant to their interests. A facility is needed that

makes it easy to identify descriptions that fit individual user requirements.

When a user issues queries to structured document databases, some
queries need functions that depend on the structure and content descrip-
tions of structured documents. Given access to these functions, a user can
formulate queries in a more straightforward way. It is, however, very difficult
to provide a complete set of functions that can cope with varied requirements.
So users need query languages that can be extended to adopt user-defined

functions.

This dissertation discusses the requirements for adaptable browsing and
querying schemes for structured documents. It includes two subjects: (1) A
scheme to support browsing WWW pages and identifying relevant descrip-
tions within them, based on a user’s interest, and (2) an XML query language
called X2QL featuring extensibility via user-defined foreign functions. The
proposed schemes enable users to get needed information within structured

documents in a requirement adaptable manner.

On the first subject, a browsing support scheme based on specification
of the user’s interest is studied. In this scheme, the user’s interest is ex-
plicitly expressed as a user profile. Virtual WWW pages called view-pages

tailored to the user’s interest are then dynamically generated and presented

1v

when browsing the WWW. View-pages essentially show summaries of ex-
isting HTML pages complying with user interests and the level of details
specified in the user profile. With this scheme, users having different inter-

ests are given different views of the WWW.

We developed a prototype system that provides view-pages in a non-
intrusive way in the current WWW browsing environment. This dissertation
explains the architecture. The user can enjoy the proposed features using
ordinary WWW browsers rather than resorting to special browsers tailored

for this purpose.

On the second subject, an XML query language called X?QL, which fea-
tures the inclusion of user-defined foreign functions, is proposed. Foreign
functions are provided as external programs written in programming lan-
guages. X?QL provides the framework for implementing foreign functions.
It defines the type system, internal object model and Java binding. By
including appropriate user-defined foreign functions, individual users can ex-
tend the processing power of X?QL. This extensibility makes it possible to
integrate the processing facilities for application-oriented high-level contents

into querying documents.

This dissertation also explains a scheme for implementing X*QL query

processing systems on top of XSLT processors. This involves a translation

scheme for X2QL queries into XSLT template rules. We have already devel-

oped an X?QL query processing system that follows the scheme.
Adaptability has become more and more important in accessing and using

structured documents. The proposed schemes show promise in realizing the

adaptability requirements for browsing and querying structured documents.

vi

Contents

Acknowledgments

Abstract

1 Introduction

2 Background
2.1 Structured Document
2.2 Vector Space Model
2.3 XML Query Language

vii

iii

10

2.3.2 XSLT e 20

3 Related Works 26
3.1 Supporting Schemes for WWW Browsing 26
3.2 Querying XML Documents 30

4 Browsing WWW Pages Based on User Profiles 35
4.1 Overview. 35
4.2 Logical Trees 39
4.2.1 Classification of HTML Tags. 39

4.2.2 Derivation of Logical Trees 41

4.3 View-pages 44

viil

4.3.1 Derivation of Feature Vectors 45

4.3.2 Generation of View-pages 47
4.4 Prototype System Development 52
4.4.1 System Architecture 52
4.4.2 Browsing Assistance Engine (BAE) 55
4.4.3 Typical Processing Flow 57
4.44 Session Example 59
4.5 Experimental Evaluation 61
4.5.1 Evaluation for Derivation of Logical Tree 62
4.5.2 Evaluation for Generation of View-pages 68
4.5.3 More Experiments in the WWW 73
4.6 Discussion and Future Issues 74

ix

5 X2QL: An Extensible XML Query Language 78

5.1 Overview.o 78
5.2 Motivating Exampleso o oL 81
5.3 X2QL: An eXtensible XML Query Language 83
5.3.1 Query Syntaxo 83
5.3.2 Foreign Functions 84
5.3.3 Query Specification Examples 86
5.4 Extensibility via Foreign Functions 88
54.1 TypeSystem 89
5.4.2 Internal Object Model 90
543 JavaBinding L. 92
5.5 Query Processing on XSLT Processors 94

5.5.1 System Architecture 94

5.5.2 Mapping of Foreign Functions 95

5.5.3 Query Translation 97

56 Advanced Features 102
5.6.1 Aggregation Functions 102

5.6.2 Variable Binding Filtering 106

5.7 Discussion and Future Issues 111

6 Conclusion 112
References 114

xi

List of Tables

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Bias factors 3, associated with style-oriented tags 48
Coeflicients o, for childnodes 48
Usage of style-oriented tags 64
Experimental result for IGD 66
Experimental result for W3C 66
Experimental result for DLIB 66
Averages for all sites 67
Experimental result for IGD 67

xii

4.9

4.10

411

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

BExperimental result for W3C 67

Experimental result for DLIB 67
Averages for allsites L L. 67
Condition (a): Experiment result using uniform weights o, . . 71

Condition (b): Experiment result using non-uniform weights o, 71

Condition (c): Experimental result using different weights 6,; 71

Non-uniform weights a.c 72
Experimental result for keyword set A 75
Experimental result for keywordset B 75
Experimental result for keyword set C 75
Experimental result for keyword set D 76
Experimental result for keyword set E 76

xiii

4.21 Averages for all experimental results

4.22 Evaluation of scoring scheme

5.1 Translation rules between types

xiv

List of Figures

2.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Sample XML document 13

Overview of the proposed scheme 37
Derivation rules (a) 42
Derivationrules (b) 43
Sample HTML document 44
Extracted logical tree 45
Example of view-page generation 51
HTML décument for a view-page 51

Xv

4.8 Prototype system architecture 53

4.9 Architecture of BAEo 53
4.10 Controller window 60
4.11 Browser window 60
5.1 Query processing schemeo 95
5.2 Mechanism of a method invocation 96

XVi

Chapter 1

Introduction

The rapid advances of WWW technology have made a huge amount of in-
formation available over the Internet. Information on the WWW is usually
provided as structured documents written in HTML and XML. XML, es-
pecially, has attracted a great deal of attention as a standard format for
information exchange for WWW publishing, electronic commerce and stor-
ing application data. It has, therefore, become more and more important to
use and manage these structured documents efficiently. A variety of schemes

and tools addressing the issues have been investigated to date [1] [2].

Both browsing and querying are generally used to access and identify use-
ful information in a huge number of documents. Individual users have their

own application-specific requirements, depending on their purpose. Their re-

quirements should be respected by the querying and browsing environments.
There can be a variety of requirements in their context, so the environments

and their schemes should be adaptable to varied requirements.

When users browse documents to find descriptions related to their aims,
they must access a number of documents in, for example, the WWW envi-
ronment. Beyond that, some of those documents may be very large and may
contain many unrelated parts. This makes it difficult for users to identify
substructures and regions relevant to their interests, even if WWW search
engines return interesting documents. A facility is needed that makes it easy

to identify descriptions that fit individual user requirements.

When a user issues queries to structured document databases, some
queries need functions that depend on the structure and content descriptions
of structured documents. If the query language allows the use of such func-
tions, the user can formulate such queries in a straightforward way. However,
document structure is designed in response to the purpose, and contents are
written in natural language. This diversity makes it very difficult to provide
a complete set of functions that will cope with the varied requirements. Users

need query languages that can be extended to adopt user-defined functions.

This dissertation discusses the following two subjects.

1. A supporting scheme for WWW browsing based on the user’s interest
(3] 4]

2. An XML query language, called X?2QL, featuring extensibility via user-

defined foreign functions [5]

The schemes proposed in this dissertation enable users to get needed infor-
mation within structured documents in a way that is adaptable to varied

requirements.

Browsing WWW Pages Based on User Profiles

As mentioned, when browsing WWW pages, it is difficult for users to identify
substructures and regions relevant to their interests. The proposed scheme in
this subject allows users to identify these substructures and regions within
each WWW page written in HI'ML by providing view-pages. View-pages
consist of substructures relevant to their requirements and are dynamically
generated from specified WWW pages. Each user’s requirements are repre-
sented as a user profile, which contains a keyword set and a detail level of

view-pages; it is used to generate view-pages.

Documents generally have hierarchical logical structures comprising

meaningful blocks of contents. To provide informative descriptions for in-

3

dividual users, view-pages should contain few descriptions irrelevant to user
requirements, and their original contents and logical structures should be
respected. Providing automatically generated mini-summaries is not always
suitable to our purpose, which is to help users browse individual WWW
pages and roughly understand their contents. This is done rather than have
the user select pages from many candidate pages. View-pages are gener-
ated by pruning away irrelevant substructures from specified WWW pages
based on their logical document structures. Note that generated view-pages
must be valid HTML documents. Our procedures to prune away irrelevant

substructures and to generate HTML documents ensure validity.

In structured documents, logical structures are indicated by markups em-
bedded as tags. However, HTML tag hierarchies do not always coincide with
a document’s logical structure. HTML tags construct flat structures and
some are used to indicate physical presentation features rather than logical
structures. To overcome this shortcoming, we introduce logical trees, which
represent logical structures. They are derived by derivation rules based on

HTML tags. The derivation rules are applicable to most HIML documents.

Relevance of each substructure to a user requirement can be judged using
methods of information retrieval. This dissertation uses the vector space
model. Each node score of the logical tree is calculated by the similarity of

its contents and the keyword set in a given user profile. The score is then

compared with the detail level given by the user profile. Note that some
HTML tags are used to emphasize enclosing phrases, and some substructures
play important roles in the documents. We take these facts into account when

calculating the node score.

A prototype system implementing our scheme has been developed. In
this development, we take into account the following points. (1) Users can
use ordinary WWW browsers to browse view-pages. It is not easy to develop
a new fully featured WWW browser. And even if we could build one, users
have a right to use their favorite WWW browsers. Therefore, we provide
view-pages through an HTTP proxy server featuring view-page generation.
(2) Users can interactively and easily control view-page generation. When
view-pages are provided for individual users, they do not necessarily fit their
requirements, because appropriate detail levels generally depend on browsed
pages. Moreover, it is desirable that a user can browse each page at various
detail levels. So we also display the logical tree of the page and its node
scores visually using a Java applet. This applet offers clues that allow users

to modify their user profiles.

Finally, we experimentally evaluate the proposed scheme against three
criteria. (1) First, we evaluate validity of the logical trees derived from each
given page. The logical trees must have an appropriate structure to extract

substructures for inclusion in view-pages. (2) Second, we evaluate correctness

of the node scores in a given logical tree. When the given logical tree structure
and calculated node scores are correct, the generated view-page can contain
only the appropriate substructures within the original page by adjusting the
detail level of view-pages. (3) Third, we applied the above two evaluation
methods to more general WWW pages. In this experiment, we used WWW
pages searched by the Goo search engine. We can check effectiveness of the

proposed scheme in a more realistic context of WWW page browsing.

X2QL: An Extensible XML Query Language

XML has attracted a great deal of attention as a standard format for infor-
mation exchange, and the number of XML documents has been increasing.
It has therefore become more and more important to use and manage these
structured documents efficiently. Query languages for XML documents play
important roles, just as they do in the context of traditional databases, and

many XML query languages have been developed.

XML allows users to define their own document structures, and their
structures generally introduce data structures. It should be possible, there-
fore, for structure-dependent functions to be used in queries. Additionally,
their contents are written in natural languages, so some queries require con-

tent processing functions. Some examples are similarity-based selection,

ranking, automatic summary generation, and other content processing func-
tions. Thus, it is very difficult to provide a complete set of such functions
to cope with the varied requirements. This is why XML query languages
should be extensible. When we started investigating this subject, there were

no XML query languages with excellent extensibility.

This dissertation proposes extensible XML query language X?QL, which
features the inclusion of user-defined foreign functions. X2QL is based on
XML-QL, which is the best-known XML query language featuring power-
ful, tag-based document structure manipulation. We designed X?QL using
XML-QL as a place to start. In X?QL, foreign functions are written in gen-
eral programming languages, and the current version of X?QL supports Java

binding.

First, we introduce two kinds of foreign functions: general functions and
element methods. General functions are normal functions: they compute
return values from given argument values. Element methods, on the other
hand, are associated with element types. Each element method is invoked
for an element and its execution depends on the element itself. Element
methods enable object-oriented features. To define and implement foreign
functions, we define data types that represent pieces of XML documents.
Individual element types can also be regarded as data types. Therefore, we

treat elements as element objects in query processing, and provide interfaces

to invoke element methods and to store objects created by the implemen-
tation as properties. These interfaces make it possible to treat elements as
stateful objects. We then define the mapping of types into Java interfaces

and invocation mechanisms of foreign function implementations.

We have developed an X2QL query processor on top of an XSLT proces-
sor. XSLT is a popular XML transformation language, and several XSLT
processors are available. The rationale for our implementation approach
is three-fold. (1) The approach contributes to rapid development of the
query processor. We have been able to build our query processor by de-
veloping foreign function invocation mechanisms and query translation into
XSLT template rules. (2) An implementation on top of XSLT processors
assures a certain level of portability. XSLT allows its processors to have
implementation-dependent features, for instance, extension functions. We
need them to implement foreign functions on top of XSLT processors. These
features are abstracted by the adopter module for each XSLT processor. (3)
X2?2QL can work as a front end to XSLT processors. XSLT specifications are

low-level and procedural, and they are difficult for novice users.

Finally, we introduce advanced features: aggregation functions and a
variable binding filtering mechanismn. We call a tuple for each set of vari-
able bindings, which is generated by a where clause and consumed by a

construct clause in query processing. Aggregation functions are foreign

functions, which compute a value from multiple tuples, for instance, the max-
imum, minimum or average value. The variable binding filtering mechanism,
on the other hand, is used to control the tuple sequence. This mechanism
enables user-defined re-ordering, selection, and other activities, by using for-
eign functions called filtering functions. Java binding of these functions is
defined and our implementation approach makes it possible for these features

to be implemented using XSLT processors.

Outline

The remainder of this dissertation is organized as follows. Chapter 2 de-
scribes the background of the research. Structured documents are explained.
The vector space model is then explained in the context of information re-
trieval. Finally, XML processing languages are described. The description
includes XML-QL and XSLT, which are XML query and translation lan-
guages. Chapter 3 surveys related works. Chapter 4 explains our supporting
scheme for WWW browsing. This includes logical tree derivation, view-page
generation, prototype system development, and experimental evaluations.
Chapter 5 describes X?QL. This involves the query syntax, foreign functions,
the development of query processor on top of XSLT, and advanced features.

Finally, Chapter 6 concludes the dissertation.

Chapter 2

Background

This chapter first explains structured documents. Second, the vector space
model for information retrievals is explained. The chapter then gives simpli-

fied overviews of XML-QL and XSLT, which are languages to process XML

documents.

2.1 Structured Document

In general, documents such as news articles, technical papers and books have
internal structures. For example, a news article consists of its headline, date,
category, body containing several paragraphs, and so on. To make possi-

ble the exchange of structural information as well as text, SGML (Standard

10

Generalized Markup Language) was developed in 1986 [6]. SGML docu-
ments have two main parts: The first part is the DTD (Document Type
Definition), which lists rules for the logical structure of the document. The
second part is tagged text, which conforms to the DTD. SGML received a
boost in popularity when the U.S. Department of Defense adopted it as the
standard for military documentation. SGML was also adopted as the basis of
the Hytime hypermedia description language [7]. However, the best-known
application of SGML is HTML (Hyper Text Markup Language), which is the
language for coding WWW pages [8] and has been adopted by W3C (World
Wide Web Consortium). HTML documents are SGML documents with in-
ner document structures coded against a predefined DTD. In 1997, XML
(Extensible Markup Language) was developed as a next generation language
for Web page coding [9]. XML is a simplified version of SGML, and allows
Web pages to have user-defined document types. In 2000, HTML was re-
formulated as an XML application and named XTHML (Extensible HTML)
[10].

Figure 2.1 shows a sample XML document. The text surrounded by
“<IDOCTYPE root[” and “]>” in the document is the DTD. It is followed
by the tagged text part. Tagged text is divided into elements enclosed by a
start tag “<tag>” and an end tag “</tag>”, where “tag”’ is a generic identifier
representing the element type. Elements can have attributes, which consist

of the attribute names and attribute values. They are described as the form

11

“name="value"” in start tags. Elements can be nested within other elements.
The DTD prescribes how the elements can be hierarchically constructed by
child elements. The root element is specified by the root in the DTD. XML
allows instance documents without DTDs. Such documents are called well-

formed. Documents with a DTD are called valid.

In Figure 2.1, each line starting with “<!ELEMENT” in the DTD is an
element type definition. It defines an element name and its content model,
which is the rule for content structure of the element type. The root Document
element consists of one or more Article elements. An Article element
is a sequence of Date, Category, Location, Headline and Body elements.
Note that the Location element is optional. Additionally, each Article
element has an attribute named AID, whose values give identifiers of Article
elements. A Date element is also a sequence of Year, Month and Day elements.
The Body element consists of one or more Paragraph elements. The element
types such as Year, Month, Day, Category, Headline and Paragraph are

defined as having no internal structures.
In structured documents, structural irregularity is caused by content mod-

els with repetitions by “+” and “*”, optional structures by “?”, and selections

by “1”. Thus, they are often said to be semi-structured data [11] [12].

12

<?XML version="1.0" encoding="UTF-8" MD="ALL"?7>

<!DOCTYPE Document [
<!'ELEMENT Document Article+>
<!ELEMENT Article (Date, Category, Location?,
Headline, Body)>

<!'ATTLIST Article AID ID #REQUIRED
<!ELEMENT Date (Year, Month, Day)>
<!'ELEMENT Year #PCDATA>
<!ELEMENT Month #PCDATA>
<!ELEMENT Day #PCDATA>
<!ELEMENT Category #PCDATA>
<!ELEMENT Location #PCDATA>
<!ELEMENT Headline #PCDATA>
<!ELEMENT Body Paragraph+>

<!ELEMENT Paragraph #PCDATA>
1>

<Document>
<Article AID="20000101-001">

<Date>
<Year>2001</Year> <Month>1</Month> <Day>1</Day>

</Date>

<Category>Financial</Category>

<Headline>...</Headline>

<Body>
<Paragraph>
<Paragraph>

. </Paragraph>
. </Paragraph>

</Body>
</Article>
</Document>

Figure 2.1: Sample XML document

13

2.2 Vector Space Model

In information retrieval, documents are compared with each other or given
search requests, called queries, and most similar documents are obtained.
The wvector space model is the best-known scheme for information retrieval

systems [13].

In the vector space model, documents are located in a document space,
and they are represented as vectors from the origin to their locations. The
axes of the document space correspond to document features. Generally,
features are given by the weights of indexed terms. A query given by a
keyword set is represented as a feature vector in the same way. A feature

vector V; of document d is formulated as follows:

‘/;1 = (wd,tl y Wty ooy wd,tﬂ)

where each ¢; is an indexed term and wgy, is its weight in d.

The most standard method of giving feature weights is ¢f-idf. In this

method, the weight wy; of t in d is given by the following expressions:

War = tf dt * idf, dt

14

. N
= s (53)

where tf4 is the number of occurrence of the ¢ in d, called the term frequency
factor, N is the number of all documents, and n; is the number of documents

including t. The idf; is called the inverse document frequency factor.

The similarity between a document d and a given query ¢ is calculated

by the (standard) cosine measure:

_ VoV,
IVall - Vel

similarity(d, q¢) = cosine(Vy, V3)
The range of the cosine measure is 0 to 1, and it gives the highest similarity

value of 1.0 to the same vectors.

In the standard cosine measure, the lengths of vectors are normalized to
1.0 so that the size of each document is not explicitly taken into account.
Therefore, when the collection contains documents of different length, smaller
documents tend to have higher similarity values [14]. To deal with this
problem, Singhal and others proposed the C-pivot measure [15]. According

to the C-pivot measure, the similarity between the d and q is calculated as

15

follows:

Vy N
(1=8)-L+S-Us |IVql

similarity(d, q) =

where L is the average number of terms in the documents, Uy is the number
of distinct terms in d, and S is a slope constant in [0,1]. The slope constant

is decided empirically.

2.3 XML Query Language

In database management systems, query languages such as SQL [16] and
OQL [17] have been used to access databases. Query languages make it
easy to specify required data in databases and to access it using declarative
and powerful expressive power. Query languages have been proposed for
XML documents and their databases, because it has become more and more

important to use and manage these documents efficiently.

This section gives a simplified overview of XML-QL [18], then XSLT [19].
XML-QL is the best-known XML query language and the basis of X?QL.
XSLT is the most widely used XML transformation language. XSLT is a
low-level and procedural language to process XML documents and is used

by our X2QL query processor.

16

2.3.1 XML-QL

XML-QL [18] is an XML query language proposed to W3C by A. Deutsch
and others in 1998. It allows declarative descriptions to extract data from

XML documents and integrate them into a resulting document.

XML-QL Query

The basic syntax of an XML-QL query as follows.

where patterns [in sourcel [, patterns [in source]]*
[, predicate] *

[order-by ordering keys [descending]]

construct construction of each output

For example, given the sample XML document in Section 2.1, the query
to generate a new XML document in which articles published after 1999 are

selected and grduped by the categories can be specified as coded below.

17

where <Document> </> content_as $x
construct <Document>
where <Article>
<Date> <Year> $y </> </>
<Category> $c </>
</> element_as $a in $x,

$y >= 1999

order-by $c

construct <Group ID=CtgID($c)> $a </>
</>

Where clause: This clause specifies the element patterns, predicates, and
variable bindings. Element patterns are given by XML-like forms. Each
variable is bound to either an element, the content of an element, an el-
ement name, an attribute name, or an attribute value. The expression
element_as $x binds the variable $x to the preceding element, and the ex-
pression content_as $x binds $x to the content of the preceding element.
The expression content_as $x is abbreviated to the variable $x enclosed by

tags.

In the above example, $x is bound to the content of a Document element
in the first where clause. Variables $a, $c, and $y are bound to an Article
element, the content of a Category element in the Article element, and the
content of a Year element in the Date element, respectively, in the secohd
where clause. Moreover, the Year value must be greater than or equal to

1999.

18

Construct clause: This clause specifies how to construct an output el-
ement for each set of bound variables. The query result is a sequence of
output elements. As shown in this example, the where- - -construct clauses

may be nested.

Each output element can be given its ID attribute value by a Skolem func-
tion. The Skolem function gives one-to-one mapping from a set of arguments
to an ID attribute value. In the query result, elements that have the same
element name, parent node, and ID value are grouped into a single element.

This feature can be used to group elements.

The above query returns a Document element that contains the result of
the subquery. The subquery returns a sequence of Group elements. Each
Group element has a one-to-one correspondence to a Catagory value, and

contains Article elements of the category. Each Article element is given

by $a.

Order-by clause: This clause specifies the ordering of output elements.
They are sorted by the sort key. In the above query, the output elements are

sorted in the ascending order of the value of $c, namely the Category value.

19

Function Definition

XML-QL supports functions, which are canned queries with arguments.

Function are coded as follows:

function function-name(argument-list)
XML-QL query
end

Each function is a query that can include unbound variables given in function

arguments. The return value of a function is the result of the query.

2.3.2 XSLT

XSLT [19] is an XML transformation language for XSL (XML stylesheet
language) [20] and a W3C recommendation. Several XSLT processors are
available, and their use has become popular in the context of XML document

processing.

20

Template Rules

A transformation expressed in XSLT is an XML document, called a stylesheet,
whose root element is xsl:stylesheet containing a set of template rules.
We explain template rules by describing how document manipulation using
the following X2QL query is expressed in XSLT. This query extracts Item
elements whose Number element values are less than 100. Its result is a

Document element consisting of Item elements sorted by the Number value.

where <Document></> content_as $d
construct <Document>
where <Item> <Number> $n </> </> element_as $i in $d,
$n < 100
order-by $n
construct $i
</>

A template rule corresponding to the query is as follows:

21

<xsl:template match="/Document'>

<xsl:variable name="d" select="."/>
<Document>
<xsl:for-each select="Item/Number[. < 100]'">
<xsl:sort select="."/>
<xsl:variable name="n" select="."/>
<xsl:for-each select="..">
<xsl:variable name="i" select="."/>

<xsl:copy-of select="$i"/>
</xsl:for-each>
</xsl:for-each>
</Document>
</xsl:template>

Elements whose tags are in the namespace xs1 are called instructions. A
template rule is represented as a nested structure of instructions. Each XML
document is modeled as a tree whose nodes are elements, attributes, text
(#PCDATA), and so on. Each instruction in the body of a template rule is
applied to the nodes selected by a path expression called location path [21]
(for example, “/Document”, “.”, and “Item/Number[.<100]”). The selected

nodes and their set are called context nodes and contezt node list.

Location paths may be relative or absolute. Relative location paths are
evaluated on the basis of the current context node. Location paths that

“wn

appear in this paper are as follows: (1) selects the current context node
itself, (2) “..” selects the parent node, (3) a/b selects the child b nodes of
a, (4) a/@b selects the attribute b nodes of a, and (5) alx] selects a nodes

that satisfy the condition x. The condition x is given by location paths and

22

predicates combined by and/or. Note that these are abbreviated notations;
more sophisticated location paths can be specified. Those notations are not
explained. The following briefly explains the major instructions. It then

interprets the above template rule.

xsl:template A template rule is an element whose tag is this instruction.
The match attribute specifies a location path to identify the target
nodes to which the rule applies. When an element matches the location
path of a template rule, the content of the rule, which is a sequence of

instructions, is instantiated as the output.

xsl:variable This instruction is used to bind a variable. The variable name
is given by the name attribute, and its value is given as the content of
the element or the location path specified in the select attribute. In

XSLT, the value of a variable is denoted by its name with a prefix “$”.

xsl:for-each This instruction is used to select the context nodes specified
by the select attribute, and to construct the output for each context

node similarly to xsl:template.

xsl:sort This instruction is used to sort the context nodes. It must occur

first in an xsl:for-each element.

xsl:copy-of This instruction is used to copy a node set selected by the

select attribute.

23

xsl:if This instruction is used for conditional processing. When the con-

dition given by the test attribute is true, the content is instantiated.

When the template rule given at the beginning of this subsection is ap-
plied to a Document element in a source XML document, a Document element
s created as an output. It contains the result generated by other instructions
in the template rule. The first xs1:for-each instruction selects Number el-
ements whose values are less than 100, and the xsl:sort instruction sorts
them. The second xsl:for-each instruction then selects the parent Item
element of the current Number element, and the xsl:copy-of instruction
copies the current Item element. The result document is what the X2QL

query specifies.

Extension Functions

The XSLT specification mentions the use of eztension functions [19]. These
functions are external programs written in programming languages. However,
the availability and the usage of extension functions depend on the underlying

XSLT processor, because their details are left to the implementation.

In this study, we use LotusXSL [22], which is an XSLT processor devel-

oped by IBM alphaWorks. The current version of LotusXSL is a wrapper

24

library for Xalan [23] developed by the Apache XML project. Extension

functions in LotusXSL are defined by 1xslt:component elements as follows.

<1lxslt:component prefix='"namespace"
functions="list of the exrtension functions">
<lxslt:script lang="javaclass" src="URI"'/>
</1xslt:component>

Example: Suppose we define an extension function head() in the names-
pace my-space. It is implemented as a method of MyHead class in Java. It
returns the head part of the given string whose length is less than or equal

to the specified length.

<lxslt:component prefix="my-space" functions="head">
<lxslt:script lang="javaclass" src="MyHead"/>
</1xslt:component>

In template rules, we can call extension functions, for example,

<xsl:value-of select="my-space:head(string(.), 10)"/>.

25

Chapter 3

Related Works

3.1 Supporting Schemes for WWW Brows-
ing

In the WWW environment, to utilize a huge amount of WWW pages, users
search candidate pages relevant to their interests, browse them, and get rel-
evant descriptions within them. A variety of schemes and systems to help
interactive browsing of the WWW, or in context of digital library and in-
formation retrieval, are proposed. By their aims, they can be classified into
supports for (1) selecting some documents from a number of searched docu-
ments, (2) understanding of topics within each document, (3) identification
of relevant parts within each document, and (4) hyperlink navigation to other

pages. Most of supporting schemes are classified into (1) or (4). Our pro-

26

posed scheme is classified into (3).

Schemes in category (1) give support to select relevant documents from
many candidate documents. An approach is to give a short summary to each
document in the list of searched results, and used in many search services,
e.g. AltaVista [24], Google [25] and Yahoo [26]. Another approach is to
visualize the document space by associations and clusters of their documents,
e.g. Information Visualizer [27], VIBE [28], TileBars [29], Envision [30] and
Scatter/Gather [31]. These summaries and visual clues enable users to select
easily relevant documents without browsing. However, these schemes do not
consider user requirements, or do not change the difficulty to identify relevant

descriptions within each document.

Schemes in category (2) give support for rough understanding of topics
within individual documents in the browsing process. For a document, these
schemes provide an informative summary including enough sentences to rep-
resent almost the topics in the document. When summaries are used in this
process, it is also important that they should be generated dynamically and
automatically whenever new pages are fetched. Miike and others developed
an information retrieval system which automatically generates the summary
of each document in a document repository [32]. In this system, the detail

levels of the summaries can be changed interactively.

27

Our proposal is to give some support in category (3), namely, support
for identification of relevant descriptions within each document, in WWW
browsing process. To the best of my knowledge, there are no known proposal
classified directly into this category. Some above approaches use automatic
summarization techniques [13] [33] [34]. Most of them do not take the user’s
interest into consideration, so that the summaries are static. Such supports
make it easy to narrow candidate documents through rough understanding
with/without browsing. However, they do not also change the difficulty
to identify relevant substructures. User requirements are important to get
relevant descriptions, in particular, in the browsing process. To consider user
requirements, we can use passage retrieval [35] [36] [37] [38], and query-biased

summary generation [39] [40].

In our scheme, scores of substructures in a document are measured. In
this sense, our approach has some similarity with the passage retrieval. How-
ever, works on the passage retrieval do not explicitly consider the browsing
process. We should more interactively and dynamically provide relevant
substructures. Moreover, they usually consider only simpler substructures
such as sentences, paragraphs and blocks of fixed length. In our scheme,
more complicated substructures are dynamically extracted in our document

model.

In HTML documents, their tag hierarchies are not enough to represent

28

their logical structures. Therefore, some schemes are proposed [41] [42] [43]
[44] [45] [46] in context of wrapper generation for WWW pages. They extract
their logical structure and contents. Ashish and others derive hierarchical
logical structures from HTML documents [41]. They also pay attention to
headings of chapters, sections and so on, in the same way with our logical tree
derivation rules. Note that their “headings” are not given by heading tags H1,
H2, ..., H6 in HTML, but rendered as single lines hilighted by B, STRONG, and
so on. The work of [42] extracts only data records by heuristic rules. Wrapper
Induction [43] [44] and NoDoSe [45] [46] provide more generalized frameworks
by pattern matching rules. Their rules generally depend on targets, and can

be applied to only limited pages.

Our schemes provide view-pages, which contain just relevant substruc-
tures by pruning irrelevant substructures away. View-pages can be re-
garded as summaries of existing HTML documents based on user require-
ments. Query-biased summary generation methods also provide requirement-
oriented summaries. However, they only consider flat text, and their view-
point does not focus on the WWW browsing process. Moreover, they do not
consider the case that the targets are HTML documents. To browse sum-
maries on ubiquitous WWW browsers, the summaries must be valid HTML
documents. Note that view-page generation may be improved by incorpo-

rating query-biased summary generation.

29

Finally, there are schemes in category (4). There are a number of works
to support the hyperlink navigation in the hypertext browsing. WebWatcher
[47), Letizia [48], and Syskill and Webert [49] have a feature to suggest hy-
perlinks which are likely to lead to the proper destinations. WebWatcher and
Letizia automatically acquire the user’s interest from the navigation patterns.
Syskill and Webert offers hyperlinks by using the ratings of hyperlinks given
manually to learn a user specific topic profile. Lisa [50] collects WWW pages
related to the user’s interests and enables him to browse the WWW off line.

Such features may work well with our scheme.

3.2 Querying XML Documents

Several languages have been proposed for manipulating XML documents.
They can be classified into query languages and more general programming
languages [2] [51] [52]. Programming languages can process intricate trans-
formation of XML documents, and have flexible expressive power. However,
their programs can be complicated. On the other hand, query languages
allow more declarative and simple descriptions. Most of them generally have
few extensibility. X2?QL is categorized as a query language and has rich

extensibility via foreign functions.

There are several query languages which can be applied to XML docu-

30

ments. Some of them are query languages for XML documents. Most of
the remainder are query languages for semi-structured data, and they model

XML documents as semi-structured data.

Well-known proposal of XML query languages are XPath [21], XQL [53],
XML-QL [18] and Quilt [54]. XPath and XQL are location path languages.
XPath have been developed as a part of XSLT, and XQL has been proposed as
an extension of previous version of XPath. These are very weak in document
structure manipulation, and their queries simply select nodes satisfying the
given path expression. They have no extension mechanisms. Because of this
simplicity, they are often used in combination with other languages, and as
a basic query language in commercial XML servers such as Tamino [55] and

eXcelon [56].

XML-QL [18] is a query language for XML documents, and it is used as a
basis of X?QL. In the current version of XML-QL, user-defined functions are
just canned queries, as explained in Subsection 2.3.1. The proposal mentions
the possible use of user-defined predicates as a future research issue. However,
their scope, role, syntax, and semantics are not specified. Foreign functions
in X2QL can represent user-defined predicates. Furthermore, they can be

used for a wide range of applications, and can return elements and contents.

Quilt {54] has recently emerged from designing experiments of XML query

31

languages. It has been designed by borrowing useful features from SQL [16],
XPath, XML-QL and OQL [17], and also influenced by Lorel [57] and YATL
[58]. Therefore, Quilt has powerful structure manipulation facility. It also has
extensibility by user-defined functions, and competes with X?2QL. However,
the detail of its extensibility has not been explained yet. Note that Quilt

had not appeared when we started to develop X*QL.

The second category of query languages includes YATL [58], Lorel [57],
UnQL [59], and so on.

YATYL is a declarative and rule-oriented language for YAT semistructured
data model [58]. YATL has a powerful structure manipulation capability
based on pattern matching facilities. It supports graphical interface to write
queries and composing them. The authors mention the use of user-defined
external functions. However, YATL is not dedicated to XML document pro-
cessing, and their usage of foreign functions is limited to string-based pattern

matching.

Lorel [57] [60] is a query language for OEM data model [11] [61], a graph-
based semistructured data model. XML documents are represented in OEM
and processed. Lorel can be regarded as an extension of OQL [17]. Its data
restructuring capability is very limited. UnQL [59] [62] is a query language

for a semistructured data model similar to OEM. UnQL has a powerful data

32

restructuring capability by applying template rules recursively. However, the

use of foreign functions is not considered.

Examples of XML programming languages are XSLT [19] and XDuce
[52]. XSLT is a low-level and procedural XML transformation language rec-
ommended by W3C. XSLT is designed to be used independently of XSL
(XML Stylesheet Language) [20]. However, XSLT is not intended as a com-
plete general-purpose XML transformation language, and allows two kinds
of extension: extension functions and extension elements. These are imple-
mented by general programming languages such as Java, as is the case with
foreign functions of X2QL. However, implementation of extensions depends

on the individual XSLT processor.

XDuce [52] is a statically typed functional programming language for
transformation of XML documents. Is is based on Haskell but specialized
to the domain of XML processing. Its novel features are regular expression
types and a corresponding mechanism for regular expression pattern match-
ing. XDuce can flexibly process XML documents by regular expressions and

programmable features.
XML query languages have different expressive power and underlying

data models. To establish their foundation, W3C Query Working Group has
been discussing XML Query Requirements [63], XML Query Data Model [64]

33

and XML Query Algebra [65]. XML Query Requirement includes desirable
features of XML query languages. XML Query Data Model formally defines
the information contained in the input to an XML Query processor. This
is based on XML Information Set [66], which provides a description of the
information available in a well-formed XML document. It also supports data
types in XML Schema [67] [68] [69], which extends an instance of the XML
Information Set with more precise type information. XML Query Algebra
introduces a formal basis for an XML query language based on XML Query
Data Model. X?QL may have some features which do not precisely coincide

with their foundation. X?QL should support them in the near future.

34

Chapter 4

Browsing WWW Pages Based
on User Profiles

4.1 Overview

The rapid advances of world wide web (WWW) technology have made a huge
amount of information available over the Internet. The number of available
WWW pages is continually increasing, making it difficult to find and use
relevant information. A variety of schemes and tools have been investigated

to address this problem [1] [41] [70].

Both querying and browsing are generally required to access and identify

relevant WWW pages. In a typical scenario, the user first submits queries

35

to search engines that return a set of candidate WWW pages. The user
then selects and browses candidates from the set returned. The user may
then need to browse other linked pages and go back to previous pages. In
this way, querying and browsing are used iteratively to reach WWW pages

relevant to the user’s interest.

The interest of a browsing user is usually implicit, while queries are explic-
itly expressed. This means that existing WWW pages are usually presented
exactly in the same format and layout to all users, even if the users have
different interests. It then becomes the user’s responsibility to understand
the structure and semantics of WWW pages and to identify relevant sub-
structures and regions. This is not, however, an easy task. In the WWW
environment especially, the user has to manipulate many documents, most
of which are unfamiliar. Beyond that, each WWW page sometimes contains
a large amount of information. Most WWW browsers, of course, provide
a string search facility to help the user. Simple string matching, however,
is not enough to help a user understand page contents. Moreover, a string
search facility does not change the environment in which every user is given

the same page presentations.
This chapter proposes a new scheme to support the browsing process

based on specifications of user interest. In our scheme, the user’s interest is

explicitly expressed as a user profile. Virtual WWW pages named view-pages

36

tailored to the user’s interest are then dynamically generated and presented
when the user browses the WWW. View-pages essentially show summaries
of existing HTML pages that comply with the user’s interest and level of
details specified in the user profile. Under this scheme, users of different
interests are given different views of the WWW. In the view-page generation,
a document model called a logical tree is used to model the logical structure
of an HTML page and plays an important role. This chapter also shows
how view-pages can be achieved in a non-intrusive way in the current WWW
browsing environment. With this approach, the user can enjoy the proposed
feature on ordinary WWW browsers rather being compelled to use special

browsers tailored to this purpose.

Figure 4.1 illustrates our approach.

> /
/
I%[j\ - E

-view- page
Virtual WWW Space
Figure 4.1: Overview of the proposed scheme

In our environment, the user’s interests are explicitly specified as a user

profile. A user profile consists of keywords to represent the user’s interest and

37

a threshold value that controls the detail level of the presentation. Whenever
the user accesses WWW pages, view-pages are generated dynamically based
on the user profile for presentation. The pages may contain hyperlinks refer-
ring to other WWW pages. This makes it possible for the user to navigate
through the virtual WWW space. Each view-page is essentially a summary
of the original WWW page from the standpoint of user interest. A page is

generated as follows.

(1) We assume that WWW pages are written in HTML. In the first
phase, the logical document structure embedded in the target HTML page is
extracted, and is modeled in a document model called a logical tree. HTML
pages contain tags, some of which are used to construct the logical trees.
However, as pointed in [41], the logical document hierarchy does not always

coincide with the tag hierarchy.

(2) Similarity between each node in the logical tree and the user profile

is calculated.

(3) We mark all nodes whose similarities fall below the threshold value in
the user profile. A view-page is constructed by pruning away subtrees whose
nodes and ancestors are all marked. This phase must ensure that view-pages

are also valid HTML documents.

38

The remaining part of this chapter is organized as follows: Section 4.2 in-
troduces a logical tree to put logical hierarchies on HTML pages. Section 4.3
presents a scheme to generate view-pages based on a user profile. The logical
tree in Section 4.2 is used in the view-page generation. Section 4.4 shows
the system architecture to implement the proposed scheme non-intrusively
in ordinary WWW browsing environments. Section 4.5 shows experimental

evaluations. Finally, Section 4.6 summarizes and discusses the chapter.

4.2 Logical Trees

This section explains derivation of logical trees from HTML pages. For this
purpose, first, HTML tags are classified in Subsection 4.2.1. Then, is is shown

how tags in some group are used to derive logical trees in Subsection 4.2.2.

4.2.1 Classification of HTML Tags

HTML tags are classified into the following four groups.

a) Structure-oriented tags: Tags in this group are primarily used
to indicate document structures such as headings, paragraphs and lists of

items. This group includes the following tags: Hi, H2, H3, H4, H5, H6, P,

39

BLOCKQUOTE, DIV, UL, OL, DL, TABLE. Generally, it is not easy to extract
logical document structures from HTML documents, but tags in this group
give clues to extract them. As a matter of fact, they are used to construct

the logical tree as explained in Subsection 4.2.2.

b) Style-oriented tags: Tags in this group are mainly used to give
special presentation effects. The tags STRONG, EM, TT, I, U, B, BIG, SMALL,
STRIKE, S, FONT, DL are included in this group. Note that some of them
are deprecated in HTML 4.0 [8], which recommends us to use style sheets
instead. Elements enclosed by tags in this group are given predetermined
weights when deriving feature vectors of document substructures as explained

in Subsection 4.3.1.

c) Media-oriented tags: Tags in this group are used to embed media
objects such as images and applets. They include the following tags: IMAGE,
FORM, SCRIPT, APPLET, OBJECT, EMBED, MAP. They are ignored in the con-
struction of logical trees. The contents of embedded media objects are also

ignored in the derivation of feature vectors.

d) Miscellaneous tags: The other tags are ignored in the construction of

logical trees. Existence of tags in this group have no effects on the derivation

40

of feature vectors, and elements enclosed in those tags are treated as if they

are ordinary character strings.

4.2.2 Derivation of Logical Trees

This subsection describes derivation of a logical tree from an HTML doc-
ument. Structure-oriented tags are used as important clues in the deriva-
tion. In some context, similar schemes to derive logical structures inherent

in HTML documents are suggested (e.g. [41]).

A logical tree consists of the eight types of nodes: <&doc>,
<desc(L)>, <leading(L)>, <trailing(L)>, <packed(L)>, <block(L)>,
<heading(L)>, <paradiv>>, Kparagraph>. L represents the hierarchy
level of the node, and the values correnpond to the heading levels of H1, ...,
H6 tags. Given an HTML document, it is parsed according to rules in Fig-
ures 4.2 and 4.3, and then, the logical tree is obtained. After this, “(L)” is

omitted when it is obvious.

The <doc> node indicetes whole the document. A <desc> node cor-
responds to a sequence of substructures such as chapters and sections, and
<leading>> and <trailing> nodes represent individual substructures. A
<heading>> node corresponds to the heading of a <trailing>> node. Espe-

cially, a <leading>> node represents a substructure without headings, which

41

<doc»
Ldesc(L)>

<leading(L)>
Ltrailing(L)>

Kpacked(L)>
Kblock(L)>

Kheading(1)>>
<heading(2)>
<heading(3)>
Kheading(4)>
<Kheading(5)>>
<heading(6)>

Kdesc(T)>

Given the sample HTML document in Figure 4.4, the derived logical tree

—

Ll il =411 —=11-—=14

<BODY> «desc(1)>> </BODY>
<leading(L)>»><trailing(1)> +
Ktrailing(L)> +

&block(L)>

<DIV> <trailing(L)>»> </DIV>
Kpacked(L)>
Kheading(L)><&block(L)>
<DIV> <block(L)>» </DIV>
Ldesc(L + 1)>>
<H1>text</H1>
<H2>tezt</H2>
<H3>tert</H3>
<H4>text</H4>
<H5>text</H5>
<H6>text</H6>
(Kparagraph>> | Kparadiv)+

Figure 4.2: Derivation rules (a)

following < trailing > nodes.

tends to give a summary of the <desc> node or an introduction for the

<desc(7)> node represent a sequence of leaf substructures such as para-
graphs, lists, tables, and quotes. Nodes of <paradiv> and <paragraph>
correspond to individual leaf substructures, and <packed> and <block>

nodes are introduced for convenience.

shown in Figure 4.5 is derived by the rules. The dotted lines indicate node

42

This fact is used in the next section.

<Lparadiv’y> — <DIV> <paradiv> </DIV>
| <paragraph>>
| <BLOCKQUOTE> «block(1)>
</BLOCKQUOTE>

text
<0L>text
<DL>text</DL>
<TABLE>tezt</TABLE>

<Lparagraph>> — <P>text</P>
|
|
|
|
| “text—without—structure”

Note 1: L=12,.,6 where <desc(L)>», <leading(L)>, <trailing(L)>,
<packed(L)>, <block(L)>.

Note 2: “text” is any character string, while “text—without—structure” accepts
one that is not decomposable by any rule. Thus, “text—without—structure” ac-
cepts a string which appears immediately inside a BODY, DIV or BLOCKQUOTE ele-
ment and does not contain any structure-oriented tags.

Figure 4.3: Derivation rules (b)

groups having the same L-value. In this example, two <heading(1)> are
derived from the H1 tags. In the subtree rooted by the left <block(1)> node,
one <leading(2)> node is derived from the P tag enclosing the introduction
part of the first chapter, and two <heading(2)>> nodes are derived from H2

tags.

43

<BODY>
<H1> 1. heading of chapter </H1>
<P> introduction of chapter </P>
<H2> 1.1. heading of section </H2>
<P> body 1.1.1 </P>
<P> body 1.1.2 IMPORTANT </P>
<H2> 1.2. heading of section </H2>
<P> body 2 </P>
<H1> 2. heading of chapter </H1>
<H2> 2.1 heading of subsection </H2>
<TABLE> table 2.1.1 </TABLE>
<P> body 2.1.2 </P>

</BODY>

Figure 4.4: Sample HTML document

4.3 View-pages

This section explains how to construct view-pages based on the logical tree.
We use the vector space model [13] [36] [71], but structure-oriented and style-

oriented tags introduced in Subsection 4.2.1 are taken into consideration.

First, a feature vector for each node in the logical tree is derived. Second,
the similarity between each node and the user profile using the feature vector
is calculated. Next, all nodes whose similarities are less than the threshold
value given in the user profile are marked. Finally, the view-page by pruning

away the subtrees whose nodes and ancestors are all marked is generated.

44

P P P TABLE P

d: «doc>» k: <block> l: «leading>>
s : KLdesc» c¢: Kpacked> t: Ltrailing>
p : <paragraph> h : <heading>

Figure 4.5: Extracted logical tree

4.3.1 Derivation of Feature Vectors

Leaf Nodes

Initially, feature vectors of leaf nodes in the logical tree are derived based on
the traditional tf-idf (term frequency x inverse document frequency) weight-
ing scheme [71]. In the calculation of the idf factor, the target document set
has to be fixed. We regard the set of leaf nodes as the target document set

in deriving the idf. Namely, the initial tf-idf weights are calculated according

45

to distribution of terms within the document.

Then, style-oriented tags are processed. They are usually used to em-
phasize some terms. Therefore, when terms occur within elements enclosed
by style-oriented tags, their weights in the feature vectors are multiplied de-
pending on the types of tags. The bias factors associated with style-oriented

tags are shown in Table 4.1.

For each leaf node n, its feature vector is formulated as follows. When a
term ¢ occurs in multiple elements enclosed by different style-oriented tags,

their maximum bias factor is used:

Up = (tft : idfn,t : /Bn)té'rv (41)

where (3, is the maximum bias factor associated with the style-oriented tags

enclosing the term ¢ in node n.

Non-Leaf Nodes

The feature vector of each non-leaf node is given as an aggregation of feature

vectors of its child nodes.

46

Generally, titles, headings, abstracts and introductions give good sum-
maries of their bodies and contain many important terms [35] [36]. In the
logical tree, headings appear as <heading>>> nodes. Moreover, <leading>
nodes which appear as the first child node of the <desc> nodes tend to play

a role of abstract and introduction, as mentioned in Subsection 4.2.2.

To reflect this property, the feature vector of each non-leaf node n is

calculated as weighted sums of those of its child nodes:

Eca’c * Ve

v = 4C - (4.2)

7

Do

where ¢ is a child node of n and §C is the total number of the child nodes.

The coeflicient ¢, is given in Table 4.2.

4.3.2 Generation of View-pages

To generate view-pages, we must decide substructures which are likely to be
relevant to the user profile. The score of each node is given by the similarity
of each node in the logical tree to the user profile. it is calculated from its
feature vector and the profile vector derived from the given keyword set. In
the calculation, we have to note that the length of text (namely, the numbers

of terms) associated with each node differs depending on nodes. To take this

47

Table 4.1: Bias factors 3, associated with style-oriented tags
| tag | 8. | semantics

STRONG | 5 | strong emphasis
EM 3 | emphasis
BIG 3 | big letters
U 2 | underline
B 2 | bold
I 2 | italic
DT 2 | defined term in DL

Table 4.2: Coefficients . for child nodes
I node | o || node | o |

<heading> (H1) | 15 Kdesc>» 1

(H1)
<Lheading> (H2) | 11 | <leading> | 5
<heading> (H3) | 8 Ltrailings> | 1
<heading> (H4) | 6 Kpacked> 1
<heading> (H5) | 4 <block> 1
<heading> (H6) | 3 || <paragraph> | 1

into account, the C-pivot measure is used rather than the traditional cosine

measure.

View-pages are generated by pruning away subtrees whose all nodes and
ancestors have similarity scores lower than the threshold value in the user
profile. This process has to ensure that view-pages are valid HTML docu-
ments, which the user can browse on the ordinary WWW browsers. Note
that careless pruning procedure may bring about document structures which
do not form valid HTML documents. For instance, an HTML document

must have a BODY element and it must not be empty. Therefore, we cannot

48

delete the BODY or its subtree even if scores of all its member nodes are less

than the threshold value.

Another concern is to help the user understand the document structures
through view-pages. Since the headings are important clues in understanding
the whole document structures, we have decided to maintain all headings in
the original documents in view-pages. In addition, some appropriate indica-
tions should be given as notes when some parts or substructures have been
pruned. Moreover, simple pruning may bring about unexpected rendering of
the view-page. For instance, pruning the P clement away from “text <P>
paragraph </P> text” brings about “text text”. In this case, two “text”

segments are accidentally concatenated to form a single text segment.

Based on the above consideration, in the view-page generation, each se-
quence of elements which are to be pruned away is replaced by a “(snip)”
enclosed by a pair of DIV tags. The complete procedure to generate view-

pages is given as followings:

1. Calculate the similarity score of every node in the logical tree.

2. Mark the nodes whose scores are less than the threshold value. Here,
<doc> and <heading> nodes are always excluded even if their scores
are low, since the BODY element is mandatory and Hi, ..., H6 elements

are important.

49

3. Identify the maximal subtrees whose nodes and ancestors are all

marked.

4. Replace each sequence of HTML elements associated with the subtrees

with “<DIV> (snip) </DIV>".

5. Generate the output as a view-page.

Theorem Given an arbitrary valid HTML document, the above procedure

generates a valid HTML document.

(Proof)

It is obvious from the derivation rules in Figures 4.2 and 4.3 that each
sequence corresponds to the BODY element or a sequence of child elements in
a BODY, DIV or BLOCKQUOTE element. According to the HTML syntax, the
BODY element cannot be replaced by a DIV element, but this case is avoided
in Step 2. BODY, DIV and BLOCKQUOTE elements can contain DIV elements.
Therefore, the replacement in Step 4 preserves the conformity to HTML.
Thus, the above procedure derives a valid HTML document. Q.E.D.

Figure 4.6 illustrates the generation of a view-page. The circles are nodes
whose scores are greater than or equal to the threshold value. The subtrees

indicated by dotted lines are replaced by “<DIV> (snip) </DIV>" elements.

50

d: <doc> k: gblock> l: <leading>
s Kdesc>» ¢ Kpacked> t: <Ltrailing>
p : Kparagraph> h : €heading>

Figure 4.6: Example of view-page generation

<BODY>
<H1> 1. heading of chapter </Hi>
<DIV> (snip) </DIV>
<H2> 1.1. heading of section </H2>
<DIV> (snip) </DIV>
<H2> 1.2. heading of section </H2>
<P> body 2 </P>
<H1> 2. heading of chapter </H1>
<H2> 2.1 heading of subsection </H2>
<TABLE> table 2.1.1 </TABLE>
<P> body 2.1.2 </P>

</BODY>

Figure 4.7: HTML document for a view-page

51

Figure 4.7 shows the HTML document corresponding to the derived view-

page.

4.4 Prototype System Development

This section presents the system architecture to implement the proposed

scheme, and show a sample session in the prototype system.

4.4.1 System Architecture

Overview

One of criteria for our prototype system design has been to respect user-
friendliness provided in the current WWW browsing environment. The pro-
totype system architecture is shown in Figure 4.8. It consists of three mod-

ules.

e Browser
o Controller

e Browsing Assistance Engine

52

Solid arcs indicate requests and method invocations, and dotted arcs indicate

responses and value returns.

Y

Browser

R — |
H AN Ve \
| RMI \:\\\‘ o K/i?%"rv

Browsing
Assitance
Engine

¥ :
Metaranrunrariarany [EEEEETERY RERESETEr IR .
| HTTP

WWW
Server

Controller

Iigure 4.8: Prototype system architecture

| ?nntrollur] | Browser |
A

Cinmi 3 Currr
| ‘Y |
A Tut oA
| - User |
t Managen |
!]
|

'LView Manager

.........I_.._...._.J

‘Document | btp
Managexi oLl Progessor

1 A
A

< urre [
| /
| WWW Server |

Figure 4.9: Architecture of BAE

53

The user can use an ordinary WWW browser, such as Netscape Commu-
nicator and Internet Explorer, without any modification. The Controller and
the Browsing Assistance Engine (BAE) are original to our browsing environ-
ment. For each user, a pair of the Browser and Controller instances works

as a front-end module and the BAE works as a back-end module.

The BAE is the central module in our environment, and provides the
view-page for each WWW page. It works as an HTTP proxy server for
the Browser, and can serve multiple pairs of the Browser and Controller
instances. The BAE gets the user profile from the Controller and maintains
it. It generates view-pages and their logical trees using the user profile for
each user. The user can disable the view-page generation feature, when

he/she wants to browse WWW pages in an ordinary manner.

The Browser displays the view-page generated by the BAE. When view-
pages include hyperlinks, the user can visit other pages. Then, view-pages

for the next pages will be generated and presented.

The Controller interacts with the user to get his/her user profile. When
the user modifies the profile, it notifies the BAE of the modification. The
Controller visually displays the logical tree of the current view-page, as de-

scribed in Subsection 4.4.4. It helps the user to identify relevant substruc-

tures in each page.

54

In the prototype system, the Controller is implemented as a Java applet
and the BAE runs as a Java application program. The presentation on the
screen given by the Browser and Controller is synchronized. The applet

context is used for the synchronization.

4.4.2 Browsing Assistance Engine (BAE)

Figure 4.9 shows the internal architecture of the BAE in It consists of the

following five modules.

e Http Proxy

User Manager

Document Manager

Http Processor

View Manager

The first three modules are created when the BAE starts its execution.
The Http Processor and View Manager are instantiated and destroyed based
on demands from other modules. All the modules except the Document

Manager run as threads.

55

The Http Proxy listens to a TCP port. When the Browser requests an
HTTP resource, it instantiates an Http Processor and delegates the request

to it.

The Http Processor fetches the requested HTTP resource. When the
requested HT'TP resource is an HTML document, the Http Processor parses
it, creates the DOM object, and generates the logical tree and the view-page,
by calling the Document Manager and the View Manager. When the Http

Processor finishes processing the request, it is destroyed automatically.

The Document Manager is responsible for parsing documents and creating
the DOM objects and logical trees. It also caches them on the memory

resident hash table. URI is the hash key.

The User Manager waits for the RMI connection from a Controller in-

stance and creates a View Manager for each connection (see below).

The View Manager communicates with the Controller to maintain the
user profile and generates view-pages. View-pages are generated from the
DOM objects and logical trees managed in the Document Manager. The
View Manager also provides the Controller with information about the cur-

rent view-page such as its URI, logical tree structure and node scores.

56

4.4.3 Typical Processing Flow

Starting-up Before invoking the Browser, we have to start the BAE, and a
WWW page containing the Controller applet has to reside on the host. The
user has to use the BAE as an HTTP proxy server on the WWW browser.

First, the user accesses to the WWW page containing the Controller
applet. Then, the Controller is downloaded and executed in the window of
the original WWW browser. It creates a new window and launches another
instance of the WWW browser as the Browser. The Controller can control
the Browser through the applet context. Next, the Controller interacts with
the User Manager in the BAE, and its View Manager is instantiated by the

User Manager.

Processing an HTTP Request After the above step, the user can browse
WWW pages in an ordinary manner. When a new WWW page is requested,
The Http Proxy instantiates an Http Processor to process it. If the requested
resource is an HTML document, the URI is registered in the View Manager
as the current URI of the Browser. Otherwise, it fetches the resource and

simply returns it to the Browser.

When processing a request to an HTML document, the Http Processor

97

checks whether it is in the cache maintained by the Document Manager. If
not, it fetches and parses the the HI'ML document. Next, the Http Processor
generates a view-page by calling the View Manager and returns it to the
Browser. If the requested URI is different from the last URI, the View
Manager notifies the Controller to make the presentation of the logical tree

up-to-date.

Change of User Profile The user can change keywords and the threshold
value in his/her user profile. In this case, the Controller notifies the View
Manager. When the keywords are changed, the View Manager computes the

score of each node in the logical tree again.

Next, the Controller gets the current URI from the View Manager, and
makes the Browser reload the current page through the applet context. The
reload request is caught by the BAE, and the View Manager generates the

view-page based on the updated user profile.

Changes to the threshold value in the user profile are processed in a

similar manner.

o8

4.4.4 Session Example

this subsection shows sample usage of our browsing environment. Suppose
that we want documents which are related to this chapter under the W3C
WWW site (http://www.w3.org/). Here, we select {browsing, user, profile,

interest, view, paper} as a keywords set.

First, we turn off the view-page generation feature of the BAE, and we
search candidate WWW pages querying the index server existing at the W3C
site. To check highly ranked WWW pages, we turn on the view-page gen-
eration feature. Figures 4.10 and 4.11 show the Controller window and the

Browser window, respectively, when we browse the first document in the list.

At the top of the Controller window, there are components to input and
modify the user profile. The Controller window displays the logical tree of
the current page. The color of each node is determined by its score. Nodes
with the highest score are displayed in red and nodes with score 0 are in blue.
Nodes with scores between the extremes are displayed in orange, yellow, green

and cyan.

Nodes whose scores are greater than or equal to the threshold value are
tagged with large red icons. Nodes whose scores are less than the threshold

value are tagged with small cyan icons. The view-page consists of the contents

99

lpmwsmg uzet mcj}le interest view paper

e M R R e e ‘:‘*dm":g i

00

+ # Sysiem Architeciure (0.0)
L 39 Figure 1 shaws the sysiem archit ... (0.1657983)
® « [2.3.1](0.0)
& « [2.3.2](D.0148752555)
o @ [2.3.3](0.2217892)
»# The client end (0.0)
e @ The client end manages user inte ... (0.2738361)
@ The client end manages user inte ... (0.2738361)
@ » [2.4] (0.041442294)
e « [2.5](0.0362022)
»# Layout Control (0.0)
e «» Figure 4 shows a typical screen ... (0.21462202)
» Figure 4 shows a typical screen ... (0.15960306)
v ... (0.0)
. Figure 4. Example of the Krak ... (0.0}
« We will not discuss the layout p ... (0.6)
s Articles should be laid outint ... (0.0)
» Animportant feature that differ ... (0.062203634)
» User score vs. community score. ... (0.0)
+ Figure 5. Layout parameters ... (0.0)
®8 We hope to let users arrive at a... (0.24345845)
» Inthe Krakatoa Chranicle, this ... (0.06603037)
o .. (0.0)
» Figure 6. Layout control mecha ... (0.0)
® + [2.6](0.076608784)
« # Interaction (0.0)
e @ The Krakatoa Chronicle provides ... (0.23238862)

Lo, (O 22002300

Figure 4.10: Controller window

-] reflectsd in the user profila. The user can also explicitly specify his/her personal Intarest In aach article selecting the

ystem Architecture]

1 tsnip

(snip)
The server end

* (snip)

* (snip)

v (snip}
The cliont and
1 The client end aaases wser imeraction ond nevspober lavout vithin the brorser, The cole neefed to drive the presentation ad
wnteraction fs donluaded vhen the user accesses the nevsraver's web pumw, Subtequently, the code runs lacally and may
'} teriodically contact the server site 1o fetch docments ur krovide feedback. Sinca the layaut is computed at the client en tre
4 flv. the user can chunge [ts stratesy flexibly. The vser con scroll, peek. maxiaize. resize or save an article to a scrapbook,
¥hen tte user performs thase opsrations, it is taken to be an irdicatior of the sser’s interest in the article and gots

score 0n a feedback. bar, Details of layout control axd interaction vill be described later.
{| Creating/Beading a Newspaper

YREID]
(snip)
(snip)
| Lot Coatrol |
(nip) i
{ ¥e hove to let usere arrive at a confortable setting for these controls, over the carse of the experieent, and probably learn i i
*| songthing in the process. The ability to chanse layout settings flexibly will alloe users to obtain miltirle views of i
newspaper. Yo believe these nultiple views show users viat the comeunlty s interested in vhile alloeing for custom views based !
cn (previous) user feedlack, ;

(snip)

{snip)

Figure 4.11: Browser window

60

corresponding to the nodes tagged with the large red icons. The user can
control the threshold value interactively with the aid of the colored logical

tree.

The view-page displayed in the Browser window helps our understanding
the contexts. Especially, we can easily identify descriptions related to the
keywords. When we want to browse the next document, we go back to the
document list in the query result and select it. Then, the Browser displays
its view-page. We can browse other pages similarly. When view-pages in-
clude hyperlinks, we can visit the linked pages as usual. In this way, our
environment supports browsing view-pages tailored to the user’s viewpoint

as if they were existing WWW pages.

4.5 Experimental Evaluation

This section experimentally evaluates effectiveness of the proposed scheme
from the three standpoints described below. Note that these experiments

excluded WWW pages designed with frames and large tables

First, validity of the logical trees derived from each given page is evalu-
ated. The logical trees must have an appropriate structure to extract sub-

structures for inclusion in view-pages.

61

Second, correctness of the node scores in a given logical tree is evalu-
ated. When the given logical tree structure and calculated node scores are
correct, the generated view-page can contain only the appropriate substruc-

tures within the original page by adjusting the detail level of view-pages.
Third, the above two evaluation methods are applied to more general

WWW pages. In this experiment, we used WWW pages searched by the

Goo search engine. We can check effectiveness of the proposed scheme in a

more realistic context of WWW page browsing.

The rest of this section describes these experiments.

4.5.1 Evaluation for Derivation of Logical Tree

To evaluate validity of the derived logical trees, three sets of ten pages are

randomly selected from each of the following sites:

e IGD (http://www.igd.thg.de/www/www95/)
e DLIB (http://www.dlib.org/)

e W3C (http://www.w3.org/).

62

These sites provide large, well-structured WWW pages such as technical pa-
pers and specifications, and have distinct policies for embedding HTML tags.
The structures of logical trees are compared with the hierarchical structures

of chapters, sections, paragraphs, and other structures.

The selected pages had the following peculiarities regarding the use of the

structure-oriented tags used to derive the logical trees:

e Headers and footers with their logotypes were given in individual ways.

o The lowest level headings in DLIB on some pages were not indicated
by heading tags such as H5 and H6 but by B enclosed by P. An example

is, “<P>someheading</P>".

e In IGD and W3C, the list of bibliographies for each page was coded
by OL or UL. In some DLIB pages, the lists of their bibliographies were

not coded by such tags, and each item of them was indicated by P.

e Most pages in W3C followed recommendations of the HTML 4.0 spec-
ification. In IDG, on the other hand, there were some misuses and the

meaningless use of tags generated by WWW authoring tools.

It was also judged whether phrases enclosed in style-oriented tags con-

tained important terms to generate view-pages. Table 4.3 lists the ratios

63

Table 4.3: Usage of style-oriented tags

Site | Use of tags Important phrases | Ratio

IGD 167 112 0.670659
DLIB 341 286 0.838710
W3C 211 153 0.725118

of the number of occurrences of tags to the number that enclose important

phrases.

We look at hierarchical structure with seven levels, which consist of chap-
ter, section, subsection, paragraph and so on. Such semantic boundaries
within the WWW pages are manually identified at each hierarchical level,
and used as right answers. These boundaries are decided on the basis of pre-
sentations rendered by WWW browsers. Here, the top level is indicated by
h1, the second level is by h2, ..., and the lowest level is by block. Paragraphs,
lists and tables are always treated as block level. The sets of boundaries are

coded as A; (i = hl,..., h6, block).

Validity of a derived logical tree is evaluated as follows: At each level
L =1,...,6 corresponding to ¢ = hl, ..., h6, let B; be the set of boundaries of
<leading(L)> and <trailing(L)> nodes in the logical tree. Beyond that,
let Byocr be the set of boundaries of <paradiv> and <paragraph> nodes.

The precisions P; and recalls R; are then calculated for substructures at each

64

hierarchical level in each given logical tree.

|A; N By
po=
|Bil
A; N B; _
RL‘ = L—ﬁ (Z = hl, .oy h6, blOClﬂ)

The results for the three sites are listed in Tables 4.4 to 4.6, and the
average of the three are listed in Table 4.7. In the tables, Manual and
Rules show the total number of the boundaries decided manually and by
derivation rules. Precision and Recall are the averages of precisions and
recalls of boundaries. Note that, to calculate precisions and recalls at each
level, we use only pages that have boundaries produced manually and by

derivation rules at the respective level. Pages are the number of pages used.

With the highest three and the block levels, in most cases, Precisions and
Recalls were over 90%. At other hierarchical levels, they were about 25%
to 70%. Substructures at these levels, however, seldom occur. This result
indicates that the derivation rules can derive logical trees that are similar to

human-judged structures.

Additionally, Tables 4.8 to 4.11 lists correlations between the use of head-

ing tags and the descriptions of headings. In the tables, Use of Tags is the

65

Table 4.4: Experimental result for IGD
Level | Manual Rules | Precision Pages | Recall Pages
hl 20 20 1.000 10 1.000 10
h2 61 60 1.000 9 0.984 9
h3 63 63 1.000 9 1.000 9
h4 19 19 1.000 2 1.000 2
h5 3 5 0.500 2 1.000 1
h6 0 0 — 0 — 0
block 549 715 0.773 10 0.998 10
Table 4.5: Experimental result for W3C
Level | Manual Rules | Precision Pages | Recall Pages
h1 17 17 0.850 10 0.850 10
h2 72 70 0.917 9 0.930 9
h3 68 69 0.911 9 0.933 9
h4 71 71 0.933 5 0.933 5
h5 0 0 — 0 — 0
h6 0 0 — 0 — 0
block 665 738 0.852 10 0.937 10
Table 4.6: Experimental result for DLIB
Level | Manual Rules | Precision Pages | Recall Pages
hl 3 3 1.000 3 1.000 3
h2 27 27 1.000 9 1.000 9
h3 88 87 0.846 10 0.936 9
h4 46 32 0.800 5 0.667 6
h5 19 8 0.125 4 — 0
h6 0 20 0.000 7 — 0
block 659 877 0.717 10 0.947 10

66

Table 4.7: Averages for all sites

Level | Manual Rules | Precision Pages | Recall Pages
hl 40 40 0.935 23 0.935 23
h2 160 157 0.972 27 0.971 27
h3 219 219 0.916 28 0.956 27
h4 136 122 0.889 12 0.821 13
hb 24 13 0.250 6 0.667 3
h6 0 20 0.000 7 — 0
block 1873 2330 0.781 30 0.961 30

Table 4.8: Experimental result for IGD Table 4.9: Experimental result for W3C

Heading | Use of Descriptions Heading | Use of Descriptions
Lewvel Tags of Headings Level Tags of Headings
hl 1.000 1.000 hl 1.000 1.000
h2 1.000 0.990 h2 0.998 1.000
h3 1.000 1.000 h3 0.923 1.000
h4 1.000 1.000 h4 1.000 1.000
hd 0.333 1.000 hb — —
h6 — — h6 — —_

Table 4.10: Experimental result for DLIB Table 4.11: Averages for all sites

Heading | Use of Descriptions Heading | Use of Descriptions
Level Tags of Headings Level Tags of Headings
h1 1.000 1.000 hl 1.000 1.000
h2 1.000 1.000 h2 1.000 0.995
h3 0.816 0.938 h3 0.879 0.940
h4 1.000 0.738 h4 1.000 0.763
hb 0.000 0.000 h5 0.290 0.039
h6 0.000 — hé 0.000 —

67

ratio of the number of phrases enclosed by heading tags to the number that
describe actual headings. Descriptions of Headings are the ratio of the

number of descriptions of headings to the number indicated by heading tags.

These tables allow us to obtain correlations between Use of Tags and
Precision, and between Descriptions of Headings and Recall. Misuses of
lower level heading tags to emphasize enclosed phrases seem to reduce pre-
cision. On the other hand, the use of non-heading tags to indicate headings
seems to reduce recalls. Therefore, lower level heading tags should not be

used to derive logical trees from actual WWW pages.

These experiments revealed that higher and block level substructures can
be extracted by the derivation rules from large pages, which comprise the
main target of the proposed scheme. We further think that other lower level
substructures can be extracted by this scheme if corresponding heading tags
are used validly. In future research, we will modify our scheme to consider

the use of actual tags in the current WWW.

4.5.2 Evaluation for Generation of View-pages

In the second experiments, the correctness of the node scores are evaluated.
This evaluation is performed as follows under an assumption that target

pages are valid HTML documents and the derived logical trees are correct.

68

First, a human evaluates the nodes of each logical tree according to a five-
grade system in which five is the best grade and one is the worst. Our system
then scores them using the scoring scheme in Section 4.3. The correctness is

evaluated by comparing two sequences of nodes ranked by these scores.

We used ten valid HTML documents manually generated from our pub-
lished papers and two keyword sets for each document. For each document,
five words that appeared frequently in a few regions of the document were
decided as a keyword set. Next, for each pair of an HTML document and a
keyword set for the document, we gave human-judged grades and calculated

scores to nodes in the derived logical tree.

Correctness of the scores of their nodes are evaluated on the basis of
Bertell’s measure J [72]. Here, we describe the human-judged grade by G(n)
and the calculated score by R(n) for a node n. Given a total order > for the

node set, the measure J is given by following formula:

() = Tt)~ R

Spen |[R(n) — R(n')|

This measure calculates similarity of the sequence ranked by the scoring
function R to the sequence ranked by the order ». It gives 1.0 for the same

rankings and -1.0 for reverse rankings.

69

We determine the total order > based on G(n). however, we cannot
uniquely determine the sequence based on the human-judged grades because
there are many nodes with the same grades. This evaluation uses three
sequences instead of a unique one for each logical tree: optimistically, pes-
simistically and randomly generated sequences based on the grades. The first

two sequences are given by following total orders:

(I) G(n) > G(n') V (G(n) = G(n) A R(n) > R(n'))

(II) G(n) > G(n') vV (G(n) = G(n') A R(n) < R(n)).

Definition (I) gives an optimistic order because R always gives correct orders
for nodes with the same grades. Definition (II) gives a pessimistic order
because R always gives wrong orders. We call J based on (I) and (II) J;
and J,. We also generate sequences with nodes having the same grades
ordered randomly. Let J; be the average of the J based on such one hundred

sequences.

70

Table 4.12: Condition (a): Experiment result using uniform weights o,

Weights Jl JQ J3

all-1 0.89812 0.54273 0.71924

all-5 0.90482 0.56939 0.73591

all-10 0.90733 0.58532 0.74731

all-15 0.90652 0.58581 0.74581

all-20 0.90141 0.56719 0.73291

Dif ference 0.00921 0.04308 0.02807
Improvement(%) | 1.01507 7.35392 3.75614

Table 4.13: Condition (b): Experiment result using non-uniform weights a,

Weights Ji Jo J3

A 0.90198 0.56822 0.72916

B 0.90538 0.59328 0.74710

C 0.90293 0.58371 0.73198

D 0.90431 0.57121 0.73939

E 0.90562 0.58931 0.74583

Dif ference 0.00364 0.02506 0.01794
Improvement(%) | 0.40356 4.41026 2.46037

Table 4.14: Condition (c): Experimental result using different weights 3, ,

Weights Jy Jo J3
all 1 0.90381 0.58181 0.74194
x 1 0.90538 0.59328 0.74710
X 2 0.90321 0.57619 0.73981
X 3 0.90298 0.57581 0.73973
Dif ference 0.00240 0.01747 0.00737
Improvement(%) | 0.26579 3.03399 0.99631

Tables 4.12 to 4.14 list the averages of results by these measures using

some of the weight variations listed in Table 4.1 and 4.2. Dif ferences are

the difference of the maximum and minimum values; Improvements are the

71

Table 4.15: Non-uniform weights a,

Node Type A B C D E
&Kheading(1)> |15 15 20 10 15
&heading(2)>» |15 15 20 & 11
Kheading(3)> |10 10 15 6 8
<Zheading(4)> [10 10 15 5 6
&heading(5y> | 5 10 10 4 4
<heading(6)>» | 5 10 10 3 3

Kleading> 5 5 5 & 5

ratio of Dif ferences to the minimum values. The weight of <leading>> is

fixed at five, and the slope constant S is fixed at 0.2 %.

First, to investigate the effects of bias factors g, in Table 4.2, we fixed
coefficients «, to Table 4.1 and applied the uniform weights. Table 4.12
lists the results. In these weights, all the heading nodes are given the same
weights, 1, 5, ..., 25. We call each of them all-1, all-5, ..., all-25. The result
showed a little improvement in all-10 and all-15. The weights ali-1 always
showed the worst results. This showed that assigning weights corresponding

to node types is effective.

Second, to decide more appropriate bias factors, we also fixed weights
to Table 4.1 and applied the non-uniform weights. The results are listed in
Table 4.2. These weights were about 10 to 15 based on the best results in
Condition (a). In these case, weights B and E showed relatively good results.

In particular, B showed better results than all-10 and all-15. This reveals

1This slope constant value is efficient for some data collections of TREC [15].

72

that non-uniform weights are effective.

Finally, we applied variations of coefficients based on Table 4.1 and fixed
bias factor , to weights B. Weights all-1 gives 1 to all style-oriented tags,
and “xN” gives N times of the weights listed in Table 4.1. Weights x1

yielded the best results, but they provided little improvement from all-1.

The average values for Jy, J> and J; were about 0.91, 0.59, 0.75, respec-
tively. Through all experiments, J; showed good. And although J; is a
pessimistic measure, the results it yielded were not bad. This suggests that
our scoring scheme works well for HTML documents with appropriate tags,

and can be improved with appropriate weights.

4.5.3 More Experiments in the WWW

The experiments in Subsection 4.5.1 and 4.5.2 were effective for WWW pages
that had been slightly controlled. Real WWW pages, however, do not neces-
sarily follow W3C recommendations. This subsection covers our application
of the two evaluation methods to a more realistic context of WWW page

browsing.

First, we decided a five keyword set consisting of five words related to the

whole target domain and a more local topic. We then selected five sets of

73

ten WWW pages searched by the Goo search engine with the keyword sets.
They included small and unstructured pages as well. As mentioned at the
beginning of this section, WWW pages comprising frames and large tables

were excluded.

Tables 4.16 to 4.21 list the evaluated results of validity on the derived
logical trees. The averages of precisions and recalls were over 70% in most
cases. Because there were many misused tags and tag use was inconsistent,
some precisions and recalls were reduced. We need to discover headings by
using clues other than heading tags. We also need to be able to identify

misused tags.

Table 4.22 shows the evaluated results of correctness of node scores. The
averages for Jy, Jy and J; were 0.80 to 0.95, 0.56 to 0.80, 0.69 to 0.87,
respectively. With these results, we can conclude that our scheme also works

for ordinary WWW pages.

4.6 Discussion and Future Issues

This chapter presented a new scheme to support WWW browsing by dynam-
ically providing HTML pages tailored to a user profile. This scheme makes it

easy for the user to identify interesting parts and to understand the contents

74

Table 4.16: Experimental result for keyword set A

Level | Manual Rules | Precision Pages | Recall Pages
hl 18 16 0.875 8 0.778 9
h2 48 27 0.717 6 0.465 9
h3 30 33 0.926 5 0.833 6
h4 9 3 1.000 1 0.500 2
h5 0 0 — 0 ~ 0
h6 0 0 - 0 - 0

block 289 375 0.720 10 0.972 10

Table 4.17: Experimental result for keyword set B

Level | Manual Rules | Precision Pages | Recall Pages
hl 26 20 0.912 9 0.688 8
h2 23 23 0.821 5 0.985 7
h3 33 25 0.826 6 0.633 6
h4 12 10 1.000 2 0.402 3
h5 3 5 0.731 2 0.837 2
h6 0 0 - 0 - 0

block 267 325 0.814 10 0.912 10

Table 4.18: Experimental result for keyword set C

Level | Manual Rules | Precision Pages | Recall Pages
hl 19 18 0.958 8 0.932 9
h2 16 10 0.715 5 0.373 8
h3 20 19 0.894 5 0.712 6
h4 1 0 0.000 1 - 0
h5 0 0 - 0 - 0
h6 12 11 0.712 4 0.632 2

block 218 238 0.832 10 1.000 10

75

Table 4.19: Experimental result for keyword set D

Level | Manual Rules | Precision Pages | Recall Pages
hl 20 20 1.000 10 1.000 10
h2 28 26 0.893 7 0.893 7
h3 13 14 0.813 3 0.872 3
h4 0 4 - 0 0.000 1
hb 3 3 1.000 1 1.000 1
h6 0 0 - 0 - 0

block 764 893 0.819 10 1.000 10

Table 4.20: Experimental result for keyword set E

Level | Manual Rules | Precision Pages | Recall Pages
hl 23 20 0.871 8 0.773 9
h2 48 27 0.717 6 0.535 9
h3 21 38 0.451 3 0.858 6
h4 8 5 0.790 3 0.682 2
h5 0 0 - 0 - 0
h6 0 0 - 0 - 0

block 289 375 0.720 10 0.972 10

Table 4.21: Averages for all experimental results

Level | Manual Rules | Precision Pages | Recall Pages
hl 106 94 0.942 43 0.842 45
h2 163 113 0.835 29 0.686 40
h3 117 129 0.881 22 0.723 27
h4 30 22 0.612 7 0.374 8
hd 6 8 0.829 3 0.912 3
h6 12 11 0.712 4 0.632 2

block 1827 2206 0.873 50 0.957 50

76

Table 4.22: Evaluation of scoring scheme
Keyword Set Jp Jo J3

0.94922 0.79706 0.87235
0.88103 0.62138 0.75131
0.87391 0.55931 0.71648
0.79913 0.58138 0.69025
0.84679 0.69719 0.77281

mHOOQW»

of WWW pages. To this end, we have introduced a document model called a
logical tree. In our scheme, logical document structures embedded in HTML
documents are extracted in the logical tree, and summaries biased by the user
profile are generated for browsing. We have also shown that the proposed
scheme can be implemented non-intrusively in the current WWW browsing
environment. We also have some experimental evaluations and have obtained

good results.

Remaining research issues include detailed performance analysis, and im-
provement of the prototype system. We also plan to extend our scheme to
make the best of hyperlinks and referenced page contents in view-page gener-
ation. Applications of the scheme to XML documents is another interesting

research issue.

77

Chapter 5

X2QL: An Extensible XML
Query Language

5.1 Overview

With the recent and rapid advance of the Internet, management of struc-
tured documents such as XML documents and their databases has become
more and more important [73]-[74]. A number of query languages for XML

documents have been proposed up to the present.
XML-QL [18] and XQL [53] are well-known XML query languages. Al-

though Lorel [57], UnQL [59], StruQL [75], and YATL [58] are proposed as

query languages for semistructured data, XML documents are their potential

78

targets. They allow the user to describe queries in a declarative manner. Es-
pecially, XML-QL and many query languages for semistructured data enable
tag-based powerful document structure manipulation such as restructuring
element hierarchies and joins. However, they are very weak in document

contents processing.

Here, the document contents processing implies the similarity-based se-
lection, ranking, summary generation, topic extraction, and so on [76]-[77].
Some of the aforementioned query languages have certain kinds of string-
based pattern matching facilities. However, they are not enough to perform,

for instance, summary generation.

Requirements for document contents processing vary depending on ap-
plications, target document types, and target element types. For example,
several techniques have been proposed for summary generation [76]. Even
in similarity-based search, measures proposed so far have their own strong
and weak points [78]. Thus, it is very difficult to provide a complete set of
contents processing facilities in advance to cope with the variety of require-
ments. A promising approach to this difficulty is to make a query language

extensible to adopt user-defined contents processing functions.

In this chapter, we propose an extensible XML query language X2QL,

which features inclusion of user-defined foreign functions to process document

79

contents in the context of XML-QL-based document structure manipulation.
XML-QL is the most well-known XML query language featuring tag-based
powerful document structure manipulation. This is the reason we have de-
signed X2QL taking XML-QL as a starting basis. Foreign functions are given
as external programs written in programming languages. By including ap-
propriate user-defined foreign functions, each user can extend the processing
power of X2QL. This extensibility makes it possible to integrate application-
oriented high-level contents processing facilities into querying documents.
We also describe an implementation of an X2QL query processing system on

top of XSLT [19]-[21] processors.

The remaining part of this chapter is organized as follows. In Section 5.2,
we show some examples of queries, in which inclusion of document contents
processing is beneficial. Section 5.3 explains the main constructs of X2QL,
and shows its query examples. Section 5.4 describes the extension mechanism
via foreign functions. Section 5.5 describes the implementation of the X?QL
query processing system on top of XSLT processors. Section 5.6 explains an
advanced feature of X?QL. Finally, we summarize and discuss this chapter

in Section 5.7.

80

5.2 Motivating Examples

This section shows two examples of XML queries, in which inclusion of doc-
ument contents processing is beneficial. These query examples are specified

in X?QL in Section 5.3.

Suppose that an XML document including newspaper articles is given, in
which each article consists of its publication date, headline, and news body.

Its DTD is given as follows.

<!-- DTD of the input document -->
<I/ELEMENT Document Article+>
<!ELEMENT Article (Date, Category, Headline, Body)>

<IELEMENT Date (Year, Month, Day)>
<!ELEMENT Year #PCDATA> '
<!ELEMENT Month #PCDATA>
<!ELEMENT Day #PCDATA>

<!ELEMENT Category #PCDATA>
<!ELEMENT Headline #PCDATA>
<!ELEMENT Body Paragraph+>
<!ELEMENT Paragraph #PCDATA>

Example 1 We generate a new XML document in which articles published
after 1999 are selected and grouped by the category, and their summaries are
added. The DTD of the output document is shown below. This query re-

quires both the document structure manipulation to select Article elements

81

published after 1999 and group them by the Category values and the docu-

ment contents processing to generate summaries of Article elements.

<!-- DTD of the output document -->

<!ELEMENT
<!ELEMENT
<!ATTLIST
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

Document DateGroup+>

Group Article+>

Group Category CDATA #REQUIRED>
Article (Date, Headline, Summary, Body)>
Date (Year, Month, Day)>

Year #PCDATA>

Month #PCDATA>

Day #PCDATA>

Headline #PCDATA>
Summary #PCDATA>
Body Paragraph+>
Paragraph #PCDATA>

Example 2 We give a set of keywords and get the top N articles related

to the keywords. The ranking order of each Article element is determined

by the similarity with the keywords. The similarity measure is given by such

contents processing function.

82

5.3 X?QL: An eXtensible XML Query Lan-
guage

The syntax of X2QL is similar to that of XML-QL. However, X?QL can
incorporate user-defined foreign functions. The implementation of foreign
functions is given as external programs. First, Subsection 5.3.1 gives the
syntax of X?QL. Then, foreign functions are explained in Subsection 5.3.2.

Subsection 5.3.3 shows how example queries in Section 5.2 are specified in

X2QL.

5.3.1 Query Syntax

As aforementioned, the syntax of X?QL is based on XML-QL as follows.

where patterns [in sourcel [, patterns [in source]1*[, predicate] *
[rank-by ranking keys top number]

[order-by ordering keys [descending]]

construct construction of each output

The where, order-by, and construct clauses are same as in XML-QL, ex-
cept that they can contain foreign function calls as explained in Subsection
5.3.2. Each where clause binds variables according to the specified condi-

tions. For convenience, we call a tuple each set of variable bindings. Then, the

83

construct clause generates the result for each tuple. Finally, if an order-by

clause is specified, the generated results are sorted by the given ordering keys.

A rank-by clause is used to specify at most the top number tuples are
selected based on the value of the ranking keys. This selection is performed
before the construct clause is processed. The order of selected tuples is
not affected by this clause, namely, the order of output elements is based on
the order in the input document. In the document contents processing, it
is often necessary to rank target elements by some similarity or importance
measure derived by the foreign function and to select the top N elements
based on their ranks. To facilitate such processing, we have included the

rank-by clause as an extension.

5.3.2 Foreign Functions

As explained in Subsection 2.3.1, functions defined in XML-QL are just
canned queries. In X2QL, users can define foreign functions whose imple-
mentation is given as external programs. In the current version of X2QL, we

assume that they are written in Java. See Section 5.4 to implement foreign

functions.

Basic foreign functions are classified into general functions and element

methods. The other types of foreign functions are described in Section 5.6.

84

General functions are defined in the global namespace. On the other hand,
each element method is associated with a specific element type, namely,
defined in its local namespace. Therefore, element methods of the same
name can be defined for different element types. When a foreign function is
called, the element type of the target element is checked, then an appropriate

element method is invoked depending on the target element.

Let us consider foreign functions required for the examples in Section 5.2.
For Example 1, we need a element method (named abstract()) associated
with the Article element type to summarize each Article element and to
return a Summary element. The element method generates a summary of an
Article element considering the target dependent property such that terms

appeared in its Headline element are important.

For Example 2, we need a function to measure the similarity between the
given keywords and an element content. Here, let us define it as a general
function, say sim_cosine(), that calculates similarities based on the tradi-
tional cosine measure [13]. By applying the function to an Article element,

its similarity value is returned. !

In our environment, foreign functions are defined as follows.

1Similarity measures often need document-dependent global factors (e.g. idf). The
implementations of foreign functions are responsible to calculating them in their first

invocation.

85

function type-name general-function-name(argument-list)
defined-by "URI of the implementation"

function type-name element-type-name
. element-method-name(argument-list)
defined-by "URI of the implementation"

arqgument-list ::= type-name argument-name [,
type-name argument-name] *

In the definition of a foreign function, the data types of arguments and return
values are specified. The data types number, string, element, content
and any element types are allowed. Variables bound by element_as and

content_as are associated with element and content values, respectively.

The definitions of abstract () and sim_cosine() are given as follows.

function Summary Article.abstract()
defined-by "http://fqdn/path/pkg.ArticleMethods#abstract"

function number sim_cosine(content target, string keyword)
defined-by "http://fqdn/path/common.vecspace#cosine"

5.3.3 Query Specification Examples

The query specification for Examples 1 and 2 in Section 5.2 are given as

follows.

86

where <Document> $x </>
construct <Document> in "articles.xml"
where <Article>
<Date> <Year> $y </> </> element._as $d
<Category></> content_as $c
<Headline></> element_as $h
<Body></> element_as $b
</> element_as $a in 9$x,
$y >= 1999
order-by $c
construct <Group ID=CtgID($c) Category=$c>
<Article>
$d $h $a.abstract() $b
</>
</>
</>

Query Specification 1

where <Document> $x </>

construct <Document> in "articles.xml"
where <Article> </> element_as $a in $x
rank-by sim_cosine($a, keywords) top N

construct $a
</>

Query Specification 2

In Query Specification 1, the method abstract() associated with the

Article element type is used. The query returns a Document which is

87

a sequence of Group elements. The Group elements are sorted by the
Category values. Each Group element groups Article elements with the
same Category value. A Summary element is created by abstract() and
inserted between the Headline and Body elements. The Date element is also

included in the Article element.

In Query Specification 2, a general function sim_cosine() is used. It
gives the similarity of an Article element with respect to the given keywords.
With the use of the rank-by clause, only the top N Article elements are
contained in the result. They appear in the same order as in the source

document.

5.4 Extensibility via Foreign Functions

Users writing foreign function implementations need to understand the for-
eign function framework. This framework consists of the type system, inter-

nal object model and Java bindings.

88

5.4.1 Type System

There are five built-in types in X?QL: string, number, boolean, content
and element. Beyond that, each element type in XML documents can be
used as a type in X2QL. It is treated as a subtype of element type, which is

the generic built-in type for any element in an XML document.

When binding a variable, the value type is decided according to the loca-
tion from which the value was extracted. The types are element, content
or string. When evaluating an expression, the type of the result value is

given by the type returned by the function.

When the type of a value differs from the type desired by a function in
an expression, the value is translated into the desired type if possible. If
translation is impossible, then the query is not processed. This translation
is defined in Table 5.1. In this table, a function p, (p,q € {s,n,b,c,e})
maps a value of the type ¢ into a value of the type p. Letters s, n, b, ¢ and
e represent string, number, boolean, content and element, respectively,

and “—” indicates that translation is unnecessary or undefined.

Functions s. and s, translate a content item and an element into a string
value by removing tags within them, and s, and s, returns the string rep-

resentation of a given value. When translating into number and boolean

89

Table 5.1: Translation rules between types

from \ to | string number boolean content element
string — ns(z) bs(z) cs(x) —
number sn(z) — bo(z) es(sn(z)) —
boolean | sp(z) ny(z) — cs(sp(2)) —
content se(z) ngs(se(z)) bs(se(z)) — ec(z)
element | s¢(x) ns(se(z)) bs(se(z)) ce(x) -

values, the values are first translated into a string value, then into number
and boolean values by b, and n,. Functions ¢, and ¢, return a content value
that contains only the given value. Only content values can be translated
into element values. Function e, returns the first element within a given

content value if the first item is an element.

5.4.2 Internal Object Model

This subsection explains how to manage elements in XML documents and

implementations of foreign functions.

The associations between each element type and implementations of ele-
ment methods are given by foreign function definitions. These associations

are managed by the function table for each element.

At the first invocation of an element method for a given element, an

90

instance object called element object is created for the element. The imple-
mentation is then executed through the corresponding function table, and
the element object is passed to the implementation. Instantiated element
objects stay in memory while processing a query. After this, when an ele-
ment method for the same element is invoked, the element object that has
already been instantiated is used. All general functions are managed by the

anonymous element object.

Element objects have an extended interface of W3C DOM Element.
Therefore, implementations can be accessed to the element itself, its par-
ent and child nodes and the document with the element. They also serve

functions to

e invoke an element method associated with an element, and

e store objects created by the implementation as properties.

The first feature is realized by the invoke method of element objects. By
this feature, implementations can invoke element methods of other element
objects. This invocation is enabled by its internal function table. The second
feature is provided by their setProperty and getProperty methods. These
methods realize the implementation of foreign functions whose results differ
from or depend on the results of previous invocations. Properties are named

by string keys and kept in a dictionary collection within the element object.

91

5.4.3 Java Binding

As mentioned earlier, the implementations of foreign functions are written
as Java programs. In Java binding, data types number, string, element
and content are mapped into XNumber, XString, XElement and XContent
interfaces in the package provided for X2QL. All element types are treated
as element values. These interfaces are subinterfaces of XObject. Note
that XElement and XContent are extensions of W3C DOM Element and
DocumentFragment interfaces. XElement represents element objects. Espe-

cially, additional methods of element objects are defined as follows in Java:

package jp.ac.tsukuba.is.kde.x2ql.objects;

public interface XElement extends org.w3c.dom.Element

{

public XObject invoke(String name, XObject[] args);
public void setProperty(String name, Object value);
public Object getProperty(String name);

}

When an element method is to be implemented, a Java class is created
and the implementation is given as its method. When an element method is
invoked for an element, the element is added as the first argument self in the
argument list of the Java function. As an example, the Java implementation

for the method abstract () is given in Subsection 5.3.2. The query processor

92

checks the element type of the element bound to self before the method

invocation.

Implementations can create new values using an instance object with
the XObjectFactory interface. The instance is provided by SystemModule,

which is a singleton object.

// The class file should be located at http://fqdn/path/.
package pkg;

import jp.ac.tsukuba.is.kde.x2ql.objects.XElement;
import jp.ac.tsukuba.is.kde.x2ql.util.SystemModule;

public class ArticleMethods

{

public XElement abstract(XElement self)

{

XElement result = null;

result = SystemModule.getXObjectFactory()
.createXElement(...);

return result;

}

93

5.5 Query Processing on XSLT Processors

We have developed an X?QL query processing system on top of an XSLT
processor. The rationale here is three-fold. First, the approach contributes
to rapid development of the prototype of an X2QL query processing system.
Second, an implementation on top of XSLT processors assures certain level
of portability. Third, X?QL can work as a front end to XSLT processors. As
shown below, XSLT specifications are low-level and procedural, and they are
difficult for novice users. With X2QL, we can specify document manipulation

more declaratively.

5.5.1 System Architecture

Figure 5.1 shows Query processing in our prototype system. The translator
translates each X?QL query into XSLT template rules in stylesheets. The

XSLT processor then executes the query by interpreting the stylesheets.

The current implementation has the following restrictions.

e The query does not include joins of multiple documents.

e No regular path expressions containing closures of tag names are used.

94

2 oreign Functioy Foreign Function
X?QL Query Definition . ” Implémentation
4
ranslatord@dapto ~'invoke

a method

' .
[Stylesheets ﬂ'l [_Java Stubs ﬂ]

Ne———
e
iterate
Source X . esult
XML %%rcument >« 4 * o *XML ocument

Intermediate
Documents

Figure 5.1: Query processing scheme

e No subblocks? are used.

e No elements with IDs specified by skolem functions are nested.

5.5.2 Mapping of Foreign Functions

Foreign functions in X?QL are mapped to extension functions. As mentioned
before, implementation of extension functions depends on the underlying
XSLT processor. In this study, we concentrate on the implementation on
LotusXSL [22] [23] to make our discussion concentrate. The implementation

of foreign functions of X2QL are written in Java.

The definition of each foreign function is processed before the stylesheet

generation. This is done by the adaptor module inside the translator. Imple-

2A subblock is an XML-QL subquery enclosed ‘{” and ‘}’, and is used for outer joins.

95

[XSLTProcessor|——»-| Java Stub |—-[Foreign Function
ol Implementation

/
[Function Table|~ ~

Figure 5.2: Mechanism of a method invocation

mentation of the adaptor module depends on the underlying XSLT processor.

The LotusXSL adaptor module refers to the foreign function definitions
and generates stub classes in Java. A stub class is created for each element
type associated with method 3. A stub class has stub methods which work
as extension functions in LotusXSL. Foreign function calls in X?*QL queries
are translated into calls for appropriate stub methods. When a certain stub
method is called, the stub method translates the argument type in LotusXSL
into the Java type according to the Java mapping for the X?QL, and calls the
implementation of the corresponding foreign function by using the function
table (See Figure 5.2.) The type of the return value is translated in the reverse
direction. We have also developed a class loader to load the implementation
of foreign functions through the network, and the Java Reflection API is used

to manipulate classes and methods dynamically.

3In the current implementation, general functions are treated as if they were methods
associated with a dummy class.

96

5.5.3 Query Translation

Basic Translation

First, we describe the translation of queries without rank-by and order-by
clauses. In this case, a query is translated into a stylesheet with a corre-

sponding template rule.

Basic constructs in where and construct clauses in X?QL are translated
into their counterparts in XSLT as illustrated in Subsection 2.3.2. Basi-
cally, template rules are generated along the element structure specified in
construct clauses, because template rules describe the output document
structure. Namely, the tags used in the outermost construction enclose the
others. Element hierarchy patterns given in where clauses are expressed as

location paths, and variables are bound as occasion demands.

Bach variable binding is done with xsl:for-each and xsl:variable
instructions. Generally, in template rules, some auxiliary variables are in-
troduced in addition to ones specified in the given query. They are used to
simplify the location path derivation, and to keep values depending on the

current context node list.

The order of variable bindings primarily coincides with the order in which

97

they are used in the output construction in the query. When it gives the same
order to multiple variables, their usage in Skolem functions and sorting keys

is taken in consideration.

Translation of Grouping by Skolem Functions

The return value of the Skolem function has a one-to-one correspondence to
the set of values given in arguments. Based on this, a grouping specified

using the Skolem function is translated as shown below.

Here, Article elements are grouped by the Category values. First, an
Article element is selected. Its Category value is bound to the variable $c.
The xs1:1if instruction says that, if it is the first Article element having a
Category value, the Group element, collecting Article elements sharing the
same Category value, is the output. If this condition is not met, no Group
element is created. Thus, a grouping of Article elements by the Category

values is attained.

<!-- A given query -—>

where <Document> $x </> in "articles.xml"
construct <Document>
where <Article>

<Category> $c </>
</> element_as $a in $x
construct <Group ID=CtgID($c)> $a </>
</>

98

(a) An example query including grouping

<!-- The template rule to group Articles -->
<xsl:template match="/">
<xsl:for-each select="Document">
<xsl:variable name="x" select="."/>
<Document>
<!-- Select only the first Article
with each Category value -—>
<xsl:for-each select="Article[not (Category
= preceding-sibling::Article/Category)]
/Category">
<xsl:variable name="c" select="node()"/>
<xsl:variable name="CtgID">
<xsl:value-of select="$c"/>
</xsl:variable>

<!-- Create the Group element -->
<Group>
<xsl:attribute name="Category">
<xsl:value-of select="$c"/>
</xsl:attribute>
<xsl:for-each select="$x/Article[Category = $c 1">
<xsl:variable name="a" select="."/>
<xsl:copy-of select="$a"/>
</xsl:for-each>
</Group>
</xsl:for-each>
</Document>
</xsl:for-each>
</xsl:template>

(b) Translation Result

99

Translation of Rank-by and Order-by Clauses

Generally, queries with rank-by and order-by clauses are translated into
two and three stylesheets, respectively. They are interpreted in the XSLT
processor one by one, and the controller in Figure 5.1 controls the interpre-

tation.

Queries having only order-by clauses are processed in the following two

steps, and a stylesheet is associated with each step.

1. Construct the output as explained above. The difference is that the

sort key values are added to elements to be sorted.

2. Sort the target elements, and remove the added sort key values.

Queries having rank-by clauses are processed in three steps. They are
translated into three stylesheets, each with a template rule. Here, we show
how Query 2 in Section 5.3 is translated. The first stylesheet is shown below.

Other two stylesheets are omitted.

The template rule in the first stylesheet generates an x2ql:order ele-
ment for each Article element. It has rank and pos attributes. The rank

attribute gives the similarity of the Article element calculated by the foreign

100

function sim_cosine(). The pos attribute has the relative position of the
Article element. It has the Article element as its sub-element. Moreover,
we generate an x2ql:sort element which contains the x2ql:order elements.

It is used in the second and third steps.

<!-- The first template rule -—>
<xsl:template match="/">
<xsl:for-each select="Document">
<xsl:variable name="x" select="." />
<Document>
<x2ql:sort>
<xsl:for-each select="Article">
<xsl:variable name="a" select="." />
<xsl:variable name="tmpl" select="position()" />
<x2ql:order rank="{sim_cosine($a)}" pos="{$tmpi}" >
<xsl:copy-of select="$a" />
</x2ql:order>
</xsl:for-each>
</x2ql:sort>
</Document>
</xsl:for-each>
</xsl:template>

The second template rule selects the x2ql:order elements, and sort them

by the rank value. Then, we output the first N x2ql:order elements.

The last template rule sorts the remaining N x2ql:order elements by

the pos value, and remove unnecessary elements.

101

5.6 Advanced Features

This section discusses advanced extension features. These features include

aggregation functions and filtering functions.

5.6.1 Aggregation Functions

Grouping facility by group-by clause and built-in aggregation functions will
be supported in XML-QL in future [18]. This subsection introduces user-
defined aggregation functions, which calculate a value from a given set of
values. Their definition is given by the following syntax, which is like the

syntax for general functions.

aggregation type-name aggregation-name(argument-list)
defined-by "URI of the implementation"

The Java binding is also the same as with general functions.

They can be used in construct clauses. To group tuples, optional
group-by clauses can be used. When a group-by clause is specified, tuples
are grouped by the argument values, then aggregation functions compute a

value from all the tuples of each group. In the absence of group-by clause,

102

aggregation functions are applied to all the tuple, so that the construct
clause generates one result. Note that the variables in a group-by clause
must be used as arguments to the Skolem function in the outermost tag in

the construct clause.

In a query including aggregation functions, first, tuples are bound based
on patterns specified in where clauses. For each tuple, aggregation functions
are called. The return values in these calls are ignored. When there are no
more tuples, they are called again with null argument values and their return

values are used as the aggregated results.

For instance, a query counting articles of each year is given as follows:

aggregation number count(element item)
defined-by "http://fqdn/path/funcs.Counter#count”

und,
where <Document> $x </> in "articles.xml"
construct <Document>

where <Article>
<Date> <Year> $y </> </>
</> element_as $a in $x
group-by $y
construct <Number ID= YearID($y) Year=$y>
count($a)
</>

103

</>

The count is implemented as follows:

package funcs;

public class Counter
int number = 0; // To keep intermediate result
public XNumber count(XElement item)
{
XNumber result = nulil;
if(item != null)
++ number;
else

{

result

]

SystemModule.getXObjectFactory()
.createXNumber (number);
0; // initialize itself

number

}

return result;

}
}

The above query is translated into the following XSLT template rule.

This template rule is generated as follows. First, the variables in group-by

clause are bound, and then aggregation functions are invoked. The rest of

the query is translated in the same way as grouping queries. Note that a

extension function count_get () is used internally. This extension function

calls the aggregation function with null argument values.

104

<xsl:template match="/">
<xsl:for-each select="Document'>

<xsl:variable name="x" select="."/>
<Document>
<!-- variables in the group-by clause -->

<xsl:for-each select="Article[not (Year
= preceding-sibling::Article/Year)]/Year">
<xsl:variable name="y" select="node()"/>
<xsl:variable name="YearID">
<xsl:value-of select="$y"/>
</xsl:variable>

<1-- intermediate calls -->
<xsl:for-each select="$x/Article[Year = $y 1">
<xsl:variable name="a" select=".">

<xsl:variable name="tmpl" select="count($a)"/>
</xsl:variable>
</xsl:for-each>
<!-- the result of the aggregate function -->
<xsl:variable name="tmpl" select="count_get()"/>

<!-- the rest of the query —->
<Number>
<xsl:attribute name="Year'">
<xsl:value-of select="$y"/>
</xsl:attribute>
<xsl:copy-of select="$tmpl">
</Number>
</xsl:for-each>
</Document>
</xsl:for-each>
</xsl:template>

105

5.6.2 Variable Binding Filtering

X2QL provides the variable binding filtering mechanism as an advanced fea-
ture. This mechanism gets the sequence of tuples from the where clause,
generates a new sequence of tuples from it, and passes the result to the
construct clause. This mechanism can be used by the filter-by clause

instead of the rank-by and order-by clauses.

In sequence generation, one type of foreign functions, called filtering func-

tions, are used. Their definition is given by the following syntax:

filter filter-name(argument-list)
defined-by " URI of the implementation" .

Each filtering function is called with a queue to output filtered tuples,
an input tuple, and argument values specified in its definition. The function
puts tuples into the given queue based on the arguments. Note that given
tuples are immutable in this process. The end of input tuples is indicated by

an empty tuple.

For simple instances, a filtering function greater selecting tuples when

the given value is greater than the given base, is defined as follows:

106

filter greater_than(number value, number base)
defined-by "http://fqdn/path/funcs.FilterFunc#greaterThan"

A query using this function is specified as follows.

where <Document> $x </> in "articles.xml"
construct <Document>
where <Article>

<Date> <Year> $y </> </>
</> element_as $a in $x
filter-by greater_than($y, 2000)
construct $a
</>

This query is equivalent to the following query:

where <Document> $x </> in "articles.xml" -
construct <Document>
<Article>

<Date> <Year> $y </> </>
</> element_as $a,
$y > 2000
construct $a
</>

107

They are implemented as the following code in Java binding.

package funcs;

public class FilterFunc

{

public void greaterThan(TupleQueue queue, Tuple tuple,
XNumber value, XNumber base)
{

if (tuple == null)
queue.close();

else if(/* value is greater than base */)
queue.push(tuple);

}
}

Queries with filter-by clauses are processed as follows. First, a tem-
plate rule is generated. In this template rule, all the tuples are generated,
and output as x2ql:tuple elements with x2ql:variable elements repre-
senting each variable binding. Second, the query processor applies filtering
functions to the result internally, and generates the filtered XML document.
The structure is the same with the output of the first template rule. Finally,

the second template rule which processes the rest of the query is applied.

108

For example, the above query is processed by following template rules.

<!-- The first template rule -->
<xsl:template match="/">
<xsl:for-each select="Document">
<xsl:variable name="x" select="."/>
<x2ql:tuple>
<x2ql:variable name="x">
<copy-of select="$x" />
</x2ql:variable>

<xsl:for—-each select="Article">

<xsl:variable name="a'" select="."/>
<xsl:for-each select='"Date/Year'">
<xsl:variable name="y" select="."/>

<x2ql:tuple>
<x2ql:variable name="a'">
<xsl:copy-of select="$a"/>
</x2ql:variable>
<x2ql:variable name="y">
<xsl:copy-of select="$y"/>
</x2ql:variable>
</x2ql:tuple>
</xsl:for-each>
</xsl:for-each>
</x2ql:tuple>
</xsl:for-each>
</xsl:template>

109

<!-- The second template rule -->
<xsl:template match="/">
<xsl:for-each select="x2ql:tuple">
<xsl:variable name="x"
select="variable [@name="x"]/node () "/>
<Document>
<xsl:for-each select="x2ql:tuple">
<xsl:variable name="a"
select="variable[@name="a"]/node()"/>
<xsl:variable name="y"
select="variable[@name="y"]/node()"/>

<xsl:copy-of select="$a"/>
</xsl:for-each>
</Document>
</xsl:for-each>
</xsl:template>

A filtering function sorting tuples is another example. This function needs
to access all the tuples. In such cases, the implementation stores the passed
tuples into a collection object at each invocation. Then, when an empty
tuple is passed, it moves all sorted tuples from the collection into the result
queue. Therefore, the rank-by and order-by clauses can be regarded as a

specialized version of this mechanism.

110

5.7 Discussion and Future Issues

Some XML query languages provide powerful, tag-based document structure
manipulation. They are, however, generally weak in processing document
contents, such as similarity-based selection, ranking, summary generation,
and topic extraction. Requirements for processing document contents vary
with application context, so it is very difficult to provide a complete set of

content processing facilities.

This chapter proposed X2QL (eXtensible XML Query Language), which
features the inclusion of user-defined foreign functions to process document
contents in the context of XML-QL-based document structure manipulation.
This chapter also explained the extension mechanisms. It also covered imple-
mentation of the X2QL query processing system on top of XSLT processors.
We have been developing the prototype system as a command line Java ap-

plication.

Future work includes relaxation of the restriction on X2QL queries men-
tioned in Section 5.5. Another important research issue is the development
of an X2QL query processing system without need for an XSLT processor.
Inheritance of element methods and other object-oriented extensions are also

interesting future research topics.

111

Chapter 6

Conclusion

In the use of structured documents and their databases, requirement adapt-
ability has become increasingly important. This dissertation has proposed
(1) a scheme to support WWW browsing based on user profiles describing
user interests, and (2) an XML query language, called X2QL, featuring the
inclusion of user-defined foreign functions. These proposed schemes enable
users to get needed information within structured documents based on adap-
tation to requirements. This is the main contribution of this dissertation.

More detailed contributions are summarized below.

112

Scheme to support WWW browsing

A new scheme to support WWW browsing was discussed in Chanter 4. In
this scheme, the interests of individual users are explicitly represented as a
user profile, and the user is presented with a view-page generated from each
specified WWW page based on the user profile. View-pages make it easy for

the user to quickly identify the relevant substructures.

For this purpose, first the logical tree, which represents the logical struc-
ture of the WWW page, is derived. Substructures irrelevant to the user
profile are then pruned away. Finally, a view-page is generated from the
pruned logical tree. The view-pages generated are ensured to be valid HTML

documents. In these steps, some HTML characteristics are also used.

This chapter also has shown how view-pages can be realized in a non-
intrusive way in the current WWW browsing environment. Beyond that,
the experimental evaluation for this scheme has shown good results. These

results reveal that the proposed WWW browsing scheme is feasible.

Extensible XML query language

X2QL, which is an extensible XML query language based on XML-QL, is

113

proposed in Chapter 5. This extensibility is made possible by the inclusion
of user-defined foreign functions written in programming languages. This
extensibility makes it possible to integrate application-oriented, high-level

content processing facilities into querying documents.

General functions and element methods, which are basic foreign functions,
are defined. Specifically, element methods have brought about some object-
oriented features. Additionally, aggregation functions and variable binding
filtering mechanism via filtering functions as advanced features have also

been introduced. Their Java bindings have been defined.

This chapter also discussed a scheme for implementing an X?QL query
processor on top of an XSLT processor. This includes translation proce-
dures of X?QL queries into XSLT template rules. Implementations of foreign
functions are independent from features depending on individual XSLT pro-

Cessors.

The proposed schemes show promise in realizing requirement adaptabil-
ity in browsing and querying structured documents. Most important is that
users can manipulate structured documents in their own way. I hope that in
feature requirement adaptability, all users will be able to flexibly use struc-

tured documents.

114

Bibliography

1]

2]

[5]

P. Atzeni, A. Mendelzon, and G. Mecca, editors. The World Wide Web

and Databases. Springer-Verlag, 1998.

D. Suciu and G. Vossen, editors. proceedings of Third International
Workshop on the Web and Databases (WebDB 2000). Springer-Verlag,
2000.

N. Shinagawa and H. Kitagawa. Dynamic generation and browsing of
virtual www space based on user profiles. In Proceedings og 5th Inter-
national Computer Science Conference (ICSC’99), LNCS 1749, pages
93-108. Springer-Verlag, 1999.

H. Kitagawa N. Shinagawa and J. Kawada. Dynamic generation and
browsing of www view-pages based on user profiles (in japanese). IPSJ

Transactions on Databases, 41(SIG 6 (TOD7)):22-362, 2000.

H. Kitagawa N. Shinagawa and Y. Ishikawa. X?ql: An extensible xml
query language supporting user-defined foreign functions. In Proceed-

ings of 2000 ADBIS-DASFAA Symposium on Advances in Databases

115

and Information Systems, LNCS 1884, pages 251-264. Springer-Verlag,
2000.

[6] ISO. Information processing — text and office system — standard gener-

alized markup language (SGML), 1986. ISO 8879.

[7] ISO. Hypermedia/time-based structuring language (Hytime), 1992.
ISO/IEC 10744.

[8] HTML 4.01 Specification, 1999. http://www.w3.org/TR/html401.

[9] Eztensible Markup Language (XML) 1.0 (Second Edition), 2000.
http://www.w3.org/TR/REC-xml.

[10] XHTML 1.0: The Ezxtensible HyperText Markup Language — A Reformu-
lation of HTML 4 in XML 1.0, 2000. http://www.w3.org/TR/xhtml1.

[11]'S. Abiteboul. Querying semi-structured data. In Proceedings of 6th
International Conference on Data Theory (ICDT’97), pages 1-18, 1997.

[12] P. Buneman. Semistructured data. In Proceedings of 16th ACM Sym-
posium on Principles of Database Systems (PODS’97), pages 117-121,
1997.

[13] G. Salton. Automatic Text Processing: The Transformation, Analysis
and Retrieval of Information by Computer. Addison-Wesley, Reading,
MA, 1989.

116

[14] D. K. Harman. Overview of the first trec text retrieval conference.

Proceedings of TREC-1, pages 1-20, 1992.

[15] A. Singhal, C. Buckley, and M. Mitra. Pivoted document length normal-

[16]

[17]

[19]

[20]

ization. Proceedings of the 19th Annual International ACM-SIGIR Con-

ference on Research and Development in Information Retrieval, pages

21-29, 1996.
ISO. Database language (sql), 1992. ISO/IEC 9075.

R. G. G. Cattell, D. K. Barry, M. Berler, J. Eastman, D. Jordan, C. Rus-
sell, O. Schadow, T. Stanienda, and F. Velez, editors. The Object Data
Standard: ODMG 3.0. Morgan Kaufmann Publishers, 2000.

A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query
language for xml. Proceedings of the Eighth International World Wide
Web Conference (WWWS), Computer Networks, 31(11-16):1155-1169,
1999.

XSL Transformations (XSLT) Version 1.0, 1999.
http://www.w3.org/TR/xslt.

Extensible Stylesheet Language (XSL) 1.0 (Candidate Recommenda-
tion), 2000. http://www.w3.org/TR/xsl/.

J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0,
1999. http://www.w3.org/TR/xpath.

117

[22] IBM alphaWorks. Lotusxsl. http://www.alphaWorks.ibm.com/tech/LotusXSL/.
[23] Apache Software Foundation. Xalan. http://xml.apache.org/xalan/.

[24] AltaVista. http://www.altavista.com/.

[25] Google. http://www.google.com/.

[26] Yahoo. http://www.Yahoo.com/.

[27] G. G. Robertson amd J. D. Mackinlay S. K. Card. The information
visualiser, an information workspace. In Proceedings of Human Fac-
tors in Computing Systems Conference on Reaching through Technology

(CHI’91), pages 181-187, 1991.

[28] M. B. Spring K. A. Olson, R. R. Corfhage. K. M. Sochats and J. G.
Williams. Visualization of a document collection: The vibe system.

Information Processing and Management, 29(1):69-81, 1993.

[29] M. Hearst. Tilebars: Visualization of term distribution information
in full text information access. In Proceedings of the ACM SIGCHI
Conference on Human Factors in Computing Systems (CHI ’95), pages
59-66, 1995.

[30] L. S. Heath L. T. Nowell, R. K. France. D. Hix and E. A. Fox. Visual-
izing search results: Some alternatives to query-document similarity. In
Proceedings of the 19th Annual International ACM-SIGIR Conference
on Research and Development in Information Retrieval, pages 67-75,

1996.

118

[31]

[32]

[33]

[34]

[35]

[36]

M. A. Hearst and J. O. Pedersen. Reexamining the cluster hypothesis:
Scatter/gather on retrieval results. In Proceedings of the 19th Annual
International ACM-SIGIR Conference on Research and Development in
Information Retrieval, pages 76-84, 1996.

S. Miike, E. Itoh, K. Ono, and K. Sumita. A full-text retrieval system
with a dynamic abstract generation function. Proceedings of the 17th
Annual International ACM-SIGIR Conference on Research and Devel-

opment in Information Retrieval, pages 152-161, 1994.

C. D. Paice. Constructing literature abstracts by computer: Techniques
and prospects. Information Processing and Management, 26(1):171-186,
1990.

C. D. Paice and P. A. Jones. The identifiation of important concepts in
highly structured technical papers. In Proceedings of the 16th Annual
International ACM-SIGIR Conference on Research and Development in

Information Retrieval, pagés 69-78, 1993.

R. Willkinson. Effective retrieval of structured documents. Proceedings
of the 17th Annual International ACM-SIGIR Conference on Research

and Development in Information Retrieval, pages 311-317, 1994.

G. Salton, J. Allan, and C. Buckley. Approaches to passage retrieval
in full text information systems. Proceedings of the 16th Annual In-
ternational ACM-SIGIR Conference on Research and Development in

Information Retrieval, pages 49-58, 1993.

119

[37]

[39]

[40]

[41]

[42]

[43]

M. Kaszkiel and J. Zobel. Passage retrieval revisited. Proceedings of
the 20th Annual International ACM-SIGIR Conference on Research and

Development in Information Retrieval, pages 21-29, 1997.

J. Zobel, A. Moffat, R. Wilkinson, and R. Sacks-Davis. Efficient re-
trieval of partial documents. Information Processing and Management,

31(3):361-377, 1995.

A. Tombros and M. Sanderson. Advantage of query biased summa-
rization in information retrieval. Proceedings of the 21th Annual In-
ternational ACM-SIGIR Conference on Research and Development in

Information Retrieval, pages 2-10, 1998.

H. Mochizuki M. Okumura and H. Nanba. Query-biased summarization
based on lexical chaining. In Pacific Association for Computational

Linguistics (PACLING’99), pages 324-334, 1999.

N. Ashish and C. A. Knoblock. Wrapper generation for semi-structured
internet sources. ACM SIGMOD Records, 26(4):8-15, 1997.

Y. Jiang D. W. Embley and Y.-K. Ng. Record-boundary discovery in
web documents. In Proceedings ACM SIGMOD International Confer-

ence on Management of Data ’97, pages 8-15, 1997.

R. B. Doorenbos N. Kushmerick, D. S. Weld. Wrapper induction for

information extraction. In Proceedings of the Fifteenth International

120

[44]

[45]

[46]

[47]

(48]

[49]

Joint Conference on Artificial Intelligence (IJCAI °97), volume 1, pages
23-29, 1997.

N. Kushmerick. Wrapper induction: Efficiency and expressiveness. Ar-

tificial Intelligence, 118(1-2):15-68, 2000.

B. Adelberg. Nodose - a tool for semi-automatically extracting semi-
structure data from text documents. In Proceedings of ACM-SIGMOD
International Conference on Management of Data 98, pages 283-294,
1998.

B. Adelberg and M. Denny. Nodose version 2.0. In Proceedings ACM
SIGMOD International Conference on Management of Data 99, pages
559-561, 1999.

T. M. Mitchell T. Joachims, D. Freitag. Webwatcher: A tour guide
for the world wide web. In Proceedings of the Fifteenth International
Joint Conference on Artificial Intelligence (IJCAI 97), volume 1, pages
770-777, 1997.

A. S. Vivacqua H. Lieberman, N. W. Van Dyke. Lets browse: A collab-
orative browsing agent. In International Conference on Intelligent User

Interfaces, pages 65-68, 1999.

J. Muramatsu M. J. Pazzani and D. Billsus. Syskill and webert: Identify-
ing interesting web sites. In Proceedings of the Thirteenth National Con-

ference on Artificial Intelligence and Fighth Innovative Applications of

121

[50]

[51]

[52]

[54]

[55]

[56]

Artificial Intelligence Conference (AAAI 96/IAAI 96), volume 1, pages
54-61, 1996.

M. Balabanovic and Y. Shoham. Learning information retrieval agents:
Experiments with automated web browsing. In AAAI Spring Sympo-
sium on Information Gathering from Heterogeneous, Distributed Enui-

ronments, pages 213-18, 1995.

M. Marchiori (chair), editor. QL’98 - The Query Languages Workshop.
W3C, 1998. http://www.w3.org/TandS/QL/QLI8/.

H. Hosoya and B. C. Pierce. Xduce: An xml processing language (pre-
liminary report). In In Proceedings of Third International Workshop on

the Web and Databases (WebDB2000), pages 111-116, 2000.

J. Robie, J. Lapp, , and D. Schach. Xml query lan-
guage (xql). In The Query Languages Workshop (QL’98), 1998.
http://www12.w3.org/TandS/QL/QL98/pp/xql.html.

J. Robie D. D. Chamberlin and D. Florescu. Quilt: An xml query lan-
guage for heterogeneous data sources. In Proceedings of the Third In-
ternational Workshop on the Web and Databases (WebDB 2000), 2000.
53-62.

Tamino. http://www.tamino.com/.

excelon. http://www.excelon.com/.

122

[57]

[58]

[60]

[62]

[63]

S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The
lorel query language for semistructured data. International Journal on

Digital Libraries, 1(1):68-88, 1997.

S. Cluet, C. Delobel, J. Simeon, and K. Smaga. Your mediators need
data convention! Proceedings of ACM-SIGMOD International Confer-
ence on Management of Data 98, pages 414-425, 1998.

P. Bunemank, S. B. Davidson, G. G. Hillebrand, and D. Suciu. A query
language and optimization techniques for unstructured data. Proceedings
of ACM-SIGMOD International Conference on Management of Data
‘96, pages 506-516, 1996.

J. McHugh and J. Widom. Query optimization for xml. In Proceedings
of the Twenty-Fifth International Conference on Very Large Data Bases,
Edinburgh, Scotland, September 1999.

H. Garcia-Molina Y. Papakonstantinou and J. Widom. Object exchange
across heterogeneous information sources. In Proc. 11th Data Engineer-

ing Conference, pages 251-260, 1995.

M. Fernandez P. Buneman and D. Suciu. Unql: A query language and
algebra for semistructured data based on structural recursion. VLDB

Journal, 9(1):76-110, 2000.

M. Marchiori P. Fankhauser and J. Robie (eds.). Xml query requirements
(working draft), 2000. http://www.w3.org/TR/xmlquery-req.

123

[64] M. Fernandez and J. Robie (eds.). Xml query data model (working
draft), 2000. http://www.w3.org/TR/query-datamodel.

[65] J. Simeén P. Fankhauser. M. Fernandez. A. Malhotra, M. Rys
and P. Wadler. The xml query algebra (working draft), 2000.
http://www.w3.org/TR/query-algebra.

[66] J. Cowan and R. Tobin. Xml information set (working draft), 2000.
http://www.w3.org/ TR /xml-infoset.

[67] D. C. Fallside (ed.). Xml schema part 0: Primer, 2000.
http://www.w3.org/TR /xmlschema-0/.

[68] M. Maloney H. S. Thompson, D. Beech and N. Mendelsohn. Xml schema

part 1: Structures, 2000. http://www.w3.org/TR/xmlschema-1/.

[69] P. V. Biron and A. Malhotra. Xml schema part 2: Datatypes, 2000.
http://www.w3.org/TR /xmlschema-2/.

[70] T. Joachims R. Armstrong, D. Freitag and T. Mitchell. Webwatcher: A
learning apprentice for the world wide web. AAAI Spring Symposium on
Information Gathering from Heterogeneous, Distributed Environments,

pages 6-12, 1995.

[71] G. Salton, A. Wong, and C. S. Yang. A vector space model for informa-
tion retrieval. Journal of the American Society for Information Science,

18(11):613-620, 1975.

124

[72]

[73]

R. K. Belew B. T. Bartell, G. W. Cottrell. Optimizing similarity using
multi-query relevance feedback. Journal of the American Society for

Information Science (JASIS), 49(8):742-761, 1998.

R. Sacks-Davis, T. Arnold-Moore, and J. Zobel. Database systems for
structured documents. International Symposium on ADTI ’94, pages

272-283, 1994.

A, Mendelzon, G. Mihaila, and T. Milo. Querying the world wide web.
International Journal on Digital Libraries, 1(1):54-67, 1997.

M. F. Fernandez, D. Florescu, J. Kang, A. Y. Levy, and D. Suciu.
Catching the boat with strudel: Experiences with a web-site manage-
ment system. Proceedings of ACM-SIGMOD International Conference
on Management of Data 98, pages 414-425, 1998.

I. Mani and M. T. Maybury, ediﬂors. Advances in Automatic Text Sum-
marization. MIT Press, 1999.

H. A. Hearst. Subtopic structuring for full-length document access.

Proceedings of ACM-SIGIR 93, pages 59-68, 1993.

J. Zobel and A. Moffat. Exploring the similarity space. ACM SIGIR
Forum, 32 No. 1:18-34, 1998.

125

WrFesesda) A b

(1) SAHERT

1. @INEES, gz, NP 22— 707 7 A VICEILE2—-R=TVDEMERIZE S
WWW BB, FHRLEE SR EE . 7 — 4 X —2X, Vol.41, No.SIG 6 (TOD?7), pp.22-36,
2000 4F 10 F.

(2) BB = ERAHR

1. Norihide Shinagawa and Hiroyuki Kitagawa. Dynamic Generation and Browsing of Virtual
WWW Space Based on User Profiles, Proc. 5th International Computer Science Conference
(ICSC’99), Hong Kong, China, Springer-Verlag, LNCS 1749, pp.93-108, Dec. 1999.

2. Norihide Shinagawa, Hiroyuki Kitagawa, and Yoshiharu Ishikawa. X2QL: An eXtensible
XML Query Language Supporting User-defined Foreign Functions, Proc. 2000 ADBIS-
DASFAA Symposium on Advances in Databases and Information Systems, Prague, Czech
Republic, Springer-Verlag, LNCS 1884, pp. 251-264, Sep. 2000.

(3) BEFHMN 2ERZHR

1. @NES, L2, BlIER. Z2H8RRE L LA LIRR I 20 g b B RkEtnm)
K, TEANY R b - F—F~N—2R - L vRI 7 L (ADBS'99), FEMBIERL VR 4T
1) — X, Vol.99, No.19, pp.123-132, 1999 4% 12 A.

2. SRS, dutEz, BIIMES. SRR XML B4¥ B8 X2QL & 0 R B I5HEE
#a5— ¥ THRSK, H11EF— 5 T% 7~ 2 av 7fHTHE (DEWS2000) (CD-ROM),
2000 4 3 7.

(4) MREER
1. ®IIES, dLhEz. AR ED CXERED BB, FRLEERE 116 E7 -4

N=2AY A7 LHES - BFEHREBEFET - 7 TEMESEARAMESR, HHROUHEESIZE
98-DBS-116(2), Vol.98, No.58, pp.157-164, 1998 £ 7 A.

2. WS, du)Ez. 22— FRAICAIL 7278 WWW X— U OB ERIC X 2 HEXIR, 15
BUBELSE1IET — I RN— AL AT LHES - BFIEREBEEFEET — ¥ THENESEF
e s, EHMIEE SR HRE 99-DBS-119, Vol.99, No.61, pp.425-430, 1999 4 7 A.

3. BIEA—, MINES, JLIEZ. LR EE XML &Y 85 X2QL 2 Avic WWW 777 r—
a v, BHRLEFESE 1207 - RN— AV A7 LIRS BFEREBESST -5 L
MR LS ERMES, BFFHEEFSHMTERE DE2000-71~90, Vol.100, No.228, pp.71-78,
2000 4 7 R.

4. SNESE,)IEZ, B)MES. HETRE XML BEEEEE X2QL BT 5 4RO Fii€
T, ERAEBFAE 122 07— F X— 2 ¥ 27 L5 E - BFEREEEET — 5 TEHFE
L£EFES, BFIBHREREFEESHMIE DE2000-41~70, Vol.100, No.227, pp.9-16, 2000
£7H.

5. BIEA—, SIIES, b2, BIHEE. XML IZES S WWW 770 75— a Y iEED720
OB HR, EFHEHRBEEFERT — 7 TEMES, BRFEREEF ST EHRE DE2000-91
~101, Vol.100, No.351, pp.17-24, 2000 4£ 10 7.

(5) K&EHEK

1. cnlllfEs, R, a0 EIREEL £DOKRIAET IV unigram, FHRLEFES 5 54 BIEEK
%, WIERUE (3), pp.281-282, 1997 4F 3 A.

2. SIS, HRIBELT, dL)EZ. S XEL F— s R—-A0KEFEFROME— 7 %>
FEEUHEEORB L FONEHR — BFHRUHEFES 55 OeERR, BEAHE (3),
pp.11-12, 1997 4 9 A.

3. mlfES, deEZ. CEEEETICED (D LERE, HHRUEFXE $£ 57 H2ERE
AE A 4 (3), pp.95-96, 1998 4E 10 A.

4. RINVEFE, LIEZ, BIMEE. XEMOELEORAEY & E L U ERELR HR, 155
MERFE % 5 59 HEE KRS, #HEMCE (3), pp.43-44, 1999 F 9 H.

5. AFFEH, dbIEZ, &INES, B)IMEG. SR XML MA+¢ 53 X2QL % flv/: G-XML
T -7 BHALEES %61 RIEEKE, MERE (3), pp-61-62, 2000 F 10 .

6. JIIMEM, SINFES, LIEZ, BIEE. LRTEE XML MAeE 55 X2QL LA DM, 18

WS %61 MIEE KRS, Hi#EMmCE (3), pp.17-18, 2000 £ 10 A.

(6) ¥FEFHIER

1.

ez, SIES. XML XEFMV&bhE SRR, 5 2000-165800, 2000 4 6 A.

(7) 201t

1.

Nz, @INES, BlER CEHSERBR & CRAFLEEEE AV o ilEt 3 EF
BOER, REKRE [RESH ORISR] 70y = 7 M AFREREE, pp.237-258, 2000
F£3A.

	0001.tif
	0002.tif
	0003.tif
	0004.tif
	0005.tif
	0006.tif
	0007.tif
	0008.tif
	0009.tif
	0010.tif
	0011.tif
	0012.tif
	0013.tif
	0014.tif
	0015.tif
	0016.tif
	0017.tif
	0018.tif
	0019.tif
	0020.tif
	0021.tif
	0022.tif
	0023.tif
	0024.tif
	0025.tif
	0026.tif
	0027.tif
	0028.tif
	0029.tif
	0030.tif
	0031.tif
	0032.tif
	0033.tif
	0034.tif
	0035.tif
	0036.tif
	0037.tif
	0038.tif
	0039.tif
	0040.tif
	0041.tif
	0042.tif
	0043.tif
	0044.tif
	0045.tif
	0046.tif
	0047.tif
	0048.tif
	0049.tif
	0050.tif
	0051.tif
	0052.tif
	0053.tif
	0054.tif
	0055.tif
	0056.tif
	0057.tif
	0058.tif
	0059.tif
	0060.tif
	0061.tif
	0062.tif
	0063.tif
	0064.tif
	0065.tif
	0066.tif
	0067.tif
	0068.tif
	0069.tif
	0070.tif
	0071.tif
	0072.tif
	0073.tif
	0074.tif
	0075.tif
	0076.tif
	0077.tif
	0078.tif
	0079.tif
	0080.tif
	0081.tif
	0082.tif
	0083.tif
	0084.tif
	0085.tif
	0086.tif
	0087.tif
	0088.tif
	0089.tif
	0090.tif
	0091.tif
	0092.tif
	0093.tif
	0094.tif
	0095.tif
	0096.tif
	0097.tif
	0098.tif
	0099.tif
	0100.tif
	0101.tif
	0102.tif
	0103.tif
	0104.tif
	0105.tif
	0106.tif
	0107.tif
	0108.tif
	0109.tif
	0110.tif
	0111.tif
	0112.tif
	0113.tif
	0114.tif
	0115.tif
	0116.tif
	0117.tif
	0118.tif
	0119.tif
	0120.tif
	0121.tif
	0122.tif
	0123.tif
	0124.tif
	0125.tif
	0126.tif
	0127.tif
	0128.tif
	0129.tif
	0130.tif
	0131.tif
	0132.tif
	0133.tif
	0134.tif
	0135.tif
	0136.tif
	0137.tif
	0138.tif
	0139.tif
	0140.tif
	0141.tif
	0142.tif
	0143.tif
	0144.tif

