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複数のユーザを持つ通信ネットワークにおける最適制御問題に関する研究

井家　敦

　 Internetに代表されるような大規模なネットワークシステムを考える。このようなネッ

トワーク内には不特定多数のネットワーク構成要素（コンピュータ、ルータなど）および

利用者が存在する。通常、これらのネットワーク全体を中央集権的に管理するのは非常に

困難であると考えられる。このような場合、個々のユーザ（あるいはインターネットプロ

バイダ）が、他のユーザとの協力を求めずに自身の性能を追求していく、すなわち独立分

散的な管理が行われる。

　独立分散的に性能を最適化する方法を、非協力的最適化と呼ぶ。これは大きく分けて、

次に示すような 2つの場合が考えられる。一方は、ユーザを有限個の独立な組織に分割

し、各組織がそれぞれ自身の性能を最適化するという場合である。この場合に、システ

ムがある均衡状態に達した（すなわち、解が得られた）とき、それはNash均衡と呼ばれ

る。もう一方は、無限に多くのユーザがそれぞれ自身の性能を最適化する場合であり、そ

の場合の均衡状態はWardrop均衡と呼ばれる。しかしながら、個々のユーザが自身の努

力により性能向上を行う状況において、ネットワークにおける Braessのパラドックスの

ように、例えば、ネットワークシステムのリンクを追加したり、あるいはその容量を増加

したりすることが、かえって全ユーザの性能を劣化させてしまう現象が現在までにいくつ

か報告されている。

　一方で、仮に利用者間でネットワークの利用が協力的に行われるならば、ネットワーク

全体での最適性は保証される。このように最適化される方法を協力的最適化とよぶ。しか

しながら、最適解となりうる解の候補が複数存在することがあり、それらの中での選択が

困難になってしまう場合がある。それを決める方法の 1つとして、本論文では公平性とい

う概念を用いる。

　本論文では、ある通信ネットワークを複数の利用者が共有する場合において考えられ

る、以下の 3つの最適制御問題について述べる。

　 1つ目は、M/M/m待ち行列のフロー制御問題における逆説的性能劣化である。フロー

制御とは、システムへの過負荷を防ぎかつ性能を十分に発揮できるよう、システムへのフ
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ローを調節することであり、ネットワークシステムの性能向上方策としてルーティングと

ともに重要視されている問題である。ここで、複数のユーザが１つのシステムを共有して

いる場合を考える。このとき、ユーザに対する最適化方策として、システム全体での性能

の平均を最適化する全体最適化と個々のユーザがそれぞれ自身の性能のみを最適化する非

協力最適化が考えられる。後者の非協力最適化は経済学における非協力ゲーム（ゲーム理

論）の考えに基づいたもので、それにより与えられる解はNash均衡と呼ばれている。

　複数の独立した待ち行列システムとそれを１つに多重化した待ち行列システムを考えた

場合、意思決定の範囲が広まることから後者がより高い性能を与えると考えられる。本研

究では、M/M/m待ち行列に対し、フロー制御特有の性能指標である、スループットをレ

スポンスタイムで割った値で得られるパワーを最大化する最適フロー制御問題を考える。

まず、全体および非協力最適フロー制御問題の定式化を行い、その最適性条件およびアル

ゴリズムを導出する。また、数値的に非協力最適フロー制御において、各意思決定者が自

身のパワーをそれぞれ最大化した場合に、待ち行列を多重化することが逆にすべてのユー

ザの性能劣化を導いてしまうことを示す。

　 2つ目は、Cohen-Kellyネットワークの動的ルーティングにおける逆説的性能劣化であ

る。Cohen-Kellyネットワークとは、4つのノードから構成される待ち行列ネットワーク

である。CohenとKellyはこのネットワークに対し、独立分散型（すなわち、個々のユー

ザが自身の性能のみを追及する）の静的ルーティング問題を考え、ノード間のコネクショ

ンを追加したときに、追加前より性能が悪化してしまう可能性があることを発見した。本

研究ではCohen-Kellyネットワークの動的ルーティング問題を考え、同様の性能劣化が生

じうることを示した。

　ただし、Cohen-Kellyネットワークの動的ルーティングの性能劣化に関しては、Calvert

等によってすでに研究が行われている。しかしながら、彼らの研究では、シミュレーショ

ン結果と解析的結果との間に多少の相違点が見られ、また性能劣化の評価方法も適切で

ないように見受けられた。ゆえに、本研究では彼らの研究について不十分であると考え

られる点について指摘し、解析的結果に基づいたシミュレーションを行う。結果として、

Calvert等と同様に我々の方法でも同様の性能劣化が発生することが明らかになった。

　 3つ目は、公平性を考慮した分散コンピュータシステムの最適負荷分散である。負荷
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分散とは、与えられたシステム構成のもとで性能を最大限に発揮できるように、各コン

ピュータに負荷を割り当てることであり、現在、情報・通信ネットワークにおいて重要視

されている問題の 1つである。一般に、複数のユーザがシステムを利用している場合、負

荷分散政策が有効であるかを判断するには、それが Pareto最適性および公平性を満たし

ているかが重要な要素として挙げられる。負荷分散政策が Pareto最適性を満たすとは、

複数のユーザがいる場合に、任意の 1人のユーザの性能を向上させるためには、少なくと

も他の 1人のユーザの性能を犠牲にしなければならないような性質を持つことを指す。一

方、公平性はすべてのユーザに対し不利益が生じないことを指す。Pareto最適性と公平性

の双方を満たす代表的なものとして、例えば、Max-min Fairness、Proportional Fairness

といったものが挙げられる。さらに、これらを一般化した公平性指標がMoとWalrand に

よって提案されている。

　一方で、Nash均衡もまた、各ユーザが自身の性能を追及するという意味で公平性を持つ

と考えられる。しかしながら、時にNash均衡はPareto最適性を満たさないことがある。

従って、本研究では、Nash均衡をPareto最適解に拡張した、Nash-Proportionate-Fairness

を考え、単純な分散コンピュータシステムに対し適用し、その特徴を観測する。





Abstract

Consider a network system such as the Internet or Grid. The network system consists of

enormous number of network components (e.g., computers, routers and communication

media) and users who require services from the network system. Each individual user may

have different requests to the network. Consequently, there exist various kinds of packet

flows (e.g., voice, video and data) required by independent users in the network. Owing

to the diversified needs of the users, the service providers (or the network administrators)

often face difficulty in guaranteeing Quality of Service (QoS) for all users.

Considering optimal control in communication networks with multiple users, we can

think of the following two optimization schemes: the noncooperative and cooperative

optimization schemes. In the noncooperative optimization scheme, each user strives to

optimize its own performance measure (the utilities of the user) unilaterally. On the

other hand, in the cooperative optimization scheme, a single agent optimizes a single

performance measure (e.g., the sum of utilities of all users).

In this thesis, we study the following three problems on optimal control in communi-

cation networks where multiple users share the system resources.

First, optimal flow control problems of multiple-server (M/M/m) queueing systems

are studied. Due to enhanced flexibility of the decision making, intuitively, we expect

that grouping together separated systems into one system provides improved performance

over the previously separated systems. In this thesis, we present a counter-intuitive result

against such an expectation. More precisely, we consider a noncooperative optimal flow

control scheme of M/M/m queueing systems where each of multiple players strives to

v
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optimize unilaterally its own power where the power of a player is the quotient of the

throughput divided by the mean response time for the player. We report a counter-

intuitive case where the power of every user degrades after grouping together K(> 1)

separated M/M/N systems into a single M/M/(K×N) system.

Second, a paradox in dynamic routing in the Cohen-Kelly network is studied. Intu-

itively, we expect that adding capacity to a network improves the performance of the

users. Braess, however, showed an example where the opposite occured. We refer to such

a situation as a paradox. In this thesis, we deal with a class of queueing networks where

Cohen and Kelly discovered a paradox in static routing by individual users. We consider

the dynamic routing problems in the above mentioned class of networks, and show the ex-

istence of a paradox in dynamic routing of the above mentioned class of networks through

simulation experiments analogous to what Cohen and Kelly showed.

Third, fair and Pareto optimal solutions to a load balancing problem are studied. Var-

ious fairness objectives are studied in relation to Pareto optimal sets and Nash equilibria.

We examine an already discussed general parameterized fairness objective that covers a

variety of fairness criteria and the newly introduced Nash-proportionate-fairness objec-

tive. We mainly study them numerically on a simple static load balancing model with

two identical servers (computers) each of which has an independent arrival process and

its own queue. Through numerical results, several counter-intuitive results are shown.

For example, we observe that the points that achieve the general parameterized fairness

objectives may cover a part but not all of the Pareto set, and at times, do not cover the

Nash-proportionate-fair Pareto optimal point.
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Chapter 1

Introduction

1.1 Background

For a number of years, the computer and communication network environments around

us have been changing dramatically. Personal computers and communication equipments

have been improving their cost-performance, and they have been downsized. Although

such rapid growth and development of the networks are great satisfactions to us, they

yield a need for next-generation network control technologies.

Consider a wide-scale network system such as the Internet or Grid. The network sys-

tem consists of enormous numbers of network components (e.g., computers, routers and

communication media) and of users each of who requires various kinds of services for the

network system. Each individual user may have different requests to the network. Con-

sequently, there exist various kinds of packet flows (e.g., voice, video and data) required

by the independent users in the network. The users also require a satisfactory level of

the network performance and the cost (e.g., the communication delay and the network

pricing). Owing to the diversified needs of users, the service providers (network adminis-

trators or agents) often face with difficulty in guaranteeing Quality of Service (QoS) for

all the users.

In this situation, we can consider the following two network control schemes: In the

1
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first one, there exist an infinitely large number of users in the network where each user

belongs to a group of providers. Each provider optimizes unilaterally its own performance

objective without cooperation with the other providers. It is called the noncooperative

optimization scheme. If the number of providers is finite, then the corresponding equi-

librium is referred to as a Nash equilibrium [165]. If infinitely large number of users

optimize unilaterlly their own performance objective, then the corresponding equilibrium

is referred to as a Wardrop equilibrium [202].

The other is that a single provider on behalf of the entire users optimizes a performance

objective in order to satisfy all the users. It is called the cooperative optimization scheme.

In this scheme, satisfying (Pareto) efficiency of network performance may be compara-

tively easier than in the noncooperative optimization scheme. The solutions which we

can regard as efficient, however, are not unique in the cooperative optimization scheme,

and we cannot find any absolute preference among these solutions. Consequently, it is

difficult to provide satisfactory performance for all users. In this thesis, we consider a

fairness concept [41, 59, 153] as a kind of criteria deciding the preference.

The rest of this chapter is organized as follows: In Sections 1.2 and 1.3, we briefly

describe the noncooperative and cooperative optimization schemes, respectively. In Sec-

tion 1.4, we introduce our problems and in Section 1.5, we show the organization of the

remaining chapters in this thesis.

1.2 Noncooperative Optimization

As described in the previous section, in the noncooperative optimization scheme, multiple

providers strive to optimize their own performance unilaterlly. This scheme has been

developed in the noncooperative game theory [18, 57], and has been applied to various

kinds of problems in many fields, such as management sciences, communication networks,

and transportation systems.
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Nash Equilibrium: Considering a network shared by a finite number of groups each

of which has a single provider (i.e., decision maker). Each provider optimizes unilaterally

its own performance objective, that is, there is no coordination among providers. In this

situation, if no provider can improve its own performance by changing its strategy, then

the achieved equilibrium is called a Nash equilibrium [165].

A feature of a Nash equilibrium is that there exist several helpful mathematical prop-

erties found by many researchers. Especially, if the strategy space is convex and compact,

and the utility functions are semi-continuous, then a Nash equilibrium exists (see, e.g.,

[57]). Rosen also [177] showed some conditions for existence, uniqueness, and stability of

Nash equilibria in convex problems.

Nash equilibria are, however, not always Pareto optimal. A famous example is the

prisoner’s dilemma, that is, making decision without coalition among providers sometimes

leads to the worst result.

Wardrop Equilibrium: Consider a case where a network is shared by an infinitely large

number of users and where each individual user optimizes unilaterally its own performance

objective. In this situation, it is assumed that the behavior of each individual user has

little impact on the entire system since the effect of the decision of each user is negligibly

small. Wardrop [202] first studied this situation on a routing problem in a transportation

network, and therefore the achieved equilibrium is called a Wardrop equilibrium.

The definition of the Wardrop equilibrium is different from that of the Nash equilib-

rium. The Wardrop and Nash equilibria, however, have the following relation: A behavior

in the Nash equilibrium approaches to a behavior in the Wardrop Equilibrium when the

number of users is infinitely large. Haurie and Marcotte [72] observed this relation in

state-independent noncooperative optimization problems on two transportation networks

that had finite number and infinitely large number of users. Wie and Tobin [204] also

showed this relation in a dynamic traffic assignment problem.
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1.3 Cooperative Optimization

In this section, we describe Pareto optimality and fairness. Both Pareto optimality and

fairness are important concepts of efficiency for the network and for users, respectively.

1.3.1 Pareto Optimality

In a network shared by multiple users, a state of the network determines performance

(i.e., the utilities or the costs) of the users. Then, we need to determine whether the

performance of the users in a state is absolutely superior to that given by any other state

or not. We may explain the absolute superiority by using two concepts called Pareto-

inefficiency and Pareto-optimality, which have been introduced by Vilfredo Pareto [170].

Consider a network shared by n users. Let Ui denote the utility of user i where Ui

should be maximized. Then, the definition of Pareto-inefficient is as follows: A utility

vector U = (U1, . . . , Un) is called Pareto-inefficient if there exists a utility vector U ′ such

that Ui ≤ U ′
i for all i = 1, 2, . . . , n, and Uj < U ′

j for some j, j = 1, 2, . . . , n. If a utility

vector is Pareto-inefficient, then it is possible to improve the performance for some users

without the degrading performance for any other user.

Also, the definition of Pareto-optimal is as follows: A utility vector U is called Pareto-

optimal if there exists no utility vector U ′ that satisfies Ui ≤ U ′
i for all i = 1, 2, . . . , n,

and Uj < U ′
j for some j, j = 1, 2, . . . , n. In other words, a utility vector is Pareto-optimal

if it is not Pareto-inefficient.

We next define strong Pareto superiority and strong Pareto-inefficiency. Consider two

utility vectors U and U ′. If a utility vector U ′ satisfies Ui < U ′
i for all i = 1, 2, . . . , n, a

utility vector U is strongly Pareto-inefficient, and a utility vector U ′ is strongly Pareto-

superior to U .

In general, there can exist an innumerably large number of Pareto optima in a network

control problem. For example, let us consider a two-user network control problem where

the objective is to maximize the utilities of both users simultaneously. Then, the Pareto
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U1

U2

Pareto optimum

Feasible Region

Figure 1.1: Pareto border and feasible region in a two-user network control problem where

Ui is the utility of user i.

optima cover the upper right part of the feasible region in this problem (see Figure 1.1).

1.3.2 Fairness

From the viewpoint of users, fair use of the network is important. Defining fairness is,

however, not simple. In fact, fairness is inherently subjective, and depends heavily on the

network and on the traffics of users that should be optimized. In [59], the fairness scheme

in computer and communication networks is classified into the following three classes: fair

resource utilization, equal performance, and balanced interference among user. Jain [81]

also suggested a fairness index.

Here, we must note that usually achieving simultaneously both fairness and effective

use of resources in the network is difficult since maximizing the performance in the whole

network is often incompatible with achieving fairness for all users1. We therefore need to

1Tang et al. [193], however, found a counter-example, that is, a fairer strategy is always more efficient.
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find a tradeoff between the fairness and the network performance.

There exist various types of fairness concepts that have been already proposed. In

this section, therefore, we introduce some fairness objectives. Note that these fairness

objectives are Pareto optimal.

Max-Min Fairness: Max-min fairness [21, 68, 79, 82, 152, 154, 158, 176] is one of the

most common concepts of fairness. The basic idea of the Max-min fairness is to optimize

the performance for the user whose performance is the worst (see e.g., [21]). In other

words, the Max-min fairness makes performance for all users as equal as possible.

Note that the fairest utility vectors in the concept of fairness by Bonald and Massoulie

[22] corresponds to a max-min fair point. Note also that a max-min fair point always

satisfies Pareto optimality. It is known that there exists a unique max-min fair point if

the numbers of users and of network resources shared by users are finite [154].

Proportional Fairness: Although a max-min fair point satisfies Pareto optimality,

it may sometimes utilize resources in a network inefficiently for all users. In fact, this

question was discussed in the literature (e.g., [22, 97, 154, 176, 189]). For example, in

[97] the max-min fairness does not make efficient use of the resources in a network since

it provides users whose performances are comparatively worse with better performances.

Kelly et al. [97, 98] then proposed an alternative concept, called proportional fairness.

Let U denote the utility vector in a feasible state. If U is the proportionally fair point,

then for the utility vector U ∗ in any other feasible state, we have

∑
i

U∗
i − Ui

Ui

≤ 0, (1.1)

where Ui and U∗
i are i-th elements of U and U ∗, respectively.

In [97], it has been shown that the logarithm of utility function is intimately associated

with the concept of proportional fairness. In other words, the maximization of the sum of

logarithms of utilities for the users leads to the proportionally fair point. It is well-known
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that the proportionally fair point corresponds to a kind of Nash bargaining solutions [164]

(see Remark 2.3 in [206]).

Generalized Fairness Objective: Recently, in the context of congestion control, Mo

and Walrand [162] proposed a general and simple uniform description (parameterized by

α) of a wide family of fairness objectives, including in particular, the proportional fairness

and the max-min fairness. In their article, it is called α-proportional fairness. Touati et

al. [196, 197, 198] further generalized the fairness objective by taking into account the

utilities for the users. Some applications to this fairness objective appear in, for example,

La and Anantharam [128, 130] in window-based congestion control, and Fang and Bensaou

[52] in wireless ad-hoc networks.

1.4 Our Problems

In this thesis, we focuses on the various types of optimal control problems of computer

and communication networks where multiple users share the network noncooperatively or

cooperatively. Especially, we deal with the following three problems:

1) A paradox in optimal flow control of M/M/m queues [75, 78].

2) Braess paradox in optimal routing for the Cohen-Kelly network [77].

3) Case study of Pareto set, fairness, and Nash equilibrium in load balancing [76, 199,

200].

Note that 1) and 2) deal with noncooperative optimization, and 3) deals with cooperative

optimization.

First, optimal flow control problems of multiple-server (M/M/m) queueing systems

are studied. Flow control is a means to utilize limited system resources effectively and

to guarantee proper quality of service (QoS) in computer and communication networks.

Consider a network that is shared by multiple users. Due to enhanced flexibility of the
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decision making, intuitively, we expect that grouping together separated systems into one

system provides improved performance over the previously separated systems. In fact,

it has been shown analytically that grouping together separated systems improves the

average response time although the utilization factor of each server remains the same (see

[106]). This thesis, however, presents a result counter-intuitive against such an expec-

tation. We consider a noncooperative optimal flow control scheme of M/M/m queueing

systems where each of multiple players strives to optimize unilaterally its own power

where the power of a player is the quotient of the throughput divided by the mean re-

sponse time for the player. We show numerically a counter-intuitive case where the power

of every user degrades after grouping together K(> 1) separated M/M/N systems into a

single M/M/(K×N) system in noncooperative optimal flow control scheme. Especially,

we show that grouping together the systems decreases the power of every user about 10%

in the worst case. On the other hand, we see the opposite behavior (that is, it agrees to

our natural intuition) in the overall flow control scheme. Also, in this thesis, we prove

the existence and uniqueness of solutions to the overall and noncooperative optimal flow

control problems, and present an algorithm that computes the solutions.

Second, Braess paradox in dynamic routing for the Cohen-Kelly network is studied.

Cohen and Kelly [36] studied static routing in two queueing networks, called the initial

and augmented networks. The initial network has two paths, and the augmented network

has an additional path. In both networks, an individual user arriving at the network only

knows the expected transit time of each path in the network, and the user is routed by

using that information. Intuitively, we expect that adding capacity to a network improves

the performance of the users. In that situation, Cohen and Kelly [36], however, showed

that the opposite occurs, that is, they found a case where the augmented network gives

worse performance than the initial network. We refer to such a situation as a (Braess)

paradox. In this thesis, we consider the dynamic routing problems in the above mentioned

class of networks. Here, note that Calvert et al. [36] have already shown the existence of a

paradox in dynamic routing for the networks. We may, however, think that some of their
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results are improper. For example, their simulation study is not based exactly on their

analytical study, and they just compared between overall mean transit times of jobs in the

initial and augmented networks. We therefore pay attention to some confusions of their

study, and show that a paradox also occurs in dynamic routing of the above mentioned

class of networks analogous to what Cohen and Kelly showed.

Third, fair and Pareto optimal solutions to a load balancing problem are studied.

Load balancing among computers in a distributed system is a means of efficiently sharing

resources among users. An important objectives of a load balancing system is the Pareto

optimality. That is, there exist no other states where all users have better benefits si-

multaneously in a Pareto optimal situation. In general, there exist a number of Pareto

optima in a load balancing problem. Therefore, we may face to choosing an appropriate

preference among them. Fairness objective is a criterion for this requirement. Various

fairness objectives have been already proposed, for example, max-min fairness [21], pro-

portional fairness [97]. Furthermore these objectives have been generalized by Mo and

Walrand [162]. In this thesis, we also consider a Nash equilibrium based Pareto optimum,

called Nash-proportionate-fairness. We examine an already discussed general parameter-

ized fairness objective that covers a variety of fairness criteria. We study them mainly

numerically on a simple static load balancing model with two identical servers (computers)

each of which has an independent arrival process and its own queue. Through numerical

results, several intuitive results are shown.

1.5 Organization of the Thesis

This thesis is organized as follows: In Chapter 2, we describe the previous and current

work on network routing, flow control, load balancing and Braess paradox. In Chapter

3, we present a paradox in optimal flow control of M/M/m queues. In Chapter 4, we

consider a dynamic routing problem in the Cohen-Kelly network, and show a paradox. In

Chapter 5, we consider load balancing in a distributed computer system, and characterize



10 Introduction

the Pareto set, the Pareto solution based on Nash equilibrium and the fairness objective.

In Chapter 6, we conclude this thesis. In Appendix A, we show the existence and the

uniqueness of solutions to the optimization problems, and present algorithms that obtain

the solutions.



Chapter 2

Related Work

In this chapter, we present a survey of control problems in some communication networks

and distributed computer systems, that is, network routing, flow control, and load bal-

ancing, which are intimately relevant to our work. We further describe a counter-intuitive

phenomenon observed in network control for some classes of networks, called the Braess

paradox, and introduce some network examples where the Braess paradoxes occur. Some

related surveys are given, for example, in [7, 12, 60, 91, 95, 96, 109, 111].

2.1 Network Routing

Network routing is deciding paths and the amount of traffic flows for users in a network

in order to maximize the performance for the users or the network. In fact, routing

is regarded as a special case of resource sharing [140]. Methods and technologies of

routing are developed in transportation sciences as well as in computer and communication

engineering. In this section, we describe a survey of network routing.

When we consider a network routing problem, the goal is to optimize one or several

objectives. The objectives that we can think of are, for example, average delays, commu-

nication costs, and network prices. If the capacities of network resources are finite, then

we also must consider the loss probabilities of network traffic.

11
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Lee and Cohen [134] dealt with a set of parallel M/M/m queues where users could

adjust the amount of flow in each queue. They considered both the mean queue length

and the delay of each user as performance criteria, and showed that there exists at most

one Nash equilibrium. Economides and Silvester [46] found the existence and uniqueness

of the Nash equilibrium in routing among two parallel exponential servers with two users

where the average delay and blocking probability are used as performance criteria.

Orda et al. [166] dealt with routing in a communication network shared by multiple

users each of who had a flow of demand. Each user distributed its own flow to each link

in order to minimize a sum of the cost functions of links. They first considered a network

with parallel links, and they showed the uniqueness of a Nash equilibrium under some

assumptions on the cost functions, and showed the convergence to a Nash equilibrium

in the simple model that consisted of two users and two links. They further studied a

network of general topology that consisted of a finite set of nodes and a set of direct links

between two nodes. They showed that Nash equilibrium in this network was unique if the

network model satisfied diagonal strict convexity [177].

With both network models studied by [166], La and Anantharam [125, 129] studied

repeated games, and showed some additional properties. They further considered more

general networks where the networks have a single source-destination pair [125]. That

is, every user has the same source and destination nodes. It is shown that there exists a

Nash equilibrium that corresponds to the minimization of the overall cost of the network.

Libman and Orda [140, 141] also studied noncooperative routing in parallel links as

studied in [166]. They claimed, however, that splitting the flow of each user was often

impractical, and considered noncooperative networks with atomic resource sharing in

which each demand cannot be split among two or many resources. They showed the

convergence of a Nash equilibrium in the case where the costs of the network were given

by the remainder of the link capacities [141].

Altman et al. [3] considered network routing in which a number of users share two

parallel links with linear holding costs. They obtained the properties of the convergence to
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the unique Nash equilibria under two dynamic routing schemes: round-robin and random

polling schemes. Liu and Simaan [147, 148] also studied two node parallel links shared by

competitive multiple users. They applied a game theoretic approach, called Non-inferior

Nash strategy [146] to their model.

Korilis et al. [114] studied a Stackelberg equilibrium in routing for the parallel link

model of [166]. More specifically, an agent (leader) wishes to optimize the overall network

performance. The agent, however, also understands that the users (followers) behave

noncooperatively to him. More specifically, the agent needs to predict the behaviors of

the users. This situation is called leader-follower problem [7, 190], and its solution is a

Stackelberg equilibrium. They [114] derived a necessary and sufficient condition of the

existence of a maximally efficient strategy in the Stackelberg routing policy. Roughgarden

[181] also studied Stackelberg equilibrium routing in a class of networks. They [115] also

studied optimal capacity allocation under noncooperative routing. They considered a

situation where a network designer endeavored to allocate link capacities in the network

in order to make a Nash equilibrium efficient (i.e., Pareto optimal), and showed that the

performance degradation did not occur in noncooperative routing of their network when

adding the capacity to the network. It is a similar behavior to that of cooperative routing.

Korilis et al. [118] studied pricing in a noncooperative network using routing in the

model of [166]. Indeed, in the last few decades, pricing have attracted much attention

in computer and communication networks (see e.g., [29, 30]). In their study, the cost

function for a user is the sum of the average delay of the user and the monetary cost

of the user required by using network links. Considering pricing in parallel links, they

introduced link weights referred to as discount factors. The agent seeks a set of discount

factors such that a Nash equilibrium coincides with a Pareto optimal solution, which

is called incentive compatible. Assuming that the monetary cost of any network link is

proportional to the average delay of the link, they showed that the agent can always

determine the discount factors. Korilis and Orda [117] considered pricing in routing for a

class of general topology networks with multiple users where their cost function is based
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on the delay of a generalized processor sharing system [58, 168, 169]. They showed the

existence of incentive compatible price functions in this network. Park et al. [171] studied

a QoS provision queueing system model where m service classes and n users. In fact, their

formulation is very close to that in [166] although the utility of each user takes the value

of either 0 or 1 (that is, if the system satisfies the requirement of user i, then the utility

is 1, otherwise it is 0).

Altman et al. [4] studied a class of general topology networks with multiple users.

In their study, they showed that when the costs of the links are polynomial, there exists

a unique Nash equilibrium. Furthermore, they showed some explicit results when the

costs of the links were affine. Boulogne et al. [24] studied mixed equilibrium [71], that

is, mixing of Nash and Wardrop equilibria in multiclass routing games. They showed

the existence and uniqueness of an equilibrium under several assumptions. Azouzi and

Altman [17] studied a coupled Nash equilibrium [177] in optimal routing for the same class

of networks as [4]. They showed that there exists an equilibrium under some assumptions

on the cost functions. Boulogne and Altman [23] studied competitive routing in multicast

communications where multicast communication is a process to send the same message

from a source node to an arbitrary number of destination nodes. They dealt with two

specific networks: three-node and four-node networks, and discussed the uniqueness of

Nash equilibria and their convergence in these networks.

Altman and Kameda [9] dealt with static routing in open BCMP queueing systems

[19] with multiple users. They showed some properties of the existence and uniqueness of

overall, Wardrop and Nash equilibria. Kameda et al. [90] studied overall and individual

routing for networks of general topology with multiple users and general costs of links.

They showed that there exist a link-traffic loop-free property1 in these problems.

Some significant results in routing of loss networks are described in [95]. In this study,

the goal is to minimize the average blocking probability of each link in a network. Altman

et al. [2] studied noncooperative routing in loss networks with multiple users. They

1Loop-free property is that there is no link-traffic loop within each user.
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considered a network consisting of J parallel links, and adopted two concepts of solutions:

Nash and Wardrop equilibria. They showed the existence of a Wardrop equilibrium using

a result by Patriksson [172] although it is not unique. They also showed that there exists

a unique Nash equilibrium if the network has some properties. Mitra and Gibbens [160],

and Chung et al. [184] considered state-dependent routing in symmetric loss networks.

Altman [1] considered dynamic routing for queueing systems in a non-zero game theo-

retic framework. Altman et al. [6] studies a Markov decision process (MDP) [173] model

of dynamic routing in M parallel servers.

Roughgarden and Tardos [178, 180, 182] studied a general topological network with

general link costs. They used the price of anarchy (or coordination ratio) [119, 167], which

is the ratio between the worst-case Nash equilibrium and the overall optimal solution.

They concentrated on selfish behaviors of users, and proved that if the cost function of

each link is linear, then the total cost by selfish routing (Nash equilibrium) is at most

4/3 times as the total cost by overall routing. They also proved that if the cost function

of each link is continuous and nondecreasing in the flow, then the total cost by selfish

routing is at most twice as large as the total cost by overall routing. Further studies in

selfish routing can be found, for example, in [37, 53, 54, 157, 183].

A recent trend in routing applications is noncooperative routing in overlay networks

[13, 186]. In an overlay network, end hosts choose their routes individually. Hence, the

behaviors of users can be expressed by using concepts of noncooperative games. In fact,

some publications related to overlay networks appear [33, 83, 149, 174].

Chun et al. [33] applied an approach of the noncooperative game to their network

where their work was inspired by [51]. Liu et al. [149] studied the interaction between

overlay routing and Traffic Engineering (TE). They formulated it as a two-player nonco-

operative non-zero sum game where the goal of the overlay network is to minimize the

average delay, and the goal of the TE is to minimize the network cost. They showed

that a noncooperative behavior of the hosts in the overlay network causes increase of the

cost. Furthermore, Jiang et al. [83] considered the interaction of multiple overlay routing.
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They proposed a new concept, called overlay optimal routing and formulated their model

as a noncooperative optimization problem. They showed that there always exists a Nash

equilibrium, and the equilibrium is not Pareto optimal.

2.2 Flow Control

Flow control is one of the most important technologies in communication networks to use

the limited resources efficiently. In fact, flow control adjusts the input traffic flow (i.e.,

the instantaneous throughput of the network) in order to avoid the waste of resources

in the network and to prevent the performance degradation by traffic congestion. The

term congestion2 is used commonly in the sense of a phenomenon, that is, a heavy traffic

in the network leads to the higher delay and the lower throughput for all users. This

phenomenon is similar to a traffic jam in a highway network.

Here, we must note that flow control is not a direct approach decreasing the delay

for users of a network. More specifically, decreasing the delay of the network causes de-

creasing the throughput of the network, and vice versa. A primal advantage achieved

by flow control is prevention of a disastrous congestion in the network that would cause

inconvenience to many users. If a user wishes to decrease the network delay without de-

creasing the throughput, he will just increase the communication resources of the network,

or improve the routing algorithm.

Thus, an important problem involved in flow control is how to determine a trade-off

between the average delay and throughput of the network. In studies of computer and

communication networks, several performance measures satisfying the above requirement

have been considered. Lazar [132] has used the maximization of the average throughput

subject to a bound on the average delay as a performance requirement for flow control.

Giessler et al. [62] have introduced the notion of power, which is defined as the quotient

of the average throughput over the average delay. Kleinrock [108], Kumar and Jaffe [120],

2Indeed, in some articles, congestion control is used interchangeably with flow control.
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and Selga [187] later generalized the power as follows: Denote the average delay and the

average throughput of the network by T and λ, respectively. Then the power P of the

network is given as

P =
λβ

T
, (2.1)

where β > 0 is the trade-off parameter (i.e., The definition of Giessler et al. [62] is the

case where β = 1). Fortunately, in the concavity of power is shown in some queueing

system models (for example, see [75, 78, 109]). Kolias and Kleinrock [110] applied the

power to ATM switching systems.

Jaffe [80] first studied flow control of an M/M/1 queue that has multiple users. He

gave a class of decentralized (i.e., each user strives to optimize its own performance mea-

sure) flow control algorithms, and found that a solution obtained by the algorithms were

inefficient even in an optimization problem with any considerable performance objective.

Kumar and Jaffe [120] also dealt with the same problem as [80]. In their study, three

types of powers are considered and compared. After their study, Douligeris and Mazum-

dar [43] studied a Nash equilibrium in noncooperative flow control of an M/M/1 queue

with multiple users. They further studied a Stackelberg equilibrium in a two user case.

They showed that increasing the number of users caused the degradation of the overall

throughput of the queue. Shenker [188] also considered Nash equilibria in another class of

flow control problems of M/M/1 queues, and discussed their Pareto inefficiency. Pareto

optimal (efficient) flow control in a telecommunication network with multiple users was

studied by Douligeris and Mazumdar [42], and Kumar et al. [121]. Douligeris and Mazum-

dar [42] showed a necessary and sufficient condition for a solution in flow control for the

same model as [43] to be Pareto optimal. They further suggested several algorithms that

achieved a Pareto optimal solution, and they compared the behaviors of the convergences.

Kumar et al. [121] proposed another iterative algorithm.

Zhang and Douligeris [209] proposed the synchronous and asynchronous greedy algo-

rithms in order to obtain a Nash equilibrium in flow control for the same model as [43].

The synchronous greedy algorithms were based on the Gauss-Seidel method, and the con-
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vergence of a decentralized synchronous greedy flow control algorithm was shown. Also,

in the asynchronous greedy algorithm based on the Jacobi method, they showed a neces-

sary and sufficient condition for the convergence of the algorithm. As a note on study of

Zhang and Douligeris [209], Ching [31] studied the convergence of the asynchronous algo-

rithm with relaxation, and suggested some relaxation parameters such that the algorithm

converges fast.

Another algorithmic studies in optimal flow control were studied by Gibbens and

Kelly [61] Kar et al. [94], Kunniyur and Srikant [122, 123, 124], La and Anantharam

[127, 128, 129], Liu et al. [145], Low and Lapsley [150], and Wang et al [201]. Their

model is close to the model by Kelly et al. [97, 98] where the objective is to maximize

an aggregation of utilities for users. They presented algorithms to achieve overall optimal

solutions, and proved their convergence and stability. Furthermore, Athuraliya and Low

[15] developed a practical implementation of their algorithms. Low [151] also studied flow

control algorithms in several transmission control protocols. La and Anantharam [129]

extended the algorithm introduced in [162].

Lazar [131, 132] studied dynamic flow control of M/M/1 queues, where the meaning

of “dynamic” is that the decisions for users depend on the state of the network that

the users see. He formulated a throughput maximization problem subject to a delay

constraint. He showed that the problem was transformed to a linear programming one,

and analytically derived an optimal dynamic flow control decision. Furthermore, he [133]

expanded the problem of M/M/m queues. Hsiao and Lazar [73], and Korilis and Lazar

[112] studied more general model. Hsiao and Lazar [73] obtained a threshold equilibrium

for the network by the product form solution of the queue network. The existence of an

equilibrium was shown in [112]. Korilis and Lazar [112] studied the existence of Nash

Equilibria of the flow control model introduced in [73] for a general product-form network

where the monotonicity assumptions of that reference did not necessary hold. Douligeris

[40] considered multi-objective flow control in the model as [131, 132]. He formulated

the model as a weighted-sum optimization problem, and showed some numerical results.
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Libman and Orda [142] studied sliding-window strategies in a noncooperative flow control

problem. Their goal is to minimize the expected cost/throughput ratio, and they proposed

an algorithm for calculating optimal solution. Another dynamic flow control is studied

by Imer and Başer [74].

Combined flow control and routing problems in a network of parallel links with mul-

tiple users have been studied by Haurie and Marcotte [72], La and Anantharam [126],

Patriksson [172], Rhee and Konstantopoulos [175], Altman et al. [5], and Wang et al.

[201]. They assumed that each link in the network was an M/M/1 queue with a deter-

mined capacity. In particular, Altman et al. [5] showed an asymptotic behavior in the

case where the number of users was close to infinity. Dynamic flow control combined with

network routing is considered in Wie [203]. In his work, a simple traffic network model

is formulated as a noncooperative N -person game, and a dynamic mixed equilibrium is

computed. Sahin and Simman [185] especially brought up a two-node parallel link net-

work where their objective is to maximize a class of the values given by the throughputs

minus the delays.

Fair flow control is also significant problem to guarantee QoS. In general, maximizing

the total system performance is often incompatible with guaranteeing fairness [41]. Hence,

a trade-off between fairness and the total system performance is also required. Mazumdar

et al. [159] studied a fair flow control problem of a Jackson network model of M/M/1

queues with multiple users. They applied a cooperative game theoretical framework to

the models and derive Nash bargaining solutions (it is referred to as the Nash arbitrated

scheme in [159]). They showed that maximizing the product of the powers for all users

gave a unique Nash bargaining solution. They also showed that maximizing the product

of the average throughputs subject to bounds on the average delays for all users gave

a unique Nash bargaining solution. Wong and deMarca [205] described fairness in win-

dow flow control in a network where a new performance measure was proposed. Chang

[28] investigated the interrelationships of there conflicting performance criteria, delay,

throughput and fairness in routing and flow control problems for a number of networks.
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2.3 Load Balancing

A distributed computer system is a set of computers connected by a communication

network. Load balancing is a technique to improve performance of a distributed computer

system. It is to dispatch jobs for users among the resources (e.g., CPU, memory and

disks) among the users, and is to avoid that particular set of resources are overloaded.

Indeed, load balancing is similar to network routing (or resource sharing). A recent trend

application in load balancing is GRID computing (clustering) [55].

Tantawi and Towsley [195] dealt with overall optimal load balancing in a distributed

computer system with single class3 job, where the system consists of heterogeneous host

computers connected by a single channel communication network. More specifically, each

node has a number of resources, and all nodes may have different configurations, that is,

different processing rates. An external job arrives at each node according to a Poisson

process. They formulated this distributed computer system as a class of product form

queueing network models, and considered an optimal static load balancing policy which

determines the optimal load at each node in order to minimize the average response time

in the whole system. They proposed an algorithm (called a single-point algorithm) that

determines the optimal load at each node for given system parameters. Kim and Kameda

[102] considered the model in Tantawi and Towsley [195], and proposed another single-

point algorithm. It is shown that the algorithm is simpler and its convergence is faster

than the algorithm of Tantawi and Towsley [195]

Tantawi and Towsley [194] also studied a distributed computer system that consists

of a set of heterogeneous host computers connected to a central host. They derived

the optimality condition in this problem, and show a load balancing algorithm to solve

the problem. Based on the their work, Kim and Kameda [102] proposed an improved

load balancing algorithm to obtain the solution to the problem in [194]. In Tantawi and

Towsley’s model [194], however, there is only one-way traffic from the external nodes to

3In this section, we refer to a user as a class.
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the central node in the sense that jobs can be forwarded for remote processing only from

the external nodes to the central node. As an extension of this work, Li and Kameda [138]

proposed an algorithm for optimal static load balancing in star network configurations

with two-way traffic.

In [136, 137], Li and Kameda proposed an algorithm for optimal static load balancing

in tree hierarchy network configurations. Kameda and Zhang [93] studied the uniqueness

of solutions in optimal static load balancing of open BCMP [19] queuing networks. They

obtained the linear relations that characterize the set of the optimal solutions.

The models presented above deal only with single job class environment. In [100,

101, 103], Kim and Kameda extended the single job class model by Tantawi and Towsley

[195] to multiple job class environment where their assumptions were almost the same

as Tantawi and Towsley, and they proposed an optimal static load balancing algorithm

for multiple job classes. As a generalization, Li and Kameda [139] proposed an optimal

static load balancing algorithm in a multi-class jobs distributed/parallel computer system

with general network configurations. In fact, we can express any configuration with this

models except for a single channel model [100, 101, 102, 103, 195]. Furthermore, Zeng and

Veeravalli [207] proposed a more efficient algorithm to obtain a solution to the problem

in [139], which was based on the Newton’s method.

Noncooperative static load balancing is studied in [10, 25, 89, 91]. In [91], Kameda

et al. studied Wardrop equilibria in static load balancing for single channel and star

networks. They analytically derived the effects of the system parameters on the behavior

of the system by overall optimum and Wardrop equilibrium. Altman et al. [10] focused

on load balancing in two-node distributed systems, and showed the uniqueness and exis-

tence of the Nash equilibrium. Boulogne et al. [25] studied load balancing problems in

distributed computing. They considered greedy algorithms, and showed the convergence

of a Nash equilibrium.

Kleinberg et al. [104, 105] introduced fairness in load balancing. They dealt with

homogeneous and heterogeneous load balancing and applied the Max-min fairness to
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these problems. Grosu and Chronopoulos [64, 65] studied noncooperative load balancing

in distributed systems. They dealt with a system consisting of n heterogeneous M/M/1

queues shared by m users. They compared the fairness indices [81] of proportional [32],

overall, noncooperative (Nash and Wardrop equilibria) schemes. Grosu et al. [66] studied

static cooperative load balancing in the same model as [64, 65]. They formulated it as

a Nash bargaining problem, and derived distributed load balancing algorithms to obtain

Nash equilibria and Nash bargaining solutions. They compared the fairness index of

cooperative with those of proportional, overall, noncooperative (Wardrop equilibrium)

and shortest expected delay schemes. Touati et al. [200] applied the fairness objective

proposed by Mo and Walrand [162] to a two-node load balancing system.

Dynamic (adaptive) load balancing is also an important problem in distributed com-

puter systems. Eager et al. [45] studied dynamic load balancing policies in parallel

M/M/1 queueing systems. They analytically derive the average queue lengths under

random, threshold, and shortest policies. Dynamic load balancing in parallel queueing

systems was studied by Down and Lewis [44]. They formulated his model as a Markov

decision process [173] to minimize the average total costs consisting of the holding cost

of jobs for each queue per unit time and the transfer cost of jobs. Zhou [210] studied

dynamic load balancing in homogeneous distributed systems. Zhou compared seven load

balancing algorithms with simulation. Kencl and Boudec [99] studied dynamic load bal-

ancing in a router model where different processors are dedicated to the data and to the

control plane. They presented a novel packet processing scheme.

Mitzenmacher [161] studied dynamic load balancing in parallel M/M/1 queueing sys-

tems where arriving jobs made use of old information on the loads of the servers when

it decided a route. In fact, if information on the loads of the servers is old, a system

may behave badly. He investigated dynamic load balancing system models where load

information was updated periodically or continuity. Dahlin [39] dealt with the same prob-

lem as [161]. He proposed load balancing algorithms that utilized old information on the

loads of the servers, and examined the algorithms in large-scale parallel queueing systems
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through simulation experiments.

Altman and Shimkin [11] considered dynamic load balancing in a system consisting

of a mainframe (MF) node and infinitely many personal computer (PC) nodes. The MF

node is a processor sharing queueing system, and each PC node is identical and has a fixed

service rate. In their model, each job sees the current system state, and noncooperatively

chooses between the MF node and a PC node. They showed an optimal threshold policy

corresponding to a Nash equilibrium. El-Zoghdy et al. [47] compared numerically static

and dynamic load balancing in the same model as [11] where they considered overall and

noncooperative (Nash equilibrium) situations.

2.4 Braess Paradox

The service providers (network administrators or agents) often face a necessity to im-

prove the network performance. In this situation, they may try to add server capacities

or network links in the network. Intuitively, we expect that the whole system performance

improves when the capacity of a part of the system increases. In noncooperative opti-

mization, however, it is well-known that the following phenomenon can occur: Increased

capacity of a part of the system may sometimes lead to the degradation in the benefits of

all users. Braess [26] first exhibited this paradoxical phenomenon, and Murchland [163],

Stewart [191], Frank [56], Taguchi [192], Dafermos and Nagurney [38], and Cohen [34]

evolved it. It is called the Braess paradox, and it attracted the interest of many re-

searchers. A survey of the Braess paradox appears in [86], and many publications appear

on the Braess’s homepage (http://homepage.ruhr-uni-bochum.de/Dietrich.Braess/).

Braess [26] discovered a deterministic mathematical model of a congested network in

a Wardrop equilibrium. That is, when a link (path) is added in the network and each user

determines a path in order to minimize the mean response time unilaterally, the mean

response times for all users in the network are worse than before adding the link. Later on,

Frank [56], and Hagstrom and Abrams [67] gave mathematical properties of this model.
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We show an example of a network where the Braess paradox occurs: Consider two

networks as shown in Fig 2.1. Each network has one origin, four nodes, and one destina-

tion. The left hand side in Fig 2.1 has four links (1, 2), (1, 3), (2, 4) and (3, 4), and the

right hand side has a link (2, 3) in addition to the links that the former has. That is, the

former is before adding a link and the latter is after adding link.

We consider a routing problem in these networks where each individual user determines

the best path unilaterally. Each network has a fixed traffic flow rate λ from the origin

to the destination. A traffic needs the time Cij(x) when it moves from node i to node

j where x is the traffic flow rate in link (i, j). Now, we set C12(x) = C34(x) = 10x,

C13(x) = C24(x) = 50 + x, C23(x) = 10 + x and λ = 6. Then, the flow of each path in the

former is 3, and the total time of traffic in the former is 83. On the other hand, the flow

of each path in the latter is 2, and the total time of traffic in the latter is 92. Hence, it

shows that adding a link leads the performance degradation for all users.

Cohen and Kelly [36] reported the Braess paradox in a queueing network model based

on the model described in [26]. Their network consists of an entrance, four queues (two

First-Come-First-Served (FCFS) queues and two Infinite-Server (IS) queues), and an exit,

and they assume that arrival streams are according to a Poisson process. They mathe-

matically showed a Braess paradox in optimal static routing by individual users for the

network. Calvert et al. [27] found a paradox in dynamic (state-dependent) routing for

the same network as that studied by Cohen and Kelly [36]. In their study, individual

users know full information of all the instantaneous queue lengths of the network servers

and they can make use of that information in their dynamic routing. They analytically

derived the recursive equations that lead a dynamic routing decision, and showed that a

Braess paradox occurred in dynamic routing for the network analogous to what Cohen

and Kelly showed.

Cohen and Jeffries [35] reported examples of single-server queueing networks in which

adding servers or increasing the processing capacity of existing servers lead to degrading

the network performance. Bean et al. [20] found a paradox occurred even in a loss
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Figure 2.1: The Braess networks: Left: Before adding link (1, 2). Right: After adding

link (1, 2).

network. Arora and Sen [14] studied a Braess paradox in software multi-agent systems

where a genetic algorithm (GA) was used to evolve agent societies that are faced with

the Braess paradox. Masuda and Whang [155] considered a capacity expansion/reduction

problem for a network in individual routing. They further developed a mechanism to

avoid Braess paradoxes.

As described above, there are many studies about paradoxes in optimal routing by

Wardrop equilibria. Similarly to them, it had been expected that a paradox could also

occur in Nash equilibria. Indeed, a Nash equilibrium corresponds to a Wardrop equilib-

rium when the number of users is infinitely large [72]. Hence, we can also expect that

in a Nash equilibrium, a similar type of paradox occurs. In [87], this paradox is called

the Braess-like paradox. Korilis et al. [113] found some examples wherein the Braess-like

paradox appears in a class optimum where all user classes are identical in the same topol-

ogy for which the original Braess-like paradox (for the individual optimum) was in fact

obtained. Furthermore, Korilis et al. [115, 116], and Altman et al. [8] derived a sufficient

condition for avoiding the paradox.

Kameda et al. [87, 88, 89, 92] found a paradox in load balancing for distributed

computer systems. In [89, 91, 208], they showed that increased capacity of a part of a

system might lead to the degradation of the overall performance measure in distributed
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computer system models in Wardrop and Nash equilibria. They called it the weaker

Braess-like paradox. Furthermore, Kameda et al. [89] noticed that in a Nash equilibrium,

mutual forwarding between two processing nodes (servers) occurred although that should

never occurred in the overall optimum and the Wardrop equilibrium in the same system

model. Finally, Kameda et al. [87] discovered some cases where a Braess-like paradox

appeared in the Nash equilibrium. They dealt with a distributed computer system model

consisting of two nodes and a communication network that connects both nodes each

of which has a single exponential server and a Poisson arrival stream. They considered

two types of communication networks: a single-channel communication network and a

network consisting of two-way communication lines, and showed that a paradox occurred

in the system with either type of the network in Nash equilibria. Furthermore, Kameda

et al. [88] investigated the model in [87] numerically, and show that a paradox appears

most strongly in the case where arrival and service rates of nodes are identical.

Later on, Kameda and Pourtallier [92] considered a system with homogeneous nodes

(i.e., both job arrival and server processing rates of each node are identical). Consider-

ing static load balancing for such a system, we intuitively may expect that no mutual

forwarding among nodes since it leads to the degradation of the system performance for

every user. They, however, showed that such paradoxical behavior occurred in a Nash

equilibrium. Also, they found that the performance degraded without bound in their

distributed computer system.

As described above, there are many publications about the Braess paradox. Unfortu-

nately, it seems that finding the existence of a paradox in a given network effectively is

impossible [178].

The Degree of Paradox: Other interest in Braess Paradox is to investigate, “How

system performance is degraded.” The degree of paradoxes [47, 48, 49, 50, 86] is a measure

to show the degradation.

It is defined as follows: We consider a system shared by n users, and two states x and
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x′ in the system. x is a state before adding a link or capacity, and x′ is a state after

adding. Let Ci(x) and Ci(x
′) denote the costs of user i, i = 1, 2, . . . , n at the system

states are x and x′, respectively. Then,

k∗ = min{ki, i = 1, 2, . . . , n}, ki =
C(x′)
C(x)

. (2.2)

is called the degree of Paradox. If k∗ is greater than 1, then we see that a Braess paradox

occurs in the system.

Kameda [84] investigated a paradox in general networks that had been studied by

Cohen, Kelly and Jeffries [35, 36]. He considered to use the measure of cost degradation

as the ratio of the cost for each user of a network before adding capacity (a link) to

that after adding capacity. That is, performance degradation occurs in a network if the

measure is larger than 1. He showed a value of the measure was at most 2 for any general

Braess network. Furthermore, Roughgarden and Tardos [178, 179, 182] showed more

general results. They dealt with a direct network with N nodes including one source node

and one sink node. Then, they showed that the degree of a paradox was not over n/2 in

the network. In particular, the degree of a paradox is not over 4/3 when the cost functions

are linear. A stronger bound on Braess’s paradox is showed in [143]. Kameda [85] studied

the bounds on the degrees of coincident cost improvement and degradation of Wardrop

and Nash equilibria in Braess network and distributed computer system models.

El-Zoghdy et al. [47, 48, 49, 50] studied the impact of the worst-case degree of the

paradox (WCDP) on the values of system parameter through a number of numerical

studies in a distributed computer system. They showed that WCDP was the largest in

the case where the parameter values for each node were completely symmetric, and job

arrival rate approached the server processing rate. Lin et al. [144] studied the worst-case

severity of Braess’ paradox in multi-commodity networks.





Chapter 3

A Paradox in Flow Control of

M/M/m queues

3.1 Introduction

In computer and communication networks, flow control is one of the important means

to utilize limited system resources effectively and to guarantee proper Quality of Service

(QoS). Flow control adjusts the input flow (throughput) in order to provide good perfor-

mance. Considering an optimal flow control problem, one may face the trade-off between

the throughput and the response time. These two performance measures are mutually

contradictory, that is, if one improves the system throughput, then the system response

time degrades, and vice versa. Therefore, as the utility of each user (player), we use the

power that is the quotient of the throughput divided by the average response time for the

user (see, e.g., Giessler et al., [62], Kleinrock [107, 108]).

We consider a system where multiple users (players) share an M/M/m queue and where

the utility of a player is the power. We can think of two typical performance optimization

schemes: the noncooperative optimization scheme and the overall optimization scheme.

In the noncooperative optimization scheme, each player strives to optimize unilaterally

29
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its own power given the decisions by others. In the overall optimization scheme, a single

agent optimizes a single performance measure that is the total sum of the powers of all

players. The former is regarded as a noncooperative game, and the equilibrium is called

a Nash equilibrium [165]. In this chapter, we study the Nash equilibrium.

Douligeris and Mazumdar [43], and Zhang and Douligeris [209] studied algorithms

to obtain Nash equilibria in flow control of M/M/1 queues with multiple users. Their

performance objective was to maximize the powers of all players. They proposed greedy

algorithms, and showed convergence properties of them. State-dependent flow control was

analyzed by Hsiao and Lazar [73], and Korilis and Lazar [112]. They considered a closed

queueing network model, and maximized the average throughput subject to an upper

bound on the average response time. In particular, Korilis and Lazar [112] derived the

existence of equilibria using fixed-point theorems. Altman et al. [5] combined flow control

and routing in a network model with several parallel links. Lazar [133] studied optimal

flow control problems of an M/M/m queue where one player maximizes the throughput

subject to the constraint that the average time delay should not exceed a specified value.

In this chapter, we deal with flow control problems of M/M/m queues that have multiple

players, where each player strives to optimize unilaterally its own power.

Consider the operation of grouping together separated systems into one system. Due to

enhanced flexibility in resource utilization, we expect that system grouping improves the

system performance. For example, it has been shown analytically that grouping together

separated M/M/m queues improves the average response time although the utilization

factor of each server remains the same (see [106]). We therefore expect performance

improvement in term of power by grouping together separate systems.

In noncooperative optimization of routing in networks and load balancing in dis-

tributed systems, however, it is known that the following phenomenon can occur, that

is, grouping separated systems together and/or adding connections to the system may

sometimes degrade the utilities for all users. The first example is the Braess paradox [26].

Other examples have been presented, for example, by Bean et al. [20], Calvert et al. [27],
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Cohen and Jeffries [35], Cohen and Kelly [36], Kameda et al. [87], Kameda and Pourtal-

lier [92], Korilis et al. [113] [116], Roughgarden and Tardos [182]. However, most of the

previous results are on routing (or load balancing) problems, and the paradox is observed

in very limited models. Flow control is essentially different from them. In optimal flow

control, it seems that no such paradoxes have been reported yet.

In this chapter, we show that a paradox similar to the above ones may occur in

noncooperative optimal flow control of M/M/m queues. More specifically, we show a case

where grouping together separated M/M/m queues leads to the degradation of the power

to all players in noncooperative optimal flow control.

The rest of this chapter is organized as follows. In Section 3.2, we describe a queueing

system model and formulate overall and noncooperative optimal flow control schemes

as nonlinear programming problems. In Section 3.3, we show the case of a paradox in

noncooperative flow control of M/M/m queues. Finally, in Section 3.4, we conclude this

chapter. In Appendix A, we show the existence and the uniqueness of solutions to the

optimization problems, and present algorithms that obtain the solutions.

3.2 The Model and Problem Formulation

We first consider an M/M/m queueing system. The system has an arrival stream of jobs

that forms a Poisson process with rate Λ (jobs per unit time). Also, the system has n

servers. The processing time of a job at each server is independent, identically distributed

and according to an exponential distribution with mean 1/µ. Then, the mean response

time T of an arbitrary job is given by

T = T (Λ) =

⎧⎪⎨⎪⎩
Bm(Λ)

mµ − Λ
+

1

µ
, if 0 ≤ Λ < mµ

∞, if Λ ≥ mµ

(3.1)

for l = 1, 2, . . . , r, where

Bm(Λ) =

[
1 +

m−1∑
k=0

m!(1 − Λ
mµ

)

k!(Λ
µ
)m−k

]−1

(3.2)
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is the probability that all servers are busy (called the Erlang delay formula).

We next consider the M/M/m queueing system with r players. Each player sends

the multiple-server an arrival stream of jobs that is mutually independent and forms a

Poisson arrival process with rate λl, l = 1, 2, . . . , r. Note that Λ =
∑

l λl and that the

processing time is independent of the player that sends the job. Then the mean response

time T of an arbitrary job in this model is given by (3.1).

As the utility for each user in the flow control problems, we use the power for the user.

Since the throughput is equivalent to the rate of the arrival flow (i.e., the arrival rate),

from [108], the overall power P of the system and the power pl of player l are given as:

P = P (Λ) =

⎧⎪⎨⎪⎩
Λ

T (Λ)
, if 0 ≤ Λ ≤ mµ,

0, otherwise,

(3.3)

and

pl = pl(λ1, λ2, . . . , λl, . . . , λr) =

⎧⎪⎨⎪⎩
λl

T (Λ)
, if 0 ≤ λl ≤ mµ − ∑

j �=l λj,

0, otherwise,

(3.4)

for l = 1, 2, . . . , r, respectively, where note that Λ =
∑

l λl. From (3.3) and (3.4), we have

P =
∑

l pl. P and pl are positive for Λ < mµ, and zero for Λ = 0 and Λ = mµ.

We formulate, for the system described above, two typical optimal flow control schemes:

the noncooperative optimization scheme (I) and the overall optimization scheme (II). The

noncooperative and overall optimization schemes in an M/M/m queueing system with r

players are presented as follows:

(I) The noncooperative optimization scheme: Each player strives to maximize unilat-

erally its own power, that is, the noncooperative optimization is to find λ̂l for each

l = 1, 2, . . . , r, that satisfies:

p̂l = max
λl≥0

pl(λ̂1, λ̂2, . . . , λl, . . . , λ̂r).
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Figure 3.1: A system consisting of K separated M/M/N queues (SI).

As shown in our numerous experiments we always observed symmetric solution to

λ̂l and p̂l, that is

λ̂l = λ̂ =
Λ̂

r
, and p̂l = p̂, k = 1, 2, . . . , r. (3.5)

(II) The overall optimization scheme: A single agent maximizes the overall power of

the system, that is, strives to find Λ̃ that satisfies:

P̃ = P (Λ̃) = max
Λ≥0

P (Λ).

Then, the agent distributes equally to each player l the power p̃l, and thus the

throughput λ̃l. Thus,

p̃l = p̃ =
P̃

r
, and λ̃l = λ̃ =

Λ̃

r
. (3.6)

In Appendix A, we show exsitence and uniqueness of noncooperative and overall optimal

solutions, and provide algorithms that obtain them.

Based on the above definitions, we consider two queueing system models as shown in

Figures 3.1 and 3.2:

1) One system, called SI , consists of K subsystems each of which consists of a separated
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Figure 3.2: An M/M/(N×K) queue (SU).

M/M/N queue (N exponential servers with Poisson arrivals of jobs) and R independent

players (Figure 3.1).

2) The other system, called SU , results from grouping together all the above separated

M/M/N queues. That is, the system consists of one M/M/(K ×N) queue and K ×R

independent players (Figure 3.2).

Obviously, we can formulate each subsystem of SI and the system SU using M/M/m

queues where m = N and r = R in SI , and m = K × N and r = K × R in SU ,

respectively. We express the parameters of a system by a quadruplet. That is, SI given

in 1) corresponds to (N,R,K, µ), and SU given in 2) corresponds to (N ×K,R×K, 1, µ).

We note that in SI the power of users is independent of the value of K. Therefore, the

solution of SI for a given (N,R,K, µ) is identical to that of a system with parameters

(N,R, 1, µ).

For both SI and SU , there are K × R players numbered by (1, 1), (1, 2), . . . , (K, 1),

. . . , (K,R). Denote the throughput of player (i, l) by λil. A subsystem k of SI , has R

players (k, 1), (k, 2), . . . , (k,R). Note that for system SU , we associate the symbols with

the mark ′.
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From (3.5), in the noncooperative optimization scheme, we have for each subsystem k

of SI

λ̂kl = λ̂ =
Λ̂

R
, and p̂kl = p̂, l = 1, 2, . . . , R, (3.7)

and for system SU

λ̂′
il = λ̂′ =

Λ̂′

K × R
, and p̂′il = p̂′, (3.8)

for i = 1, 2, . . . , K, l = 1, 2, . . . , R.

We define the degree of the paradox, δ, as follows:

δ =

⎧⎪⎨⎪⎩
p̂ − p̂′

p̂
, if p̂ > p̂′,

0, otherwise.

(3.9)

Note that a paradox occurs when δ > 0.

From (3.6), in the overall optimization scheme, we have for each subsystem k of SI

λ̃kl = λ̃ =
Λ̃

R
, and p̃kl = p̃ =

P̃

R
, l = 1, 2, . . . , R, (3.10)

and for system SU

λ̃′
il = λ̃′ =

Λ̃′

K × R
, and p̃′il = p̃′ =

P̃ ′

K × R
. (3.11)

for i = 1, 2, . . . , K, l = 1, 2, . . . , R.

3.3 A Case of a Paradox

In this section, we show a case where a paradox occurs. Without loss of generality, we

assume a time scale such that µ = 1. We compare the two systems presented in Section

3.2: SI – a system consisting of K separated M/M/N queues (Figure 3.1) and SU – an

M/M/(N×K) queue (Figures 3.2). In the former, the flow control schemes are concerned
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with each separated M/M/N queue. On the other hand, in the latter, the flow control

schemes are concerned with the M/M/(K×N) queue. We recall that the latter is the

result of grouping together the former.

3.3.1 The Results

Table 3.1: Power of each player and degree of paradox in the noncooperative optimization

scheme, for N = R = 11 and various values of K.

K 1 2 4 8 16

power of each player 0.4248 0.4208 0.4135 0.4061 0.3999

degree of paradox δ 0.000 0.009 0.027 0.044 0.059

K 32 64 128 256 512

power of each player 0.3951 0.3915 0.3888 0.3868 0.3854

degree of paradox δ 0.070 0.078 0.085 0.089 0.093

In Table 3.1 and Figures 3.3 and 3.4, we show the cases where N = R = 11 with the

numbers N of servers and R of players in each subsystem.

Table 3.1 and Figure 3.3 illustrate how the noncooperative optimal powers of each

player in SI and SU depend on the number K of the subsystems grouped together. Figure

3.3 shows a trend observed for the noncooperative optimization scheme. That is, in the

scheme, the power of each player in SU decreases as the number K of subsystems grouped

together increases, for N = 11 and R = 11, as shown by the curve associated with

the symbol SU . On the other hand, naturally, the power of each player of each separated

subsystem SI remains constant regardless of the value of K as shown by the line associated

with the symbol SI . The trend looks counter-intuitive. Thus, we should not always

expect that system grouping improves the system performance in the noncooperative

flow control although we anticipate the opposite. As shown in Table 3.1, the degree of
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paradox increases in K.

On the other hand, Figure 3.4 shows a naturally-expected trend observed for the overall

optimization scheme. That is, in the scheme, the power of each player in SU increases

as the number K of subsystems grouped together increases, for N = 11 and R = 11, as

shown by the curve associated with the symbol SU . On the other hand, naturally, the

power of each player of each separated subsystem SI remains constant regardless of the

value of K as shown by the line associated with the symbol SI .

3.3.2 Discussion of the Results

To give some idea on the above-mentioned results, we present Figure 3.5 for the case where

N = R = 1. In the overall optimization scheme, each player always enjoys the increase

in the power as the number K of subsystems grouped together increases. On the other

hand, in the noncooperative optimization scheme, for the values of K from 1 till about 10,

the power of each player increases although the improvement is smaller than that of the

overall optimization scheme. For the values of K larger than 11, the power of each player

decreases as K increases, which shows the same trend as the above-mentioned paradox-

ical result. Note, from the definition, that the system SU with parameters (1, 1, κ, µ) is

identical with each subsystem of the system SI with parameters (κ, κ, 1, µ) for any κ ≥ 1.

Therefore, each curve associated with the symbol SU in the Figures 3.3 and 3.4 that starts

at K = 1 with R = N = 11 shows the part of each corresponding curve in the Figure 3.5

for the domain of K ≥ 11 with R = N = 1. In Figure 3.5 (R = N = 1), we see that,

in the noncooperative scheme, the power of each user is the largest for K = 11 (which is

identical to that of a subsystem of SI with R = N = 11) and decreases as K increases.

Therefore, we see that if R = N the paradox is the largest for the case with SI with

R = N = 11 and the value of K as large as possible.

In the following, we seek the underlying structure of the system that may lead to the

fact that the paradox is the largest for the case with SI with R = N = 11 and the value
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of K as large as possible. We see in Figure 3.6 that the degree of the inefficiency of the

Nash equilibrium (p̃/p̂) with N = R = 1 increases as K increases. That is, the possibility

of paradox may start at some small value of K. We call this the effect A. On the other

hand, we see in Figure 3.7 that for small values of K, the grouping of servers improves

the performance (responsiveness) of the system although the traffic intensity ρ of each

server is kept identical, while this improvement is very small for large values of K. We

call this the effect B. We, therefore, see that the effects A and B eliminate each other for

small values of K whereas only the effect A is remarkable for the large values of K. Thus,

as shown in Figure 3.5, in the noncooperative optimization scheme with N = R = 1, the

power is the largest for some intermediate value of K, that is in fact 11, and decreases as

K increases. Therefore, we see that the paradox is the largest for the case with SI with

R = N = 11 and the value of K as large as possible.

Furthermore, we have investigated the paradoxical behaviors exhaustively regarding

the various combinations of the values of the number, N , of servers and the number, R, of

players in each independent subsystem and the number, K, of subsystems to be grouped

together. Figures 3.8 and 3.9 show the degree of paradox for various combinations of the

values of N and R in the two cases where K = 16 and 512, respectively. Also, we observe

that the degree of paradox tends to be larger in the cases where the values of N is nearly

equal to R than the other cases relevant to them. Thus, we observe again that the worst

case of paradox may occur in the case where N = R = 11 and K has a large value. We

have seen so far, however, no simple underlying structure that would support the fact

that the worst case of paradox occurs in the case where N = R.

3.4 Conclusion

In this chapter, we have studied the existence of a paradox in noncooperative flow control

in M/M/m queues. We have formulated the overall and noncooperative optimal flow

control schemes of maximizing the power and have shown the existence and uniqueness of
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solutions. We have found a paradoxical behavior in noncooperative optimal flow control

similar to the Braess paradox of noncooperative optimal routing.

We have been interested in this research because optimal flow control may essentially

be different from optimal routing and also because the paradox has been found to occur

only in limited types of problems except optimal flow control. Our example of the paradox

found in optimal flow control would suggest that the paradox could occur also in various

other types of problems.





Chapter 4

Braess Paradox in Dynamic Routing

for the Cohen-Kelly Network

4.1 Introduction

An important problem in current high-speed and large-scale computer and communication

networks (e.g., GRID, Internet) is to provide all users with satisfactory network perfor-

mance. Intuitively, we expect that the total performance of a network will increase in its

capacity. In noncooperative optimization (which results in a Nash [165] or Wardrop [202]

equilibrium), however, adding capacity or a link to a network may sometimes degrade the

performance for all users as exemplified by the Braess paradox [26]. That is, Braess [26]

considered a network routing problem in which all the costs of the links are linear. In a

Wardrop equilibrium, he discovered a paradoxical phenomenon as described above. The

Braess paradox attracted attention of many researchers, and was found in various types

of network optimization problems, for example, Cohen and Kelly [36], Bean et al. [20],

Calvert et al. [27], Cohen and Jeffries [35], El-Zoghdy et al. [50], Korilis et al. [113, 116],

Kameda [84], Kameda et al. [87, 92], Inoie et al. [78], and Roughgarden and Tardos [182].

Cohen and Kelly [36] studied static routing in two queueing networks, called the

45
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initial and augmented networks. The initial network has two paths, and the augmented

network has an additional path. An individual user arriving at the network only knows

the expected transit time of each path in the network. In that situation, they showed

the existence of a paradox. Also, in [36], the authors raised the question of whether the

paradox also occurs in networks where users have knowledge not only on the expected

transit time of each path in the network, but also on the instantaneous length of each

queue.

Calvert et al. [27] considered dynamic routing in the same networks as introduced

by Cohen and Kelly [36]. In their study, individual users have full knowledge of all the

instantaneous queue lengths of the network servers and they can make use of that knowl-

edge in their dynamic routing decisions. They analytically derived the recursive equations

that provide the dynamic routing decisions. Through some simulation experiments, they

contended that they showed that a Braess paradox occurred in dynamic routing analogous

to what Cohen and Kelly showed.

To show the existence of the paradox, however, they only compared between the

overall mean transit times of jobs in the initial and augmented networks. That is, they

did not show that the mean transit time of jobs routed through any path was higher in

the augmented network than in the initial network.

Furthermore, the system used in the simulation study performed by Calvert et al.[27]

does not seem to be identical to the one they used in their analytical study. We particularly

note that, in the analytical study, they assumed that the total number of jobs entering

the system is finite while in their simulation study, the total number of jobs entering the

system is infinite.

In this chapter, we therefore deal with dynamic routing for the Cohen-Kelly network.

Based on the assumptions and formulations of the network in [27], we derive dynamic

routing decisions in the initial and augmented networks. We make experiments on the

simulation system that reflects exactly the analytical model given in [27]. Through the

simulation experiments, we show a case where the paradox occurs for all users. Also, we
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compare our results with the results by Calvert et al. [27], and point out that their results

are not sufficient to show that a paradox occurs in the network, in our sense.

This chapter is organized as follows. In section 4.2, we describe the Cohen-Kelly net-

work and derive the dynamic routing decision. In section 4.3, we describe our simulation

method, and show some simulation results. In section 4.4, we conclude this chapter.

4.2 The Model and Assumptions

We consider the two networks as shown in Figures 4.1 and 4.2. Note that the model and

assumption described in this section are based on the analytical study of Calvert et al.

(see Section 2 in [27]). We call the former the initial network and the latter the augmented

network. Both networks consist of an entrance (node 0), four queues (nodes 1, 2, 3 and

4), and an exit (node 5). Nodes 1 and 4 are first-come-first-served (FCFS) queueing

systems, each of which has an exponential server with mean 1/µ1 and 1/µ4, respectively.

Nodes 2 and 3 are queueing systems with infinite servers (IS), each of which service time

is exponentially distributed with mean 1/µ2 and 1/µ3, respectively. Let x1(t), x2(t), x3(t)

and x4(t) denote the numbers of jobs in nodes 1, 2, 3 and 4 at time t, respectively.

A flow of jobs arrives at the system according to a Poisson process with rate λ. As

assumed in [27], the total number of jobs that enter the network is finite, and we denote

it by N . Also, we denote the number of jobs before arriving at Q0 by x0.

Let D denote the set of states in the whole system using dynamic routing, that is,

D = {x | x ∈ N
4 and x0 + x1 + x3 + x4 ≤ N}, (4.1)

where x = (x0, x1, x3, x4) is the state vector for dynamic routing decision, and N =

{0, 1, 2, . . .}. Note that we can ignore x2 in any routing decisions since node 2 is an IS

queueing system, and hence the expected transit time of jobs routed through any path is

not affected by x2.
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Node 1 Node 3

Node 5

Node 2 Node 4

λ

IS (µ3)

IS

FCFS

FCFS

(µ1)

(µ2) (µ4)

Entrance

Exit

Figure 4.1: Initial Network: The network has two paths (0-1-2-5 and 0-3-4-5).

4.2.1 Initial Network

The initial network (Figure 4.1) has two paths, 0 − 1 − 2 − 5 and 0 − 3 − 4 − 5, and a

job dynamically chooses one of these paths in order to minimize its own expected transit

time from the entrance (node 0) to the exit (node 5). Let T I
1 (x) and T I

3 (x) denote the

expected transit times of jobs routed through nodes 1 and 3, respectively, when the job

sees at node 0 that the system state is x in the initial network.

We denote the two subsets of states in the whole system in the initial network by DI
1

and DI
3 where we use them for dynamic routing in the initial network. DI

1 and DI
3 are

given as follows:

DI
1 = {x | x ∈ D and T I

1 (x) ≤ T I
3 (x)}, (4.2)

and

DI
3 = {x | x ∈ D and T I

1 (x) > T I
3 (x)}. (4.3)

Note that DI
1 ∩ DI

3 = φ and DI
1 ∪ DI

3 = D. If a job sees at node 0 that the system state

is in DI
1, then the job is routed through node 1, and otherwise (i.e., the system state is in



4.2. THE MODEL AND ASSUMPTIONS 49

DI
3) it is routed through node 3.

To obtain DI
1 and DI

3, we need to give expressions of T I
1 (x) and T I

3 (x). When a job

at node 0 sees that the system state is x, then the expected delay of the job at node 1

is (x1 + 1)/µ1. Noting that the expected delay of any job at node 2 is 1/µ2, then T I
1 is

given by

T I
1 (x) =

x1 + 1

µ1

+
1

µ2

, x ∈ D. (4.4)

To express T I
3 we suppose that a job (called the marked job) sees at node 0 that the

system state is x, and that it is routed through node 3. Then, the network has the

state-transitions depicted in Table 4.1. Note that the inter-event time is exponentially

distributed with mean 1/(IX0λ + IX1µ1 + (x3 + 1)µ3 + IX4µ4) where Xi = {xi > 0}, and

IX =

⎧⎨⎩ 1, if X is true,

0, otherwise.
(4.5)

Then, T I
3 (x) is given by the following equation:

T I
3 (x) =

1

IX0λ + IX1µ1 + (x3 + 1)µ3 + IX4µ4

[
1

+ IX0λT I
3 (x0 − 1, x1 + IC1 , x3 + 1 − IC1 , x4)

+ IX1µ1T
I
3 (x0, x1 − 1, x3, x4)

+
µ3(x4 + 1)

µ4

(4.6)

+ x3µ3T
I
3 (x0, x1, x3 − 1, x4 + 1)

+ IX4µ4T
I
3 (x0, x1, x3, x4 − 1)

]
, x ∈ D,

where C1 = {(x0 − 1, x1, x3 + 1, x4) ∈ DI
1}.

4.2.2 Augmented Network

The augmented network (Figure 4.2) has a path 0 − 1 − 4 − 5 in addition to the paths

that the initial network has. Therefore, there exist two decision-making points (nodes 0
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Figure 4.2: Augmented Network: The network has three paths (0-1-2-5, 0-3-4-5 and

0-1-4-5).

and 1) in the augmented network. At node 0, a job chooses a path by using dynamic

routing decision. If the job is routed through node 1, then it needs to choose between

the two paths (nodes 2 or 4). Note that if a job at node 1 sees that the current state

is (x0, x1, x3, x4), then the expected delays at nodes 2 and 4 are 1/µ2 and (x4 + 1)/µ4,

respectively. Therefore, if 1/µ2 ≤ (x4 + 1)/µ4, then the job is routed through node 2.

Otherwise, it is routed through node 4.

Let TA
1 (x) and TA

3 (x) denote the expected transit times of jobs routed through nodes

1 and 3, respectively, when the job sees at node 0 that the system state is x in the

augmented network. Then, similarly to the initial network, we define two subsets of D,

DA
1 and DA

3 as follows:

DA
1 = {x| x ∈ D and TA

1 (x) ≤ TA
3 (x)}, (4.7)

and

DA
3 = {x| x ∈ D and TA

1 (x) > TA
3 (x)}. (4.8)
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Note also that DA
1 ∩ DA

3 = φ and DA
1 ∪ DA

3 = D.

As to TA
1 (x), we note that the expected transit time of a job at node 1 is affected by

the number of jobs waiting behind. We denote the number of jobs behind the job at node

1 by x′
1, the state vector including x′

1 by x′ = (x0, x1, x
′
1, x3, x4), and the set D′ of x′ by

D′ = {x′ | x′ ∈ N
5 and x0 + x1 + x′

1 + x3 + x4 ≤ N}. (4.9)

Suppose that a marked job sees at node 1 (that is, routed through node 1) that the

system state is x′. Then, the network has the state-transitions depicted in Tables 4.2 and

4.3. Note that the interevent time is exponentially distributed with mean 1/(IX0λ + µ1 +

x3µ3 + IX4µ4). Then the expected transit time of the marked job, T ′A
1 (x′), is given by the

following equation:

T ′A
1 (x′) =

1

IX0λ + µ1 + x3µ3 + IX4>0µ4

[
1

+ IX0λT ′A
1 (x0 − 1, x1, x

′
1 + IC3 , x3 + 1 − IC3 , x4)

+ µ1

(
IX1T

′A
1 (x0, x1 − 1, x′

1, x3, x4 + IC2) (4.10)

+ Ix1=0 min(
1

µ2

,
x4 + 1

µ4

)
)

+ x3µ3T
′A
1 (x0, x1, x

′
1, x3 − 1, x4 + 1)

+ IX4µ4T
′A
1 (x0, x1, x

′
1, x3, x4 − 1)

]
, x′ ∈ D′

where C2 = {1/µ2 > (x4 + 1)/µ4} and C3 = {(x0 − 1, x1 + 1, x3, x4) ∈ D1}. Note that

TA
1 (x0, x1, x3, x4) = T ′A

1 (x0, x1, 0, x3, x4).

As to TA
3 , the network has the state-transitions as shown in Table 4.4. Therefore,
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similarly to the initial network, TA
3 (x) is given by the following equation:

TA
3 (x) =

1

IX0λ + µ1IX1 + (x3 + 1)µ3 + IX4µ4

[
1

+
µ3(x4 + 1)

µ4

+ IX0λTA
3 (x0 − 1, x1 + IC1 , x3 + 1 − IC1 , x4)

+ IX1µ1T
A
3 (x0, x1 − Ix1>0, x3, x4 + IC2) (4.11)

+ x3µ3T
A
3 (x0, x1, x3 − 1, x4 + 1)

+ IX4µ4T
A
3 (x0, x1, x3, x4 − 1)

]
, x ∈ D.

4.3 Simulation Experiments

4.3.1 The Method

In this section, we describe our simulation method. Note that it is different from the

simulation method of Calvert et al. [27].

We programmed the simulator using Microsoft Visual Studio 2003 (C++ Language),

and used Mersenne Twister [156] as a pseudo-random number generator. We ran simulator

on several personal computers, each of which has an AMD Athlon64 FX-51 (2.2GHz) CPU,

and 2GB memory.

We can obtain dynamic routing decisions in the initial (DI
1, DI

3) and augmented (DA
1 ,

DA
3 ) networks by solving (4.4) and (4.6) for x ∈ D (in the augmented network, (4.10) for

x′ ∈ D′ and (4.11) for x ∈ D) recursively, and comparing between T I
1 (x) and T I

3 (x) (in

the augmented network, TA
1 (x) and TA

3 (x)) for x ∈ D, respectively.

We perform the following simulation in both the initial and augmented networks.

First, we set the initial state of the network.

(x0(0), x1(0), x2(0), x3(0), x4(0)) = (N, 0, 0, 0, 0),
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at time 0. We start each simulation at the initial state, and the simulation continues until

the state becomes (0, 0, 0, 0, 0). We regard it as one simulation cycle. In all the results

shown in next section, we set the parameter value as follows: N = 100. We then discard

the first 20 jobs since initial states are not always steady-states. We obtain the mean

value of transit times of the remaining 80 jobs. We then compute the expectation of the

mean transit times obtained by 50000 simulation cycles.

We repeat the above procedure 20 times using random numbers of different seeds, and

calculate the 95% confidence interval for each value of arrival rate λ. Note, however, that

the lengths of the confidence intervals are so short that the errorbars in the graphs are

invisible. Also, note that the capacity of the initial and augmented networks is (µ1 + µ4).

Because of the recursive nature of the equations giving the expected transit time, the

size of memory needed for the computation increases rapidly in the total number of jobs.

More precisely, from (10), for a given N , the program stores in memory the different values

of TA
1 corresponding to the different cases of x′, which is a subset of N

5. We therefore

limit the parameter value N to be 100 in our simulations.

4.3.2 The Results

An example in which the paradox occurs: Figure 4.3 illustrates the mean transit

times of jobs routed through the two paths, 0-1-2-5 and 0-3-4-5 in the initial network,

and three paths, 0-1-2-5, 0-3-4-5 and 0-1-4-5 in the augmented network with dynamic

routing for each value of arrival rate λ where the parameter values are given as follows:

µ1 = µ4 = 5.0, and µ2 = µ3 = 0.5. Note that these networks are symmetric. For static

routing, the worst-case paradox has been shown to occur in a case where both the initial

and augmented networks are symmetric [84].

We say that “the Braess paradox occurs” if the mean transit time of the jobs routed

through any path in the augmented network is larger than the mean transit time of the

jobs routed through any path in the initial network. In Figure 4.3 we observe that the
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Figure 4.3: Mean transit time of jobs routed through each path in the initial and aug-

mented networks with dynamic routing for each value of arrival rate λ (µ1 = µ4 = 5.0,

and µ2 = µ3 = 0.5).
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Braess paradox occurs in the case where the range of the value of the arrival rate is

6.5 ≤ λ ≤ 10.

Note that if we consider static routing in the initial and augmented networks described

in [36], the mean transit time of jobs routed through any path may have the same value.

On the other hand, in Figure 4.3, we observe that the mean transit time of jobs routed

through 0-1-4-5 is different from the mean transit times of jobs routed through 0-1-2-5

and 0-3-4-5 in the augmented network. Therefore, the behavior of individual users in

dynamic routing may not be similar to that of individual users in static routing.

Discussion of a result by Calvert et al. [27]: Figure 4.4 illustrates the overall mean

transit times of jobs in the initial and augmented networks with dynamic routing for each

value of arrival rate λ where the parameter values are given as follows: µ1 = µ4 = 2.5,

and µ2 = µ3 = 0.5.

Note that the values of λ and µi are the same as the values in [27], and the simulation

method is different from in [27]. When λ is larger than 2.5, the overall mean transit time

of jobs in the augmented network is larger than the overall mean transit time of jobs in

the initial network. This behavior is very similar to the result shown in [27]. Calvert et

al. [27] said “Braess paradox appears for λ greater than the crossover value, i.e. about

λ = 2.65.” Figure 4.5 shows that the mean transit time of jobs routed through each path

in the initial and augmented networks with dynamic routing. The parameter values are

same as those of Figure 4.4.

In Figure 4.5, we observe that the mean transit time of jobs routed through the path

0-1-4-5 in the augmented network is smaller than the mean transit time of jobs routed

through the path 0-3-4-5 in the initial network. We think that the Braess paradox occurs

when by “adding capacity (a link) to a network degrades the costs for all users.” Therefore,

Figure 4.4 does not show any paradox in our sense.
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augmented networks with dynamic routing for each value of arrival rate λ (µ1 = µ4 = 2.5,

and µ2 = µ3 = 0.5).
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4.4 Conclusion

In this chapter, we have studied the existence of the Braess paradox in dynamic routing

for the Cohen-Kelly network. Based on the analytical study by Calvert et al., we have

obtained the dynamic routing decisions in the initial and augmented networks. We have

compared the performance of the initial and augmented networks by simulation, and have

found a paradoxical phenomenon similar to the one that Cohen-Kelly showed under static

routing. We have touched on the results of Calvert et al.



Chapter 5

Case Study of Pareto Set, Fairness,

and Nash Equilibrium in Load

Balancing

5.1 Introduction

There exist many systems where multiple independent users, or players, may strive to

optimize their own utility or cost unilaterally, which can be regarded as noncooperative

games. The situation where each user attains its own optimum coincidently is a Nash

equilibrium. Nash equilibria may, however, be Pareto inefficient. In particular, we call a

situation of a system strongly Pareto inefficient if all users have more benefits in another

situation than the considered situation. As for the communication and transportation

networks, examples of such strong Pareto inefficiency have been shown with respect to

noncooperative routing, first by Braess [26], and a number of related studies followed

[35, 36, 56, 96, 113, 116, 163, 182]. As for the non-cooperative load balancing in distributed

computer systems, the existence of paradoxes that appear only in the case of a finite

number of players but not in the case of infinitesimal players has been shown [87, 92]. Note

63
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that load balancing and routing have mutually similar logical structures [8, 91, 139, 195].

On the other hand, there can exist innumerably many Pareto-optimal situations. The

choice of one to achieve can be controversial among users. One selection criterion is

fairness among users. Various fairness concepts that achieve Pareto optima but are not

directly related to Nash equilibria have been already proposed [21, 97, 98, 159, 162].

In contrast, each Nash equilibrium is fair on all users in the sense that it is achieved by

the fair competition (with no coalition) among users. Then, among the Pareto-optima,

only those that are strongly Pareto-superior to the Nash equilibrium could satisfy all

users. In particular, as the situations that would make all users to feel fairness similar

to that of the Nash equilibrium, we consider a group of situations where each user’s

utility is proportionately larger than that of the Nash equilibrium. We say that such

situations are Nash proportionately fair to the Nash equilibrium. If we identify a Nash-

proportionately-fair Pareto optimum, the resulting situation will satisfy all users since it

reflects the competitive fairness given by the Nash equilibrium and is Pareto optimal, at

the same time.

By the Pareto set of a system, we mean the set of all Pareto optima of the system. We

are quite interested in the positions that the already proposed and Nash proportionate

fairness objectives occupy in the Pareto set. Since it may seem difficult to study this

problem in a general framework from this beginning stage, in this chapter, we use a

simple model of load balancing in distributed computer systems as the platform of the

present research. We numerically obtain the cost (the mean response time) of each user

at the points in the Pareto set, at the solutions that achieve various fairness objectives,

and at the Nash equilibrium (which is unique in this case [10]).

This chapter characterizes these fairness objectives through numerical results in simple

static load balancing model with two identical servers (computers) each of which has

an identical arrival and its own queue. In numerical results, we compare the fairness

objectives. For example, we observe that the points that achieve the general parameterized

fairness objectives generally cover a part of the Pareto set, and at times, do not cover the
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1 2

x1 x2

φ1 φ2

Figure 5.1: Load balancing in a distributed system consisting of two servers

Nash-proportionate-fair Pareto optimal points.

The rest of this chapter is organized as follows. Section 5.2 describes our model and

formulates as various types of fair and optimal load balancing problems. Section 5.3 shows

some numerical results. Section 5.4 concludes this article.

5.2 The Model and Assumptions

We consider a distributed computer system consisting of two servers (computers), num-

bered 1 and 2, with two flows of demands φ1 and φ2 arriving from users 1 and 2 at servers

1 and 2, respectively, as shown in Figure 5.1. This model is similar to the system studied

in Kameda et al. [87]. Let a fraction xi (0 ≤ xi ≤ φi) of a flow of jobs be forwarded from

server i to the other server j (�= i). Denote by x the vector (x1, x2). Denote further by

β1 and β2, respectively, the resulting loads on nodes 1 and 2. Then,

βi = φi − xi + xj, i, j = 1, 2 (i �= j).

We assume that node i has an exponential server with mean 1/µi, i = 1, 2. Then, the
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expected delay at server i under the load of rate βi is given by (µi −βi)
−1. For simplicity,

we assume that forwarding a job requires a fixed delay t. Therefore, the cost of user i,

that is, the delay of each flow arriving from the user i, can be written:

Ti(x) =
1

φi

[
φi − xi

µi − φi + xi − xj

+ xi(t +
1

µj − φj + xj − xi

)

]
, (5.1)

for i, j = 1, 2(j �= i).

We denote by C the feasible region of x. Note that the forwarding rate xi, i = 1, 2 is

non-negative, bounded by arrival flow, and the load βi is positive. Then, we have

C = {x | 0 ≤ xi ≤ φi, i = 1, 2 and µi − φi + xi − xj > 0, i, j = 1, 2 (i �= j)}. (5.2)

Clearly, C is a convex set. Also, we call the set of points (T1(x), T2(x)) for x ∈ C

achievable set.

On the other hand, Ti, i = 1, 2 satisfies the following proposition [199]:

Proposition 5.1. The function Ti, i = 1, 2 is non-convex in x ∈ C.

5.2.1 Pareto set and weighted-sum optimization

Denote by Π the Pareto set defined as follows:

Π =

⎧⎨⎩(T1(x), T2(x))
∣∣∣ x ∈ C,∀x′ ∈ C,∃i = 1, 2, Ti(x

′) < Ti(x)

⇒ ∃j �= i, Tj(x
′) > Tj(x)

⎫⎬⎭ . (5.3)

The Pareto set Π is the lower left border in the achievable set. We therefore also refer to

it as Pareto border.

There may exist a number of Pareto optima in a distributed computer system. Then,

one of our interests is how to obtain all of them. Consider the following objective:

Ω(x) = ξ1U1(x) + ξ2U2(x) (5.4)

where ξi, i = 1, 2 is the weighting factors that satisfy

ξi ≥ 0, i = 1, 2, and, ξ1 + ξ2 > 0.
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Then, any given solution by maximization of (5.4) with respect to x ∈ C is Pareto

optimal. Also, under the assumption of convexity, the maximization problem has the

following property [16]:

Proposition 5.2. If the feasible region C is convex and the functions Ti, i = 1, 2 are

convex in x ∈ C, then (5.4) gives all the Pareto solutions for the different combinations

of the weighting factors ξi, i = 1, 2.

Remark 5.1. In fact Ti, i = 1, 2, are not convex in x as noted in proposition 5.1.

Therefore, there may exist Pareto optimal points that are not a solution of minimizing a

weighted sum of costs as shown in the numerical examples given in Section 5.3.

5.2.2 General Fairness Objective

Recently, in the context of congestion control, Mo and Warland [162] proposed a general

and simple uniform description (parameterized by parameter α) of a wide family of fair

criteria, including in particular proportional fairness and max-min fairness. With the

general parameterized fairness objective of Mo and Warland [162], our load balancing

problem is given as follows:

Fα(x̂) = min
x∈C

Fα(x), (5.5)

where

Fα(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

1 − α

2∑
i=1

(βiTi(x))1−α , if α ≥ 0, α �= 1,

2∑
i=1

log Ti(x), if α = 1.

(5.6)

where α is the fairness parameter and βi (> 0) is the weighting factor associated to the

utility of user i. Note that when α = 0, Eq. (5.8) corresponds to the weighted sum of the

costs of the users. When α = 1 the criterion converges to a Nash bargaining solution or

weighted proportional fair point. Finally, as α grows to infinity the solution converges to

the one given by the max-min fair criterion (see Corollary 2 in [162]).
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Similarly as (5.5), we consider maximization of the utilities of the users, and formulate

the following fairness objectives:

F̀α(x̂) = max
x∈C

F̀α(x) (5.7)

where

F̀α(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

1 − α

2∑
i=1

(βiUi(x))1−α , if α ≥ 0, α �= 1,

2∑
i=1

log Ui(x), if α = 1.

(5.8)

and Ui(x) = 1/Ti(x), i = 1, 2.

Obviously, (5.7) also follows the lines of already proposed general parameterized fair-

ness objectives.

Remark 5.2. Denote

Ci(x) =
{Ti(x)}1−α

1 − α

for α ≥ 0, �= 1 while Ci(x) = log Ti(x) for α = 1. Then, we have

Ci(x) � Ci(x
′) ⇔ Ti(x) � Ti(x

′), for i = 1, 2.

That is, a Pareto optimum for user cost Ci, i = 1, 2, is also a Pareto optimum for user

cost Ti, i = 1, 2, and vice versa.

Similarly as (5.4) gives a Pareto optimum for user cost Ti, i = 1, 2, (5.5) will give

also a Pareto optimum for user cost Ti, i = 1, 2. The same arguments hold for (5.7), and

the objective (5.7) will also give a Pareto optimum for user cost Ti, i = 1, 2.

5.2.3 Nash proportionate fairness

In this system, a Nash equilibrium x̃ is given as follows:

Ti(x̃) = min
xi

Ti(xi, x̃j), s.t. (xi, x̃j) ∈ C, i, j = 1, 2 (i �= j). (5.9)
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For the model in question, there exists a unique Nash equilibrium [10]. The Nash equi-

librium, Ti(x̃), i = 1, 2 may, however, sometimes be Pareto inefficient [87]. Consider

Pi = ηTi(x̃), for i = 1, 2. (5.10)

By decreasing η (> 0), if (P1, P2) hits the Pareto border Π, and reaches a Pareto optimal

point, (P̄1, P̄2), it is called Nash-proportionate-fair point. Note that a Nash equilibrium

corresponds to exactly one Nash-proportionate-fair point if it exists.

5.3 Numerical Results

We characterize fair and optimal load balancing problem through some numerical results.

For convenience, we add the constraint ξ1 + ξ2 = 1 in minimization of weighted-sums

without losing generality. Also, we set the parameter value as follows: β1 = β2 = 1. We

have paid special attention not to catch local optima that are not global optima since the

functions to be optimized are not convex in general.

5.3.1 A case where weighted-sum objective does not cover all

the Pareto optima

Figures 5.2-5.5 show the Nash equilibrium, the part of Pareto set obtained by the weighted-

sum optimization and the fairness solutions that achieve (5.5) and (5.7). The values of

the system parameters are φ1 = 2.1, µ1 = 3, φ2 = 2.7, µ2 = 3.7, and t = 0.001.

In Figure 5.3, we observe that the part of the Pareto set obtained by the weighted-sum

objectives are divided into two parts and do not cover all the Pareto set. We note that

T1 and T2 are nonconvex in x, and, therefore, the optimal solutions to the weighted-sum

objectives may not cover the Pareto set since the conditions of the Aubin’s theorem are

not satisfied. Thus, the above result presents a counter example that shows that if a

condition of the Aubin’s theorem is not satisfied, the theorem does not hold.
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Figure 5.2: Combinations of response times, respectively, T1 and T2, of users 1 and 2 that

achieve all solutions and Nash equilibrium (Nash proportionate fairness). The values of

system parameters are φ1 = 2.1, µ1 = 3, φ2 = 2.7, µ2 = 3.7, and t = 0.001.
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Figure 5.3: Combinations of response times, respectively, T1 and T2, of users 1 and 2 that

achieve all solutions and minimization of weighted sums of costs. The values of system

parameters are φ1 = 2.1, µ1 = 3, φ2 = 2.7, µ2 = 3.7, and t = 0.001.
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Figure 5.4: Combinations of response times, respectively, T1 and T2, of users 1 and 2 that

achieve all solutions and Fairness Objective (5.7). The values of system parameters are

φ1 = 2.1, µ1 = 3, φ2 = 2.7, µ2 = 3.7, and t = 0.001.
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Figure 5.5: Combinations of response times, respectively, T1 and T2, of users 1 and 2 that

achieve all solutions and Fairness Objective (5.5). The values of system parameters are

φ1 = 2.1, µ1 = 3, φ2 = 2.7, µ2 = 3.7, and t = 0.001.
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In Figures 5.4-5.5, we observe that, as to the solutions obtained by the already pro-

posed fairness objectives (5.7), the optimal points converges to the point of the Pareto set

satisfying T1 = T2 as the value of α increases. (Note, however, that, in this case, we were

unable to obtain numerically the optimal values for very large values of α (> 100). This

is perhaps because of accumulation of round-off errors.) In particular, some such optimal

points are in the part of the Pareto set which the weighted-sum objective cannot cover.

On the other hand, the points optimal for the objectives (5.5) diverge from the Max-Min

fair point as the value of α increases. Superficially thinking, both the objectives (5.7) and

(5.5) would be anticipated to show similar behaves, but, in fact, the objective (5.5) is not

good as a general fairness objective.

It is seen in Figure 5.2 that the Nash equilibrium is almost Pareto optimal, and almost

identical to the Nash proportionate-fair Pareto optimum. In this case, however, the Nash

proportionate-fair Pareto-optimal point is not in the part of the Pareto set obtained by

weighted-sum objectives and any fairness objectives.

5.3.2 A case where the Nash equilibrium is not Pareto optimal

Figures 5.6-5.9 show a case where the values of system parameters are φ1 = 0.9, µ1 =

1.5, φ2 = 0.8, µ2 = 2, and t = 0.35.

In Figure 5.6, we observe that the Nash equilibrium is not on the Pareto set. The

Pareto set and the straight line passing through the origin (0,0) and the Nash equilibrium

intersect at a point, which is the Nash proportionate-fair Pareto-optimal point.

In this case, Pareto optimal points that achieve the weighted-sum optimization cover

all the Pareto set. The Pareto optimum corresponding to the Nash proportionate fairness

is given by ξ1 
 0.934 and ξ2 
 0.066. In this case, the Nash-proportionate-fair optimal

point happens to be the point that achieves the fairness objective (5.7) for α 
 26.4. On

the other hand, in this case, no points that achieve the fairness objectives (5.5) with any

values of α can be identical with it.
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Figure 5.6: Combinations of response times, respectively, T1 and T2, of users 1 and 2 that

achieve all solutions and Nash equilibrium (Nash proportionate fairness). The values of

system parameters are φ1 = 0.9, µ1 = 1.5, φ2 = 0.8, µ2 = 2, and t = 0.35.
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Figure 5.8: Combinations of response times, respectively, T1 and T2, of users 1 and 2 that

achieve all solutions and Fairness Objective (5.7). The values of system parameters are

φ1 = 0.9, µ1 = 1.5, φ2 = 0.8, µ2 = 2, and t = 0.35.
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achieve all solutions and minimization of weighted sums of costs. The values of system
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Figure 5.12: Combinations of response times, respectively, T1 and T2, of users 1 and 2

that achieve all solutions and Fairness Objective (5.7). The values of system parameters

are φ1 = 0.7, µ1 = 1.0, φ2 = 0.9, µ2 = 1.2, and t = 3.
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Figure 5.13: Combinations of response times, respectively, T1 and T2, of users 1 and 2

that achieve all solutions and Fairness Objective (5.5). The values of system parameters

are φ1 = 0.7, µ1 = 1.0, φ2 = 0.9, µ2 = 1.2, and t = 3.
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5.3.3 A case where only one Pareto optimum point achieves the

fairness objectives (5.7) with various values of α

Figures 5.10-5.13 show a case where only one Pareto optimum point achieves the fairness

objective (5.7) at T1 
 3.333 and T2 
 3.333, that is, the case of no load balancing (x1 = 0

and x2 = 0). The values of the system parameters are φ1 = 0.7, µ1 = 1.0, φ2 = 0.9, µ2 =

1.2, and t = 3. Note that in this case, the following relation is satisfied: φ1−µ1 = φ2−µ2.

Note that, in this case also, the Nash proportionate-fair Pareto-optimal point is different

from the Pareto optimum that achieves the fairness objective (5.7).

5.3.4 A case where only one Pareto optimum point exists

Figure 5.14 shows a case where only one Pareto optimum point exists. The value of the

system parameters are φ1 = 0.5, µ1 = 0.7, φ2 = 0.4, µ2 = 0.7, and t = 20. We note that

load balancing must be ineffective when job forwarding time t has a large value. In Figure

5.14, all optimal points that achieve the weighted-sum optimization for any combinations

of the values of ξ1 and ξ2, the points that achieve both fairness objectives (5.5) and (5.7)

with any values of α, and the Nash equilibrium point happens to be the Pareto optimal

point.

5.4 Concluding Remarks

We have numerically examined the generally parameterized fairness objectives and the

Nash-proportionate fairness recently introduced. The platform of this research has been

simple static load balancing model with two identical servers (computers) each of which

has an identical arrival and its own queue.

The points that achieve the general parameterized fairness objectives generally cover

a part of the Pareto set, and at times, do not covered the Nash-proportionate-fair Pareto

optimal point. Since each Pareto optimum may have its own significance, we may wish to
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have a more generally parameterized fairness objective that all the Pareto optimal points

may be achieved with a certain choice of the values of the parameters.

We have observed that careful consideration is needed in establishing the concrete form

of the fairness objective along the lines of the generally parameterized fairness objectives.

Otherwise, we may have an inappropriate objective that would not give us truly fair

assignment of resources to users.

Future problems that remain to be solved are numerous. For example, we may need

to examine other categories of models, and the analytical investigations to reveal the

underlying logical structures of the problems.





Chapter 6

Conclusion

In recent large-scale networks such as Internet, one important issue is to guarantee Qual-

ity of Service (QoS) for all users. In this thesis, we have studied various types of optimal

control problems in communication networks where multiple users share the system re-

sources.

We have first introduced a survey of related work in Chapter 2. An overview and

several problems on network routing, flow control and load balancing, have been presented.

We have also described the Braess paradox, and its examples.

In Chapter 3, we have studied a paradox in noncooperative flow control of multiple-

server (M/M/m) queues. We have considered the overall and noncooperative optimal flow

control schemes, and have formulated those schemes as nonlinear programming problems

to maximize the power, that is, the quotient of the throughput divided by the mean re-

sponse time. To observe a paradox, two queueing systems have been considered, which

are K separated M/M/N queues, and an M/M/(K × N) queue, respectively. We have

reported a counter-intuitive case where the power of every user degrades after grouping

together K(> 1) separated M/M/N systems into a single M/M/(K × N) system. Es-

pecially, it have been numerically shown that grouping together decreases the power of

every user about 10% in the worst case. We have also described our interpretation of the

worst case.

87
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In Chapter 4, we have studied Braess paradox in dynamic routing for the Cohen-Kelly

network. We have dealt with two queueing networks, called the initial and augmented

networks, where the augmented network is a result of adding a link to the initial network.

Intuitively, we expect that adding a link to a network improved the performance of the

users. Cohen and Kelly discovered that the opposite occured in static routing for those

networks. We have first introduced a previous study on dynamic routing in the Cohen-

Kelly network by Calvert et al, which may, however, include some confusions. We therefore

have retried the same problem as Calvert et al. to avoid those confusions. We have derived

dynamic routing decisions in above mentioned two networks based on the analytical study

by Calvert et al. Through simulation experiments, we finally have shown that a paradox

occurs in dynamic routing for the networks, that is, adding a link to a network degrades

the performance of all users analogous to what Cohen and Kelly showed.

In Chapter 5, we have studied fair and Pareto optimal solutions to a load balancing

problem. There exists various fairness objectives studied in relation to Pareto optimal

sets and Nash equilibria. We have examined the general parameterized fairness objec-

tive proposed by Mo and Warland, which can achieve max-min or proportional fairness

when the parameter of the objective has a certain value. We have also introduced Nash-

proportionate-fairness objective where a Nash-proportionate-fair point is Pareto optimal,

and is proportional to a Nash equilibrium solution. We have dealt with a simple static

load balancing model with two identical servers (computers) each of which has an inde-

pendent arrival process and its own queue. Although our load balancing model may look

simple, the analysis is complicated due to the non-convexity of the delay functions. We

therefore have applied those fairness objectives mainly numerically on the load balancing

model. We have further studied the Pareto border of the load balancing model that are

achieved by the weighted-sum optimization of the delay functions. Through numerical

studies, several counter examples have been found: Points achieved by the weighted-sum

optimization sometimes do not cover all the Pareto border, a delay minimization problem

with the fairness obective by Mo and Warland always show a counter-intuitive behavior
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while the utility maximization problems always show a natural behavior.

As future work, we can consider many extensions of the above studies. Although many

publications in the context of Braess paradox have appeared, the paradox is observed

in very limited models. Especially, there exists few examples of the Braess paradox

in dynamic networks. We can also find some computer and communication networks

where users mutually compete to satisfy their requirements. As described in Section 2,

overlay networks may be a possible target of research. In mobile ad-hoc networks, each

mobile terminal often moves and communicates with other terminals unilaterally. We

can therefore study noncooperative and cooperative (fairness) control problems in those

networks.
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[4] E. Altman, T. Başer, T. Jiménez, and N. Shimkin. Competitive routing in networks

with polynomial costs. IEEE Transactions on Automatic Control, 47(1):92–96, Jan

2002.
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[105] J. Kleinberg, Y. Rabani, and É. Tardos. Fairness in routing and load balancing.

Journal of Computer and System Sciences, 63:2–20, 2001.

[106] L. Kleinrock. Queueing Systems, Volume II: Computer Applications. John Wiley,

New York, 1976.

[107] L. Kleinrock. On flow control in computer networks. In Proceeding of the IEEE

Internationl Conference on Communications, pages 27.2.1–27.2.5, 1978.

[108] L. Kleinrock. Power and deterministic rules of thumb for probabilistic problems in

computer communications. In Proceeding of the IEEE Internationl Conference on

Communications, pages 43.1.1–43.1.10, 1979.

[109] L. Kleinrock. On the modeling and analysis of computer networks. Proceedings of

the IEEE, pages 1179–1191, 1993.

[110] C. Kolias and L. Kleinrock. The power function as a performance and comparison

measure for ATM switches. In Proceeding of the IEEE Globecom’98, pages 381–386,

1998.

[111] Y. Korilis and A. Lazar. Why is flow control hard: Optimality, fairness, partial and

delayed information. In Proceeding of the 2nd ORSA Telecommunications Confer-

ence, Mar 1992.

[112] Y. A. Korilis and A. A. Lazar. On the existence of equilibria in noncooperative

optimal flow control. Journal of the ACM, 42(3):584–613, May 1995.

[113] Y. A. Korilis, A. A. Lazar, and A. Orda. Architecting noncooperative networks.

Journal on Selected Areas in Communications, 15(7):1241–1251, Sep 1995.

[114] Y. A. Korilis, A. A. Lazar, and A. Orda. Achieving network optima using Stack-

elberg routing strategies. IEEE/ACM Transactions on Networking, 5(1):161–173,

Feb 1997.



BIBLIOGRAPHY 103

[115] Y. A. Korilis, A. A. Lazar, and A. Orda. Capacity allocation under non-cooperative

routing. IEEE Transactions on Automatic Control, 42(3):309–325, Mar 1997.

[116] Y. A. Korilis, A. A. Lazar, and A. Orda. Avoiding the Braess paradox in non-

cooperative networks. Journal of Applied Probability, 36:211–222, 1999.

[117] Y. A. Korilis and A. Orda. Incentive compatible pricing strategies for QoS routing.

In Proceeding of IEEE INFOCOM 1999, Mar 1999.

[118] Y. A. Korilis, T. A. Varvarigou, and S. R. Ahuja. Incentive-compatible pricing

strategies in noncooperative networks. In Proceeding of IEEE INFOCOM 1998,

pages 439–446, Apr 1998.

[119] E. Koutsoupias and C. H. Papadimitriou. Worst-case equilibria. In 16th Annual

Symposium on Theoretical Aspects of Computer Science, pages 404–413, 1999.

[120] K. B. Kumar and J. M. Jaffe. A new approach to performance-oriented flow control.

IEEE Transactions on Communications, 29(4):427–435, Apr 1981.

[121] L. N. Kumar, C. Douligeris, and G. Develekos. Implemention of a decentralized

Pareto optimal algorithm. Computer Communications, 17(8), Aug 1994.

[122] S. Kunniyur and R. Srikant. End-to-end congestion control schemes: Utility func-

tions, random losses and ECN marks. In Proceeding of IEEE INFOCOM 2000,

pages 1323–1332, Mar 2000.

[123] S. Kunniyur and R. Srikant. A time scale decomposition approach to adaptive ECN

marking. In Proceeding of IEEE INFOCOM 2001, pages 1331–1339, Apr 2001.

[124] S. Kunniyur and R. Srikant. A time scale decomposition approach to adaptive ECN

marking. IEEE Transactions on Automatic Control, 47(6):882–894, Jun 2002.



104 BIBLIOGRAPHY

[125] R. J. La and V. Anantharam. Optimal routing control: Game theoretic approach. In

Proceeding of the 36th IEEE Conference on Decision and Control, pages 2910–2915,

Dec 1997.

[126] R. J. La and V. Anantharam. Network princing using game theoretic approach. In

Proceeding of the 38th IEEE Conference on Decision and Control, pages 4008–4013,

Dec 1999.

[127] R. J. La and V. Anantharam. Charge-sensitive tcp and rate control in the internet.

In Proceeding of IEEE INFOCOM 2000, pages 1166–1175, Mar 2000.

[128] R. J. La and V. Anantharam. Window-based congestion control with heterogeneous

users. In Proceeding of the IEEE INFOCOM 2001, pages 22–26, Apr 2001.

[129] R. J. La and V. Anantharam. Optimal routing control: Repeat game approach.

IEEE Transactions on Automatic Control, 47(3):437–450, Mar 2002.

[130] R. J. La and V. Anantharam. Utility-based rate control in the internet for elastic

traffic. IEEE Transactions on Networking, 10(2):272–286, Apr 2002.

[131] A. A. Lazar. Optimal flow control of a class of queueing networks in equilibrium.

IEEE Transactions on Automatic Control, 28(11):1001–1007, Nov 1983.

[132] A. A. Lazar. The throughput time delay function of an M/M/1 queue. IEEE

Transactions on Information Theory, 29:914–918, Nov 1983.

[133] A. A. Lazar. Optimal flow control of an M/M/m queue. Journal of the ACM,

32(1):86–98, Jan 1984.

[134] H. Lee and M.Cohen. Multi-agent customer allocation in a stochastic service system.

Management Science, 31(6):752–763, Jun 1985.

[135] H. L. Lee and M. A. Cohen. A note on the convexity of performance measures of

M/M/c queueing systems. Journal of Applied Probability, 20:920–923, 1983.



BIBLIOGRAPHY 105

[136] J. Li and H. Kameda. Optimal load balancing in tree networks with two-way traffic.

The International Journal of Distributed Informatique, 25(12):1335–1348, 1993.

[137] J. Li and H. Kameda. A decomposition algorithm for optimal static load balanc-

ing in tree hierarchy network configurations. IEEE Transactions on Parallel and

Distributed Systems, 5(5):540–548, 1994.

[138] J. Li and H. Kameda. Optimal load balancing in star network configurations with

two-way traffic. Journal of Parallel and Distributed Computing, 23(3):364–375, Dec

1994.

[139] J. Li and H. Kameda. Optimal load balancing problems for multiclass jobs in dis-

tributed/parallel computer systems. IEEE Transactions on Computers, 47(3):322–

332, Mar 1998.

[140] L. Libman and A. Orda. The designer’s perspective to atomic noncooperative net-

work. IEEE/ACM Transactions on Networking, 7(6):875–884, Dec 1999.

[141] L. Libman and A. Orda. Atomic resource sharing in noncooperative network.

Telecommunication Systems, 17(4):385–409, Aug 2001.

[142] L. Libman and A. Orda. Optimal sliding-window strategies in networks with long

round-trip delays. Computer Networks, 46:219–235, 2004.
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Appendix A

Existence and Uniqueness of

Solutions in Flow Control Problems

of M/M/m queues

First, we show in this appendix, that there exist solutions to problems (I) and (II) in

Chapter 3. Then, we prove that they are unique. Note that for M/M/1 queueing system

models, closed form solutions to noncooperative and overall optimization problems have

been obtained (see e.g., [43]). It seems, however, that there is no solution to M/M/m

models for m > 1, has been published.

Lemma A.1. 1) For 0 ≤ Λ ≤ mµ, the overall power, P (Λ) is strictly concave in Λ.

2) For 0 ≤ λl ≤ mµ − ∑
j �=l λj, the power of player l, pl(λ), is strictly concave in λl for

l = 1, 2, . . . , r.

Proof. Since 1) is equivalent to 2) in the case where r = 1, we prove 2). The second

derivative of pl with respect to λl is as follows:

∂2pl(λ)

∂λ2
l

= 2
∂

∂λl

{
1

T (Λ)

}
+ λl

∂2

∂λ2
l

{
1

T (Λ)

}
(A.1)

= − 2

T (Λ)2

∂T (Λ)

∂λl

+ λl
∂2

∂λ2
l

{
1

T (Λ)

}
.
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Now, we wish to show (A.1) is negative. From [63], [69], and [135], the response time

T (Λ) is strictly increasing in ρ, where

ρ =
r∑

l=1

λl

mµ
=

Λ

mµ
,

and hence T (Λ) is also strictly increasing in λl. Therefore, the first term of (A.1) is

negative.

We rewrite the second term of (A.1) as follows:

λl
∂2

∂λ2
l

{
1

T (Λ)

}
= λl

∂2

∂ρ2

{
1

T (Λ)

} (
∂ρ

∂λl

)2

.

From [70], we have

d2

dρ2

{
1

T (Λ)

}
< 0.

Note that

∂ρ

∂λl

=
1

mµ
. (A.2)

Therefore, the second term of (A.1) is nonpositive. Finally, the left-hand side of (A.1) is

negative.

We define the function g by

g(Λ) =
T (Λ)

T ′(Λ)
− Λ

r
, (A.3)

where T ′(Λ) = dT (Λ)/dΛ.

Lemma A.2. Any solution to the noncooperative optimization problem (I) is symmetric,

that is,

λ̂l = λ̂l′ =
Λ̂

r
, l, l′ = 1, 2, . . . , r, (A.4)

and satisfies g(Λ̂) = 0.
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Proof. We denote a solution to (I) by λ̂. It satisfies λ̂l > 0 for all l = 1, 2, . . . , r and∑
l λ̂l < mµ. Moreover, it is a solution to ∂pl(λ)/∂λl = 0, l = 1, 2, . . . , r, which is

equivalent to

λl
∂T (Λ)

∂λl

− T (Λ) = 0, l = 1, 2, . . . , r. (A.5)

Since T (Λ) depends only on Λ, then

∂T (Λ)

∂λl

=
∂T (Λ)

∂λl′
=

dT (Λ)

dΛ
, l, l′ = 1, 2, . . . , r.

Then, any solution to problem (I) satisfies λl = T (Λ)/T ′(Λ) for all l = 1, 2, . . . , r with

T ′(Λ) = dT (Λ)/dΛ. λ̂ is therefore symmetric, and given by g(Λ̂) = 0 and λ̂l = Λ̂/r, l =

1, 2, . . . , r.

Therefore, we obtain the following proposition:

Proposition A.1. 1) The solution to the noncooperative optimization problem (I) is

unique, and is a solution of the following equation:

g(Λ) =
T (Λ)

T ′(Λ)
− Λ

r
= 0. (A.6)

2) The solution to the overall optimization problem (II) is unique, and is a solution of

the following equation:
T (Λ)

T ′(Λ)
− Λ = 0. (A.7)

Proof. 1) From Lemma A.2, a solution to problem (I) is given by g(Λ) = 0, which is

(A.6). If g is a strictly decreasing function of Λ for 0 ≤ Λ ≤ mµ, and satisfies g(0) > 0

and g(mµ) < 0, there exists a unique solution to (A.6). The derivative of g with respect

to Λ is

dg(Λ)

dΛ
=

T ′(Λ)2 − T (Λ)T ′′(Λ)

T ′(Λ)2
− 1

r

= −T (Λ)T ′′(Λ) − 2T ′(Λ)2

T ′(Λ)2
− 1 − 1

r
,
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where

T ′′(Λ) =
d2T (Λ)

dΛ2
.

In [70], it is shown that d2T−1/dΛ2 < 0, that is to say that

T (Λ)T ′′(Λ) − 2T ′(Λ)2 > 0.

Then, we have dg(Λ)/dΛ < 0 for 0 ≤ Λ ≤ mµ. Therefore, g is a strictly decreasing

function of Λ.

Next, we show g(0) > 0 and g(mµ) < 0. From [63], [69], and [135], the function T is

increasing and strictly convex in Λ for 0 ≤ Λ ≤ mµ. Then T ′(Λ) is positive for Λ = 0.

From (3.1), T (Λ) is also positive for Λ = 0. Therefore, from (A.3) we have g(0) > 0.

The derivatives of T and Bm are

dT (Λ)

dΛ
=

B′
m(Λ)(mµ − Λ) + Bm(Λ)

(mµ − Λ)2

and

B′
n(Λ) =

dBm(Λ)

dΛ

=
Bm(Λ)[mµΛ(1 − Bm(Λ)) + m(mµ − Λ)2]

mµΛ(mµ − Λ)
,

respectively. Then if Λ �= 0, g(Λ) is rewritten as follows:

g(Λ) =
mΛ(mµ − Λ)(µBm(Λ) + mµ − Λ)

Bm(Λ)[mµΛ + (1 − Bm(Λ)) + m(mµ − Λ)2]
− Λ

r
.

Since Bm(mµ) = 1, we obtain g(mµ) < 0. Therefore, (A.6) has a unique solution.

2) We denote a solution to (II) by Λ̃. Note that P is positive for 0 < Λ < mµ, and zero

for Λ ≤ 0 and Λ ≥ mµ. Also from Lemma A.1, P is strictly concave for 0 ≤ Λ ≤ mµ.

Then problem (II) has a unique solution, and Λ̃ is a solution to dP (Λ)/dΛ = 0 for

0 < Λ̃ < mµ, which is equivalent to (A.7).

Each of eqs. (A.6) and (A.7) has a single variable, respectively. Therefore, we can

obtain the solutions simply by using an iterative algorithm. We provide such an algorithm.
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Algorithm

Step 1. Set x0 = 0, y0 = mµ, ε0 = y0 − x0, ε > 0, and k = 0.

Step 2. (I) If
T (Λ)

T ′(Λ)
− Λ

r
≤ 0,

then set yk = εk otherwise set xk = εk.

(II) If
T (Λ)

T ′(Λ)
− Λ ≤ 0,

then set yk = εk otherwise set xk = εk.

Step 3. Compute εk = yk − xk.

Step 4. If |εk| > ε then go to step 2.

Step 5. (I) Set Λ̂ = εk.

(II) Set Λ̃ = εk.
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