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Chapter 1

Introduction

1.1 Background of Studies of Neural Networks

Although modern high-speed computers operate with processing units that func-
tion on the order of tens or hundreds of nanoseconds, the brain, which consists of
processing units that operate on the order of milliseconds, is far quicker and bet-
ter at perceiving objects in natural scenes and finding their relations, at accessing
whatever information we need from memory and understanding langauge, at mak-
ing plans and carring out appropriate actions, and at wide range of other natural
cognitive tasks. We human being are also far better at learning to do these things
more fluently and effectively through practice.

The basis for these differences between today’s computers and the brain may
partially come from “software”, the traditional one we might expect from artifi-
cial intelligence. However, in our view, people are smater than computers mainly
because that the brain employs a very different computational architecture that is
more suited to deal with the natural information processing tasks that people are

so good at.
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In order to understand the complex information processing systems such as the
brain, we must understand them at three levels (Marr, 1982). The top level is
the abstract computational theory of the devices, in which the performance of the
device is characterized as a mapping from one kind of information to another, the
abstract properties of this mapping are defined precisely, and its appropriateness
and adequacy for the task at hand are demonstrated. The central level is to under-
stand how this computational theory can be implemented, in particular, how the
representation for the input and output and the algorithm to be used to transform
one into the other are chosen. The last level is the details of how the algorithm
and representation are implemented in hardware.

According to Marr’s theory described above, for understanding the basic com-
putational architecture of the brain and the mystery of human cognitive abilities
it seems very essential to study massively parallel and highly interconnected net-
works of neuron-like elements, which are inspired by the obvious features, such as
parallelism and distribution, of the brain (Anderson & Hinton, 1981). The net-
works are variably referred to as neural networks, connectionist networks, parallel
distributed processing systems, and neural computers. These studies attempt to
understand the mechanism of the brain by modeling its parts and their connections
which can perform verious kinds of cognitive tasks or can explain various meaning-
ful phenomena observed in human cognitive processes, and trying to characterize
mathematically the kinds of useful computation that such assemblies perform.

The history of studies of neural networks can be traced back to perceptron

proposed by Rosenblatt (1962) and the neural networks have successfully been em-
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ployed to deal with a variety of problems in vision, word perception, associative
memory, word sense disambiguation, speech production, learning and so on. Es-
pecially in recent years, a very powerful learning algorithm called backpropagation
has been proposed (Rumelhart, Hinton, & Williams, 1986) and has been sucessfully
applied in the wide range of cognitive tasks. Moreover, it has been demonstrated
that the calculations such as the decisions in combinational optimization probleins,
which take tremendously long time for current computers, can be accomplished by
neural networks very rapidly and effectively (Hopfield & Tank, 1985). Because the
power of neural networks has been developed successfully and recognized gradually,

the expectation and interest in the studies of neural networks is rapidly growing.

1.2 Memory and Cognitive Processes

Without memory, there can be no perception as we experience it, no learning, no
motivated action — Almost all of the cognitive activities depend on the contextually
and effetively retrieval of the necessary information from memory. Therefore, to
understand the architecture of human memory and how the memory has to do with
the various kinds of cognitive functions are very important goals of the studies of the
brain. At the same time, it can provide a very important clue for the understanding
of the whole mechanism of the brain.

In psychology, human memory is divided into three processes, which are record-
ing, storage and retrieval, and is classified into two kinds, the short term memory
and long term memory (Waugh & Norman, 1975; Norman, 1969). Moreover, ac-

cording to Tulving’s theory (1983), the long term memory is classified into the
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procedural memory and the propositional memory, the latter of which is further
classified into the episodic memory and the semantic memory. The episodic mem-
ory is defined as the memory for specific, personally experienced events, while the
semantic memory is the memroy for general principles, associations, rules, and the
like. The procedural memory, which is also called operational memory, consists of
the skills of perceptual motion or cognition. In other words, it is the memory of
procedural steps for performing cognitive tasks such as the operation of machines
or the driving of cars.

So far, mainly two kinds of models for the semantic memory have been pro-
posed. One is Al models that typified by the semantic network (Quillian, 1969).
In these models, the semantic knowledge is represented by the nodes that express
concepts and the links that express the relations between the concepts. The other
is associative networks which are modeled by considering the fact that the brain is
constructed by hardware called neural network and human memory is characterized
by associative processing (Kohonen, 1978). As the models of the procedural mem-
ory, the procedural network (Brown & Burton, 1978) and the production system
(Greeno, 1978; Anderson, 1983) are well known. Recently, the associative network
model has been developed to represent the procedural memroy (Hirai 1986; Hirai
& Ma, 1988).

The idea that a prominent feature of human memory is the association can
be traced back as far as Aristotle (Anderson & Bower, 1973). However, only in
the last twenty years has the associative memory idea been adopted in the mod-

eling of human memory and various kinds of models of associative memory have
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been proposed. Among them, the most noticeable and widely employed one is the
correlation matrix memories proposed by Kohonen (1972). His correlation matrix
formalism is described in the next section, because it is also the mathematical basis

of our models to be proposed in this dissertation.

1.3 Correlation Matrix Memories and Neural
Networks

Let us consider ! pairs of key vectors and associated vectors and let the kth pair
of them be X(® = ({9 2{¥), ... 20) and Y® = (¥ 4 ... 4®), respectively.
The correlation matrix M that memorizes the [ pairs of associative relationships is
defined by

M= zlj Xy k) (1.1)

k=1
where T designates transposition of a vector. The process of associative recollection

is described follows:

i
Y=X-M=x 3 X®T.y® (1.2)
k=1

where X is a key input and Y is a recollected vector. If X = X*), we have

Y = x® . xBT y&) 4 Zx(k) L xXOT (), (1.3)
i£k
If the key vectors are mutually orthogonal, the inner products X*) . X®)7T disap-
pear and the associated vector Y(*) appears in proportion to the inner product
X&) . Xx®T If the key vectors are not orthogonal, crosstalk noise Y} appers in
proportion to X*) . X(T,
In general, a neural network consists of a large number of neuron-like simple

computing elements connected via synapse-like weighted links. The elements are



CHAPTER 1. INTRODUCTION 9

computational entities defined by a real-value potential. A element communicates
with the rest of the network by transmitting a single output value to all elements
it is connected to. The elements receive inputs via weighted links. Each link
contributes an input whose magnitude equals the output of the each element at the
source of the link times the weight on the link.

The correlation matrix memory described above can be modeled by a basic
neural network, in which the transmiting efficiency (weighted links) from key in-
put elements to output elements corresponds to the magnitude of elements of the
correlation matrix (e.g. Fukushima, 1979, 1989). In fact, by introducing inhibitory
element to the basic neural network or seting up threshold on the elements, the
crosstalk noise described above can be taken away or can be reduced.

However, crosstalk noise will necessarily occur when one and the same key is

associated with more than one item. In this case, (1.3) becomes
y = x®) . x()T | (Y(kl) +Y®D L4 y(kh)), (1.4)

provided that the key vectors are mutually orthogonal. In order to resolve the

multiple-match problem, a model of associative network, HASP, has been proposed

by Hirai (1983).
1.4 Purposes and Outline of the Dissertation

The purposes of this dissertation are to represent three kinds of cognitive processes,
including problem-solving, knowledge representation, and learning, with neural net-
works and to demonstrate that all these neural networks can be constructed withing

the framework of an associative network, HASP. The research is based on the belief
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that the memory is the most fundamental and essential function in human cogni-
tive processes. In Chapter 2, we model the process of problem solving and show
that the performance of the model can be improved by the priming effect and the
merging between procedural steps. To our knowledge, so far, no such neural net-
work models have been proposed. Chapter 3 describes a new scheme for knowledge
representation. Some of defects existing in the previous models can be improved
and the results of computer simulation show that our model can handle knowledge
very quickly and effectively. In Chapter 4, we propose a neural network which can
mimic some aspects of learning of sequence and provide an explanation for the psy-
chological phenomena observed in children’s learning process. Finally, in Chapter
5, we make a brief conclusion for our works and present future directions of the

research.



Chapter 2

Modeling the Process of
Problem-Solving

In this chapter we propose a model of neural network underlying arithmetic
problem-solving. All of the models for procedural memory, semantic memory,
and working memory, which are necessary to solve problems and are basic
constituents composing the model, are constructed within the framework of
an associative network, HASP. Performance of the model is simulated on
a digital computer. By memorizing primitive knowledge of addition of two
digits such as 6 + 8 = 14 in the semantic memory and by memorizing pro-
cedural knowledge for the control of the process of adding in the procedural
memory, the model can perform addition of multiple numbers with multiple
digits. The performance of the model can be improved by making explicit
serial associative relationships between consecutive procedural steps, because
a current procedural step primes the next one. In addition, if a preceding
procedural step is the subset of the next one, merging between the two steps

occurs. The performance can be improved about 20% by the priming ef-

11
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fect and the merging. By memorizing incorrect procedures, the model can
also generate four kinds of bugs that were observed in children’s practice of

addition.

2.1 Motivation

Our cognitive activities, such as problem solving, are carried out by using various
kinds of knowledge stored in various memory systems. When we solve an arithmetic
problem such as adding two numbers with multiple digits, for example, we use
primitive knowledge of addition of two digits such as 6+8 = 14 stored in a semantic
memory, procedural knowledge stored in a procedural memory which controls the
digit-by-digit and column-by-column solution process of the adding, and working
memory that temporarily stores intermediate results to be used later on demand.
Therefore, to understand how such problem solving tasks are carried out in our
brains, first we must understand individual memory systems which can store and
retrieve relevant knowledge, and then we must understand how to combine them
to solve problems in cooperation.

Since the neural networks underlying individual memories are composed of a
large number of low-speed components, neurons, the high-speed retrieval time of
our memories must come from their parallel and distributed structures and the
suitable computations they perform. Therefore, to understand cognitive systems
it is essential to figure out their computational architectures underlying individual
memories and their combinations.

Psychological studies on problem solving were carried out earlier by Gestalt psy-
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chologists. Many psychological models on solution processes of problemns, ranging
from puzzles such as tower of Hanoi to arithmetic and geometric problems, have
been proposed by using production systems (Newell & Simon, 1972; Greeno, 1978;
Anderson, 1980; Anderson, 1983; Kintsch & Greeno, 1983).

This chapter presents a model of neural network underlying arithmetic problem
solving. Since our memories are characterized by associative processing, all of
the memory models constituting the present model are constructed within the
framework of HASP, a model of human associative processor proposed by Hirai
(1983). One of the most prominent features of HASP is its capability of memorizing
one-to-many associative relationships. By this function, several items associated
with one particular key can be retrieved one by one, and set-theoretically defined
multiple key search operations such as intersection, join, difference and negation, as
well as partial key search operation can be performed. Especially set intersection
operation can be carried out by providing all relevant keys in parallel and only
items associated with all those keys simulateneuosly can be retrieved.

The structure of this chapter is as follows. In Section 2.2, we describe HASP
with positive feedback, which is used to construct procedural memory. Section 2.3
presents overall structure of the model. In Section 2.4, control structure of the
process of adding is described. In Section 2.5 and 2.6, the models of working mem-
ory and semantic memeory are described respectively. Section 2.7 shows results of
computer simulation and presents discussions about improvement in the efficiency
of performance. It is also shown that the model can generate four kinds of bugs

observed in children’s practice.
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2.2 HASP with Positive Feedback

In this section we describe HASP with positive feedback, which can store and
retrieve procedural knowledge. Retrieval of the procedural knowledge from the
associative network can be viewed as the retrieval of an action by a set of conditions
in a production rule. Structure of the network is shown in Fig. 2.1. It consists
of two components: heteroassociative network with an orthogonalized input, and
inhibitory recurrent network. The readout contro] unit of HASP (Hirai, 1983) is

not involved.

2.2.1 Heteroassociative network with an orthogonalized
input

In this network, associative relationship between an external key input, which is

presented through K'(z), and a procedural step, which is presented through T'(y;),

is stored in the excitatory modifiable connections Wsx(y1,z). These connections

are strengthened from initial strength, which is assumed to be zero, to some positive

value, according to the following learning algorithm (I — 2.1):

1. if K(z) -T(y;) > 0, Wsg(y1,z) is increased to some positive value Ws, and

2. if K(z) - T(y1) = 0, Wsk(y1,z) is not changed.

The external key input provides context or status information of the model. Be-
sides, the serial associative relationship from a procedural step to the next one is
established as follows. Let us assume that the first procedural step is held in HASP

by positive feedback loops denoted by A(y,) in Fig. 2.1. By providing the next
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Fig. 2.1. Structure of HASP with positive feedback. Network notations are
follows. Open elements: excitatory. Hatch elements: inhibitory. —» : fixed ex-
citatory connection. — : modifiable excitatory connection whose strength is in-
creased by learning. —o: excitatory connection which carries teacher signal. — :
fixed inhibitory connection. —0: modifiable inhibitory connection whose strength

1s weakened by learning.
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procedural step through T'(y,), the serial associative relationship is stored in the
excitatory modifiable connections Wsa(yy,v2) by strengthening their connections

from initial strength to Ws, according to the following algorithm (L — 2.2):

1. if A(y2) - T(y1) > 0, Wsa(y1, y2) is increased to W, and

2. if A(ya) - T(y1) = 0, then Wga(y1, y2) is not changed.

By this learning algorithm, each procedural step is also associated with itself, so
that a positive feedback path can be established.

An orthogonalizing network is introduced to avoid a partial key problem .
Let us consider the following production rules stored in an associative network:
(417,427 “37) ==> “A” and (“17, “2") ==> “B”, where the left hand side of the
arrow represents a set of conditions and the right hand side represents an action
that should be executed when all of the conditions are satisfied. In this case, the
conditions of the second rule is included in the conditions of the first one. This
causes partial key problem as described below. Each production rule can be rep-
resented by a pair of associative relationship between a set of conditions and an
action. Conditions of each rule is considered as spatial key patterns, which are
presented to the heteroassociative network through K'(z) and A(y.) in parallel,
and an action of each rule is considered as a spatial pattern, which is presented
through T'(y;). Therefore, the above two production rules can be represented by

an associative mapping function M[*] as follows:

M[“l”, “2”, «333] —_ {“A”},
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and

Ajj[((]‘”, “271] —_— {“B?}}-
According to the characteristic of HASP (Hirai, 1983), the above two relationships
can be rewritten in the following form:

M[c:ln] — {“/‘1", “B”},

M[“Q”] — {C‘A”’ “B”},
and

M[u3v] —_ ‘{“An}.

Since HASP retrieves a set of actions by the intersection of the sets specified by

the relevant conditions, it becomes
M[“17,%2”] = M[“1"] N M[“2"]
= {“A”,“B"}Nn {“4”,“B”} = {“A”,“B"}.
Hence, “B” can not always be retrieved by M[“1”,“2”]. A simple solution to

circumvent such partial key problem is to add unique conditions made from the

original conditions by some function f(x), and the two production rules are modified

as follows:

((il))a “2”! (C3)J,f(((13‘)’ t(«z))’ “3)7)) ==> A;
(((1)7’ 4127)’ f(“l))’ (i?”)) :=> B-

where f(“17, “27, “3”) is made to not be equal to f(*17, “2”). Since M[f(“1”, “27})]
— “B”, it becomes M{“l”, a2n, f(“].”, 11277)] — M[“l’;] niw{uzn] nﬁ{[f( “17,, 4(2»)] —
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“B”. Hence, B can always be retrieved by(“1”, “2”, f(“1”,“2")). This function
f(*) is implemented by an orthogonalizing network which can transform any input
patterns to mutually orthogonal ones. In our model, the orthogonalizing network
proposed by Hirai (1984) is employed and it is described in Appendix of (Hirai &
Ma, 1988). The associative relationship between the output of the orthogonalizing
network and a procedural step, which is presented through 7'(y;), is stored in the
excitatory modifiable connections Wsp(y1, z) by strengthening their connections

from initial strength to Ws, according to the following learning algorithm (L —2.3):

1.if F(z) - T(y1) > 0, Wsr(y1, 2) is increased to W, and

2. if F(2)-T(y1) =0, Wsr(y1, 2) is not changed.

The inhibitory element Ix with threshold 8 gathers the activity of key input,
positive feedback input and output of the orthogonalizing network through excita-
tory connections Wy and suppresses output elements S(y;) of the heteroassociative
network through inhibitory connections W;. The response of the inhibitory element
I with threshold 8 at time ¢ is defined by

Ix(t) = o[> Wk - K(z,8) + 3 Wk - A, t) + Y Wi - F(z,1) — 6], (2.1)
z v z

where ¢[*] is a nonlinear transfer characteristic of an analog threshold element

defined by
ola] = a, ifa>0 (2.2)
0, ifa<0.
By the suppression from the element [, the output of the network is limited to

the magnitude between zero and the threshold in spite of the existence of positive
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feedback loops. The function of set intersection operation is also implemented by
this suppression (Hirai 1983).
The element S(y;) is assumed to be an analog threshold element with time lag

of the first order. The response is defined by

-—-—-————dS Elyl’t) + S*(y1,t) = ZW% (y1,2) - K(z,¢)
+ Y Wsalyr, v2) - A(ya, t) + Z Wsr(y1,2) - Fz,t) — Wr - Ig(t), (2.3)
and
S(y1,t) = [S™ (v, 1)} (2.4)

2.2.2 Inhibitory recurrent network

At the output of the heteroassociative network, not only a current procedural step,
but also to-be-retrieved steps which are associated with both the current one and
the current external key pattern appear as a superimposed pattern. The inhibitory
recurrent network is used to make the current step suppress the next ones, and
only the current one appears at the output of HASP.

Structure of the network is similar to that of autoassociative memory models,
but the connections denoted Wa4(y1,y2) are inhibitory, and the strength is reduced

from some initial value W, to zero according to the following learning algorithm

(L —2.4):
1 if T(y1) - T(y2) > 0, Waa(y1,y2) is reduced to zero, and

2. if T(y1) - T(y2) = 0, then Waa(y1,y2) is not changed.
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With this algorithm the autocorrelation of a spatial pattern representing each pro-
cedural step is stored as a spatial distribution pattern of reduced inhibitions. Hence,
if each procedural step is a binary pattern composed of 0 and 1 elements, and at
least one 1-element of the pattern is not included in the others, then the inhibi-
tions between such l-elements will remain. By assuming the initial value to be
greater than 1.0, the multiple procedural steps, which appear at the output of het-
eroassociative network simultaneously, compete through the remaining inhibitory
connections, and finally only the current procedural step appears at the output of
HASP.

The element A(y;) is assumed to be an analog threshold element with time lag

of the first order. The response of A(y;) at time ¢ is defined by

Ay, t) = ©[A™(y1,1)], (2.5)

where

dA*(y1,t .
#2———3;’1 ) + A%(y,t) = W(y1) - S(y;,t) — Z Waalyr, va2) - I(ya, 1), (2.6)

Yz

and
I(y21 t) = A(yEa t)! (27)

where W (y,) is a connecting coefficient from S(y;) to A(y;).
It should be mentioned that the retrieval of the next procedural step is carried

out by changing the external key input instead of using the readout control unit
used in (Hirai, 1983).
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2.3 Owverall Structure of the Model

Overall structure of the model that can represent the process of addition is shown
in Fig. 2.2. The box denoted by “input system”, together with that denoted
by “representation of numerical concepts and operators”, constitutes the input
encoding subsystem. This subsystem reads and recognizes each digit or the operator
written on paper as our vision does, and a specific neural element or a numerical
concept encoding the digit or the operator in the latter box is activated. In our
model, however, this subsystem is assumed to exist and its modeling is left as a
future work. The box denoted by “output system”, together with that denoted by
“representation of motor images” constitutes the output subsystem. It writes out
answer on paper. It also writes out intermediate results such as a carry for later
use. In our model, however, this subsystem is assumed to exist and the modeling
is left as a future work, too.

A working memory, which is requisite for the construction of the model, is not
shown as a separate box , but is embedded in the box denoted by “representation
of nemerical concepts and operators”. It is used to temporarily store digits and the
operator read from paper or intermediate results that will be used later on demand
in the process of adding. In our work, it is modeled as an associative network
temporarily storing associative relationships between a procedure and a numerical
concept or an operator activated by that procedure.

The semantic memory of addition stores and retrieves the primitive knowledge
of addition of two digits from 04+0=0 to 9+9=18. HASP with input buffers for

augend, addend and operator is used to model this memory. Since the answer is
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Fig. 2.2. Overall structure of the model.
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also a nemerical concept, it is fed back to the box denoted by “representation of
numerical concepts and operators”, and activates a corresponding network element,
so that the intermediate results to be used later can be temporalily stored in the
working memory.

The process of adding is controlled by the procedural knowledge stored in the
procedural memory system. In the construction of this memory, HASP with posi-
tive feedback described in Section 2.2 is employed. According to the overall status
of the model, a set of appropriate control signals constituting a micro-procedure is

retrieved from the memory and controls the behavior of each part of the model.

2.4 Control Structure of the Process of Adding

Most of the models of problem-solving processes hitherto proposed have been con-
structed by using production systems(Greeno, 1978). For the process of addition,
for example, Anderson used seven production rules to represent the procedural
knowledge (Anderson, 1980). Each production rule consists of a set of conditions
and a subgoal which should be executed when the set of conditions is satisfied. The
retrieval of an executable subgoal is carried out by pattern matching between the
set of conditions and a set of internal and external status of the model.

In our model, a production rule is viewed as an associative relationship between
a set of conditions and a subgoal as described in section 2.2. Storing production
rules and retrieving a subgoal is represented within the framework of HASP, which
can perform set intersection retrieving of a subgoal by providing relevant conditions

simultaneously, without making a serial search (Hirai, 1983).
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A subgoal, however, is only a higher level language, so that each subgoal must
be broken down into a sequence of micro-procedures. Table 2.1 shows subgoals
and micro-procedures postulated in this work. Each micro-procedure sends a set
of control signals that control the behavior of each part of the model. Control
signals constituting micro-procedures are shown in Table 2.2. A micro-procedure
composed of control signals CS — 1 and CS — 2, MP — 1, for example, controls
the model to read the operator ”+4” from the external world and to store it in the
working memory.

In order to reflect these hierarchical relationships between subgoals and micro-
procedures, the procedural memory is devided into two subsystems as shown in
Fig. 2.3-a. As shown in Fig. 2.3-b, a subgoal t‘ransition net (SG1, etc) is stored in
the superordinate procedural memory, and sequences of micro-procedures (M P — 1,
etc.), which constitute subgoals, are stored in the subordinate procedural memory.
According to the status of the model, a subgoal is retrieved from the superordinate
subsystem. The subgoal specifies which sequence of micro-procedures the subordi-
nate system should retrieve. The transition between micro-procedures is sponta-
neously initiated by the change in status signals resulting from the execution of the
previous micro-procedure. When all micro-procedures constituting a subgoal are
executed, the subordinate subsystem sends ”"Return” information concerning the
completion of this subgoal to the superordinate procedural memory. According to
“Return” information and the other new status, the next subgoal that should be

executed will be retrieved.
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Table 2.1. Subgoals and micro-procedures

SUBGOAL-1: Start
MP-1: Read operator from paper and temporarily associate
control signal P, with it in the working memory.
SUBGOAL~2: Read-first-digit
MPp-2: Read first digit from paper and temporarily associate
control signal Py with it in the working memory.
SUBGOAL~-3: Read-next-digit
MP-3: Read next digit from paper and temporarily associate
control signal P, with it in the working memory.
SUBGOAL-4: Add-two-digits
MP-4.1: Reset input and output buffers of the model.
MP-4.2: Activate control signal P, and retrieve an operator
from the working memory.
MP-4.3: Put the operator into the operator input buffer.
MP-4.4: Activate control s%ignal P, and retrieve an augend
form the working memory.
MP-4.5: Put the augend into the augend input buffer.
MP~4.6: Activate control signal P, and retrieve an addend
from the working memory.
MP-4.7: Put the addend into the addend input buffer.
MP-4.8: Associate control signal P, with an answer, obtained
from the semantic memory, 1n the working memory.
MP-4.9: Associate control signal PCl with a carry, obtained
from the semantic memory, in the working memory.
SUBGOAL-5: Write—carry
MP-5: Write a carry on paper for later use.
SUBGOAL—-6: Add-carries
MP-6.1: Reset input and output buffers of the model.
MP-6.2: Activate control signal Po and retrieve an operator
from the working memory.
MP-6.3: Put the operator into the operator input buffer.
MP-6.4: Activate control signal P~y and retrieve a current
carry from the working memory.
MP-6.5: Put the carry into the augend input buffer.
MP-6.6: Read the carry most recently written on paper and
associate .control signal Poy with it in the working
memory .
MP-6.7: Put the addend into the addend input buffer.
MP-6.8: Write the answer obtained from the semantic memory on
paper as an accumulated carry.
SUBGOAL-7: End-of-column
MP-7.1: Activate control signal P; to retrieve a digit from
the working memory and put the digit into the output
buffer.
MP-7.2: Write the digit in the answer part of the current
colum.
MP-7.3: Read the carry most recently written and associate
control signal P; with it in the working memory.
MP-7.4: Shift attention to the next column.
SUBGOAL—8: End-with-carry
MP-8.1: Move a carry from the previous column to the answer
part of the current columm.
MP-8.2: End.
SUBGOAL-9: End-without-carry
MP-9: End.
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Table 2.2. Control signals constituting micro-procedures

CS-1:

CS-2:
CS-3:
CS-4:
CS-5:
CS-6:

CS-7:
CS-8:

CS-9:

CS-10:
CS-11:
CS-12:

CS-13:
CS-14:
CS-15:
CS-16:
CS-17:
CS-18:

CS-19:

CS§-20:

CS-21:
CS-22:
CS-23:
CS-24:
CS-25:

CS-26:
CS-27:
CS-28:
CS-29:
CS-30:
CS-31:
CS-32:
CS-33:
CS-34:
CS-35:

Read a digit or an operator from paper and put it
into the working memory.

Direct attention to an operator on paper.

Direct attention to the first digit on paper.

Direct attention to the next digit on paper.

Direct attention to a carry on paper.

Write a digit in the answer part of the current
column.

Write a digit in the carry part of the current column.

Move the carry of the previous column to the answer
part of the current column.

Write the answer obtained from the semantic mem-
ory on paper.

Write the carry obtained from the semantic memory
on paper.

Write the digit retrieved from the working memory
on paper.

Enable following control signals to the working
memory.

Control signal Py to the working memory.

Control signal P, to the working memory.

Control signal P, to the working memory.

Control signal P, to the working memory.

Control signal P, to the working memory.

Put the answer obtained from the semantic memory
into the working memory.

Put the carry obtained from the semantic memory
into the working memory.

Put the digit or operator retrieved from the working
memory into one of the input buffers of the
semantic memory.

Reset input and output buffer of the model.

Shift attention to the next column.

End the processing.

Direct attention to a digit of the right column.

Move the carry of the current column to the answer
part.

SUBGOAL-1 has been completed.

SUBGOAL-2 has been completed.

SUBGOAL-3 has been completed.

SUBGOAL-4 has been completed.

SUBGOAL-5 has been completed.

SUBGOAL-6 has been completed.

SUBGOAL-7 has been completed.

SUBGOAL-8 has been completed.

SUBGOAL-9 has been completed.

SUBGOAL-10 has been completed.

26



CHAPTER 2. MODELING THE PROCESS OF PROBLEM-SOLVING 27

Stc:us > Superordinate
Procedural

Memory

Returrﬁ @5%906‘
Smms:: > Subordinate
Procedural

Memory

<

Control Signal

(a)

Statusj Statusk
!
SGi SGj QGR
) Y
MP-i MP-j MP-k
— L_'T\
Return i — A
(b)

Fig. 2.3. Structure of the procedural memory. (a)The procedural memory is

divided into two hierarchical subsystem: a superordinate procedural memory and a

subordinate procedural memory. (b)Relation between subgoal transition net, de-

noted by SGi etc. in the superordinate procedural memory, and micro-procedures,

denoted by MP-i etc. in the subordinate procedural memory.



CHAPTER 2. MODELING THE PROCESS OF PROBLEM-SOLVING 28

2.4.1 Superordinate procedural memory

Structure of the superordinate procedural memory is shown in Fig. 2.4. It consists
of HASP with positive feedback shown in Fig. 2.1 and a contextual filter to be
described below. The subgoal transition net stored in the superordinate subsys-
tem is shown in Fig. 2.5. In this figure, the notations SG7's express subgoals,
and C}s express the status signals that control subgoal transitions. For example,
when SUBGOAL — 2 is completed, if status C; exists, SUBGOAL — 9 will be
executed next. Table 2.3 shows these status signals. To describe how this tran-
sition net is stored in the superordinate procedural memory and how the next
subgoal is retrieved, let us consider the case of (SG2,C3,SG9). This transition
means: SUBGOAL — 2 is maintained until it is achieved; When SUBGOAL —2 is
achieved, which is informed by the subordinate procedural memory, and if status
Cs exists, SUBGOAL — 9 is retrieved. To store this transition net, at first the
pattern for SUBGOAL —2 is presented through T(y;) and A(y,) shown in Fig. 2.1
at the same time, and the associative relationship to itself is established in connec-
tions Ws4(y1,12) shown in Fig. 2.1 by strengthening their strength according to
the learning algorithm (L — 2.2). Next, the associative relationship between a set
of conditions, which consists of the status C3 and the “Return” signal informing
the completion of SUBGOAL — 2, and SUBGOAL — 9, and the serial associative
relationship from SUBGOAL — 2 to SUBGOAL — 9 are stored in Wsg(y;,2) and
Wsa(y1, y2) respectively, by presenting the pattern for the set of conditions through
K(z), presenting the pattern for SUBGOAL — 2 through A(ys), and presenting
the pattern for SUBGOAL — 9 through T'(y;) simultaneously. It should be noted
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Fig. 2.4. Structure of the superordinate procedural memory. It consists of a

contextual filter and HASP with positive feedback.
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Fig. 2.5. Subgoal transition net stored in the superordinate procedural memory.
SG1, SG2, ..., and SGY indicate the subgoals and Cy, C,, ..., and C; indicate the

status signals controlling the subgoal transitions.
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Table 2.3. Status signals controlling the subgoal transition

C-1: Start of addition.

C-2: End of a column.

C-3: All digits have been processed.

C-4: There is a carry of the current column on paper.

C-5: There is a carry of the previous column on paper.

C-6: There is a carry in the output of the semantic
memory.

C-7: Blank figure is read
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that in order to retrieve SUBGOAL — 9, the above serial associative relationship
is also necessary, because SUBGOAL — 2 will not disappear and is fed to the
network through the positive feedback loops until SUBGOAL — 9 is retrieved.
Therefore, the stored associative relationships for the transition described above

can be expressed as follows:
M[SG -2, f(SG—2)]={SG - 2}, (2.8)

and

M[Cs, Return of SG — 2, 5G — 2,
f(Cs, Return of SG — 2, 5G — 2)] = {SG — 9}. (2.9)

The SUBGOAL — 2 can be maintained by (2.8) until its completion. When
SUBGOAL — 2 is completed, a return signal that informs the completion of the
subgoal is provided from the subordinate procedural memory. At this point, if the
status Cj exists, SUBGOAL — 9 will be retrieved by (2.9).

Subgoal transition is controlled by the status signals as shown in Fig. 2.5. How-
ever, there is a case where unnecessary status signals exist together with necessary
one for a transition. For example, when SUBGOAL — 3 is completed, the status
signals Cy, Cs and Cg, which may exist, are irrelevant to the transition. These
unnecessary status signals will disturb correct transition. To avoid this problem,
a contextual filter is introduced. It is used to filter out status signals irrelevant to
the transitions of the subgoals.

Structure of the contextual filter is shown in Fig. 2.6. As shown in the figure,

the status signals are supplied through Status(y), and the context signals which
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Fig. 2.6. Structure of the contextual filter. The network notations are the same

as those in Fig. 2.1.
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are the return signals informing the completion of subgoal are supplied through

Return(z). The output of the filter is defined by
Csratus(y,t) = @[Status(y,t) — > Wes(y, z) - Return(z,t) + Gy — ], (2.10)

and

Gr =Y Wek - Return(z). (2.11)

The inhibitory connections denoted by Wes(y, =) are modifiable and their strength
is reduced from initial positive value Wgs to zero according to the following learning

algorithm {L-2.5):
1. If Status(y) - Return(z) > 65, Wes(y, z) is reduced to zero,
2. Otherwise, W¢s(y, z) is not changed.

In order to avoid undesirable modification of W s(y, z), the magnitudes of Status(y)
and Return(z) in a learning phase are assumed to be larger than those in normal
operation. If a status signal Status(y) is irrelevant to the transition initiated by
Return(z), the inhibitory connection Wes(y, z) is not reduced to zero. Hence, this
statau signal is filtered out by (2.10), provided that Wes > Status(y,t)+Gr —fc.
Oppositely, if a status is relevant to the transition, the corresponding inhibitory
connection is reduced to zero. Hence, the status can be passed through the network
by (2.10). In order to maintain a subgoal by itself through the positive feedback
loops until its completion, status signals to superordinate memory must be blocked
out in the meantime. This is carried out by the threshold §¢ in (2.10). Hence, 8¢

must be not less than Status(y,t). The element Gr is introduced to pass relevant
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status signals only when some return signal is activated. Hence, G must be not
less than 8c. That is, Wox must be not less than 8¢ by (2.10), provided that the
magnitude of Return(z)is 1.0. Therefore, the network parameters must have the

following relationships: Status(y,t) < 6¢c < Wer < Wes.

2.4.2 Subordinate procedural memory

The subordinate procedural memory is constructed by HASP with positive feed-
back. It can store and retrieve sequences of micro-procedures constituting subgoals.
The status signals controlling the transition from one micro-procedure to next one
are shown in Table 2.4. To describe how the sequences of micro-procedures are
stored and retrieved in the memory system, let us consider the sequence of micro-
procedure constituting SUBGOAL ~ 4 as an example (see Table 2.1). In order to
retrieve the first micro-procedure of SUBGOAL — 4, at first the following associa-

tive relationship must be established:
M[SG — 4, f(SG —4)]={MP -4.1}. (2.12)
In order to maintain the micro-procedure until its completion, the associative rela-
tionship to itself must also be stored through positive feedback as follows:
M[SG —4,MP — 4.1, f(SG — 4, MP — 4.1)] = {MP — 4.1}. (2.13)
In order to retrieve the next micro-procedure M P — 4.2 after the completion of
MP — 4.1, the associative relationship between the status M C — 2, which results

from the execution of the previous micro-procedure M P —4.1, and M P — 4.2 must

be established as follows:

M[SG —4,MC —2,MP — 4.1, f(SG— 4, MC — 2, MP — 4.1)]
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Table 2.4. Status signals controlling the micro-procedure transition

MC-1:
MC-2:
MC-3:
MC-4:
MC-5:

MC-6:

Operation of the working memory has been
completed.

Input and output buffers have been cleared.

Attention has been shifted to the next column.

Operation of the output subsystem has been
completed.

A carry has been moved to the answer part of the
current column.

A digit or an operator has been set in one of the input
buffers of the semantic memory

36
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= {MP - 4.2)}. (2.14)

In order to send return signal informing the completion of SUBGOAL — 4 after

the completion of the last micro-procedure M P — 4.9, the associative relationship
M[SG—4,MC—1,MP —4.9, f(SG—4,MC —1, MP — 4.9)]
= {Return of SG — 4, } (2.15)

must be stored. MC — 1in the above equation is a status signal resulting from the

execution of M P —4.9.

2.5 Model of Working Memory

Working memory is defined as a memory system that temporarily stores information
necessary to carry out a specific problem-solving task (Squire & Cohen, 1984). In
our model, working memory is used to temporarily store a result and a carry of
addition of two digits, as well as an aguend, an operator, and an addend which
are read from visual field. All of the models of working memory so far proposed
assumed that it is an independent memory system with a separate box. In this work,
however, it is shown that the working memory does not necessarily have a separate
box, and it can be modeled within the framework of HASP. Working memory
is assumed to be a temporary associative relationship between a specific control
signal in a micro-procedure and a numerical concept or an operator activated by
that procedure. For example, when the micro-procedure M P — 2 (see Table 2.1)
is executed, the control signal C.S — 14 shown in Table 2.2, which is embedded
in MP — 2, is used to associate with a digit read from paper according to this

micro-procedure.
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Structure of the model of the working memory is shown in Fig. 2.7. The

following two points are different from HASP:

1. The elements S(y) and A(y) in HASP are integrated into a single element
denoted by AC’ON(?/)-

2. The excitatory connection denoted by Wywori (v, z) is a high speed modifiable
one. It is strengthened to W by the conjunctive activation of K'pc(z), which
is a control signal, and Acon(y), which represents a numerical concept or an

operator, but it is weakened as time goes.

The element Agon(y) receives numerical concept or operator input from the input
encoding system or the semantic memory through T¢gon(y). The input to element
Acon(y) through Teon(y) is controlled by control signals coming from the proce-
dural memory (CS — 1, CS — 18, and C'S — 19 shown in Table 2.2) and can be

expressed as follows:
Toon(y,t) = Apm(1,t) - Avpur(y,t) + App(18,1) - Asya(y.t)

+ Apa(19,) - Asnc(y, 1), (2.16)

where, Apy(7,t) represents the response of ith output element of the subordinate
procedural memory, from which control signal CS — i shown in Table 2.2 may be
sent, at time {. Arypyr(y,t) represents the response of an output element of in-
put encoding system representing a nemerical concept or an operator at time t.
Asmr(y,t) represents the response of an output element of the semantic memory,
from which an intermediate result of addition comes, at time t. Agpyc(y,t) repre-

sents the response of an output element of the semantic memory, from which a
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carry of addition comes, at time t. The key information supplied through Kpo(z)
consists of a set of control signals ( CS—12 ~ CS—17) that comes from procedural

memory as follows:
Kpe(z,t) = Apm(12,t) - Apy(z + 12, 1), (2.17)

where z takes an integer from 1 to 5. This equation means that the key input
Apm(z +12,t) (z = 1,...,5) is gated by Appr(12,%) at time ¢.
The element Agon(y) is assumed to be an analog threshold element with lag

of the first order. the response is defined by

dA* )t ™ ¢
\ con (¥ )+ACON(y’t) =Y Wwork(y,z,t) - Kpo(z,t)

dt
—Wip - Ikpc(t) = Y Win(y,z,t) - Iin(z,t) + Wr - Toon(y, t), (2.18)
Ikpc = Y Wkpc - Kpc(z) — 6, (2.19)
Acon(y,t) = ¢[Azon (3, 1)], (2:20)
and
I]N(Z,t) = ACON(Z,t). (221)

The initial strength of the connection Wywogrx(y,z) is zero and is temporarily

modified by the following learning algorithm (L-2.6):

Wwork (Y, 2,t + dt) = owlb - Wwork(y, z,t) + ¢ - Acon(y,1) - Kpe(z,t)]. (2.22)
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Where b (0 < b < 1) is a decaying coefficient and ¢ is a strengthening coefficient.

The function pw[#] is defined by

W, fa>W
ewla] =< a, f0<a<W (2.23)
0, ifa<o.

The inhibitory recurrent network composed of Wyy(z,y) behaves as a competitive
network in the same way as the homologue of HASP. Since the excitatory connec-
tion denoted by Wiwork (y, z) is weakened as time goes, the inhibitory recurrent
network suppresses older associatiated concepts and the most recently associated
one can be retrieved. Besides, each time a temporarily stored concept is retrieved,
Wwork(y, z,t + dt) is increased since Acon(y,t) - Kpe(z,t) > 0, and the memory
for this concept is restrengthened. Therefore, when the model performs addition,
once the operator “+” is registered in the working memory, it can be retrieved

when necessary, without seeing it again.

2.6 Model of Semantic Memory

The primitive knowledge of addition, from 0 + 0 = 0 to 9 + 9 = 18, is stored in
the semantic memory. If the patterns for “6”, “+”, and “8” are supplied to the
semantic memory in parallel, for example, the patterns for answer “4” and carry
“1” can be retrieved simultaneously. Such a semantic memory can be modeled by
using an orthogonalizing network proposed by Hirai (see Hirai & Ma, 1988) and a
heteroassociative network of HASP.

As mention above, HASP retrieves associative items by set intersection opera-

tion. By storing all associative relationships of addition from 040 = 0 to 9+9 = 18,
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all of the augend and addend come to be associated with multiple numbers, and
the right answer can not be retrieved by the intersection of sets specified by an
augend and an addend. To solve this problem, the orthogonalizing network is em-
ployed, and the all key input patterns, from 0 + 0 to 9 + 9, are transformed into
non-overlapping ones.

Structure of the model is shown in Fig. 2.8. The key input is divided into three
parts Kaya, Ko, and Kapp, through which the patterns for augend, operator,
and addend are inputted respectively. The output is divided into two parts Aspyr
and Aspc, from which the patterns for intermediate result and carry come out
simultaneously. In order to store 6 + 8 = 14, for example, the patterns for“6”,
“+”, and “8” are presented through K y¢g, Ko, and Kapp as key inputs, and the
patterns for “1” and “4” are presented as associative inputs to the heteroassociative
network. Hence,the association M[f(“6”, “ + 7, “8”)] = “14” can be established.
During the process of adding, by providing the patterns for “6”, “4”, and “8” in
parallel, the result “4” and the carry “1” can be retrieved from Asyr and Asuc
simultaneously.

It is assumed that the semantic memory has input buffers composed of neuron-
like elements with positive feedback to maintain a key input until all keys of augend,
operator, and addend are prepared. The input buffers are controlled by control

signals from procedural memory as follows:
Kave(y,t +dt) = [(Apnm(20,1) - (Apsr(14,t) + Apar(16,1)) - Acon(y,t)

+ Kava(y,1)]- o[l — Apn(21,1)], (

o
o
N
N’
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Fig. 2.8. Structure of the semantic memory.
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Ko(y,t+ dt) = [Apn(13,t) - Acon(y,t) + Ko(y,t)] - o[l — Apar(21,1)], (2.25)

Kapp(y,t +dt) = [Apar(20,t) - (Apar(15,t) + Appar(17,1)) - Acon(y,t)

+ I{ADD(% t)] ’ 90[1 - APM(ZI’ t)]: ( .

8]
o
(2]
S

where Apyr(21,t) is a control signal that resets the input buffers.

2.7 Results of Simulation

The performance of the model was simulated on a digital computer. The pat-
terns representing (encoding) digits from “0” to “9” and operator “+” are as-
sumed to be arrays composed of 11 elements as follows: “0” = (1,0,...,0), “1” =
(0,1,0,...,0),..., “©9” =(0,...,0,1,0), “+” =(0,...,0,1). The network param-
eters used are as follows.

(1) Procedural memory (Fig. 2.1): The time constants of S- and A-elements,
41 and o, of the superordinate procedural memory are set to 1.0 time units of
numerical calculation. The time constants in the subordinate procedural memory
are set to 2.0 time units of numerical simulations. The other network parameters in
both the superordinate and subordinate procedural memory are the same and set
as follows. Wy, Wy, and @ are set to 2.0, 1.0 and 1.0 respectively. The strength of
the modifiable excitatory connections Wsy(y1,z), Wsa(y1, ¥2) and Wsr(y, 2) are
increased from 0 to 2.0 by learning. In order to avoid a state of mutual depression

among competing items, the connecting coeflicient W(y;) from S(y;) to A(y;) is
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set randomly to a value between 1.0 and 1.2. The initial strength of the recurrent
inhibition W44 (y1,y2) is set to 1.5 and reduced to 0 by learning.

(2) Contextual filter (Fig. 2.6): The excitatory connection Wy is set to 1.0.
The initial strength of the modifiable inhibitory connection Wes(y, z) is set to 20.0
and reduced to 0 by learning. The element threshold 6 is set to 1.0. The learning
threshold 6, (see learning algorithm (L-2.5)) is set to 4.0.

(3) Semantic Memory: In this network S-elements are assumed to have no time
lag. All the other network parameters are the same as those of the superordinate
procedural memory.

(4) Orthogonalizing network: Initial value of the modifiable connections
PWgk(y, z) is set randomly to a value between 0.0001 and 0.0005, and is increased
to 20.0 by learning. The coefficient 7 used to fix the threshold P8 is set to 0.99.
(see Hirai & Ma, 1988 in detail).

(5)Working memory (Fig. 2.7): The time constant u; of Acon- elements is
set to 2.0 time units of numerical simulations. Network parameters Wxpo, Wip
and 6 are all set to 1.0. Wy is set to 4.0. Decaying cofficient b and strengthening
coefficient ¢ in equation (2.22) are set to 0.99 and 0.2 respectively. The magnitude
of saturation of Wwork(y, ) is set to 2.0. The initial strength of the recurrent
inhibition W;y(y, 2) is set to 1.5 and reduced to 0 by learning.

By storing the two kinds of procedural knowledge, subgoal transition net shown
in Fig. 2.5 and micro-procedures in Table 2.1, in the procedural memory and by
storing the primitive knowledge of addition of two digits from 0+0=0 to 9+9=18 in

the semantic memory, addition of multiple numbers with multiple digits can be per-
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formed by the model. The simulation result of the process of adding 537+618+429,
for example, is shown in Fig. 2.9-a. Long bars in the figure express the transition of
subgoals and short bars express the transitions of micro-procedures. The intervals
between short bars reflect the time length to complete micro-procedures, and the
intervals between long bars reflect the time length to complete subgoals. The result

shows that it took 1247 steps of numerical simulation to complete this addition.

2.7.1 Improvement in the efficiency of the performance

When we learn driving a car, for example, at first we drive deliberately under
conscious control. Through practice, we can get to drive smoothly and efficiently,
as if one driving action automatically primes the next one, and we sometimes
integrete some driving procedural steps into one chunk.

This section shows that by making explicit serial associative relationships be-
tween successive micro-procedures, our model can merge the preceding procedure
into the succeding one automatically, if the preceding one is a subset of the succed-
ing one. Besides, the priming effect that facilitates the micro-procedural transitions
can be obtained at almost every transition. Hence the performance of the model
can be spontaneously improved.

Let us consider the case of M P—4.2 and M P—4.3 in the SUBGOAL —4 shown
in Table 2.1. It should be noted that the active control signal in the M P — 4.2 is
only Pp. It must also be activated in the M P —4.3, because if P, is not active, the
operator retrieved by Fop will disappear from the the working memory before it is
supplied to the semantic memory. Hence the M P —4.2is a subset of the M P —4.3.

The micro-procedure currently executing is maintained in the subordinate pro-
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Fig. 2.9. The process of adding 537+618+429. (a)in the deliberate mode, and
(b) in the skilled mode. Long bars indicate transitions between subgoals, and short
bars indicate transitions between micro-procedures. It took 1247 steps (a) and 1023

steps (b) to complete the addition.
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cedural memory by the positive feedback. Let the current micro-procedure and
the subgoal be M P — 4.2 and SUBGOAL — 4 respectively. This sel{-maintenance

associative relationships can be expressed as follows:
M[SG—4,MP —42, f(SG—4,MP —42)]={MP —4.2}. (2.27)

The transition to the next micro-procedure M P — 4.3 is initiated by the status
signal M C — 1, which results from the execution of the current micro-procedure
MP — 4.2. The associative relationship between the status signal and the next

micro-procedure can be expressed as follows:
M[SG —4,MC —1,MP—42, f(SG~4,MC — 1, M P — 4.2)]

={MP - 4.3} (2.28)

Since every transition of micro-procedures is executed one by one under the explicit
control of status signals, this mode of operation can be called a deliberate mode.
The process of adding 537+618+429 shown in Fig. 2.9-ais carried out in this mode.

If we make explicit serial associative relationship between current and suceeding
micro-procedure, this serial association together with the self-maintenance associ-

ation by (2.27) can be expressed as follows:
M[SG—4,MP —42, f(SG—4,MP —4.2)]

={MP—42 MP—43}. (2.29)

By (2.29), the next micro-procedure begins to appear at the output of the heteroas-

sociative network of the subordinate procedural memory during the execution of a
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current micro-procedure, and the priming effect can be obtained at almost every
transition of micro-procedures. In addition, when a current micro-procedure is a
subset of the succeeding one, the current micro-procedure is spontaneously merged
into the succeeding one. For instance, in the case of M P — 4.2 and MP — 4.3,
since M P — 4.2 is a subset of MP — 4.3, MP — 4.3 can be retrieved directly
by SUBGOAL — 4 and MP — 4.2 by (2.29)without waiting the completion of
MP — 4.2. It should be noted that in the deliberate mode, M P — 4.2 can be
maintained by SUBGOAL — 4 and thexcurrent micro-procedure M P — 4.2, be-
cause f(SG — 4, M P — 4.2) uniquely specifies the M P — 4.2 by (2.27). This kind
of merging occurs between M P — 4.2 and 4.3, MP — 4.4 and 4.5, MP — 4.6 and
4.7, MP — 6.2 and 6.3, and MP — 6.4 and 6.5. In Fig. 2.9-b, the process of
adding 53746184429 in this skilled mode is shown. It took 1023 steps to obtain
the answer, and the performance could be improved about 20% compared with the
deliberate mode. About fifty percent of the improvement comes from the priming
effect, and the another fifty percent comes from merging of micro-procedures. In
addition, it can be shown that more than two procedures can also be merged if

preceeding procedures are subsets of succeding ones.

2.7.2 Generation of Bugs

By following incorrect procedures, children often make systematic errors in addi-
tion. This kind of error is called “bug”. To analyze bugs provides a very important
clue for understanding the mechanism of human cognitive processes. Several mod-
els on the generation and diagnosis of bugs have been proposed (Young & O’Shea,
1981; Brown & VanLehn, 1980).
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By memorizing incorrect procedures, the model can generate four kinds of bugs
observed in children’s performance of addition (Cox, 1975). Let us consider one
kind of bugs in detail. The bug is that children always barely add all digits with-
out considering columns. In adding 476+17, for example, all digits are added as
(4+7+4+64+1+7). We can generate this bug by storing the subgoal transition net
shown in Fig. 2.10. The modifications of the subgoal transition net are as follows.
After the completion of SUBGOAL — 3, it is executed again without executing
SUBGOAL — 7, which writes out the answer of a column. Besides, if all digits
have been added, SUBGOAL — 7 is executed at first, and then SUBGOAL — 8 or
SUBGOAL — 9 will be executed.

We can generate the other three kinds of bugs in the same way (Ma, 1987).
By compairing the modifications made to the correct procedure to generate the
four kinds of bugs, we found that most of them are related to the subgoals that
should be retrieved after the addition of a column is finished or after all digits
are processed. In other words, the bugs occur during inter-columnar processing
(SUBGOAL —7) or after all digits are processed (SUBGOAL — 8) and do not
occur during intra-columnar processing (SUBGOAL — 4,5, 6). This may be a very

natural finding, since column and carry are complicated concepts for children.

2.8 Summary

In this chapter a neural network model that can represent problem solving processes
such as addition of multiple numbers with multiple digits has been described. In

constructing the model, neural network models of semantic memory, procedural
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Fig. 2.10. The modified subgoal transition net for generating one kind of bugs.

The shaded status signals and dotted transition lines are modified parts.
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memory and working memory, which are necessary components to represent the
process of adding, have been constructed within the framwork of HASP. By com-
bining these memory models, it has been shown that the model can perform ad-
dition of multiple numbers with multiple digits. It has also been shown that the
performance of the model can spontaneously be improved by introducing explicit
serial associative relationships between consecutive procedures. By memorizing in-
correct procedures, four kinds of bugs observed in children’s performance can be
represented. Since the proposed scheme has a general structure, it can easily be
applied to various kinds of problem-solving tasks by introducing domain specific

procedural and semantic knowledge.



Chapter 3

Knowledge Representation

In this chapter we propose a neural network model of semantic network,
which can memorize inheritance hierarchies with exceptions, within the frame-
work of HASP. The model consists of two networks: One can answer the
“what” type and “yes-no” type of queries, and the other can answer recog-
nition problems. Because the property inheritance is established by the as-
sociative relationships from the subordinate concepts to the superordinate
ones, it is not necessary to associate all the properties the superordinate
concepts have with the subordinate concepts. This will be very parsimo-
nious in implementing the model in true hardware. It is also not necessary
to introduce the property inheritance into the encoding scheme of concepts
per se, as Hinton’s model adopted (Hinton, 1981). In his model, the code of a
subordinate concept must include the codes of all it’s superordinate ones. Be-
sides, the model can select a best answer in the recognition tasks, even when
a query lacks or excesses some input properties. The results of simulation

studies show that our model can perform query answering and recognition

53
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tasks very quickly and effectively, inspite of the existence of exceptions to

the property inheritance.

3.1 Motivation

It seems very difficult for the serial, computer-like models to deal with large bodies
of knowledge. A possible reason of the difficulty is that some operations and al-
gorithms necessary for these problems take too long time. However, many of such
operations or algorithms can be handled vary easily by some parallel machines. One
example is the intersection operation of large sets: On a serial machine, it takes
time in propertional to the product of the numbers of the members in all sets;
On some parallel machines such as our models to be described later or Fahlman’s
model (Fahlman, 1979), it takes only a few cycles, regardless of the set size.
Fahlman’s model, called NETL, was the first attempt at using a massively par-
allel network of simple processing elements to representing semantic net. However,
since each node in the semantic net exactly corresponds to a particular element
(node) of NETL and the elements communicated with one another by propagating
discrete messages called markers, NETL is incapable of supporting “best match”
operation in recognition (Brachman, 1985; Fahlman, 1982). That is, in the case
that there is no concept that possessed all of the observed features (properties),
NETL cannot retrieve a concept that most closely exhibits all of the obeserved
features. Moreover, the model cannot represent the exceptions to the property
inheritance which is a basic characteristic of human knowledge representation. Fi-

nally, NETL did not fully utilize the potential for parallelism because the internode
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communication depended on instructions issued by a central (serial) controller. In
the model proposed by Hinton (1981), each node in the semantic net was encoded
by a particular pattern of activity on a large assembly of units. The pattern of
a superordinate concept is inherited to the subordinate ones as their partial pat-
terns, so that the property inheritance can be ensured. However, the interferences
caused by the exceptions make the system take longer time to settle, and some-
times the retrieved patterns are degraded in the final state. In the recent works,
the retrieving capablity of semantic net have been considered (Fahlman et al., 1981;
Brachman, 1982). Etherington and Reiter (1987) established a correspondence be-
tween the inheritance hierarchies with exceptions and the theories of default logic
(Reiter, 1980). So far, however, there is no approach to concretely realize such
correspondence with neural network models.

In this chapter, we propose a new model, which can represent the inheritance
hierarchies with exceptions and improve several defects existing in the previous
models. Such a model is constructed within the framework of HASP.

The structure of this chapter is as follows. In Section 3.2, we describe the prop-
erty inheritance, a basic characteristic of human knowledge representation, and
the inheritance hierarchies with exceptions. Section 3.3 shows the structure of the
model and describes how it memorize the inheritance hierarchies with exceptions
and how they search the memorized concepts to answer queries and recognition
problems. In addition, the functions of selecting a suitable answer from multiple
candidates, the “best match” operation, and the method of ensuring the property

inheritance of our model is compared to the previous ones, and the problems ex-
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isting in the previous ones are pointed out. Section 3.4 presents the results of a
computer simulation and shows that our model can handle the inheritance hierar-

chies with exceptions very quickly and effectively.

3.2 Knowledge Representation and Property In-
heritance

We human being can memorize a tremendous quantity and variety of knowledge
and can access whatever knowledge we need very quickly and flexibly. However,
much of the information we use in everyday life is not stored explicitly but must be
deduced from other information (Fahlman, 1979). When we are told the fact that
Clyde is an elephant, for example, we immediately know “What color he or she
is”, “Whether he or she has long nose”, and so on. Obviously, we cannot imagine
that these knowledge about Clyde are stored in the explicit form. Our alternative
is to believe that we have such knowledge about elephant and we know that the
properties the superordinate concepts (e.g. elephant) have are inherited to their
subordinate ones (e.g. Clyde) in general. So, if we know in addition the facts
“Every elephant is a mammal” and “Every mammal needs air”, according to the
property inheritance we can deduce “Elephant needs air”, and can further deduce
“Clyde needs air”.

A real-world example of concept hierarchy net with properties (or called IS-A
hierarchy with properties, or called inheritance hierarchy) is shown in Fig. 3.1.

From this net, we know that African elephants are elephant, mammal, and animal

and they have big ears and their color are relatively black. We can also deduce
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Fig. 3.1. A real-world example of inheritance hierarchy with exceptions.
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that African elephants have long noses and that they breathe with lungs from the
property inheritance, since the superordinate concept of African elephant, elephant,
has long nose and the superordinate concept of elephant, mammal, breathes with
a lung. On the other hand, exceptions to the property inheritance exist in the
real-world knowledge. From this hierarchy, for example, we can see that penguin
cannot fly, although the superordinate concept, bird, can fly in general.

From the above descriptions we can see that the property inheritance is a basic
characteristic of human conceptual representation, and how to ensure it is a major
issue in the works of representing semantic nets (Hinton, 1982). One method is to
copy all the properties of superordinate concepts for every subordinate one. How-
ever, this straightforward approach is too space-consuming. A better alternative to
making a full copy of the superordinate concept is to give each subordinate concept
a pointer back to its superordinate one, so that whenever a question arises about
the subordinate concept, the properties connecting with a superordinate one can

be inspected.

3.3 The Model

3.3.1 A network for query answering

A part of the inheritance hierarchy with exceptions shown in Fig. 3.1 is shown in
Fig. 3.2. In the figure, we refer to nodes such as “Bill” and “person” as concepts,
labels such as “color” and “occupation” as properties of the concepts, the terminal
descriptions associated with properties, such as “pink” and “doctor” as values of

the properties, and the terminal descriptions directly associated with the concepts,
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Fig. 3.2. A part of the inheritance hierarchy with exceptions shown in Fig. 3.1.
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such as “clever” and “standing erect”, as facts associated with the concepts. The
information such as (Bill, color, pink) shown in Fig. 3.2 can be used to answer the
“what type” query, “What color is Bill 7?7, and the information such as (person,
standing erect) can be used to answer the “yes-no” type query, “Does person stand
erect 7. In addition, as shown in the figure, the fact that the color of Bill is pink is
an exception to the property inheritance, since the color of person, a superordinate
concept of Bill, is white, yellow, or balck in common, not pink.

Structure of the network, which can memorize inheritance hierarchies with ex-
ceptions and can search the stored concepts to answer the two types of queries
described above, is shown in Fig. 3.3. It consists of two associative networks: One,
called IS-A network, is a heteroassociative network with positive feedback loops
and store the associative relationships from the subordinate concepts to the super-
ordinate ones; The other, called Property-Value network, consists of HASP without
readout control units and store the associative relationships from the properties of
concepts to their values.

Next, we describe how the model memorizes the inheritance hierarchy with
exception shown in Fig. 3.2 and how it answers queries.

In IS-A network, by presenting each pattern for concept through KN(z) and
TN(y:) at the same time, the modifiable excitatory connections Wsg(y1, x) are

strengthened according to the following learning algorithm (Hirai, 1983):

1. if KN(z) - TN(y1) > 0, Wsk(yi1, z) is increased to some positve value Wy,

and

2. if KN(z)-TN(y:) = 0, Wsg(y1,z) is not changed.
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Hence, the associative relationships of all concepts with themselves are established.
By using an associative mapping function AM[x], these associative relationships
can be expressed as follows: M[“Bill”] = “Bill”, ..., M[“mammal”’] = “mam-
mal”. Moreover, by presenting each pair of patterns for the subordinate concept
and it’s superordinate one through the positive feedback loops and T'N(y;) re-
spectively, all associative relationships from the subordinate concepts to the su-
perordinate ones are stored in Wsa(ya, y1). These associtive relationships are
M[“John”]="“person”, M[“person”]=“mammal”, M[“elephant”’]=“mammal”, and
M[“Bill”]=“person” (see Fig. 3.2). In Property-Value network, by presenting each
pattern for concept through AN(y;), the pattern for the property of the concept
through K P(m), and the pattern for the value of the property or the fact as-
sociated with the concept through T'P(n;), all associative relationships from the
concepts and properties to their values or from the concepts to the associated facts
explicitly shown in Fig. 3.2 are stored in Wsy(na, y1) and Wsp(nz, m). These asso-
ciative relationships are M[“John”,“occupation”]=“doctor”, M[“John"]=“clever”,
and so on. At the same time, the strength of the modifiable inhibitory connections
Wa4(na,n1) are reduced from initial value to zero according to the learning algo-
rithm L — 2.4 described in Section 2.2.2 to store the autocorrelation of patterns for
the values.

To answer a “what type” query, “What is the color of Bill 7”7, for example,
the explicit information (Bill, color, pink), an exception to the propety inheri-
tance as described above, shown in Fig. 3.2 can be used and the answer, “pink”,

for the query can be obtained easily by the model as follows: By presenting the
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pattern for the concept “Bill” to IS-A network through K'N(z) and the pattern
for the property “color” to Property-Value network through K P(m), the pattern
for ”Bill” itself can be retrieved from IS-A network by M[“Bill”]=“Bill” stored
in Wsg(y2, z) first. Concept “Bill” will activate it’s superordinate one “person”
and “person” will activate it’s superordinate one “mammal” further through the
positive feedback loops since the all associative relationships from the subordi-
nate concepts to the superordinate ones are stored in Wga(yz, ;) of IS-A net-
work. Finally a superimposed pattern of “Bill”, “person”, “mammal” will ap-
pear at the output of IS-A network and will be supplied to Property-Value net-
work through AN(y;). Since the property “color” is being presented to Property-

Value network through KP(m) at the same time, the values “pink”, “white”, “yel-

»

low”, and “black” will appear at the output of the heteroassociative network of

Property-Value network as a superimposed pattern by M[“Bill”,“color”]=“pink”
and M[“person”,“color”]={“white”, “yellow” “black”}. The values not associated
with the property “color” will not appear at the output of the heteroassociative
network, since the inhibitory element Ixp is introduced and it’s parameters are
chosen so that it can completely suppress the activation of them. Finally, the
pattern for “pink”, the answer for this query, will win the cometition through the
recurrent network and appear at the output of Property-Value network, since the
retrieval of “Bill” which is associated with “pink” from IS-A network precedes that
of “person” which is associated with the other three values as described above.

Moreover, for a query “What is the nutritive source for John ?”, for example, al-

though no explicit information that can be used to directly answer the query is
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stored in the model (see Fig. 3.2), the answer can also be obtained easily by the
model in the same method: While the pattern for concept “John” being presented
to IS-A network and the pattern for property “nutritive source” being presented
to Property-Value network, the superimposed pattern of “John”, “person”, and
“mammal” will appear at the output of IS-A network as described above and will
be fed to Property-Value network, and the pattern for the value “organic matter”,
which is the answer for the query, can be retrieved from Property-Value network
by M[“mammal”,“nutritive source”]=%“organic matter” (see Fig. 3.2). It should
be noted that no pattern will be retrieved from the network until the pattern for
concept “mammal” appears at the output of IS-A network because of the inhibitory
element Ixp. Moreover, for the queries such as “What is the occupation of Bill 77,
since no knowledge that can be used to answer such queries is stored in the model,
no groundless pattern will be retrieved.

To answer a “yes-no” type query “Does John breathe with lung ?”, for example,
the pattern for “John” is presented to IS-A network through KN (z) and the pattern
for “breathing with lung” is presented to Property-Value network through 7'P(n;),
and the superimposed pattern of “John”, “person”, and “mammal” will be retrieved
from IS-A network in the same way as described above. Although multiple facts
are associated with these concepts, only the pattern for “breathing with lung”,
which is being presented through T'P(m) shown in Fig. 3.3, will be retrieved
from Property-Value network by M[“mammal”]="“breathing with lung”, since the
activation of the other facts are completely supressed by the inhibitory element

Ixv. The fact that a pattern can be retrieved from Property-Value network means
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that the answer for this query is “yes”. Oppositely, in the case that a query is not
true or no knowledge that can be used to answer a query is stored in the model, no
pattern can be retrieved from Property-Value network. It means that the answer
is “no”.

However, when a property of a concept has multiple values, the model cannot
know how many values the property of the concept has and cannot distinguish
whether the retrieved value is a ture answer. For example, from the inheritance
hierarchy shown in Fig. 3.2, we know that the color of person has three values:
white, yellow, and black. If we introduce readout control units (RCUs) in Property-
Value network (Hirai, 1983), for the query, “What is the color of person”, the
present model can retrieve the three values one by one. However, for the query
about the color of Bill, since the pattern for“person” will also appear at the output
of IS-A network by M[“Bill”]=“person” and be fed to Property-Value network,
after value “pink” is retrieved by M[“Bill”,“color”]=“pink”, the other three values:
“white”, “yellow”, and “black”, will also be retrieved by activating RCU. Evidently,
these values are not the correct answer as the color of Bill.

In order to solve this problem, an alternative to the present model can be
considered. Structure of the alternative scheme is shown Fig. 3.4. To answer some
property of a concept, the concept can be retrieved from IS-A network and be fed
to Property-Value network. If the fed concept is not the one directly associated
with the property, no pattern will be retrieved from the Property-Value network,
and it’s superordinate concept will be further retrieved from IS-A network and be

fed to Property-Value network. Such process will be repeated until the concept



CHAPTER 3. KNOWLEDGE REPRESENTATION 66

1S-A network

Yalue
Property Input
N Input
53 p ty-val
O a ‘ roper y- ajue
5 E § HASP / network
© { with 1
positive
| feedback

Concept

Yalue
Output
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that is directly associated with the property is retrieved. Hence, by the finally
retrieved concept and the property , the values directly associated with them will
be retrieved one by one correctly. However, this scheme takes very long time to
access the concept that is directly associated with the property and the advantages

of parallel structure can not be taken sufficiently.

3.3.2 A network for recognition

Recognition problem is to locate the concept that completely or most closely ex-
hibits all of the observed features in the stored knowledge base. Suppose, for
example, that we have the knowledge shown in Fig. 3.1 and that we are seeing
something having four legs, long nose, big ears and so on, we can recognize it as an
African elephant immediately. This section describes a network that can perform
such recognition tasks.

Structure of the network is shown in Fig. 3.5. It consists of four associa-
tive networks: Property-Concept network, Reverse IS-A network, working mem-
ory, and IS-A network. Property-Concept network and Reverse IS-A network are
constructed by a heteroassociative network of HASP with positive feedback. The
working memory and IS-A network are constructed by a HASP, which has positive
feedback loops but has not readout control units. Next, we describe how the model
memorizes the inheritance hierarchy with exceptions shown in Fig. 3.2 and how it
searches the concepts in the hierarchy to answer recognition problems. In Property-
Concept network, all explicit associative relationships from property to concept or
the associative relationships from fact to concept shown in Fig. 3.2 are stored in

Wsk(y2,z):  M[“nutritive source, organic matter”]=“mammal”, M[“standing
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erect”]=“person”, and so on. In Reverse IS-A network, all associative relationships
from the superordinate concepts to the subordinate ones are stored in Wg,(ys, 31):
M[“mammal”]=“person”, M[“person”]=“John”, and so on. In IS-A network, all
associative relationships from the subordinate concepts to the superordinate ones
are stored in the modifiable excitatory connections of the network: M[“John”]=

“person”, M[“person”]=“mammal”, and so on and the autocorrelations of pat-
terns for the all concepts are established in the modifiable inhibitory connections of
the network. A recogﬁition task: Recognize a cgncept that has following features:
“It’s nutritive source is organic matter” and “ It stands errect” from the hierarchy
shown in Fig. 3.2, for example, can be performed as follows. By presenting the
first feature “It’s nutritive source is organic matter”, to Property-Concept network
through K(z), concept “mammal” can be retrieved by M[“nutritive source,organic
matter” ]=“mammal” first. Concept “mammal” will further activate it’s subordi-
nate ones, “person” and “elephant”, and the “person” will activate it’s subordinate
ones, “John” and “Bill”, through the positive feedback loops, since the all assoc-
itive relationships from the superordinate concepts to the subordinate ones are
stored in Wsy4(yz, y1) of Reverse IS-A network. Finally, a superimposed pattern
of all concepts, “mammal”, ..., “Bill”, will appear at the output of Reverse IS-
A network. The elements of Reverse IS-A network are connected with those of
the working memory by fixed excitatory connections and these connections are
chosen so that the active elements of Reverse IS-A network can activate the cor-
responding elements of the working memory. Therefore, the superimposed pattern

appearing at the output of Reverse IS-A network can activate the corresponding
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elements of the working memory and can be memorized in the working memory
by using the first feature as a key pattern according to the learning algorithm
L — 2.6 of working memory as described in Section 2.5. After that, all elements of
the networks are reset. Next, by presenting the second feature, “It stands erect”,
to Property-Concept network through K(x), a superimposed pattern of “person”,
“John”, and “Bill” will appear at the output of Reverse IS-A network in the same
way as described above and will be stored in the working memory by using the sec-
ond feature as a key pattern. And then, by presenting the superimposed pattern
of the two features to the working memory, the superimposed pattern of “per-
son”, “John”, and “Bill” will appear at the output of the working memory by the
intersection operation of the two sets of concepts: M[“nutritive source, organic
matter”, “standing erect”]=M[“nutritive source, organic matter”|NM[“standing
erect”]={“mammal”, “person”, “elephant”, “John”, “Bill”}N{“person”, “John”,
“Bill” }={“person”, “John”, “Bill”} (Hirai, 1983). Since the associative relation-
ships from the subordinate concepts to the superordinate ones: M[“Bill”}=“person”
and M[“John”]=“person” are stored in IS-A network, the concept “person” , which
is the uppermost one among the three concepts in the IS-A hierarchy, will win the
competition through the inhibitory recurrent network and appear at the output of
IS-A network finally. Therefore, the concept having features, “It’s nutritive source
is organic matter” and “It stands erect”, can be recognized as “person”.

Since recognitions are performed by the intersection operation for the multiple
sets of concepts as described above, in the case that no concept in the stored

knowledge base can be matched to completely exhibit the all observed features,
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no concept can be retrieved by the present model as an answer. In fact, however,
since the intersection operation is implemented by the inhibitory element of HASP
(Hirai, 1983), by providing adequate inhibition to the inhibitory element of the
working memory, the output of the inhibitory element is reduced, and the concept
that most closely match the observed features can be retrieved. That is, the model
can perform the “best match” operation.

It should be noted that the model is assumed to be controlled by a control
network, from which the commands such as “Present the first feature to the model”,
“Present the superimposed key pattern to the working memory”, or ”Reset the
elements of the networks” are sent out. Such a control network can be constructed
by a procedural memory as described in Section 2.4 and is assumed to exist in the

model.

3.3.3 Comparisons between our model and the previous
ones

In Hinton’s model (1982), by choosing distributed representations appropriately,
property inheritance can be spontaneously established without any specific connec-
tions. That is, by representing a superordinate concept with a pattern of microfea-
tures (individual active units) that is simply the set of microfeatures common to
the patterns that represent it’s subordinate ones, any effects caused by the pattern
for the superordinate concept will automatically transfer to the patterns for it’s
subordinate ones. Therefore, by encoding elephant as a pattern (111000 000000)
and Clyde as (111000 111000), for example, the hierarchical relation between them

is established implicitly and the properties that elephant have can be inherited to
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Clyde naturally. Evidently, such an encoding work is artificial and troublesome. In
our model, the property inheritance is ensured by establishing associative relation-
ships from the subordinate concepts to the superordinate ones without necessity to
distinguish between the superordinate concepts and the subordinate ones to encode
them as Hinton’s model adopted.

Moreover, in recognition problem, if more than one concept that possesed the
all observed features are found, Fahlman’s NETL assumes that the one that is
uppermost in the IS-A hierarchy is accepted. However, NETL itself does not have
a function to distinguish which concept is the uppermost one in the IS-A hierarchy
and to select it as an answer. In our model, as described in Section 3.3.2, when
multiple candidates (e.g. “person”, “John”, and “Bill”) for a recognition problem
appear at the output of the working memory, the uppermost one, “person”, in the
IS-A hierarchy can be retrieved from the IS-A network.

Finally, NETL is incapable of supporting the “best match” operation, because
the marker passing system was adopted (Brachman, 1985; Fahlman, 1982). How-
ever, the present model for recognition can perform such an operation by lowering

selection criterion of the model as described in Section 3.3.2.

3.4 Results of Simulation

The inheritance hierarchy with exception shown in Fig. 3.2 was taken as an example
and the query-answering and recognition by the model were simulated on a digital
computer to see weather the model can perform them correctly and effectively. The

patterns representing concepts, “Bill”, ..., “mammal”, were assumed to be arrays
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composed of 5 elements as follows: “Bill”’=(1, 0, 0, 0, 0), ..., “mammal”=(0, 0, 0,
0, 1). The patterns representing properties, “color”, “occupation”, and “nutritive
source” were assumed to be arrays composed of 3 elements as follows: “color”=(1, 0,

0), “occupation”=(0, 1, 0), “nutritive source”=(0, 0, 1). The patterns representing

values of properties or facts, “doctor”, ..., “pink”, were assumed to be arrays
composed of 8 elements as follows: “docotor”=(1, 0, ..., 0), ..., “pink”=(0, ...,
0, 1).

3.4.1 Parameters of the model

Parameters of the model used in the computer simulation are as follows. The
time constant of the excitatory elements in all the heteroassociative networks is
set to 1.0 time units of numerical calculation. The time constant of the excitatory
elements in the inhibitory recurrent networks of the network for query answering
and the network for recognition are set to 2.0 and 5.0 time units of numerical
calculation respectively. A saturation characteristic is introduced to the excitatory
elements in the heteroassociative networks that have positive feedback loops. The
saturation value is set to 1.0. The strength of the modifiable excitatory connections
in all networks except the working memory are incresed from 0 to 1.0 by learning.
The initial strength of the modifiable inhibitory connections in all the inhibitory
recurrent networks is set to 1.5 and reduced to 0 by learning. The strength of the
fixed excitatory connections from input lines to inhibitory elements (e.g. Wy shown
in Fig. 3.3) is set to 1.0. The strength of the fixed inhibitory connections from
inhibitory elements to excitatory ones (e.g. W; shown in Fig. 3.3) is set to 1.0. The
threshold, 6, of the inhibitory element in HASP without RCU shown in Fig. 3.5
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is set to 1.0. The strength of the fixed excitatory connections from the excitatory
elements of the heteroassociative networks to the recurrent inhibitory networks is
set randomly to a value between 1.0 and 1.1. For the working memory, decaying
coefficient b and strengthing coefficient ¢ of the excitatory connections in (2.22) are
set to 0.999 and 1.0 respectively. The saturation strength of the connections, W,
in (2.23) is set to 1.0.

3.4.2 Results of simulation for query answering

Suppose the model for query answering memorized the inheritance hierarchy with
exception shown in Fig. 3.2 as described in Section 3.3.1. A result of simulation
for answering a “what” type query, “What is the nutritive source for John 7”7, is
shown in Fig. 3.6. From this figure we know that no concept and value are active
in the initial state. That is, no pattern for concepts and values appears at the
outputs of IS-A network and Property-Value network of the model. By presenting
the pattern for concept “John” and the pattern for property “nutritive source” to
the model as described in Section 3.3.1, after one step of numerical calculation, the
pattern for “John” is activated and is retrieved from IS-A network with magnitude
0.6. After two steps of numerical calculation, concept “person” is activated with
magnitude 0.4. After three steps of numerical calculation, concept “mammal”
is activated with magnitude 0.3 and the pattern for the value “organic matter”
begins to be activated and to appear at the output of Property-Value network with
magnitude 0.1. After 10 steps of numerical calculation, the active magnitude of the
value “organic matter” is increased to a magnitude, near by 1.0. Hence, “organic

matter” is the answer for the query. Besides, for query “What is color of Bill 77,
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Fig. 3.6. A result of simulation for answering a “what” type query.
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although the explicit information “The color of Bill is pink”, which is used to answer
the query, shown in Fig. 3.21s an exception to the property inheritance as described
in Section 3.3.1, from the result of the simulation we know that answer “pink” can
be obtained through eight steps of nemerical calculation. On the other hand, for
the queries about the color of person or the color of John, one of the answers:
white, yellow, and black can be obtained very effectively without any interferences
caused by the exception.

An example of simulation for answering a “yes-no” type query, “Does John
breathe with lung ?”, is shown in Fig. 3.7. As shown in the figure, by presenting
the pattern for concept “John” and the pattern for fact “breathing with lung”
to the model, after three steps of numerical calculation, the concepts, “John”,
“person”, and “mammal”, are activated in order, and fact “breathing with lung”
begins to be activated and to appear at the output of Property-Value network with
magnitude 0.1. After 10 steps of numerical calculation, the active magnitude of
value “breathing with lung” is increased to a magnitude, near by 1.0. Hence, the
answer for the query is “yes”. Another example of simulation for answering a “yes-
no” type query is shown in Fig. 3.8. The query is “Is Bill clever ?”. As shown in
the figure, no matter how many steps of numerical calculation are performed, no

pattern for any value can be activated. Hence, the answer for the query is “no”.

3.4.3 Results of simulation for recognition

A result of simulation for performing a recognition task is shown in Fig. 3.9. The
recognition task is to recognize a concept that posses following two features: “It’s

nutritive source is organic matter” and  “It stands erect” from the inheritance
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hierarchy with exception shown in Fig. 3.2. As shown in the figure, by present-
ing the pattern for the first feature, “It’s nutritive source is organic matter”, to
Property-Concept network, after one step of numerical calculation, concept “mam-
mal” is activated at the output of Property-Concept network and is memorized in
the working memory by using the first feature as a key pattern. After seven steps
of numerical calculation, all concepts, “Bill”, ..., “mammal”, are activated at the
output of Property-Concept network. Hence, the set of the five concepts, Sy, is
memorized in the working memory by using the first feature as a key pattern. Af-
ter that, the all elements of the networks are reset. And then, the second feature,
“It stands erect” is presented to Property-Concept network. From the figure we
know that concept “person” is reactivated after one step of numerical calculation.
After three steps, the other two concepts, “John” and “Bill”, are reactivated, too.
Hence, the set of the three concepts, Sz, is memorized in the working memory
by using the second feature as a key pattern. After that, the all elements of the
networks are reset again. Next, a superimposed pattern of the two features is pre-
sented to the working memory through the key input line. As shown in the figure,
the intersection operation for the two set, S; and S, stored in the working memory
is performed and only the common part of the two sets, “person”, “John”, and
“Bill”, is activated at the output of the IS-A network with magnitude 0.3 after one
step of numerical calculation. After 16 steps, only one concept, “person”, remains
at the output of the network with magnitude near by 1.0. Hence, “person” is the
answer for the recognition problem. In addition, in the case that no concept in

the stored knowledge base can be matched to exhibit the all observed features, no
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cocept will be activated. For example, for a recognition task: Recognize a concept
that has features: “standing erect”, “clever”, and “The color is pink”, no concept

can be recognized by the model.

3.5 Summary

In this chapter we have proposed a new scheme for the knowledge representation.
By properly connecting associative networks, HASPs, the parallel model that can
memorize inheritance hierarchies with exceptions and can be used to answer the
two types of queries and recognition problems is constructed. In our models, be-
cause the property inheritance is ensured by establishing associative relationships
from the subordinate concepts to the superordinate ones, there is neither necessary
to directly establish associative relationships from the properties of the superor-
dinate concepts to all the subordinate ones, which will be very parsimonious in
implementing the model in true hardware, nor necessary to purposely encode the
superordinate concepts with the patterns of microfeatures that are simply the sets
of microfeatures common to the patterns that represent their subordinate concepts
as Hinton’s model adopted. In the case that more than one concept that possesed
the all observed features are found in the recognition tasks, the model can select
the uppermost one in the IS-A hierarchies (Inheritance hierarchies) as an answer.
If no concept that completely posseses the all observed features exists, by lowering
selection criterion of the model, the model can perform the “best match” opera-
tion, and the concept that most closely exhibits all of the observed features can be

retrieved as an answer. The computer simulation for the “best match” operation is
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left as a future work. The results of simulation show that our model can perform
query answering and recognition very quickly and effectively and their performance

is not influenced by exceptions to the property inheritance.



Chapter 4

Modeling the Acquisition of
Counting

In the acquisition of counting by children, there are three interesting phenom-
ena (Fuson et al., 1982): (1)the number word sequence produced by children
can be divided into three distinct portions, called the conventional, stable
nonconventional, and unstable portions; (2)irregular number words such as
“fifteen” are omitted more often than regular ones such as “fourteen”, “six-
teen”, and “seventeen”; and (3)initially the number word sequence is in a
recitation form, rather than in the form of an associative chain of separable
serial elements. This chapter at first analyzes these phenomena from the
viewpoint of associative memory by assuming the number word sequences
are made up of many associative relationships between the number words.
This assumption is not contradictory to the third phenomenon described
above, because the associative relationships are not confined only to those
between the serial number words. On the basis of these analyses, the learning

algorithms of the associative network model, HASP, is extended so that it

91



CHAPTER 4. MODELING THE ACQUISITION OF COUNTING 92

can mimic some aspects of the learning of sequence which involves the above
three phenomena. The learning and production of sequence by the network
are simulated on a digital computer, and the results show that the three

phenomena can be observed in the performance of the network.

4.1 Motivation

Most of the neural network models proposed so far mimic various human perceptual
and cognitive functions such as pattern recognition (eg. Rosenblatt, 1962), asso-
ciative memory (eg. Hirai, 1983) and even the process of problem solving (Hirai
& Ma, 1988). However, it is also necessary to direct our attention to the learning
process, through which these functions are acquired. Some work of this type has
been carried out. For example, the learning of English past tense, in which three
stages can typically be observed, has been simulated by a PDP model (Rumelhart
& McClelland, 1986). In the first stage, children learn only a small number of
verbs and most of them are irregular. At this stage, children tend to learn the past
tense correctly. In the second stage, children learn a much larger number of verbs.
These verbs include a few more irregular ones, and the most of them are regular.
At this stz;mge, children obtain a linguistic rule of -ed form, but often apply this rule
to irregular verbs. In the third stage, the regular and irregular verbs coexist and
children regain the correct use of -ed rule.

This chapter describes a neural network model which can mimic some aspects
of the learning of séquence such as alphabet sequence, music melody sequence, and

the number word sequence. In developmental psychology, a large number of studies
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on the development of mathematical thinking have been carried out (Ginsburg,
1983). Among them, several rather interesting types of errors in the acquisition of
counting were observed by Fuson et al. (1982). Our model provides an explanation
for these psychological phenomena. In order to construct such a model, HASP was
modified to simulate general learning. One of the most prominent features of HASP,
its ability to represent one-to-many associative relationships, is indispensable for
modeling the learning of sequence and for explaining the observed psychological
phenomena.

The structure of this chapter is as follows. In Section 4.2, the psychological
phenomena occurring in the learning of counting are described. In Section 4.3, these
phenomena are analyzed from the viewpoint of associative memory by assuming
the number word sequences are made up of many associative relationships between
the number words. Section 4.4 describs the HASP with general learning which
can mimic the learning of sequence. Section 4.5 presents the results of a computer
simulation verifying that the model provides an explanation of the psychological

data.

4.2 The Phenomena

Fuson, Richards & Briars (1982) reported several interesting phenomena accompa-
nying the acquisition of counting by children. These are as follows:

[1] The number word sequences up to about thirty produced by children when
they are learning to count have a typical structure that is stable across different

counting tasks and across several days. The most common form includes an ini-
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tial portion that is some beginning part of the conventional sequence (e.g., “one,
two, three, four, five”), a middle portion that deviates from the conventional se-
quence but that is produced with some consistency by a given child (e.g., “seven,
nine, ten, twelve”), and a final portion that has little consistency over repeated
productions. Table 4.1 shows an example of a typical child’s repeated counting
trials. In this example, the stable conventional sequence portion is “one two three
four” and the stable nonconventional portion is “four six eight nine”. The unstable
nonconventional portions vary from trial to trial and consist of the words following
“nine”.

(2] Almost all of the stable nonconventional portions have the words in the
conventional orders, but they contain omissions and most of the gaps are of one
word. A rather interesting point is that “fifteen” was omitted more often than all
other words as shown in Fig. 4.1.

[3] After a stable conventional number word sequence is first acquired it func-
tions as a unidirectional whole structure. The number words can be produced only
by reciting the whole sequence. The elaboration of the sequence is a process of
differentiation of the words and construction of relations among them. In what
they called a recitation context study, Fuson et al. gave 3 and 4 year olds either
one, two, or three successive number words as prompts for the production of the
next number word. Children who first acquired a stable conventional number word
sequence were much more successful with the two word prompt than the one word
prompt as shown in Table 4.2, providing evidence that they had not yet elaborated

the sequence.
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Table 4.1. Example of repeated counting trials of a typical child

(after Fuson et al., 1982)
one two thres four six eight nine fourteen sixteen thirteen  five
one two thres four six eight nine twelve fifteen sixiesen thirteen
one two three four six eight nine fourteen
one two three four six seven eight nine eleven
one two three four six eight nine fifteen thirteen eleventeen

ong two three four six esight nine sixteen eight four twelve
ong two three four six eight nine thirteen two 51X

ong two three four six eight nine ten thirteen sixty
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Fig. 4.1. Percentage of conventional and stable portions containing words between
ten and twenty produced. This figure includes words from the conventional portion
preceding a stable portion (e.g., for 1, 2, ..., 10, 11, 12, 13, 16, 18, 19, from 1 to
13 is conventional and 13, 16, 18, 19 is stable) (after Fuson et al., 1982)
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Table 4.2. Percentage of correct responses of children on a recitation contex study

(after Fuson et al., 1982)

One—-word stimulus Two=-word stimulus Three-word stimulus

Age Digit Teens Mean Digit Teens Mean Digit Teesns Mean
S-years 30 15 27 B2 48 55 B3 33 43
4-vears 64 63 63 82 83 82 83 81 82
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4.3 Analyses of the Phenomena

That there are three different portions in the number word sequence produced by
children can be assumed to reflect the fact that a number word sequence is usually
divided into several portions to be learned and exposure to initial portions is more
frequent than exposure to later portions, in the early stages of learning.

In this section, we analyze the phenomena described in Section 4.2 from the
viewpoint of associative memory.

The learning of a number word sequence such as “1, 2, 3” can be seen as
the formation of associative relationships between “1” and “2” and between “2”
and “3”. Here we introduce an associativeﬂ mapping function M[*] such that the
above two associative relationships can be expressed as follows: M[“1”] = “2” and
M[“2”] = “3”. However, as described in Section 4.2, in the production of sequence,
the case that “3” is produced next to “1” can be observed. This means that besides
the above two associative relationships, M[“1”] = “3” must also exist. From this

fact we made the following assumption:

In the early stages of learning, the remote associative rela-
tionship M[“1”] = “3” exists and its strength is almost as strong
as that of the close one M[“1”] = “2” . Hence, there is a case
that M[“1”] = “3” succeeds over M[“1”] = “2” in the competi-
tion, and “3” is produced immediately after “1”. As learning
proceeds, the strength of M[“1”] = “2” becomes much stronger
than that of M[“1”’] = “3”. Hence, “2” is always produced

immediately after “1”
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That the number word “fifteen” was omitted more often than all other words
may result from its irregular construction (i.e., “fifteen” rather than “fiveteen”).
The difficulty of memorizing “fifteen” can be analyzed as follows. From the as-
sumption of remote associative relationship described above it follows that, in
the early stages of learning the sequence “fourteen, fifteen, sixteen”, the strength
of the associative relationship M[“fourteen”] = “fifteen” is as strong as that of
M[“fourteen”] = “sixteen”. However, at this point, if the sequence “four, five,
six” has been learned, the residual associative relationship M[“four”] = “six” will
strengthen M[“fourteen”] = “sixteen”, because “four” and “fourteen” , and “six”
and “sixteen” have common parts “four” and “six” respectively, but M[“four”] =
“five” will not affect M[“fourteen”] = “fifteen”, because “five” and “fifteen” have no
common part. Therefore, the strength of the associative relationship M[“fourteen”] =
“sixteen” is stronger than that of M[“fourteen”] = “fifteen”, and “fifteen” is
omitted in production of the sequence. As learning proceeds, the strength of
M[“fourteen”] = “fifteen” becomes much stronger than that of M[“fourteen”] =
“sixteen”, and “fifteen” can be produced normally.

That the production of a number word is much easier when prompted by the
preceding two words than when prompted by only the single preceding word can
be considered as follows. In the early stages of learning the sequence “1, 2, 3”, for
example, because both the associative relationships M[“1”] = “3” and M[“2"] =
“3” exist and the strength of the two relationships is almost the same according to
the assumption of remote associative relationship, to retrieve “3” by a two-word

stimulus “1” 4+ “2”, may be much easier than by only a one-word stimulus “27”.
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However, after learning the sequence “1, 2, 3” many times, the strength of the
associative relationship M{“1”] = “3” becomes so weak, compared with that of
M[“2”] = “3”, that it can be ignored, and the retrieval of “3” by only “2” may

become as easy as by “17+“2”.

4.4 HASP Capable of General Learning

In this section, the HASP which can mimic the learning and production of sequences
is described. The learning algorithms of HASP are modified. Structure of the
network is shown in Fig. 4.2. It consists of three components: a heteroassociative
network, an inhibitory recurrent network and a readout control unit. Each number
word is expressed by a spatial pattern which is provided through input lines denoted
by T(y;). Number word sequence is stored in the heteroassociative network and
the retrieved number word appears at the output elements denoted by A(y;). The

componments are described below.

4.4.1 Heteroassociative network

While the pattern for a number word is being presented through T'(y;), the network
elements S(y;) and A(y;) respond according to the dynamic equations to be de-
scribed later. The response of elements A(y;), which is forming the present number
word at this time, is fed to the network through the positive feedback loops, and
the modifiable excitatory connections Wga(y1,y2) are strengthened according to
the learning algorithm to be described later to store the associative relationship of
this number word with itself. And then, if the pattern for the subsequent number

word is presented through 7'(y;), the serial associative relationship from the
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Fig. 4.2. Structure of the modified HASP. Network notations are follows. —0 :
modifiable inhibitory connection whose strength is increased by learning. RCU:
readout control unit. rcs: readout control signal. The other network notations are

the same as those in Fig. 2.1.
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preceding number word, which is being maintained by the associative relationship
with itself, to the subsequent one are stored in these connections. These connec-
tions are gradually strengthened from initial strength, which is assumed to be zero,

according to the following learning algorithm (L-4.1):

WSA(y17 y2)t + At) = WSA(ylay2: t) + AWSA(yl) y2:t)

where AWga(y1,¥2,1) is the strengthening-rate of connection Wga(y1,y2) at time

t and is determined as follows:

1. lfA(yZ)t) ’ T(ylzt) > 0 and WSA(ylry%t) < W‘Sl) then
AWsa(y1, v2,t) = Viws,. Where WS, and Viys, are two different positive

values.

2. 1fA(y2,t)T(y1,t) >0and WS, < WSA(yla yz,t) < WS, then AWSA(yl, yg,t)
= Viws,. Where Viys, is some positive value less than Viys, and WS, is the

saturation value of Wsa(y1,y2)-

3. otherwise, AWss(y1,v2,t) = 0.

In addition, Wsa(y1, y2) decays with time until it reaches its saturation value W.S;.

In this learning algorithm, it is noticeable that the modifiable connections are
not strengthened to the saturation value immediately through one shot learning,
but are instead strengthened gradually and the strengthening-rate depends on
their current strength as shown in Fig. 4.3(a). The reason why two different
strengthening-rates were introduced will be described in section 4.4.2. The above
learning algorithm can also be seen as a simplified form of the following equation:

dWsa(y1, ¥2)
TS

5t Wsalys,va) = WSa - 9[A() - T(n)] (4.1)
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AWsa | AWan

V ws1
Vwa

Vwsz - — —

| Wsa WaA
WS+ WS, WA 4

Fig. 4.3. Relationships between the strengthening-rates of the modifiable connec-

tions and their current strength in the learning process.
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where
1, ifa>0
The element S(y;) is assumed to be an analog threshold element with time lag

of the first order. The response of the element S(y;) is defined by

dS*(yy, .
;U'l-—-—-wfi?il ) -+ S (yh t) = T(yl,t) + Z"VSA(yh y) . A(y)t), (43)
¥
and
S(y1,t) = @s[S™ (1, 1)), (4.4)
where
S, iffa> S
psla) =4 a, if0<a<$s (4.5)
0, ifa<o.

4.4.2 Inhibitory recurrent network

At the output of the heteroassociative network, both the current number word and
the next words associated with it appear as a superimposed pattern. The inhibitory
recurrent network is used to make the current number word suppresses the others
so that the current word appears at the output of HASP.

Structure of the network is similar to that of the autoassociative memory mod-
els, but the modifiable connections denoted by Wa4(y1, y2) are inhibitory, and the
strength is gradually increased from an initial value, which is assumed to be zero,

according to the following learning algorithm (L-4.2):

Waa(yr,y2,t + O) = Waalyr, y2,t) + AWaalyr, v2, 1),

where AW 4(y1, y2,t) is the strengthening-rate of connections Waa(yi, y2) at time

t when a stimulus is presented through 7'(y;) and is determined as follows:
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Lo if T(y1,t) > 0, T'(y1,t) - T(ya,t) = 0 and Waa(y1,ya,t) < WA, then
AWaa(y1,y2,t) = Viva. Where, W A is a saturation value of W, 4(y1,y2) and

Viv 4 1s some positive value.
2. otherwise, AW 44(v1, ¥2,t) = 0.

The relationship between the strengthening-rate of the modifiable connections and
their current strength is shown in Fig. 4.3(b). With this algorithm the autocor-
relation of a spatial pattern representing each number word is stored as a spatial
distribution pattern of connections that have never been strengthened. If each
number word is a binary pattern composed of 0 and 1 elements and at least one
1-element of the pattern is not included in the others, then the inhibitions between
such 1-elements will form. Therefore, the multiple number words, which appear
at the output of heteroassociative network simultaneously, compete through these
inhibitions, and finally only the current number word appears at the output of
HASP (cf. Hirai, 1983).

The time lag between the formation of associative relationships by Wsa(y1, y2)
and the formation of competitive function by Waa(71,%2) can be considered as the
origin causing the three phenomena describe in Section 4.2. In order to make the
model yield this lag in learning, we introduced two different strengthing-rates in the
learning algorithm (L-4.1) and made the saturation values and the strengthening-
rates of the modifiable connections described in the two learning algorithms satisfy

the following relations (L-4.3):

WS < WS, < WA,
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and

VW52 < VWA < VW5‘1-

Therefore, the strength of Wsa(y1,y2) can be guaranteed to be stronger than that
of Waa(y1,y2) in the early stages of learning, and the time lag will arise. The
changes in strength over time of the two modifiable connections are shown in Fig.
4.4.

The element A(y;) is assumed to be an analog threshold element with time lag

of the first order. Response of the element A(y;) at time t is defined by

A1) = oA, 1), (4.6
where
a, ifa>0
da={ o 52 (47

#zﬁfﬁ%ﬂ + A"y, 1) = T(ys, )+ W (1) - S(y1,8) = > Waalyr, 2) - I1(z,1), (4.8)

and
I(Z’t) = (,D[A(Z,t) - B(Zat)L A (49)

where W (y;) is a connecting coefficient from S(y;) to A(y;), and B(z,t) is a re-

sponse of the readout control unit described below.

4.4.3 Readout control unit

Transition between number words is performed by readout control units denoted by
RCU in Fig. 4.2. As mentioned above, the next possible number words associated
with the current one also appear at the output of the heteroassociative network,

but they are suppressed by the current number word in the inhibitory recurrent
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Fig. 4.4. Time course of the strength of the modifiable connections as learning

proceeds



CHAPTER 4. MODELING THE ACQUISITION OF COUNTING 108

network. One of the next number words can be retrieved by suppressing the activity
of the current one, because the suppresion releases the inhibition of the next number
words by the current one. These next words begin to compete with each other in
the inhibitory recurrent network and finally one of them wins the competition.
The structure of a readout control unit is shown in Fig. 4.5. A unit consists of

two elements denoted by G and B in the figure. The G element performs a gating

function as follows:

G(y,t) = res(t) - Pres™(t) - A(y,t) + G(y,t — dt)], (4.10)

where rcs*(t) is a positive differential signal of res(t), which is a readout control
signal referred by rcs below. The rcs* becomes active for a brief period when rcs
is activated. The argument ¢ — di represents a time lag of the feedback loop from
G(y) to G(y) which maintains the gated signal until rcs is inactivated. The output
of the G element is fed into the B element, from which the output of the RCU

comes. The response of the B element is defined by

dB(y,t
w28 4 By, 1) = Gy, ) (411)
If A(y) is active when rcs is activated, G(y) becomes active by (4.10) and B(y)
begins to supress the response of I(y). This supression causes the weakening of the
competive power of a currently active number word and results in the activation of

the next one.
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Fig. 4.5. Structure of a readout control unit. Network notations are the same as

those in Fig. 2.1.
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4.5 Computer Simulation

The learning and production of number word sequences by the model were sim-
ulated on a digital computer to examine whether the three phenomena described
in Section 4.2 can be observed. In this section, we first describe how the network

learns sequences, and then present the simulation results.

4.5.1 Learning of a sequence

When the network learns sequence “1, 2, 3, 4”7, for example, the patterns “17,
“27, “3”, “4” are presented in order through 7'(y;) shown in Fig. 4.2. The order of
presentation is shownin Fig. 4.6. Asshown in the figure each pattern is presented N
times. After each pattern from “1” to “4” has been presented N times respectively,
we say that the whole sequence has been learned one time.

While pattern “1” is being presented through T'(y:), as described in Section
4.4.1, the excitatory connections Wsa(y1,y2) are strengthened according to the
learning algorithm (L-4.1) to store the associative relationship M[“1”] = “17. At
the same time, the inhibitory connections W44 (y1,%2) are also strengthened ac-
cording to the learning algorithm (L-4.2) described in Section 4.4.2. After “1” has
been presented N times, pattern “2” is presented. Since pattern “1” is appearing
at the output of the network, it will be fed to the network through the positive
feedback loops, and the associative relationship M[“17] = “2” will be established.
Besides, pattern “2” will also appear at the output of the network soon, the asso-
ciative relationship M[“2”] = “2” will be established. At this time, if the whole

sequence has been learned only a small number of times, since the strength of the
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M Times
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Fig. 4.6. Order of the presentation of the number word sequence.
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inhibitory connections W4 4(y1, y2) is weaker than that of the excitatory connections
Wsa(y1, y2) as shown in Fig. 4.4, the appearance of pattern “2” at the output of
the network cannot suppress pattern “1”, which is maintained by M[“1"] = “17,
through Waa(y1,y2). Therefore, a superimposed pattern of “1” and “2” appears
at the output of the network while pattern “2” is being presented. On the other
hand, if the whole sequence has been learned a large number of times, the strength
of the inhibitory connections Wa4(y1,¥2) has become stronger than that of the
excitatory connections Ws4(y1,y2) as shown in Fig. 4.4. When the pattern “27 is
presented, the pattern “1” disappears gradually because the pattern “2” supresses
the pattern “1” through the inhibitory recurrent network such that finally only the
pattern “2” appears at the output. Therefore, when the pattern “3” is presented at
an early stage of learning, a superimposed pattern of “17, “2” “3” appears at the
output of the network, and not only the associative relationships M[“3”] = “3” and
M[“2"] = “3”, but also the associative relationship M[“1"] = "3” is established.
On the other hand, when learning has proceeds, the pattern “1” disappears when
the pattern “3” is presented, and the associative relationship M[“1”] = “3” is not
strengthened further (it will decay with time and finally disappear). Hence, the
association M[“2”] = “3” gradually becomes stronger than M[“1"] = “3” as the
learning proceeds. Moreover, by the presentation of the pattern “4”, M[“4”] =
“47 M[“2"] = “4”, and M[“3"] = “4” can be established. Also, the association
M[“1”] = “4” may be established with very weak strength.

We can sumerize the learned results described above as follows. Through the

learning of the sequence “1, 2, 3, 4” in the way shown in Fig. 4.6, the associa-
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tive relationships from the each pattern to itself: M[“1”] = “17, M[“2"] = “27,
M[“3"] = “3”, M[“4”] = “4” and the associative relationships: M[“1"] = “27,
M[“1”] = “37, M[“2"] = “3", M[“2”] = “4” are established in the modefiable con-
nections Wsa(y1,y2). Besides, the associative relationship M[“1”] = “4” may be
established with very weak strength. If the whole sequence has been learned only a
small number of times, the strength of M[“17] = “2” (or M[“2”] = “3”) is stronger
than that of M[“1”] = “3” (or M[“2"] = “4”) only a little. But as the learning
proceeds, the strength of the former association becomes stronger than that of the

latter one.

4.5.2 Parameters of the model

The parameters of the network used in the computer simulation are as follows. The
time constants of the S, A and B elements, p1, o, i3, are set to 1.0, 2.0 and 2.0 time
units of numerical calculation. The response saturation value of the elements S(y;),
S, is set to 5.0. The strengthening-rates of the modifiable excitatory connections
Wsa(y1,¥2), Vws, and Viys,, described in learning algorithm (L-4.1) are set to
0.028 and 0.005. The positive value WS; and the saturation value W.S; described
in learning algorithm (L-4.1) are set to 1.2 and 2.5 respectively. The strength of all
the connections Ws4(y1, y2) are reduced by 0.0001 in each presentation of a pattern
until it reaches its saturation value W.S,. The strengthening-rate of the modifiable
inhibitory connections W44 (1, ¥2), Viva, described in learning algorithm (1-4.2) is
set to 0.012. The saturation value, WA, is set to 3.5. The connecting coefficient
W (y:) from S(y;) to A(y:) is set randomly to a value between 1.0 and 1.2. When

a sequence is learned, each element of the sequence is presented to the network
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through T'(y;) 20 times.

4.5.3 Results of simulation

4.5.3.1 Simulation on the three portions

The learning and the production of the sequence consisting of 4 number words, “1”,
“27) “3”) and “4”, were simulated to examine whether the sequences produced by
the network change from the unstable structure to the conventional structure via
the stable nonconventional structure as the learning proceeds. The patterns repre-
senting “1”, “2”7, “3” and “4” were assumed to be arrays composed of 4 elements
as follows: “17=(1, 0, 0, 0), “2”=(0, 1, 0, 0), “3"=(0, 0, 1, 0) and “4”=(0, 0, 0,
1). Since the connecting coefficient W(y;) from S(y;) to A(y;) shown in Fig. 4.2 is
set randomly to a value between 1.0 and 1.2, ten groups of random numbers were
produced by the computer. The learning and production of the sequence by the
network were simulated for each group, which is set to W(y;) and is assumed to
correspond to a given child. The simulation results for all the ten groups of random
numbers are shown in Table 4.3. From this table we can see that if the sequence has
been learned only a small number of times (less than about 4 times), the sequence
produced is unstable; if the number of presentations increses but remains less than
about 9, the sequence produced becomes stable but nonconventional; and if it is
learned furthermore, the sequence produced becomes stable and conventional. In
addition, it should be noted that in the stable nonconventional portions, both the

case that “2” is skipped and the case that “3” is skipped exist. Which number
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Table 4.3. Simulation result on the three portions of sequence
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word is skipped depends on the group of random numbers that set the connections
W (1)

Why our network can produce the sequences of three portions is analyzed as
follows. As an example, Table 4.4 shows the strength of the excitatory connec-
tions Wsa(y1,y2) after the sequence is learned 3, 4, 7, 8, 15, and 30 times when
the 1st group of the randfom number {1.161,1.001,1.025,1.065} initializes the con-
nections W(y;). From this table, we can see that the change of the strength of
the connections Ws4(yi,v2) at the early stages of learning (see (a) and (b) of Ta-
ble 4.4) is much larger than that after the sequence has been learned many times
(see (c) and (d) of Table 4.4). Therefore, at the early stages of learning, the se-
quence produced may easily vary from trial to trial, but become stable as the
learning proceeds as shown in Table 4.3. If we use a function S{a] to express the
strength of an associative relationship “a”, from (c) of Table 4.4 we can see that
S [M(“1") = “2"] = Wsa(4,2) = 1.623 and S [M(“1") = “3"] = Wsa(4,3) =
1.508, where the subscript ¢ specifies that the strength of the above two associa-
tive relationships is in the case of (c) shown in Table 4.4. From (e) of Table 4.4,
we can see that S[M(“1”) = “2”] = 2.274 and S.[M(“1") = “3”"] = 1.709, and
from (f) S;[M(“1”) = “2”] = 2.5 and S{[M(“1”) = “3”] = 1.589. From the above
we can see that S[M(“1”) = “3"] is closest to S.[M(“1”) = “2”] comparing to
the case of (e) and (f). In case (c), the sum of the strength of the connections
¥, Wsa(y, 3), which is used to obtain the response of pattern “3”, is stronger than
that of 3, Wsa(y, 2), which is used to obtain the response of pattern “2”. In addi-

tion, the strength of connection W (3), through which the 1-element of pattern “3”
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Table 4.4. Matrices of the strength of Wsa(y1, v2)

0.0

0.245 0.534
1.285

0.825
1.273

0.0

0.0

1.282
1.247
1.255 0.996

1.274
1.224
0,586
0.306

After 3 times of learning

0.028
1.218
1.380
1.621

(a)

1.034
1.444
1.633
1.623

1.092
1.650
1.615
1.508

1.622
1.592
1.463
0.806

After 7 times of learning

0.028
1.154
1.316
2317

(c)

0.970
1.380
2314
2274

1.028
2.281
2.191
1.709

2.268
2.038
1.499
0.966

ATter 15 times of learning

(e)

0.028
0.629

1.214
1.360

0.554
1.106

1.377
1.347

0.536
1.374

1.339
1.247

1.268
1.316

1.138
0.298

After 4 times of learning

0.028
1.210
1.372

1.708

(b)

1.026
1.436

1.740
1.715

1.084
1.737
1.707

1.600

1.699
1.684
1.505
1.022

After 8 times of learning

0.028
1.034
1.195
2.500

(d)

0.850
1.260
2.500
2.500

0.908
2.500
2.500
1.589

2500
2.500
1.379
0.846

After 30 times of learning

(f
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passes, is larger than that of W(2), through which the 1-element of pattern “2”
passes. Therefore, “2” is skipped and “3” is produced next to “1” by M[“1”] = “3”.
But as the learning proceeds, because S[M(“1”) = “2”] becomes much larger than
S[M(“17) = “3”] (see the case of (&) and (f)), “2” is produced always next to “17,
and the sequence produced becomes conventional.

The learning and production process of a sequence consisting of 12 number
words from 1 to 12 was also simulated. A simulation example of repeated produc-
tion of the sequence for one group of random numbers is shown in Table 4.5. In this
simulation example, the sequence was divided into three groups to be learned. The
first sequence portion consisting of “1, 2, 3, 4” was learned 30 times, the second
portion consisting of “5, 6, 7, 8” was learned 9 times, and the third portion consist-
ing of “9, 10, 11, 12” was learned from 2 to 5 times. The sequences shown in Table
4.5 are the cases in which the third sequence portion was learned 2, 3, 4, and 5
times respectively. It is evident that the structure of the sequence produced by the
network is similar to that produced by a child, as shown in Table 4.1. In Table 4.5,
the stable conventional sequence protion is “1, 2, 3, 47, the stable nonconventional

portion is “5, 7, 8”, and the unstable portion consists of the words following “9”.

4,5.3.2 Simulation on the omission of “fifteen”

We made the network learn the number word sequence “4, 5, 6, 77 30 times at first,
and then made it learn the sequence “14, 15, 16, 17” to see whether “15” would be

omitted more often than all other words when the production of the sequence is
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Table 4.5. Simulation on production of the sequence including the three portions

for one group of random number

»2—>3—4 —5—T7—8— 12
y»2—3—4 —5—T7—8—11—12
> 2 >3 >4 » 5 > 7 y 8 > 90— 11 > 12
» 22— 33— 4 35— T —58— 99— 10— 12
] L | 1 |
Conventional Stable Unstable
portions nonconventional portions

portions
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stable but nonconventional. In order to exclude the bias of the connections W(y;)
from the production of the number words, all W (y;) were set to the same value, 1.0.
The patterns representing the number words were assumed to be two-dimensional
binary (0 and 1) arrays composed of 3x3 elements as shown in Fig. 4.7. From this
figure we can see that except the pair “5 and 15”, which has no common part, all
the other pairs “4 and 147, “6 and 16”, and “7 and 17” have common parts. That
is, only the word “15” is of an irregular pattern. There was some amendment to
the other parameters of the network, since the encoding of the number words used
here is different from that in Section 4.5.3.1.

The simulation result shows that when the number of learning trials of the
whole sequence “14, 15, 16, 17” is smaller than 23, the production of the sequence
is unstable; when the number of learning trials is between 23 and 28, the produc-
tion is stable but “15” is omitted always; and when the learning trials increases,

the sequence produced becomes conventional.

4.5.3.3 Simulation on the recitation context study

All parameters of the network used in this simulation were the same as those
presented in Section 4.5.3.1. Sequence “1, 2, 3, 4” was used as an example and
the representation of the number words was also the same as those in Section
4.5.3.1. The porpose of the simulation was to see how many steps in the numerical
simulation are necessary to retrieve pattern “3” by supplying “2” and by supplying

a superimposed pattern of “1” and “2” to the network. The simulation was carried
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14 15 16 17

Fig. 4.7. Patterns representing the number words
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out for all ten groups of random numbers initializing the connections W(y;), and
the result is shown in Table 4.6. The retrieval steps were measured at three learning
stages: the stable nonconventional portions, the first part of conventional portions,
and the final part of conventional portions. The notation “no” in the table indi-
cates that the pattern “3” could not be retrieved, and the numbers express the
number of steps which are necessary to retrieve the pattern “3”. From this table
we can see that, in the stable nonconventional portion, the next word “3” cannot
be retrieved by providing only one pattern “2” but can be retrieved by providing
the superimposed pattern of “1” + “2”; In the first part of conventional portions,
in almost all cases the number of steps necessary to retrieve “3” is greater for the
pattern “2” than for the superimposed pattern; and in the final part of conventional
portions, in almost all cases the number of steps necessary to retrieve “3” is the
same for both the pattern “2” and the superimposed pattern “1”+%2”. That is,
in the early stages of learning, the production of the next pattern is facilitated by

prompting with two, rather than one, preceding patterns.

4.6 Summary

We have described a neural network model which can mimic some aspects of the
learning process of sequence, and have used the model to present an explanation
for the three psychological phenomena occurring in the learning of counting by
children. In order to construct the model, the learning algorithms of an earlier
model of human associative processing, HASP, was modified to enable the learning

and production of sequences by the network to be simulated on a digital computer.
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Table 4.6. Simulation result on a recitation contex study

Groups of Stable nonconventional First part of Final part of
random portions conventional portions conventional portions
number
Input Input Differ- Input Input Differ- Input Input Differ-
“2r “n4e2r ence “2r 1T ence “m “17 427 ence
1 No 10 - 8 7 1 7 7 0
2 No 14 - 7 7 0 7 7 0
3 No no - 15 12 3 7 7 0
4 No 10 - 10 8 2 7 7 0
5 No 26 - 7 6 1 7 6 1
6 No 10 - 11 11 0 8 8 0
7 No 10 - 9 9 0 7 7 0
8 No no - 9 no - 8 8 0
9 No 12 - 8 - 10 -2 8 7 1
10 No 10 - 20 9 11 8 8 0
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The simulation results show that, (1)the sequences produced by the network are
also of the same typical structure as that produced by children; (2)it is much more
difficult for the network, as it is for children, to learn irregular number words; and
(3)as with children, in the early stages of learning the production of sequences by

the network depends on the recitation context.



Chapter 5

Conclusion

In this dissertation, we have successfully represented three kinds of cognitive pro-
cesses, which are the problem solving, knowledge representation, and learning, with
neural networks and demonstrated that all these networks can be constucted within
the framwork of the associative network, HASP.

The research was based on the belief that the memory is the most fundamental
and essential function in human cognitive processes: To solve a problem, the related
information and knowledge must be effectively and contextually retrieved from
memories; To learn to perform a new cognitive task, the old related knowledge
must be well utilized and the new acquired knowledge must be memorized; A
key problem of knowledge processing is how to effectively and quickly access the
necessary concepts or information from large bodies of knowledge base.

This dissertation has described how the various kinds of memories are con-
structed and how they are properly combined to performing the cognitive tasks.
We have presented a model that has a general structure for problem solving, a new

scheme for knowledge representation, and a new method to explain psychological

125
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phenomena. We can say that the research is very novel and meaningful as an ap-
proach to the understanding of the architecture of the brain and the mystery of
human cognitive abilities.

As with any new approach, directions of future research are nearly limitless.
In the model for problem solving, the visual system and the output system were
assumed to exist, and these present immediate work to pursue. Moreover, the
cognitive tasks chosen in the dissertation are very simple and the three cognitive
processes, problem-solving, knowledge representation, and learning, are considered
independently. In our brains, however, a large number of cognitive tasks are more
complex and the various kinds of cognitive processes must be working together. For
example, when people do something, the necessary information or concepts must
usually be very quickly and effectively retrieved from large bodies of knowledge
base and learning may usually occur to improve the performance or to acquire new
knowledge and skills. To apply the proposed models to much more complex tasks
by combining them properly are left as a future work. From our works, however,
we can say that the neural networks can shed a much more light on the modeling

of the brain functions than the symbolic approach and is very promising.
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