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Abstract 
 
 
 
 

This research introduces a smoothed particle hydrodynamics (SPH) technique 

to analyze liquefaction induced ground displacements in the framework of fluid 

dynamics concept. 

Lateral spreading induced by seismic liquefaction causes the ground to 

experience large displacement and shear strains which are difficult to simulate by 

ordinary techniques like FEM, FDM or VOF. In this respect, the primary objective of 

this research was to investigate the applicability and feasibility of a Lagrangian 

meshfree particle method to analyze problems involving large ground displacements. 

On the basis of field observations and laboratory tests findings on the 

mechanism of liquefaction induced lateral spreading as well as on the nature of the 

liquefied soil, the viscous fluid analogy and the Bingham constitutive model was 

used to represent the behavior of the liquefied subsoil. 

The ability and the efficiency of the SPH to simulate Newtonian and non-

Newtonian flow was checked using three benchmark problems for which exact 

solution and experimental results exist. The method was then extended to simulate 

lateral spreading experiments conducted on 1g shaking table test by Hamada et al. 

and to investigate the flow of the liquefied soil around a model pile. The dilatancy 

propriety of the liquefied soil was simulated by introducing a phenomenological 

bilinear constitutive model to reproduce the regain of the rigidity. The obtained 

results show that the SPH technique represents a powerful and promising tool to 

simulate large displacement, large shear strain and to track the free surface without 

any need for remeshing techniques. 
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Chapter 1 
Introduction 

 
 
 

1.1 Research background  

Liquefaction of loose, saturated, cohesionless soils and other granular materials 

represents one of the most devastating geotechnical hazards during large earthquakes. 

For instance, liquefaction induced ground failures have caused tremendous damage 

and disruption to pile foundations of buildings and bridges, embankments, river dikes,   

pipelines, lifelines system and waterfront structures. During the 1964 Alaska 

earthquake, over 250 bridges and numerous embankments along the Alaskan 

Railroad and Highway were damaged. In the same year, the Niigata earthquake 

caused substantial damage in Niigata city and its vicinity. Earth structures and 

foundations were severely affected due to liquefaction of saturated loose sand 

(Yamada, 1966). According to Kawakami and Asada (1966), structures in harbors 

and revetments of river banks moved, tilted or overturned. In Niigata Power Plant, 

cast iron pipes of 1500 mm in diameter for cooling water supply moved upward by 

50 cm and sideways by 110 cm, although they were full of water and laid at 4m 

depth. Liquefaction induced lateral spread caused also extensive damage to Showa 

Bridge as its pile foundations could not resist the cumulative movement of the 

laterally spreading soil, leading them to deflect toward the river’s centerline and 

cause the collapse of several bridge spans. During the 1995 Hyogo-ken Nanbu 

earthquake, soil liquefaction caused widespread damage on reclaimed lands and 

induced large ground displacements in the horizontal direction, resulting in distress 

to buried lifelines and piles foundations of buildings and bridge piers along the Kobe 

shoreline (Hamada et al, 1996). Lateral spread at the margins of Port Island and 

Rokko Islands caused widespread seaward displacement of caisson walls that 
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severely disrupted port operations (Inagaki et al, 1996). At Takahama in Kobe, 

wharves supported on vertical piles moved 1.3–1.7 m toward the sea. Furthermore, in 

Nishinomiya area, ground displacement in the order of 2 m caused the caisson type 

foundation supporting the Nishinomiya Bridge to move about 0.6 m resulting in the 

collapse of a girder. 

By reviewing and analyzing four case studies from past Japanese earthquakes 

namely the 1923 Kanto earthquake, Fukui earthquake of 1948, the 1964 Niigata 

earthquake and the 1983 Nihonkai-Chubu earthquake, Doi and Hamada (1992) 

investigated the mechanism of the occurrence of liquefaction induced ground 

displacements and its influence on underground structures. They showed that the 

resultant damage may extend over a region of hundreds square meters and the 

permanent displacements may reach several meters even for mild ground slope. They 

stated that during Fukui earthquake, the maximum observed displacement in Morita 

area was greater than 4 m, and during Niigata earthquake, the maximum 

displacement reached 8 m in Ohgata area (Fig.1.1). Using the GPS before and after 

the Hyogoken-Nambu earthquake, Inagaki et al. (1996) measured the induced 

displacements along the Rokko Island and Port Island, and found that a quay wall 

line in the northern area of Port Island moved about 4 m toward the north, while the 

sea wall along the north end of the Rokko Island moved 3.5 m toward the sea at the 

maximum (Fig.1.2).  

 

1.2 Purpose of the present research  

In view of the previous post-earthquakes investigations, we can state that 

bridges, buildings and waterfronts structures lost their stability and serviceability due 

to the deficiency of their foundations to resist the load imposed by the surrounding 

soil, while pipelines, lifelines systems (gas and fuel delivery, water supply and 

sewage), and embankments lost their functionality due to their inability to sustain 

large displacements and deformations caused by the lateral spread. In order to protect 

these structures and to ensure their stability and serviceability during and after the 

earthquake shaking, the assessment of the likelihood induced permanent 
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displacement and lateral spreading load is a matter of great concern in seismic proof 

design. 

In the framework of performance based seismic design, the magnitude of the 

induced ground displacement is considered to be a major factor in designing            

in-ground structures. In fact, the current approach tends towards allowing the 

induced deformations to be within an acceptable level even if the subsoil liquefies, 

rather than preventing overall liquefaction by taking preventive countermeasures.  

The primary objective of the present work is to develop a numerical approach 

based on smoothed particle hydrodynamics (SPH) for liquefaction induced lateral 

spreading analysis. By essence, the SPH is an adaptive Lagrangian meshfree particle 

technique that is capable of modeling large displacement and tracking free surface 

boundary. However, its application and extension to the field of geomechanic has 

been only recently attempted. Zhu et al. (1999) developed a pore-scale numerical 

model for flow through porous media using SPH. Using the same numerical 

technique, Maeda and Sakai (2004) were able to model seepage analysis of granular 

flow, and Saomoto (2004) used a coupled DEM-SPH technique to model boiling 

problem. 

On the other hand, although many studies were carried out to investigate the 

characteristics of the liquefied soil, the relationship between the stress and the strain 

which reaches sometimes 100 % is difficult to establish. In this study, the approach is 

developed within the framework of fluid dynamics by considering the soil to behave 

as a viscous fluid during shaking and as a solid after the cease of shaking. In this case, 

a constitutive model that simulates both behaviors is expressed in the form of a non-

Newtonian fluid and its implementation allows the assessment of large displacement. 

1.3 Previous research  

Several models have been developed to predict the magnitude of the 

liquefaction induced ground displacements. They can be classified into the following 

categories: 

• Empirical methods 

• Numerical methods 

• Simplified analytical methods. 
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• Empirical methods 

Several empirical methods to predict liquefaction induced ground 

displacements have been developed by deriving the relationship between the 

observed displacements and various sites parameters. In this section, three empirical 

models for lateral spread will be reviewed. 

Using data from the 1964 Niigata, the 1983 Nihonkai-chubu and the 1971 San 

Fernando earthquakes, Hamada et al. (1986) developed a simple empirical model for 

horizontal displacements expressed in the following form: 
 

 375.0 θHD =    ` (1.1) 

 

Where D is the horizontal displacement (m), H is the thickness (m) of the 

estimated liquefied layer and θ  (%) is the larger value of the slope of either the 

ground surface or the base of the liquefied layer. However, Hamada et al (1994) 

reported that the proposed formula provides only an approximate fit to the field data 

since the predicted ground displacements by the above formula are scattered between 

half and twice the measured values. Furthermore, most of the case observation came 

from Noshiro city and thus represent a narrow range of seismic data and site 

conditions. 

Bartlett and Youd (1995) used a large database of lateral spreading case 

histories with multiple linear regression (MLR) analysis to derive empirical 

equations for ground surface displacement caused by lateral spread. In total, 467 

displacements vectors compiled from eight earthquakes in Japan and Western United 

States were used to fit the MLR model of which, 337 are from the 1964 Niigata and 

1983 Nihonkai-Chubu earthquakes and 111 are from US earthquakes.  Bartlett and 

Youd developed two model equations: a free face component for lateral spreading 

toward a steep vertical face and a ground slope component for lateral spread without 

a free face. The derived MLR equations are expressed as: 

• Free face component: 

 
151515 50922.0)100log(527.4log348.0              

log657.0log927.0178.1366.16log
DFT

WRMD W

−−+
++−+−=

 (1.2) 
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• Ground slope component: 

 
151515 50922.0)100log(527.4log348.0             

log429.0log927.0178.1787.15log
DFT

SRMD W

−−+
++−+−=

 (1.3) 

 

  Where D is the horizontal displacement (m), MW is the moment magnitude of 

the earthquake and R is the closest horizontal distance (km) to the seismic energy 

source of fault rupture. T15 is the thickness (m) of the saturated, cohensionless soils 

(excluding soils deeper that 20m or with ≥  15 % clay content) with N1,60  15 (N≤ 1,60 

is the standardized SPT blowcount). F15 is the average fines content in T15 and D15 is 

the average grain size (mm) in T15.  

In the free surface component, W is the free surface (%) defined as the ratio 

between the toe-to-crest height and the horizontal distance to the face toe. For the 

ground slope component, S is the gradient of the ground surface (%). By looking at 

the data base used by Bartlett and Youd, we can see that the MLR model is valid 

only for 86 ≤≤ WM , , %201 ≤≤ W %61.0 ≤≤ S , mT 151 15 ≤≤ and a depth to the 

top of the liquefied soil from 1 to 10 m. 

Using the same database as Bartlett and Youd, Rauch (1997) developed an 

empirical procedure which includes three complementary components that could be 

used with different levels of site information. Rauch grouped nearby displacement 

vectors into individual slides and computed an average displacement D (m) and 

average soil properties for each slide, expressed by the following equations:  

Regional:                    149.0)21.2( 2 +−= RDD DD 589.0=σ  (1.4) 

Site:                                         111.0)44.2( 2 +−+= SR DDD DD 560.0=σ  (1.5) 

Geotechnical:                 124.0)49.2( 2 +−++= GSR DDDD DD 542.0=σ  (1.6) 

Where:  

RD  = 1000/)4.1124209.13613( max dfW TaRM −−−  

SD  = 1000/)3.313.42526.0( facetopslide HSL ++  

GD  =  1000/)1.866.50( min liqFS ZZ −

  =fR   the shortest horizontal distance (km) to the fault rupture. 
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WM  =  the moment magnitude. 

maxa   =  the peak horizontal acceleration at the ground surface. 

dT   =  the bracketed duration (s). 

slideL  =  the length (m) of slide area from head to toe. 

topS  =  the average slope (%) across the surface of the lateral spread. 

faceH  =  the height (m) of the free face measured vertically from toe to crest. 

minFSZ  =  the average depth (m) to the minimum factor of safety. 

liqZ  =  the average depth (m) to the top of liquefied layer. 

 

It is important to mention that a special care should be taken regarding the use 

of the empirical models for liquefaction induced ground displacement prediction, 

especially for conditions other than those corresponding to the database from which 

they were developed. This concerns the range of the recorded strong motions and site 

conditions. Accordingly, the use of the mechanical based methods for liquefaction 

induced lateral spreading seems more consistent with experimental results and field 

observations.  

 

• Numerical methods 

Numerical methods to predict the magnitude of the ground displacement 

induced by lateral spreading depend on our understanding of the mechanical 

behavior of the liquefied soil. As it will be reviewed in the next chapter, the liquefied 

soil may behave as a solid or as a viscous fluid during the course of the shaking. 

Based on the assumption that liquefied soil behaves with a reduced stiffness 

after the liquefaction, Yasuda et al. (1992) proposed a simple static finite element 

analysis in two stages to assess the permanent ground displacement. In the first stage, 

the distribution of the stresses in the ground is calculated using the elastic modulus 

before the earthquake. In the second stage, the stresses are held constant and the 

analysis is conducted again using the decreased modulus due to liquefaction. Finally, 

the permanent displacement is obtained as the difference between the displacements 

computed in the two analyses. 
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 Using the principal of the minimum potential energy, Orense and Towhata 

(1992) proposed a three dimensional finite element approach to predict the pattern of 

the ultimate permanent ground displacements induced by seismic liquefaction. The 

three dimensional problem is reduced to two dimensional one by dividing the study 

area into several finite elements and assuming a sinusoidal distribution of the lateral 

distribution of the liquefied soil. In the simulation, the soil is considered to have no 

shear stiffness, and the upper soil layer acts as a linear elastic plate. 

Considering the liquefied soil as a visco-elastic material, Aydan (1995) 

proposed a FEM procedure based on the adaptive mesh technique to simulate the 

lateral spreading of the liquefied ground. The method was applied to simulate model 

tests of liquefied soil shaked in a large box, and it was found able to simulate the 

behavior of ground soil ranging from a fluid-like one to solid-like behavior one. 

However, this method needs both elastic and viscous parameters of the liquefied soil 

to be defined; the determination of the viscous ones is difficult because of their non-

linearity. 

Uzuoka et al. (1998) developed a numerical method to predict the lateral 

spreading of the liquefied subsoil based on the concept of the fluid dynamics. By 

assuming the liquefied soil as a Bingham fluid, Uzuoka et al used a numerical code 

based on the finite volume method to simulate a real flow failure of an embankment 

as well as the results of a lateral spreading experiment on an underground structure. 

Tamate and Towhata (1999) proposed a 2D finite element approach for 

numerical simulation of ground flow caused by seismic liquefaction. In their 

approach, the soil is considered to behave like a viscous fluid, and hence the ground 

flow is governed by the principal of minimum potential energy. To take account of 

the non-linearity due to large displacement, the updated Lagrangian method was used 

to solve the equation of motion. 

Considering the same assumption for the liquefied subsoil and using the same 

computational framework as Uzoka et al., Hadush et al. (2001) proposed the cubic 

interpolated pseudo-particle (CIP) to simulate the displacement induced by lateral 

spreading. The method was used to simulate results from shaking table experiments 

of a liquefied subsoil model with an overlaying non-liquefied layer. 
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In summary, a variety of numerical methods have been developed to predict 

ground displacement induced by lateral spreading assuming the liquefied subsoil 

either as a solid or as a viscous fluid. Since the induced displacements are large as 

observed in the field, the governing equations were solved either on an updated 

Lagrangian or Eulerian description. In the adaptive mesh technique based on the 

updated Lagrangian description, the stiffness matrix is re-calculated and re-

assembled at each time increment. Furthermore, the mesh is to be re-updated which 

may lead to time consuming and additional inaccuracy of the solution. Similarly, the 

volume of fluid (VOF) based on staggered grid need special treatment to track 

moving boundary and interface. The CIP technique can treat different materials 

together and track free surface by separating the advection and non-advection phase, 

however some numerical instability due to the constitutive equation still unresolved.  

Noteworthy to mention that most of these methods, particularly those using FEM 

require many soil parameters to be determined through laboratory testing, and thus 

render them costly for use. Consequently, the use of simplified analytical models is 

in many cases justified. 

 

• Simplified analytical models 

Two simplified analytical approaches to assess the ground deformation in 

lateral spread have been developed based either on the Newmark’s sliding block 

concept or on Towhata’s simplified approach. 

By assuming a sliding block resting on a frictional plane, Newmark (1965) 

assessed the resulting ground displacement when the seismic inertia force exceeded 

the resisting forces. This condition is expressed in term of the critical yield 

acceleration. The induced displacement is computed by integrating twice the seismic 

acceleration time history minus the critical yield acceleration. The Newmark’s model 

assumes that the deformation takes place on a well defined failure surface and the 

yield acceleration remains constant during shaking. However, these assumptions do 

not hold in the case of lateral spreads, since the sliding block is no more rigid but 

liquid, and the shear strength (and yield acceleration) of saturated soils varies during 

cyclic loading as pore pressure varies. 
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On the basis of observations from shaking table experiment, Towhata et al. 

(1992) developed an analytical model to predict the maximum displacement that will 

occur during lateral spreading. By considering the soil to remain liquefied for a 

sufficient length of time, the lateral spreading attains a complete flow and a state of 

minimum energy is achieved. The horizontal deformations of a vertical section in the 

liquefied deposit are represented by a sinusoidal curve. The model was successfully 

applied to analyze various shaking table tests results and to simulate real cases in 

Noshiro city and Ohgata area in Niigata city.  

 

1.4 Outline of the thesis  

In chapter 1, the research background and the objectives are established on the 

basis of post earthquake observations and the new requirements of the performance 

based design. The assessment of the maximum likelihood displacement induced by 

lateral spreading during liquefaction represents a prerequisite for the design of in-

ground structures.  

Chapter 2 introduces and discusses the nature characteristic of the liquefied soil 

with respect to the post-earthquake observations and physical modeling. It is stressed 

that the liquefied soil exhibits a dual behavior during the course of the shaking. 

Therefore, this research uses the concept of the fluid analogy with a Bingham model 

to represent the behavior of the liquefied soil. 

In chapter 3, the basic concepts and fundamentals of the smoothed particles 

hydrodynamics are overviewed. The governing equations for liquefaction induced 

lateral spreading analysis are formulated in the framework of fluid dynamics. An 

existing educational SPH code is extended to model hydrodynamics problems using 

material strength. Its ability and efficiency to simulate Newtonian and Non-

Newtonian flow is validated using three benchmark problems of a Poiseuille flow, a 

dam break of a water column as well as a water-column mixture for which 

experimental results exist. 

In chapter 4, the SPH method is extended to simulate lateral spreading and to 

assess the induced ground displacement using results of model test conducted on 1g 

shaking table. A simple phenomenological bilinear model for the recovery of the soil 
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rigidity is proposed. It expresses the relationship between the yield viscosity and the 

induced shear strain. Numerical simulations are then conduced to assess the ground 

displacement induced during lateral spread, to validate the similitude law of the 

liquefied soil and to investigate the flow of a liquefied soil around a model pile. 

Finally chapter 5 summarizes the findings of this research and suggests some 

aspects that deserve further investigations in order for the SPH to be applied to real 

problems. 
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Fig. 1. 1: Permanent lateral displacement in Ohgata area in Niigata city. 

Doi and Hamada (1992) 
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Fig. 1. 2: Permanent lateral displacement in Port Island and Rokko Island 

Inagaki et al. (1996) 
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Mechanical properties of liquefied soil and its 

constitutive model based on fluid dynamics 
 
 
 
 
 

2.1 Introduction  

During the last decades, the behavior of liquefied soil has been the subject of a 

controversy debate to whether liquefied soil behaves like a solid or a fluid or with 

combined characteristics (solid and fluid) during the earthquake. This debate arises 

as a result of some evidences from post-earthquake observations. In fact, if we look 

at the sinking of buildings and buried sewage tank or at the floatation of pipelines 

during liquefaction, a plausible explanation to this phenomenon could be related to 

the fluid-like behavior of the liquefied soil. If this assumption is true, the ground 

surface should have been flat after the occurrence of the ground movement. However, 

most of the documented case studies have revealed that the surface of the actual 

ground still preserve a certain inclination. This could suggest that the soil may have 

behaved as a solid with reduced shear stiffness. According to this assumption, the 

magnitude of the displacement should be proportional to the gradient of the ground 

surface because the gravity governs the deformation of the solid ground. 

Unfortunately, low correlation between the ground displacement and the surface 

gradient were found in the case studies. Accordingly, the idea of the behavior of the 

liquefied soil with combined characteristics of fluid and soil is the most plausible.  
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This chapter outlines the experimental techniques used to investigate the 

mechanical properties of liquefied soil. In this respect, the following aspects are 

overviewed: 

1. The mechanical behavior of liquefied sand. 

2. Experimental investigation on the viscosity coefficient of the liquefied 

soil. 

3. The constitutive model for the liquefied soil in the framework of fluid 

dynamics. 

 

2.2 Mechanical behavior of liquefied sand 

Undrained triaxial compression tests, cyclic torsional shear tests and shaking 

table experiments have revealed that the liquefied soil behaves either as a solid or as 

viscous fluid or with combined characteristics during the course of the shaking.  

 

• Solid like behavior 

Ishihara (1993) presented some undrained triaxial compression tests of loose 

saturated Toyoura sand undergoing large strain under different confining pressures. 

He showed that the sand exhibits a strain hardening behavior, and the deviatoric 

stress and the effective confining stress reach a constant value when the steady state 

is achieved. The stress mobilized at this state has been termed the steady-state 

strength or the undrained residual strength (Castro), and the state of the minimum 

shear strength is called the state of phase transformation. 

 In another experiment, Yasuda et al. (1995) studied the post liquefaction 

behavior of loose Toyoura sand by conducting cyclic torsional shear tests followed 

by monotonic loading under several testing conditions. During the tests, the effect of 

the relative density, the confining pressure, the excess pore pressure ratio and the 

severity of the liquefaction were investigated. The tests results showed that the post 

liquefaction behavior of sand was strain hardening and the stiffness of liquefied soil 

recovered in a large strain region.  The presence of the residual strength in the first 

set of experiments and the recovery of the soil stiffness in the second set suggest that 

the liquefied soil behave as a solid.  
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• Fluid like behavior 

Sasaki et al. (1992) reviewed field observations of the ground displacements at 

Noshiro city after the Nihonkai Chubu earthquake in 1983 as well as at other sites in 

other regions. They revealed the following nature of the permanents displacements: 

• The permanent displacement is oriented down toward the foot of a slope, 

suggesting an influence of the gravity. 

• The displacements at the top of the slope are greater than those at its foot. 

•  As for the vertical displacement, subsidence is predominant near the top, 

while heaving occurs at the bottom. 

To investigate the mechanism of the permanent displacement, Sasaki et al. 

conducted a series of shaking table tests on model ground of level surface or with 

embankment. Both models were subjected to a continuous shaking in the 

longitudinal direction to reach the maximum possible displacement. Ultimately, the 

ground surface became level when it reached the final equilibrium irrespective of the 

relative density of the ground model. The authors made the following observation: 

• The liquefied ground behaves similar to liquid. Hence, its movement is 

affected by the total head gradient defined in terms of the total 

overburden stress and the elevation heads. 

• The magnitude of the lateral displacement in a liquefied sandy layer is 

null at the base and increases towards the surface. 

• The permanent displacement is caused by the gravity force. The cyclic 

acceleration influences the movement only indirectly. 

 

Hamada et al. (1992) conducted shaking table experiments to clarify the effect 

of the liquefaction induced ground displacement on in-ground structures. 

Experiments to measure the pressure of liquefied soil on rigid in-ground wall and the 

effect of liquefaction induced ground displacement on a pile were performed. The 

findings showed that the pressure exerted by liquefied soil on a rigid in-ground wall 

was approximately equal to the pressure of a liquid with an equivalent specific 

gravity, and the force due to lateral flowing ground is affected by the flow velocity 

rather than the magnitude of the ground displacement. 
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Based on case studies and shaking table experiments, Hamada and Wakamatsu 

(1998) pointed out that the behavior of liquefied soil during earthquake shaking is 

similar to a viscous fluid. However, this behavior has a limited time interval and the 

soil regains its rigidity after the dissipation of excess pore water pressure. 

In an attempt to investigate the behavior of liquefied sand undergoing large 

deformation during and after the shaking, Towhata et al. (1999) conducted a special 

shaking table experiment by monitoring the drag force needed to pull laterally a 

model pipe embedded in a loose deposit of Toyoura sand. The idea behind this 

experiment is that the relationship between the drag force and the displacement of the 

pipe may give an idea of the stress-strain behavior of sand undergoing large 

deformation. Tests results showed that the drag force vs. displacement diagram is 

equivalent to a stress-strain diagram of sand undergoing high excess pore water 

pressure and shaking. Moreover, the force vs. displacement relationship after the 

shaking is similar to the stress-strain curves of sand undergoing cyclic mobility. 

During the experiment, the relationship between the drag force and the velocity of 

the pipe at 100% excess pore water pressure was also derived. Fig. 2.1 shows the 

proportional relationship between the drag force and the velocity of the pipe for 

different value of void ratio. This may suggest that the liquefied sand behaves similar 

to a viscous liquid and that the viscosity increases with the density of the sand. 

Results from previous experiments highlighted the nature of the dual behavior 

of liquefied sand. While the idea of a fluid-concept behavior of the sand is the result 

of shaking table experiments with 100% pore water pressure rise, the theory of the 

steady state strength of sand developed by running undrained monotonic shear tests 

(for which effective stress exists) resulted in the solid- concept of the liquefied soil.  

On the light of the previous experimental results, we can assert that the 

liquefied soil behaves similar to a viscous fluid during the course of the shaking even 

for a limited time; but after the dissipation of the pore water pressure, the soil 

recovers its rigidity and returns to behave as a solid. 
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Fig. 2. 1: Relationship between the drag force and the velocity of the pipe 

(After Towhata et al, 1999) 

 

2.3 Experimental investigations on the viscosity of liquefied sand 

Several experimental techniques have been employed to assess the viscosity 

coefficient (or apparent viscosity) of liquefied sand assuming the viscous fluid 

analogy. 

In this respect, the viscosity coefficient has been investigated using shaking 

table experiments by Towhata et al. (1999) and Hamada and Wakamatsu (1998), 

pull-up and dropping ball method by Miyajima et al. (1995), viscometer by 

Kawakami et al. (1994) and laboratory shear test by Nishimura et al. (2002). This 

section outlines each of these techniques and discusses the discrepancy between the 

values of the apparent viscosity obtained by different methods. 
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1. Shaking table test 

• Towhata et al. (1999) 

By pulling laterally a pipe embedded in loose Toyoura sand during shaking 

table experiment, Towhata et al. (1999) were able to monitor the drag force exerted 

on the pipe. On the basis of the relationship between the drag force and the velocity 

of the pipe presented in Fig.2.1, an attempt was made to back calculate the apparent 

viscosity of the liquefied subsoil. The drag force exerted on a cylinder by a flow of 

viscous fluid has been expressed by Lamb as follows: 

 

 
Reln022.2

4
−

=
VLFD

πµ      (2.1) 

Where: 

Re is the Reynolds number ( µρ /Re VD= ). D and L are the diameter and the 

length of the cylinder and V is the pulling velocity respectively. 

By substituting the experimental data in Eq.2.1, the apparent viscosity of 

liquefied sand was assessed. Towhata et al concluded that the looser sand has the 

smaller apparent viscosity. Moreover, the drag force measured during the shaking 

gave the smaller apparent viscosity. 

 

• Hamada and Wakamatsu (1998) 

Hamada and Wakamatsu (1998) conducted shaking table test to investigate the 

viscosity coefficient of liquefied soil. A model ground of 3 m wide and 1 m thick 

was prepared inside a soil container. Liquefaction was induced by vibrating the soil 

box using a sinusoidal wave with a maximum acceleration of 400 . After the 

occurrence of liquefaction, the lateral spread was caused by inclining the soil 

container and applying a sinusoidal wave with a maximum acceleration of 

100 . By representing the flow velocity of the liquefied soil as ¼ of sinusoidal 

wave, the authors derived the following analytical expression for the maximum 

velocity at the ground surface. 

2/ scm

2/ scm
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Where: Vs is the velocity at ground surface, H is the thickness of the liquefied 

soil, ρ is the density, µ is the viscosity coefficient and θ the inclination angle of the 

ground soil, g is the gravity acceleration and t is the time. 

By replacing the measured flow velocities during the experiments in Eq (2.2), 

the viscosity coefficient µ was estimated.  

 

2. Pulling up and dropping ball method 

Miyajima et al. (1995) performed two types of experiment using steel ball to 

measure the viscosity coefficient of liquefied soil. In the first experiment, an 

immerged steel ball placed inside a model ground was pulled laterally using a motor. 

The liquefaction was induced by flowing water from the bottom of the soil container 

and controlling the excess pore water pressure. During the experiment, the 

relationship between the drag force and the speed of the ball was obtained by 

measuring the drag force necessary to pull the ball for three levels of pulling 

velocities. By assuming the liquefied ground to be a perfect Newtonian fluid, 

Miyajima et al. used the stockes’s law to express the drag force acting on the ball and 

were able to estimate the viscosity coefficient of the liquefied ground. In the second 

experiment, the authors measured the viscosity coefficient of a completely liquefied 

soil by monitoring the dropping movement of a steel ball inside a soil container 

subjected to different shaking intensity. During the tests, 4 balls with different 

diameters were used. Tests results showed that balls with diameter less than 6.0 cm 

exhibit the same viscosity coefficient irrespective of the input acceleration, while 

viscosity coefficient obtained using ball with diameter bigger than 6 cm seem to 

decrease with an increase of the input acceleration. According to the authors, this 

phenomenon is attributed to the ball’s weight that might have caused densification of 

surrounding soil. The viscosity coefficient obtained by disregarding the soil 

densification is 105 times larger than the water’s viscosity. 
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3. Assessment of viscosity using viscometer 

Kawakami et al. (1994) used a viscometer to measure the viscosity of a 

liquefied soil inside a cylindrical soil container having 8.5 cm in diameter and 30 cm 

in depth. The liquefaction was induced by flowing water from the bottom of the 

container connected to a water tank. Experiment was performed on soil specimen 

having three different relative densities Dr using six different number of rotation of 

the viscometer. The viscosity coefficient is expressed by the following equation:  

 

 
Ω

−
= 22

22

4
)(

rHR
rRMK

π
η      (2.3) 

Where, R and r are the radius of the soil container and the rotor respectively.  

M is the torque moment and Ω denotes the angular velocity. K is a correction factor.  

Results from viscometer experiment showed that there is a correlation between 

the viscosity coefficient, the relative density and the number of rotation. In fact, the 

viscosity increases as the relative density increases and the larger is the number of 

rotation, the smaller is the viscosity coefficient.  

In conclusion, viscosity coefficient (or apparent viscosity) of liquefied sand has 

been investigated using several experimental setup 

 

4. Laboratory shear test on viscous nature of liquefied sand 

Nishimura et al. (2002) attempted to measure the rate dependent behavior of 

sand at low confining effective stress levels. The main idea consisted in monitoring 

the delayed strain response of the specimen after reducing the isotropic consolidation 

stress and applying a quick axial load. The tests have revealed that the shear stress 

consisted of a frictional component and a rate-dependant component that enabled the 

assessment of the viscous coefficient of the liquefied sand. Tests results showed that 

the measured viscosity depends on the magnitude of both shear strain and shear 

strain rate. In the case of Toyoura sand, the value of the viscosity coefficient lies in 

the range of 600 ~ 4000 kPa⋅s. 
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2.4  A constitutive model for liquefied sand based on fluid dynamic 

Previous experimental results by Hamada and Wakamatsu (1998) and 

Nishimura et al. (2002) highlighted the rate-dependent nature of liquefied sand. 

Wakamatsu and Hamada (1998) represented on a logarithmic scale, the relationship 

between the shear strain rate and the viscosity coefficient measured by different 

experiments using shaking table test of a lateral spread, steel ball pull-up test and 

viscometer.  
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Fig. 2. 2: Relationship between the shear strain rate and viscosity coefficient 

(After Hamada and Wakamatsu, 1998) 

 

As shown in Fig.2.2, the viscosity coefficient of the liquefied soil decreases 

with increasing shear strain rate and thus denoting its non-linear nature. Based on 

these findings, Hamada and Wakamatsu proposed a constitutive model assuming the 

liquefied soil to behave as Non-Newtonian fluid in the form of a pseudo-plastic fluid. 

They proposed the following relation between the shear stress and the shear strain 

rate:          
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)/1(
...

0 rγγγητ +=     (2.4) 

In this equation, η0 represents the initial viscosity coefficient, while is called 

the reference shear strain rate and represents the shear strain rate when the secant 

viscosity becomes η

.

rγ

0/2 . 

Using Kawakami’s experimental results of the viscosity obtained with the 

viscometer, Uzuoka et al. (1998) derived the relationship between the shear stress 

and the shear strain rate as shown in figure 3. 
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Fig. 2. 3: Shear strain rate - shear stress relation of liquefied soil 
obtained by viscometer 

(after Uzuoka et al, 1998) 

 

In Fig.2.3, the non linear property of the liquefied soil is seen from the 

relationship between the shear stress and the strain rate. According to Uzuoka et al. 

(1998), these relations have had intercepts on the shear stress axis that corresponded 

to the steady state strength. Moreover, the steady state strength increases with 
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increasing relative density. This result is consistent with laboratory tests on the 

steady shear strength. Based on this observation, Uzuoka et al. suggested that the 

behavior of liquefied soil can be represented by a Bingham type constitutive model 

which is one of the viscoplastic models with respect to the residual strength. 

The authors proposed the following  

     (2.5) 
.
γηττ yy +=

 

This model is very advantageous from a practical viewpoint since it is defined 

by two parameters; the yield viscosity ηy and the yield shear stress τy. The yield shear 

stress according to Uzuoka, corresponds to the minimum undrained shear strength. 

In this study, we make use of this useful finding to adopt the Bingham 

constitutive model and extend its use within a Lagrangian meshfree particle approach 

to assess the deformation induced during lateral spreading. As shown in Fig.2.4, the 

Bingham model is able to represent the dual behavior of the liquefied soil with 

respect to the minimum undrained shear strength or the residual strength. According 

to this figure, the liquefied subsoil behaves as a solid when it is subjected to a driving 

stresses smaller than the residual strength, and starts to behave as a viscous fluid 

exhibiting a linear relationship with the shear strain rate when the driving stresses are 

larger than the residual strength.  

 

Fig. 2. 4: Behavior of liquefied soil by Bingham model 

(after Uzuoka et al, 1998) 
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2.5 Summary 

ced and discussed the nature characteristics of liquefied 

soil with respects to post-earthquakes observations and physical modeling. It was 

emphasized that the viscous liquid analogy is a useful concept in understanding the 

efficient) of the 

liquefied soil using various 

ept to assess 

the liquefaction induced large d

This chapter introdu

deformation of the liquefied soil deposit in lateral spread and the damage that 

occurred to many engineering facilities. However, this concept can not stand at the 

end of the shaking when the pore water pressure has totally dissipated and the subsoil 

has recovered part of its rigidity. It was concluded then, that the liquefied soil 

exhibits a dual behavior and a plausible explanation consists in assuming the 

liquefied soil as a viscous fluid during the course of the shaking, and as a solid with 

reduced rigidity after the dissipation of the pore water pressure.  

Because the viscous fluid analogy is a useful concept, many researchers 

attempted to assess the apparent viscosity (or the viscosity co

experimental testing. Shaking table experiment on model 

ground, laboratory shear test as well as viscometer, pile and steel ball pulling-up 

have been used to measure the viscosity of the liquefied soil. Tests results showed 

that the measured value lie in a range between 10 ~ 10000 Pa⋅s. Most importantly are 

the Hamada and Wakamatsu’s test results that highlighted the non linear nature of 

the liquefied soil, by showing that the viscosity coefficient decreases with increasing 

shear strain rate. Using viscosity results obtained by viscometer, Uzuoka et al. 

derived a non linear relationship between the shear strain rate and the shear stress 

and proposed a Bingham type constitutive model for liquefied soil. 

In this study, we adopt the viscous fluid analogy and the Bingham model 

representation of the behavior of the liquefied subsoil, as general conc

isplacement in the framework of fluid dynamics 

using Lagrangian meshfree particle method. 
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3.1 Introduction  

Several methods to predict the magnitude of the induced displacement due to 

lateral spreading have been overviewed in chapter 1. These methods range from pure 

numerical methods using FEM, volume of fluid method (VOF), cubic interpolated 

pseudoparticle (CIP) to empirical approaches and simplified analytical techniques 

involving the Newmark’s sliding block and the minimum potential energy. Although, 

these methods were able to assess with an acceptable accuracy the induced 

displacement, tedious and time consuming numerical techniques were supplemented 

to overcome mesh distortion and to allow tracking moving boundary and interfaces.  

Accordingly, this study proposes a numerical technique based on SPH in the 

framework of fluid dynamics to assess the large displacement and track the free 

surface shape without additional numerical treatment. 

This chapter introduces the basic concepts of the smoothed particle 

hydrodynamics (SPH), as well as its formulation and implementation to assess large 

displacements induced by lateral spreading. Discussion on the appropriate kernel 

function, optimal smoothing length, adequate sound speed and treatment of 

numerical diffusion will be presented. To validate this approach, benchmark 

problems of a Newtonian Poiseuille flow for which a time series solution exists will 

be compared to those obtained by SPH technique. Moreover the results of a dam 

breaking flow of a water column problem will be compared with experimental ones. 
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3.2 Concepts and formulation of SPH   

3.2.1 SPH concepts 

The SPH is a meshfree, Langragian particle method used for modeling 

hydrodynamics problems. It was simultaneously invented by Lucy (1977) and 

Gingold and Monaghan (1977) to solve astrophysical problems. Since then, the 

method has been extended to solve various physical problems including free surface 

flow (Monaghan, 1994), multi-phase flow (Monaghan et al., 1995), simulation of 

brittle solids (Benz et al., 1995), flow through porous media (Zhu et al., 1999), etc. 

Unlike the finite element method or the discrete element method, the physical 

domain in SPH is discretized by a set of equi-spaced unconnected particles that 

follow its motion and advect its contact discontinuities. The particles carry the 

domain’s quantities such as the mass, the velocity vector, the position vector, etc. and 

thus forming not only the geometrical domain but also the computational domain for 

the partial differential equations representing the conservation laws (Randles and 

Libersky, 1996). 

The idea behind the SPH is the estimation of the physical properties of the 

domain by interpolating from a set of disordered particles by means of a kernel 

function, which represents a weighted sum over neighboring particles within an area 

defined by the smoothing length. In other words, the contribution of each particle to 

the physical property is weighted according to their distance from the particle of 

interest by means of the kernel function which transform a point mass to a spatially 

spread one. Fig. 3.1 illustrates the concept of the weighted sum and the smoothing 

over neighboring particles. 

 

 

 

 

 

 

 

Kernel functions 
< f >

Fig. 3. 1: Smoothing averaging concept in SPH 

 26



Chapter 3. Smoothed particle hydrodynamics for liquefaction induced lateral 
spreading analysis 

 

3.2.2 SPH formulation  

Basically, the SPH formulation is achieved by the following two steps: the 

kernel approximation and the particle approximation. The kernel approximation 

allows any function, provided it is defined and continuous, to be represented by an 

integral form: 

    (3.1) ∫
Ω

−= ')()()( xx'xxx dff δ'

f is a function of 3D position vector x and δ(x-x’) is the Dirac Delta function. If 

the Dirac function is replaced by a smoothing kernel function W (x-x’), the integral 

representation of f(x) is given by: 

     (3.2) ∫
Ω

−>=< '),'()()( xxxxx dhWff '

In Eq. (3.2), h represents the smoothing length or the inter-particle distance. 

The kernel function W (x-x’) should satisfy the following conditions:   

• The normalization condition expressed by Eq. (3.3). 

      (3.3) ∫
Ω

=− 1),'( hW xx

• The Delta function property which states that when the smoothing length 

h → 0, the kernel function should satisfy the Dirac function property. 

  )'(),'(lim
0

xxxx −=−
→

δhW
h

   (3.4) 

• The compact support Eq. (3.5). 

   hhW λ>−=− '    when 0),'( xxxx    (3.5) 

In Eq. (3.5), λ is a constant defining the effective area of the smoothing length. 

 

Once the kernel approximation has been defined, the particle approximation 

can be achieved in the following way: 
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   (3.6) 

   Where, xi is the position of the particle i at which the function is evaluated; mj 

and ρj are respectively the mass and the density of the neighboring particles               

j (j=1, 2, ….., N) within the support domain. Eq. (3.6) states that the value of a 

function at particle i is approximated using the average of those values of the 

function at all the surrounding particles within the support domain of particle i 

weighted by the kernel function. Fig. 3.2 depicts the principle of the support domain 

and sphere of influence. 
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j
xi
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Fig. 3. 2: Support domain and particle approximation for particle i. 

 

If the function f(x) is replaced by ρ in Eq. (3.6), the SPH approximation for the 

density is obtained as:  

    (3.7) ∑
=

−=
N

j
jiji hWm

1

),( xxρ

In the same manner, the spatial derivative of the function is given by Eq. (3.8): 

 ),()()(
1

hWf
m

f jiij

N

j j

j
i xxxx −∇⋅=⋅∇ ∑

= ρ
  (3.8)                                      
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Where: 

 
ij

ij

ij

ji
ji r

W
r

hW
∂

∂−
=−⋅∇

xx
xx ),(    (3.9) 

Where, rij represents the distance between particle i and j.  

The smoothing function in SPH represents an important step in achieving the 

kernel approximation and the particle approximation. In this respect, different 

smoothing functions based on a Gaussian or spline kernel have been derived. 

In order to assure a physical interpretation of the SPH formulation, Monaghan 

(1994) stated that the best choice for the kernel function is a Gaussian function which 

is sufficiently smooth even for high order derivatives. He expressed the smoothing 

function as: 

     (3.10) 
2

),( R
DehRW −= α

Where: 

hh
rR

'xx −
==  and 332 1/ and  h1/  ,/1 hhD πππα =  in one, two and three-

dimensional space respectively. 

 Fig. 3.3 illustrates the Gaussian kernel and its 1st derivative. 
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Fig. 3. 3: Kernel Gaussian and its 1st derivative 
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Although the Gaussian kernel is simple and interpolates with high accuracy, it 

has the practical disadvantage to be infinite in extent. Hence all the particles in a 

system contribute to the summation in Eq. (3.7), even the ones that are at such a 

distance that their contribution is effectively zero and this leads to an increased 

computational effort. To overcome this problem, many authors derived piecewise 

splines kernel which are more spatially compact and finite in extent. In this work, we 

use the quintic spline kernel function proposed by Morris (1997) and expressed by         

Eq. (3.11).  

  (3.11) 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥
<≤−

<≤−−−
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=

3 if                                                    0
32 if                                         )3(
21 if                       )2(6)3(
10 if   )1(15)2(6)3(

),(
5

55

555

R
RR
RRR
RRRR

hRW Dα

Where R is equal to r/h, r is the distance between the particles, and αD is a 

normalization constant having the values of 1/120h, 7/478πh2 and 3/359πh3
 in one, 

two and three-dimensional space, respectively 

The kernel function and its 1st derivative are illustrated in Fig. 3.4. 
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Fig. 3. 4: Quintic spline function and its 1st derivative 
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The physical properties of the quintic spline function are weighted over a 

region whose radius equals three times the smoothing length. This provides the 

advantage not only for a compact support but also for smoothness. 

3.3 SPH formulation for liquefaction induced lateral spreading  

In Chapter 2, the nature of liquefied soil has been discussed on the basis of 

post-earthquake observations and experiments. It was clarified that the liquefied soil 

possesses a dual behavior, i.e. a viscous fluid behavior during the course of the 

shaking and a solid one after the dissipation of the pore water pressure. On the basis 

of this concept, we consider a Bingham type constitutive model for the liquefied soil, 

which is one of the visco-plastic models taking account of the minimum undrained 

shear strength.  

This section introduces the main modification we have implemented so that 

SPH may simulate non-Newtonian fluid and thus assess ground displacement 

induced by lateral spreading due to liquefaction. In this respect, this section discusses 

the following aspects: 

• Expression of the governing equations using SPH formalism. 

• Implementation of the effective equivalent viscosity to model non-

Newtonian fluid. 

• Treatment of boundary. 

3.3.1 Governing equations  

In this study, the liquefied soil is regarded as an incompressible fluid whose 

behavior is governed by the mass and the momentum conservation principles 

expressed by the following equations: 

  0=
∂
∂

+
β

β

ρρ
x
v

Dt
D

    (3.12) 

 α
β

αβα σ
ρ

g+
∂

∂
=

xDt
Dv 1

    (3.13)  

In Eqs. (3.12) and (3.13), ρ  represents the density and g the acceleration of 

gravity. σ αβ is the total stress tensor which can be written as the sum of an isotropic 

component p and a deviatoric component τ αβ. 
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     (3.14)     αβαβαβ τδσ +−= p

For a Newtonian incompressible fluid, the shear stress-shear strain rate 

relationship can be expressed by the following equation:  

      (3.15) 
αβ

αβ µτ
.
e=

Where µ   : Dynamic viscosity  

      : Deviatoric strain rate tensor. 
αβ.

e

 αβ
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∂
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+
∂
∂

=e    (3.16) 

Where : Velocity vector  v

Substituting Eq. (3.14) into the momentum Eq. (3.13) leads to the equation of 

motion expressed in the form of: 
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Where: ρµν /=  represents the kinetic viscosity.  

Using the following two properties, the SPH formulation for the mass and 

momentum conservation are expressed by Eqs. (3.20) and (3.21). 
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Roman subscripts ij are used to denote the particles identification; while Greek 

indices αβ are used to express the coordinate system. Therefore, in Eqs. (3.10) and 

(3.21), Wij  represents the smoothing function of particle i evaluated at particle j.   
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Using Eq. (3.14) for the total stress, Eq. (3.21) can be written as: 
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  (3.22) 

In Eq. (3.22), the first part of the right hand side represents the SPH 

approximation for the pressure term, while the second part represents the viscous 

forces. The pressure terms are computed using an appropriate equation of state which 

relates the hydrostatic pressure to local densities. Monaghan (1994) suggested the 

following equation of state while modeling free surface problem. 

 )1)((
0

−= γ

ρ
ρBp     (3.23) 

Where γ is a constant and it is taken equal to 7 in this study. ρ0 represents the 

initial density while B is a parameter that sets a limit for the maximum change of the 

density so that the liquefied soil may be considered nearly incompressible. Usually, 

B is taken equal to the initial pressure P0. To limit the density fluctuation to an 

acceptable value of 1%, the value of the sound speed should be carefully chosen so 

that the Mach number is equal to 0.1. 

 

3.3.2 SPH formulation for Non-Newtonian fluid 

The previous SPH formulation is valid for a Newtonian fluid only. To extend 

this method to treat non-Newtonian fluid which is the assumed behavior of the 

liquefied subsoil, we introduce an equivalent viscosity in the SPH approximation of 

the viscous forces in Eq. (3.22). 

A Bingham type fluid has the following shear stress-shear strain rate 

relationship. 

     (3.24) 
.

min γµττ B+=

 

Where τmin represents the minimum undrained shear strength and µB the yield 

viscosity.  
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If we define an equivalent viscosity in the form of Eq. (3.25), a non Newtonian 

fluid can be modeled as a Newtonian type fluid. 

 
.

min

γ

τ
µµ += Beff     (3.25) 

Where  is given by the second invariant of the deviatoric strain rate tensor. 
.

γ

 
αβαβ

γ
...

2
1 ee=     (3.26) 

 

The concept of the equivalent viscosity is illustrated in Fig. 3.5. As it is seen, 

the relationship between the shear stress and the shear strain rate is represented by a 

solid line for the Bingham model, while the dashed lines express the behavior of the 

liquefied soil when the Bingham model is replaced by an equivalent Newtonian 

model. In this particular case, the equivalent effective viscosity represents the slope 

of the Newtonian model. During the simulation, this equivalent viscosity is evaluated 

and adjusted stepwise depending on the induced shear strain rate. If the shear strain 

rate increases, the dashed line moves towards the region 2 giving rise to a smaller 

equivalent viscosity, whereas when the shear strain rate decreases, the dashed line 

moves towards the region 1 giving rise to a larger equivalent viscosity. 

 

Fig. 3. 5: Concept of the equivalent effective viscosity 
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At this e momentum 

conse

 free surface or the wall boundary, the SPH suffers from the 

edge 

 
 

Fig. 3. 6: Integral deficiency near the boundary 

In this study, the solid boundaries consist of virtual particles exerting a 

repuls

stage, the SPH formulation for the mass and th

rvation can be used to simulate the behavior of a Newtonian and a non-

Newtonian fluid as well. However like most physical problems, numerical 

consideration on how to simulate the free surface conditions and wall boundary 

should be introduced. 

In fact, near the

effect due to the integral truncation that causes only the particles inside the 

boundary contribute to the summation of the particle interaction (see Fig. 3.6). In this 

case, the densities of the particles drop drastically and generate huge pressure term. 

To overcome this deficiency, the density of each particle should be estimated by 

means of the continuity approach using Eq. (3.20) instead of the summation equation 

Eq. (3.7). This let decrease the computation time and resolves the density deficiency 

near the boundary. Moreover as for the solid particles forming the boundary 

conditions near the wall, many techniques were developed using either ghost 

particles or virtual particles exerting repulsive forces to prevent the particles from 

penetrating through the boundary. 

 

Wall 

Virtual particles 

 

ive force expressed by Lennard-Jones potential given by Eq. (3.27). 
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 (3.27) 

Where: D is a problem dependant parameter chosen in the same scale as the 

velocity. r0 is the cutoff distance which represents the distance from which the 

repulsive forces are active. In this respect, if the cutoff distance is too large, the 

particles feel the repulsive forces from the initial distribution. However, if r0 is too 

small, the particles may already have penetrated the wall before the repulsive forces 

start acting. Monaghan (1994) recommended choosing a cutoff distance equals to the 

initial distribution of the particles.  The parameters n1 and n2 are taken equal to 12 

and 6 respectively. 

 

3.4 SPH code for liquefaction induced lateral ground displacements 

In this section, the SPH code used to simulate the ground displacement during 

lateral spreading is introduced. The structure of the code, the particle interaction 

searching algorithm and the time integration scheme are discussed. 

We used and enhanced an educational SPH code source written by (Liu and 

Liu, 2003) by implementing the following routines: 

• Modeling of the hydrodynamics problems using material strength. The 

Bingham constitutive model proposed by Uzuoka et al. (1998) is 

implemented. 

• Using a rather simple constitutive bilinear model for the recovery of the 

rigidity of the liquefied soil. 

• Resolving the numerical instability induced by the small values of the 

shear strain rate at the beginning of the simulation. The Bingham model 

is rather described by a bilinear model in this case. 

• Resolving the numerical instability using either an appropriate artificial 

viscosity or the XSPH technique proposed by Monaghan (1992) to 

stabilize the numerical scheme and prevent particles penetration. 
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3.4.1 Structure of the SPH code  

So far, the details of the calculation process have been introduced. Fig. 3.7 

summarizes the different steps involved during the simulation process. At the 

beginning, the initial configuration and the physical parameters are defined. An 

appropriate smoothing length is then chosen to define the support domain of each 

particle for which the list of the neighboring particles is established. Using the 

particle approximation technique, the density of each particle is evaluated using the 

continuity approach. The viscous force, the pressure force using the state equation 

and the external force due to gravity are evaluated for each time step. To stabilize the 

numerical scheme, the force due to the artificial viscosity is also computed and added 

to the previous terms (viscous, pressure, external). The velocity and the new position 

are evaluated by solving the equation of motion. After each time step, the density and 

the momentum are updated. The process is repeated until the overall simulation time 

is completed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 37



Chapter 3. Smoothed particle hydrodynamics for liquefaction induced lateral 
spreading analysis 

 

Fig. 3. 7: Flowchart of the SPH code 
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3.5 Numerical validation of the SPH code  

To check the ability and efficiency of the SPH code to simulate a Newtonian 

and a non-Newtonian flow, two benchmark problems of a Poiseuille flow and a dam 

breaking of a water column for which experimental results exist are conducted. 

Moreover, a numerical simulation of a gravitational flow of a Newtonian viscous 

fluid and a non-Newtonian water-clay mixture governed by a Bingham type 

constitutive model is performed to reproduce the free surface shapes and the time 

history of the flow velocity and the induced displacement. 

3.5.1 Poiseuille flow  

A reliable benchmark problem to test the ability and accuracy of the SPH code 

is provided by a Poiseuille flow between parallel plates for which the exact solution 

exists, as well as a time series solution derived by Morris et al. (1997). A Poiseuille 

flow involves the flow between two parallel infinite plates driven from the stationary 

state by a body force. The flow starts moving till it reaches the steady state regime. 

The exact solution of the distribution of the velocity at the steady state is expressed 

by Eq. (3.28): 

 )(
2

)( yLyFyVx −=
ν

    (3.28) 

Where, ν  represents the kinetic viscosity and L the channel’s width. 

Morris et al. proposed a time series solution for the Poiseuille flow having the 

following form: 
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In order to simulate the Poiseuille flow using SPH, the infinite plates should be 

correctly modeled. This can be accomplished either by taking the dimensions of the 

infinites plates large enough compared with the width of the channel or using 

periodic boundaries in the direction of the flow with a quite reasonable number of 

particles. In the first case, the involved number of particles should be large enough to 

reach the steady state. In this simulation, we rather implemented the periodic 
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boundaries in the direction of flow. The problem domain consists of a rectangle of 

0.5 mm long and 1 mm wide. Total 800 particles spanning the channel in a regular 

Cartesian mesh were used; 40 particles along the distance between the plates and 20 

along the channel length which give an initial spacing distance of 2.5x10-5 m. To 

model the solid walls, 20 virtual particles were used on each side of the plate.         

Fig. 3.8 illustrates the numerical setup. 
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Fig. 3. 8: Numerical setup for Poiseuille flow simulation 

 

During the simulation, a smoothing length 1.05 times the initial spacing was 

assigned to each particle. This gives a total of 24 neighbors within a circle of radius 

3h. To limit the density fluctuation within 1%, Eq. (3.28) is used to assess the 

maximum flow velocity at the steady state which is equals to 2.5x10-5 m/s. 

Accordingly a sound speed equals to 1/10 of the maximum velocity was adopted to 

get a Mach number of 0.1.  

Table 3.1 bellow summarizes the physical parameters used during the 

simulation. 
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Table 3. 1: Numerical parameters for Poiseuille flow simulation 

Dimensions of the channel                            0.0005x0.001m 

Number of particles                                       20x40 

Density of particles                                       1000kg/m3

Viscosity                                                       10-6 m2/s 

Body force F                                                 2x10-4m/s2

Time increment                                             10-4s 

Sound speed          2.5x10-4 m/s 

 

The simulation was executed during 1s giving 10000 total time steps. After 

5000 steps, the steady state was reached and the flow attains its maximum velocity.    

Fig. 3.9 depicts the SPH results with the time series solution given by Eq. (3.29). The 

SPH results are smaller than the time series solutions with a relative error less than 

0.6% which can be assumed as a good approximation. 
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Fig. 3. 9: Time series solution .vs. SPH solution for Poiseuille flow 
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Fig. 3.10 depicts the flow velocity distribution at time t = 0.1 s, 0.5 s, 0.8 s and 

1.0 s respectively. 

 
(a) t = 0.1 s 

 
(b) t = 0.5 s 

 
(c) t = 0.8 s 

 
(d) t = 1.0 s 

Fig. 3. 10: Flow velocity distribution along the channel for 4 times reference 
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3.5.2 Dam break flow analysis  

Another practical benchmark problem often used to validate numerical 

methods dealing with free surface consists of the dam breaking flow of a water 

column for which experimental results by Martin and Moyce are available. In this 

study, a water column of 20 cm high and 20 cm long is released from static 

equilibrium by removing a barrier wall. The free surface is monitored by assessing 

the surge front X and the height of the dam hi at each time step. Fig. 3.11 illustrates a 

typical dam break flow problem. 
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Fig. 3. 11: Initial configuration of the dam break flow 

 

The dam was modeled using 1600 particles equally spaced having an initial 

distance of 0.5 cm. Solid walls boundaries at the bottom and the left were 

represented by 200 and 60 particles respectively. Unlike the Poiseuille flow which 

involves the movement of a stationary fluid driven from initial state by a body force, 

the flow in the dam breaking problem is induced by gravity after releasing the barrier, 

and thus the particles will be subjected to forces that do not keep them in order any 

longer. Accordingly an appropriate value of the smoothing length is chosen to obtain 

sufficient neighboring particles for smoothing process without altering the particles 

information. In this specific case, a smoothing length equals to 1.1h is found to give 

sufficient accuracy. Similarly to the Poiseuille flow, an appropriate sound speed 
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equal to 20 m/s seems to limit the density fluctuation within a range of 1% tolerance. 

Table 3.2 summarized the initial parameters used for the dam break flow simulation. 

 

Table 3. 2: Numerical parameters for dam break flow analysis 

Dam dimensions                                           0.2x0.2m 

Number of particles                                       40x40 

Density of particles                                       1000kg/m3

Viscosity                                                       10-6 m2/s 

Time increment                                             10-4s 

Sound speed          20 m/s 

 

While running the simulation using the momentum Eq. (3.22), particle blowup 

was encountered 0.2 s after the beginning of the simulation. It was necessary to 

introduce an artificial viscous term into the momentum expression to avoid 

numerical instability. As its name indicates, the artificial viscosity has no relation 

with real viscosities. It is only used to stabilize the numerical scheme, prevent 

particles penetration and allow shock to be simulated. In this study, we employed the 

standard artificial viscosity proposed by Monaghan (1994) expressed by Eq. (3.30): 
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According to Monaghan, αII, βII are constants set around 1 and ϕ = 0.1hij is 

inserted to prevent numerical divergence when two particles are approaching each 

other. c and v are respectively the sound speed and the particle velocity vector. 
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When adding Eq. (3.30) to the momentum equation, we succeeded in resolving 

the numerical instability and particularly the particles blowup. However, we noticed 

that adding the first term of the Eq. (3.30) which involves shear and bulk viscosity 

brought additional viscosity to the system, and thus decided to disregard it. For the 

simulation of the dam break flow, only the second term of the artificial viscosity is 

retained.  

Parametric study by varying the value of the constant βII allowed us to find the 

appropriate range within which the physical phenomena is neither affected nor 

altered by the presence of coefficient βII , which serves just to stabilize the numerical 

scheme. 

 Table 3.3 and 3.4 show the SPH results compared with the experimental ones 

given by Martin and Moyce (1952) for the normalized surge front X (x/H) and 

normalized height h (hi/H) for each normalized time step T ( HgtT = ). 

 

Table 3. 3: Results of the parametric study for the normalized surge front 

 Exp βΙΙ=0.5 βΙΙ =1. βΙΙ =3.   βΙΙ =0.1 αΙΙ=0.1 
T X X(SPH) 

0.71 1.33 1.44 1.43 1.44 1.42 
1.39 2.25 2.29 2.29 2.29 2.26 
2.1 3.22 3.24 3.25 3.24 3.19 
3.2 4.8 4.55 4.52 4.5 4.41 

 
 

Table 3. 4: Results of the parametric study for the normalized height 

  Exp βΙΙ=0.5 βΙΙ =1. βΙΙ =3.   βΙΙ =0.1 αΙΙ=0.1 
T h=(hi/H) h(SPH) 

0.71 0.9 0.904 0.901 0.901 0.915 
1.39 0.76 0.76 0.759 0.767 0.87 
2.1 0.57 0.615 0.605 0.608 0.622 
3.2 0.32 0.389 0.392 0.39 0.4 

 
As it can be seen from these tables, SPH numerical results obtained by 

disregarding the term  αΙΙ  give comparable results with experimental ones; 

particularly for βΙΙ = 1. Numerical simulation performed by retaining both constants 

was also conducted. The results led to a good accuracy provided smaller values of 

αΙΙ and βΙΙ  are appropriately chosen. 
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The SPH numerical results of the normalized surge front X and normalized 

time T are also plotted against the experimental results in fig. 3.12. 
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Fig. 3. 12: Non dimensional leading edge versus non dimensional time for the dam 

break flow analysis of a water column 

 

Fig. 3.12 shows that the curves representing the relationship between the non 

dimensional leading edge and the non dimensional time are almost coincident during 

the overall time span although a slight discrepancy is observed for T greater than 3.  

Fig. 3.13 illustrates the dam configuration at 3 time steps corresponding to        

t = 0.1 s, 0.2 s and 0.4 s, respectively, after releasing the wall. 

Similarly, Fig. 3.14 depicts the velocity distribution along the dam for the same 

time steps. It is clearly seen that the front surge is animated with the high velocity 

which is larger in the downstream than in the upstream. 
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Fig. 3. 13: Dam configuration at t = 0.1 s, 0.2 s and 0.4 s 
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(a)  t = 0.1 s 

 

(b)  t = 0.2 s 

 

(c)  t = 0.4 s 

Fig. 3. 14: Velocity distribution at t = 0.1 s, 0.2 s and 0.4 s 
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3.5.3 Gravity flow simulation 

The ability of the SPH to simulate the gravity flow of a Newtonian viscous 

fluid and a non-Newtonian fluid governed by a Bingham model is attempted in this 

section. The emphasis is put on simulating the induced displacement as well as the 

freezing profile when the steady state is reached. One should expect that the free 

surface for the viscous fluid will reach a level surface at the steady state, while a 

typical freezing profile denoting the behavior of a Bingham model will be observed 

for the non-Newtonian fluid. 

A typical gravity flow problem simulated here is illustrated in Fig. 3.15. 
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Fig. 3. 15: Numerical representation of the gravity flow problem 

 

Likewise the simulation of the dam break flow of a water column, the same 

dimensions and number of particles were adopted for both analyses. 

The numerical parameters for the gravity flow simulation are shown in Table 

3.5 for the case of Newtonian viscous fluid. 

 

Table 3. 5: Numerical parameters for gravity flow of a viscous fluid 

Fluid dimensions                                           0.2x0.2m 

Number of particles                                       40x40 

Density of particles                                       1500kg/m3

Viscosity                                                       5 Pa⋅s 

Time increment                                             10-4s 

Sound speed          20 m/s 
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To capture some of the features of the viscous fluid flow, we monitored the time 

history of the displacement and velocity of one particle located at the extreme hand 

side at the middle of the fluid column with coordinates X = 60 cm and Y = 10 cm. 

The time history is depicted in Fig. 3.16. 
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Fig. 3. 16: Displacement and Velocity time history at coordinates 

X = 60cm, Y = 10cm 

 

When the fluid is released from the initial conditions, the flow is driven by the 

gravity forces. It starts moving as it gains in kinetic energy. The maximum flow 

velocity is attained at t = 0.2 s before both sides of the fluid reach the solid 

boundaries. As the velocity decreases, the maximum displacement is achieved at       

t = 0.5 s after both sides already have reached the solid walls. The displacement 

keeps a constant value as the flow is damped by the oscillatory movement of the 

fluid going back and forth. The free surface attains a level surface and the flow stops 

moving denoting a state of a stationary conditions. Fig. 3.17 illustrates the free 

surface configuration at six time steps corresponding to t = 0.1 s, 0.2 s, 0.33 s, 0.5 s, 

0.8 s and 5.0 s. It is noted that the contact between the fluid and the solid boundaries 

occurs at t = 0.33 s. 
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Fig. 3.17: Free surface profile at six time reference 
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Fig. 3. 17: Free surface profile at six time reference 
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Simulation of a non-Newtonian water clay mixture governed by a Bingham 

type constitutive model was conducted using the same numerical setup and the same 

numerical parameters as in the case of a Newtonian fluid. The related Bingham 

parameters were taken from the experimental results given by Komatina and 

Jovanovic (1997), and summarized in Table 3.6. 

Table 3. 6: Numerical parameters for gravity flow of a water-clay mixture 

Fluid dimensions                                           0.2x0.2m 

Number of particles                                       40x40 

Volumetric concentration (%)                       27.4 

Density of particles                                       1452kg/m3

Plastic viscosity                                             7x10-2 Pa⋅s 

Yield shear stress (Pa)                                   15.0 

Time increment                                             10-4s 

Sound speed          20 m/s 
 

Similarly to the gravity flow of the viscous fluid, the time history of the flow 

velocity and displacement is computed for the same reference particle and depicted 

in Fig. 3.19.  
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Fig. 3. 18: Time history of the flow velocity and displacement 

for a non Newtonian water-clay mixture 
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This figure shows that the maximum flow velocity is reached during the first 

0.3 s after releasing the water-clay mixture from its initial condition. The magnitude 

of the velocity is almost 50% smaller than those obtained for the viscous fluid, while 

the magnitude of the displacement is half compared to the viscous case. When 

looking at the general behavior, we could observe some of the features of the non-

Newtonian fluid characterized by a rapid decay of the front velocity and a slow 

propagation of the free surface which freezes when the induced shear stresses drop 

below the yield shear stress. 

The time history of the induced displacement for the same reference particle is 

plotted in Fig. 3.19 for the case of the viscous fluid and water-clay mixture.  
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Fig. 3. 19: Displacement time history of a gravity flow problem 

for a Newtonian and a Non-Newtonian fluid  

 

 

In the same way, the time history of the flow velocity is plotted for both fluids 

in Fig. 3.20. The larger is the viscosity, the smaller is the flow velocity for the case of 

a Newtonian fluid. Moreover, the flow velocity for the non-Newtonian fluid 
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decreases sharply due to the presence of the yield shear stress, and tends towards an 

asymptotic zero value. 
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Fig. 3. 20: Velocity time history of a gravity flow problem 

for a Newtonian and a Non-Newtonian fluid 

 

For the purpose of illustration, the particles configuration of the non-

Newtonian fluid are plotted for three different time interval at time t = 0.1 s, t = 0.5 s 

and t = 1.0 s in Fig. 3.21.  
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Fig. 3. 21: Particles configuration at  t = 0.1 s, t = 0.5 s and t = 5 s 
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3.6 Summary  

This chapter reviewed basic concepts and fundamentals of the smoothed 

particles hydrodynamics. The governing equations for liquefaction induced lateral 

spreading analysis were formulated in the framework of fluid dynamics, considering 

a Bingham type constitutive model for the liquefied soil. An existing educational 

SPH code was extended to model hydrodynamics problems using material strength. 

The numerical instability induced by the small values of the shear strain rate at the 

beginning of the simulation was resolved by adopting a bilinear model rather than the 

Bingham model. Moreover, particles blowup was solved using an appropriate 

modified artificial viscosity. 

The ability and efficiency of the SPH code to simulate Newtonian flow was 

validated using two benchmark problems of a Poiseuille flow and a dam break of a 

water column for which experimental results exist. The SPH results obtained for the 

case of the Poiseuille flow are in good agreement with the time series solutions 

proposed by Morris. Additional numerical simulations without experimental 

validation were carried out to check the capability of the SPH code to simulate a non-

Newtonian fluid. For this respect, a gravity flow problem of a water-clay mixture 

governed by a Bingham type constitutive model was simulated to reproduce the free 

surface shapes and the time history of the velocity flow and the induced displacement. 

The results show that the proposed method was able to capture free surface shape, 

handle large displacement and obtain a consistent time history for the induced 

displacement and front velocity. 

With regards to the previous results, the proposed method is extended in 

Chapter 4 to simulate lateral spreading obtained by conducting shaking table 

experiments on liquefied ground. 
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Numerical simulations of liquefaction induced 

 lateral spreading 
 
 
 
 

4.1 Introduction  

The capability of the SPH method to simulate Newtonian and non Newtonian 

fluid has been established and introduced in Chapter 3. Its ability to handle large 

displacement and track free surface was examined on the light of analytical and 

experimental results. In this chapter, the method is extended to model lateral 

spreading and assess the induced ground displacement using results of model test 

conducted on 1g shaking table. The numerical simulations were carried out using the 

results of 1g shaking tests conducted by Hamada et al (1992, 1994 and 1998). 

• - 1g shaking table experiment to investigate the mechanism of the 

liquefaction induced lateral spreading after the end of the shaking. 

• - 1g shaking table experiment to examine and validate the similitude law 

of the liquefied soil. 

• - 1g shaking table experiment to measure the effects of liquefaction 

induced ground displacements on a pile. 

 

During these simulations, the emphasis concerns the magnitude of the induced 

displacement, the time history of the flow velocity, the time history of the shear 

strain as well as the shape of the free surface. Moreover, since the liquefied soil 

regains its rigidity after the dissipation of the pore water pressure, we attempt to 
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propose a simple phenomenological constitutive model in which the yield viscosity is 

only function of the shear strain.   

Because dam breaking flow problem of water-clay mixture exhibits several 

similarities with lateral spreading, we start our numerical simulation by reproducing 

the experimental results given by Komatina and Jovanovic (1997). 

4.2 Dam breaking flow of a water-clay mixture  

In this section, numerical simulation of a dam breaking flow of a water-clay 

mixture is carried out based on the experiments carried out by Komatina and 

Jovanovic (1997). Komatina and Jovanovic conducted a series of 69 unsteady free 

surface flow experiments with a range of initial reservoir depth of 10-30 cm, bed 

slopes 0.0-0.1% and volumetric concentrations 0.0-36.1 %. 

The simulation presented here reproduces the experiment for which the initial 

mixture length a = 2 m, the initial height H = 0.1 m and the bed slope S = 0.1%. The 

volumetric concentration of the mixture is taken as 27.4% corresponding to a pure 

water and mud density ρm=1452 kg/m3. According to the experiment, the water-clay 

mixture has a Bingham yield stress τB = 15 Pa and a viscosity µB = 70 mPa⋅s. 

The dam is modeled using 2000 particles with an initial spacing of 0.01 m in 

both directions. To achieve a better incompressibility condition, the sound speed is 

adjusted so that the density fluctuation is less than 1% during the overall time of 

calculation. The initial time step ∆t is set equal to 10-4
 s to satisfy the CFL condition. 

Likewise the dam breaking problem of a water column, a numerical instability 

was encountered at t = 2 s after removing the vertical wall from its initial position. In 

this particular case, the artificial viscosity technique is able to solve the numerical 

instability. The XSPH technique proposed by Monaghan (1989) has been also 

attempted to investigate its ability to stabilize the numerical scheme. It is emphasized 

that only one of these techniques is to be used with the equation of the momentum 

(Eq.3.22). According to the XSPH technique, each particle moves in a velocity closer 

to the average velocity of the neighboring particles in accordance with the following 

equation: 
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In Eq. (4.1), the first term denotes the velocity derived from the Navier-Stockes 

equation. The second term however represents the product of a parameter ε by the 

sum of the velocities differences between the particle of interest and its neighboring 

ones written in SPH formalism. The parameter ε is a constant in the range 10 ≤≤ ε  .  

Since there is no clear criteria on how to select the parameter ε of the XSPH as 

well as the parameters α and β of the artificial viscosity (Eq.3.30) for this particular 

problem,  we conducted a parametric investigation to find out a suitable range 

without altering the physical phenomenon by taking as a reference, the experimental 

results. 

The results of this investigation are presented in the form of comparative 

graphs between the numerical and experimental results by expressing the relationship 

between the non dimensional leading edge with the non dimensional time. 

Fig. 4.1 shows the relationship between the non-dimensional leading edge and 

the non-dimensional time when the artificial viscosity is taken into account. One can 

see that the introduction of the coefficient α into the momentum equation bring 

additional viscosity to the physical problem. As a general rule, provided smaller 

value of α and β are appropriately chosen, a good agreement can be reached with 

respect to the physical test results. 

Fig. 4.2 depicts the relationship obtained for the case of the XSPH by 

considering values of ε parameter between 0.001 and 0.1. As it is seen, the smaller is 

the value of the ε parameter the better is the agreement with the experimental results. 

This suggests that the ε parameter is only introduced in the expression of the velocity 

equation to avoid the particles blowup and stabilize the numerical scheme. 
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Fig. 4. 1:  Relationship between the non-dimensional leading edge with respect 

to the non-dimensional time for the artificial viscosity technique 
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Fig. 4. 2:  Relationship between the non-dimensional leading edge with respect 

to the non-dimensional time for the XSPH technique 

 

The particles distribution at the initial time t = 0 s, 0.2 s, 1.0 s and 8.0 s is 

shown after the dam break in Fig. 4.3 with parameter ε set to 0.001. 
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Fig. 4. 3: Flow process configurations at 4 different time reference 
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Fig. 4. 3: Flow process configurations at 4 different time reference 
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From Fig. 4.3, the features of the water-clay mixture flow (mudflow) can be 

described as follows. Starting from the initial hydrostatic pressure, the dam collapse 

is characterized by a rapid drop of the flow between t = 0.1 s and t = 1.0 s as the 

particle’s shear stress strength is above the Bingham yield shear stress. In this range, 

the induced displacement is five times larger than the initial height of the dam. 

Between t = 1.0 s and t = 8.0 s, a slow decrease of the flow is then observed till 

reaching a frozen profile at t = 8.0 s when the shear strength drops below the yield 

shear stress. During this time interval, the induced displacement is about four times 

larger than the initial height of the dam.  

Fig. 4.4 depicts the relationship between the non dimensional leading edge and 

the non dimensional time obtained for ε = 0.001 and the experimental results derived 

by Komatina and Jovanovic for both water-clay mixture and pure water.  
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Fig. 4. 4: Relationship between the non-dimensional leading edge 

versus the non dimensional time 

The above figure shows that the propagation of the mudflow travels within a 

limited distance downstream compared to the water column due to the existence of 

the yield Bingham stress and the high viscosity at low shear strain rate. According to 

the simulation results, the water-clay mixture (mud) is frozen downstream after 

traveling a distance of about nine times of the initial dam’s height. 
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4.3 Numerical simulation of liquefaction induced lateral spread.  

To examine the mechanism of the liquefaction induced lateral spreading after 

the end of the shaking, Hamada et al. (1994) conducted a series of 1g shaking table 

experiments, in which a model ground with an initial plane surface was constructed 

in a rigid soil box. The model has 3 m length, 1 m wide and 0.3 m height. The box 

was vibrated in the lateral direction with a sinusoidal wave acceleration of 100 cm/s2 

until a total liquefaction occurs, and then lifted with a specific gradient using a 

hydraulic jack as depicted in Fig. 4.5. During the experiment the final shape of the 

free surface was continuously monitored and the time history of the induced 

displacements was measured at 3 different depths in the middle of the box as shown 

in Fig. 4.6.  
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During the experiments, several tests were performed by considering an initial 

relative density between 23% and 61%, and an inclination of the soil box equals to 

2.1% and 4.2% respectively. 

Table 4.1 below summarizes the different models parameters as well as the 

obtained physical results. 

Table 4. 1: Models parameters for lateral spreading experiment 

 after Hamada and Wakamatsu, (1998) 

Physical parameters Experimental results 
Experimental 

cases 
Dr

(%) 

H 

(cm) 

θ 

(10-2) 

VS 

(cm/s) 

µ 

(gf⋅s/cm2)

⋅

γ  

(1/s) 

 

γc

EFM-1 23 23 4.2 14.6 1.3 0.63 0.67 

EFM-2 23 25 4.2 14.0 1.7 0.56 0.45 

EFM-3 41 25 4.2 7.0 3.4 0.28 0.23 

EFM-4 39 26 4.2 7.8 3.3 0.30 0.21 

EFM-5 61 24 4.2 2.0 11.4 0.08 0.074 

EFM-6 61 22 4.2 2.4 7.9 0.11 0.063 

EFM-7 41 27 2.1 7.0 2.0 0.26 0.25 

EFM-8 43 28 2.1 6.3 2.4 0.23 0.16 
 

Having access to most of the results pertaining to the experiment EMF-3, this 

section attempts to reproduce this case with an emphasis on the free surface shape, 

the time history of the induced displacement and flow velocity as well as the induced 

shear strain and shear strain rate before and after considering the recovery of the soil 

rigidity.  

Owing to the fact, that it is difficult to reproduce the whole experimental 

conditions, the input parameters for the numerical simulations were selected on the 

basis of test observations and obtained results. 

Since the constitutive model for the liquefied soil is based on the Bingham type 

model, the main input parameters consists of the yield viscosity of the liquefied soil, 

its minimum undrained shear strength as well as the critical shear strain for the 

recovery of the rigidity. 

 66



Chapter 4. Numerical simulations of liquefaction induced lateral spreading 
 

4.3.1 Selection of the numerical parameters 

Many researchers have pointed out the important role that the minimum 

undrained shear strength plays in controlling the stability of a slope during the 

occurrence of the liquefaction. Therefore an appropriate estimation of its value 

constitutes a prerequisite for the overall simulations. In this study, the minimum 

undrained shear strength is defined as the resistant shear strength required for 

maintaining the slope into equilibrium. According to Fig. 4.7, it is given by: 

 

 θθγτ sincosmin h=     (4.1) 

 

Where γ and h are the saturated unit weight and the thickness of the liquefied 

soil layer respectively. 
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Fig. 4. 7: Schematic definition of the minimum undrained shear strength 

 

The numerical parameters for the Bingham constitutive model (Eq.3.24) for 

two simulation cases denoted as Case 1 and Case 2 were selected in accordance with 

the experimental results given in Table 4.1. To investigate the sensitivity of the 

Bingham model, two values of the yield viscosity were chosen; ηy=0.1 Pa⋅s and 

ηy=10 Pa⋅s that fit the relationship between the viscosity coefficient and the shear 

strain rate derived by Hamada and Wakamatsu for the lateral spread experiment  

(Fig. 4.8). The minimum undrained shear strength was computed from Eq. (4.1) at 

the middle of the liquefied layer thickness by considering a unit saturated weight of 
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the liquefied soil equals to 18 kN/m3 and an inclination angle θ  = 2% at which the 

displacements were triggered. 

Fig. 4.8 depicts the relationship between the viscosity coefficient and the shear 

strain rate given in Table 4.1 with respect to the proposed numerical models.  
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Fig. 4. 8: Relationship between the experimental shear strain rate and the viscosity 

with respect to the numerical models 

 

The minimum undrained shear strength in Case 1 and Case 2 is kept constant 

throughout the height of the liquefied soil. Nevertheless, according to Eq. (4.1), the 

shear strength is a function of the confining pressure. Making use of the experimental 

results in which the displacement of the liquefied soil was triggered when the soil 

box reached an inclination θ = 2%, we defined the ratio between the shear strength 

and the confining pressure as: 

                                                             θθ sincos=R                                            (4.2) 

Accordingly R takes the value of 0.02 in this case 
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The particular Case 3, allows us to investigate the effect of the confining 

pressure on the minimum undrained shear strength and therefore on the induced 

velocity and displacement. Since the SPH method represents the continuous medium 

as a set of discrete particles, it is preferable for each particle to be subjected to its 

own external force according to its position. 

Table 4.2 below summarizes the different cases considered for the numerical 

simulations.  

Table 4. 2: Numerical parameters for the Bingham model 
 

Simulation 

case 

Viscosity 

(Pa⋅s) 

τmin  or R 

(Pa) 

1 0.1 54 

2 10. 54 

3 0.1 0.02 

 

Similarly, the other numerical parameters used for the SPH simulations are 

shown in Table 4.3. 

Table 4. 3: Numerical parameters 

Model dimensions                                        3.x 0.3m 

Number of particles                                      150x15 

Initial spacing        0.02 m 

Density of particles                                       1800kg/m3

Time increment                                             10-4s 

Sound speed          50 m/s 

ε (XSPH)          0.3  
 

As a first stage, the numerical simulations are carried out without taking into 

account the recovery of the rigidity to analyze the incidence on the different 

parameters (displacement, velocity, strain and free surface). Latter, the recovery 
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model will be introduced in an attempt to reproduce with a consistent manner the 

experimental results. 

4.3.2 Numerical setup  

Because it is impossible to simulate the whole experimental process starting 

from the shaking phase up to the lifting of the soil box, the numerical model was 

reproduced in 2D at the final stage when the soil box reached its final position. Since 

the shaking was applied in the lateral direction, the only external forces acting on the 

model consist of the gravitational force. Fig. 4.9 shows the numerical model at the 

initial configuration.  
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Fig. 4. 9: Initial configuration at t = 0 s 

4.3.3 Simulations results  

• Free surface shape 

Similarly to the previous simulations involving Newtonian and non-Newtonian 

fluid, the artificial viscosity term was taken into account to stabilize the numerical 

scheme. However, shortly after the beginning of the computational process, we 

encountered particles blow-up which denotes an occurrence of a numerical 

instability. Several preliminary simulations to select the appropriate value of the 

coefficients α and β were attempted. However, the numerical scheme was difficult to 
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stabilize during the overall simulation span, since the particles at the bottom of the 

soil box undergo a continuing disorder movement with a clear compression zone 

observed at the downstream.  It seems that the artificial viscosity technique is unable 

to handle properly problems involving movement of fluid confined between 

boundary walls. To overcome this instability, we made use of the XSPH technique 

proposed by Monaghan (1989). By conducting several preliminary simulations, we 

concluded that a value of 0.3 of the parameter ε was able to suppress the numerical 

instability in this simulation. Fig. 4.10 shows the obtained free surface shape for the 

three simulated cases. 
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Fig. 4. 10: Simulated free surface shapes 
 

In Fig. 4.10, the general trend of the observed free surface during the 

experiment is roughly reproduced for Case1 and Case 2. The upstream part subsided 

due to gravity and the downstream heaved due to volume transfer from the upstream; 

the central part didn’t keep its initial inclination, where a slight rotation can be 

observed with respect to the initial ground surface. This trend can be seen also by 

plotting the vector displacements at the top of the free surface for Case 1 as shown in 

Fig. 4.11. 
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Fig. 4. 11: Vector displacements at the top of the free surface for Case 1 

 

Since the free surface shapes in Case 1 and Case 2 are superimposed, we may 

conclude that the Bingham model is insensitive to the yield viscosity. A possible 

reason for this phenomenon could be related to the range of the induced shear strain 

rate that causes the equivalent viscosity to be within same level.  

 Similarly, we observed a subsidence in the upstream and a heaving in the 

downstream for Case 3. However, the central part of the induced free surface did not 

keep the same inclination as the initial ground surface, though in the downstream 

region, the free surface fits the observed one with an acceptable accuracy. This could 

be related to a continuous flow of liquefied soil.  

 

• Time history of the ground flow velocity 

Fig. 4.12 illustrates the time history of the ground flow velocity for Case 1 at 

three elevations computed at the central cross section as shown in Fig. 4.2. Since the 

induced free surface is insensitive to the yield viscosity, similar results for the time 

history of flow velocity were found for Case 2. 
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Fig. 4. 12: Time history of the ground flow velocity for Case 1 

 

The simulated maximum ground flow velocity is closer to the experimental one 

given in Table 4.1. However, the flow velocity at the bottom of the soil container is 

overestimated. Moreover, the soil continues flowing with a velocity equals to 1/20 of 

the maximum velocity during the overall simulation time interval. This result is not 

in agreement with the experimental one, in which the soil stops flowing immediately 

after the ground flow velocity reached its maximum value. The reason may be 

related to the dissipation of the pore water pressure and the recovery of the rigidity 

which were not taken into account in this simulation. 

Similarly, the time history of the ground flow velocity for Case 3 is depicted in 

Fig. 4.13.  
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Fig. 4. 13: Time history of the ground flow velocity for Case 3 
 

As observed from this figure, the maximum value of the simulated ground flow 

velocity at depth h = 3 cm is closer to the experimental one. However, the velocities 

at the middle of the cross section as well as at the bottom of the soil container are 

overestimated. Likewise the Case 1, the liquefied soil continues flowing with a 

magnitude equals to 1/30 of its maximum value. 
 

• Time history of the ground flow displacements 

The time history of the maximum induced lateral ground displacement is 

illustrated in Fig. 4.14 for Case 1. Likewise the time history of the ground flow 

velocity, the induced displacements are given at the central cross section for three 

respective elevations.  
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Fig. 4. 14: Time history of the ground flow displacement for Case 1 

 

Fig.4.14 clearly shows that neither the magnitudes of the induced displacement 

nor the general trend of the simulated curves do fit the experimental ones. In fact, the 

magnitude at depth h = 3 cm is twice the observed one. Furthermore, the induced 

displacement at depth h = 12 cm is closer to that at depth h = 3 cm, suggesting that 

the upper layer deforms as a rigid body over the adjacent lower one. Similarly, the 

displacement at the bottom of the soil container is overestimated. Besides this, the 

general trend observed during the experiment in which the soil attains a maximum 

constant value is not reproduced. This discrepancy can be related to the high 

equivalent viscosity induced at small shear strain rate due, to some extent, to the 

constant value of the minimum undrained shear strength along the height. Another 

plausible explanation is associated with the high shear strain encountered at the 

bottom of the soil container. Since the recovery of the rigidity is not taken into 

account, the shear strain is not transferred to the upper adjacent layer causing them to 

deform as a rigid body.  

Similarly, Fig. 4.15 depicts the time history of the maximum induced lateral 

ground displacement for Case 3. Unlike the previous case, the general trend of the 

ground displacement is consistent with the experimental one between the range 0-2s 

and the model do not suffer anymore from the high viscosity at the small strain rate.  
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This is attributed to the induced minimum undrained shear strength which rather 

depends on the confining pressure in this case. However, the displacements at the 

three elevations increase continuously during the whole time span of the simulation. 

In terms of magnitude, the maximum displacement at depth h = 3 cm is 1.75 times 

larger than the observed one, while it is 2.75 times larger at depth h = 12 cm. At the 

bottom, the simulated displacement is also overestimated. 
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Fig. 4. 15: Time history of the ground flow displacement for Case 3 

 

• Induced maximum shear strain rate. 

The time history of the induced shear strain rate versus the equivalent Bingham 

viscosity was computed for Case 1 and Case 3, and the results were compared with 

those obtained by Hamada and Wakamatsu (1998) and given in Table 4.1. 

Figures 4.16 and 4.17 show the relationship between the simulated shear strain 

rate versus the equivalent viscosity for Case 1 and Case 3 respectively. 
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Fig. 4. 16: Relationship between the equivalent viscosity and 

the induced shear strain rate Case 1 
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Fig. 4. 17: Relationship between the equivalent viscosity and 

the induced shear strain rate Case 3 
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In Fig. 4.16, the induced shear strain rate lay on a straight line which is nothing 

else than the Bingham model imposed for the simulation. The magnitude of the 

simulated shear strain rate at depth h = 21 cm is closer to the value of 0.30 (1/s) 

given by Hamada and Wakamatsu in Table 4.1. The range of the induced values of 

the shear strain rate at depth h = 3 cm explains in a consistent manner the small 

displacement we encountered at the top of the soil container. 

Unlike the Case 1, the induced shear strain rate depicted in Fig. 4.17 lay on a 

three straight lines since the minimum undrained shear strength is a function of the 

confining pressure in Case 3. In terms of magnitude, the obtained results are within a 

consistent range with respect to the experimental value shown in Table 4.1. 

 

• Time history of the induced shear strain 

The time history of the induced shear strain was computed at three elevations 

from the time history of the induced shear strain rate by simple integration. This not 

only helps us to visualize the distribution of the shear strain within the liquefied soil, 

but also to select the critical value of the shear strain above which the soil regains its 

rigidity.  

The time history for each simulated case is given for each component of the 

shear strain tensor as well as for the second invariant of the deviatoric shear strain. 

Figures 4.18, 4.19 and 4.20 depict the time history for each component of the 

strain tensor for Case 1 at depth h = 3 cm, h = 12 cm and h = 21 cm respectively. The 

strain tensor components in these figures are denoted as εxx, εyy, εxy in the normal and 

transversal direction respectively, while γ represents the second invariant of the strain 

tensor given as follows. 

 ijijεεγ
2
1

=              (4.3) 

Where : ijε  represent the component of the strain tensor. 

The volume of the liquefied soil is well conserved as illustrated in these 

figures: the normal components of the strain tensor are equals in magnitude, while 

the absolute value of the shear strain in transversal direction is equals in magnitude 

to the second invariant of the strain tensor.  
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Fig. 4. 18: Time history of the induced shear strain components 

at depth h = 3 cm for Case 1 
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Fig. 4. 19: Time history of the induced shear strain components 

at depth h = 12 cm for Case 1 
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Fig. 4. 20: Time history of the induced shear strain components 

at depth h = 21 cm for Case 1 

 

The time histories of the second invariant of the strain tensor at different depths 

are replotted and compared in Fig.4.21.  
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Fig. 4. 21: Time history of the second invariant of strain tensor for Case 1 
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In terms of magnitude of the shear strain, we can see in the above figure that 

the maximum shear strain occurs at depth h = 21 cm with a magnitude of more than 

40 %, while at depth h = 12 cm and h = 3 cm the level of shear strain do not reach a 

level of 10 %. This result is consistent with the simulated induced lateral ground 

displacement, particularly at depth h = 21 cm, which caused the upper adjacent layer 

to move as a rigid body. 

Likewise Case 1, figures 4.22, 4.23 and 4.24 illustrate the time history for each 

component of the strain tensor for Case 3 at depth h = 3 cm, h = 12 cm and                

h = 21 cm respectively.  
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Fig. 4. 22: Time history of the induced shear strain components 

at depth h = 3 cm for Case 3 
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Fig. 4. 23: Time history of the induced shear strain components 

at depth h = 12 cm for Case 3 
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Fig. 4. 24: Time history of the induced shear strain components 

at depth h = 21 cm for Case 3 
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In the same way as Case 1, Fig. 4.25 shows the time history of the second 

invariant of the strain tensor for Case 3. Since the shear strength varies along the 

height, the magnitude of the shear strain at depth h = 21 cm is limited to a value less 

than 20 % which is closer to the critical value of 21 % computed by Hamada and 

Wakamatsu (1998). This observation is also in accordance with the time history of 

the induced lateral ground displacement depicted in Fig. 4.15. 
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Fig. 4. 25: Time history of the second invariant of shear strain tensor for Case 3 

  

 

• Spatial distribution of the induced shear strain 

The spatial distribution of the second invariant of the strain tensor is illustrated 

in Fig. 4.26 for Case 3 for four time reference corresponding to t = 1 s, t = 3 s, t = 6 s 

and t = 12 s respectively.  

Fig. 4.26 highlights the distribution of the shear strain where we can see that 

the soil near the upstream part is subjected to a compression due to the subsidence 

movement, while the downstream is subjected to a tension due to heaving. The 

bottom part of the soil box is the most strained region which attains 42 % at t = 12 s. 

The central part at the top of the soil box is the least stressed region. 

 

 83



Chapter 4. Numerical simulations of liquefaction induced lateral spreading 
 

 

 

 

 

(a) t = 1 s 

 

 

 

 

(b) t = 3 s 

 

 

Fig. 4. 26: Spatial distribution of the shear strain at t = 1 s, t = 3 s, t = 6 s 

and at t = 12 s respectively 
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(c) t = 6 s 

 

 

 

 

(d) t = 12 s 

Fig. 4. 26: Spatial distribution of the shear strain at t = 1 s, t = 3 s, t = 6 s 

and at t = 12 s respectively 
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• Summary of the simulations results 

In the numerical simulation of the liquefaction induced lateral spreading, the 

SPH representation of the problem succeeded, to a certain extent, in reproducing the 

results derived during the 1 g shaking table experiment performed by Hamada and 

Wakamatsu (1998).   

Although the shape of the free surface did not fit exactly the observed one, the 

general trend was well simulated at the upstream and downstream particularly for 

Case 1. However, the central part did not keep the same inclination as the observed 

one. In Case 1, the central part experienced a slight rotation with respect to the initial 

position; in Case 3, the rotation was somehow more prominent. As for the time 

history of the ground flow velocity, the maximum value for both cases was closer to 

the observed one. However, the velocities at the bottom part were overestimated. On 

the other hand, the liquefied soil continued flowing with a magnitude ranging 

between 1/20 and 1/30 of the maximum value. This result is not consistent with the 

experiment in which the liquefied soil ceased to flow after the soil recovered its 

rigidity. Regarding the time history of the induced lateral ground displacements, 

neither the general observed trend nor the magnitude of the displacement do fit the 

observed one in Case 1, where the minimum undrained shear strength was kept 

constant throughout the height. This caused the upper part of the liquefied layer to 

move as a rigid body over the adjacent lower one. In Case 3, although the general 

trend of the ground displacement at the beginning was well simulated, the 

displacement increased continuously. Regarding the induced shear strain rate, the 

simulated results lay within a comparable range with respect to the value obtained by 

Hamada and Wakamatsu. The time history of the induced shear strain was also 

computed at the three respective elevations. However, only Case 3 seems to give 

closer results to the observed one.  

As a conclusion, it appears that the dissipation of the pore water pressure which 

led the liquefied soil to recover its strength is an important factor to be taken into 

account to reproduce the observed experimental results in a consistent manner. The 

next section discusses basic results on the dilatancy properties of the liquefied soil 

and will introduce a rather simple constitutive model to account for the recovery of 

the rigidity. 
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4.3.4 Numerical simulations taking into account the recovery of 
the rigidity 

• Fundamental aspect regarding the post liquefaction shear deformation 

The mechanism of post-liquefaction shear deformation in saturated sands was 

experimentally investigated by Yasuda et al. (1995) using a torsional shear test 

apparatus. By conducting cyclic torsional shear tests on Toyoura sand under 

undrained conditions, followed by a monotonic loading when the specimen reached a 

prescribed value of an excess pore water pressure or a certain value of the severity of 

the liquefaction, Yasuda et al. have shown that the liquefied sand gradually regains 

part of its shear strength when it is sheared beyond some threshold shear strain value 

γL. They termed this threshold value “reference strain at resistance transformation”. 

Yasuda et al. have shown that this value is a function of the relative density of the 

liquefied soil, the confining pressure, the pore pressure ratio as well as the severity of 

the liquefaction. A liquefied soil having a relative density larger than Dr = 50 % 

recovers its strength for a threshold value of shear strain less than 20 % if confined 

with a pressure σ0’ larger than 100 KPa, and with a threshold value less than 10 % if 

confined with a pressure equals to 25 KPa.  

In the same manner, Hamada and Wakamatsu, in their 1g shaking table 

experiment, have computed a critical strain γc beyond which the liquefied soil 

behaves as a solid body again denoting a regain in its rigidity. The results of their 

investigation already shown in Table 4.1 are replotted in Fig 4.27. 

Using these results to derive a stress-dilatancy model that could be used in the 

framework of this study seems to be a difficult task, since the SPH approach is 

introduced in the framework of a fluid dynamics based concept. In this respect, we 

propose a simple phenomenological model which expresses the behavior of the 

liquefied soil as understood from the shaking table experiment. This recovery model 

expresses the relationship between the yield viscosity and the critical shear strain of 

the liquefied soil by a bilinear curve as seen in Fig. 4.28. The first branch of the 

curve depicts the yield viscosity coefficient which is constant for values of shear 

strain smaller than the critical shear strain, while the second branch is a function of 

the shear strain for values greater than the critical shear strain. Accordingly this 
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curve is expressed by the following equation: 
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Fig. 4. 27: Relationship between the critical shear strain and 

the relative density of the soil 
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Fig. 4. 28: Proposed constitutive model for the recovery of the rigidity 
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• Numerical parameters of the recovery model 

There are no established rules on how to select the suitable parameters for the 

constitutive recovery model since the model is not based on a physical test. The 

parameters were adjusted by successive trials with respect to the obtained results. In 

this respect, two constitutive models were used to simulate the recovery of the 

rigidity for the lateral spreading experiment whose parameters are given in Table 4.4 

below. 

Table 4. 4: Parameters for the constitutive recovery model 

 Model 1 Model 2 

A (ηy) 0.10 0.10 

B 1.1 x 104 1.1 x 105

C -1.1 x 103 -1.1 x 104

 

Taking into account the previous results of the induced level of shear strain as 

well as the obtained results of the critical shear strain given by Hamada and 

Wakamatsu, the critical shear strain beyond which the soil regains its rigidity is fixed 

to γc = 10 % in the following simulations. Fig. 4.29 illustrates the constitutive models 

for the simulation of the recovery of rigidity.  
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Fig. 4. 29: Constitutive model for the recovery of rigidity 
 

• Free surface shape 

Fig.4.30 illustrates the simulated final free surface with and without 

considering the regain of the rigidity for Case 1 using Model 1. It can be seen that the 
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simulated free surface is similar to the previously one without considering the 

recovery of rigidity.  

Fig. 4.31 depicts the simulated final free surface for Case 3 using Model 1 and 

compares it with the free surface obtained when the recovery of rigidity is 

disregarded. The improvement is observed and the limited flow is well distinguished. 

In addition, the subsidence in the upstream part and the heaving in the downstream 

part are reproduced although the final shape is a little different from the observed 

free surface. The central part keeps the same inclination as the observed one in the 

downstream part while in the upstream region; the curve has a slight rotation with 

respect to the initial ground surface.  
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Fig. 4. 30: Simulated free surface before and after the recovery of rigidity for Case 1 
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Fig. 4. 31: Simulated free surface before and after the recovery of rigidity for Case 3 
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• Time history of the ground flow velocity. 

The time history of the ground flow velocity for Case 1 obtained with the 

recovery model 1 is illustrated in Fig.4.32. As it is seen, the curves at the three 

respective elevations exhibit similar pattern as in Fig. 4.11 particularly in the range   

0 - 2 s. The maximum flow velocity is closer to the value assessed by Hamada and 

Wakamastsu. On the other hand, the velocity at the bottom part is still overestimated, 

and the soil continues experiencing a moderate flow with reduced velocity of about 

1/30 of the maximum velocity. The inability of the constitutive model to reproduce 

in a consistent manner the recovery of the rigidity may be attributed to the constant 

value of the minimum undrained shear strength. The obtained results are similar for 

both Model 1 and Model 2 of the recovery of rigidity. It should be mentioned that 

only the decrease in the magnitude of the flow velocity after it reaches its peak is 

expected when simulating the regain of the rigidity with Model 2. 
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Fig. 4. 32: Time history of the ground flow velocity for Case 1 

 

Similarly, Fig. 4.33 depicts the time history of the ground flow velocity for 

Case 3 using Model 1 of the recovery of rigidity. The maximum flow velocity is very 

close to the value of 7 cm/s derived by Hamada and Wakamatsu. Although we still 

observe the continuous flow after the peak point, the flow velocity decreases sharply 
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to a value equal to 1/40 of the maximum magnitude. This denotes that the liquefied 

soil regains slowly its rigidity 4 seconds after the start of the simulation.  

Likewise to the previous case, the result obtained for Model 2 was slightly 

improved without fitting completely the experimental results. Since the minimum 

undrained shear strength in this particular case depends on the confining pressure and 

thus on the height at the specific elevation, this discrepancy may be attributed to the 

wall boundaries. This conclusion is mainly based on the findings obtained from the 

simulation of a gravity flow of a water-clay mixture presented in Chapter 3, where 

the flowing mass reaches a freezing profile when the induced shear stress drops 

below the yield Bingham shear stress. 
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Fig. 4. 33: Time history of the ground flow velocity for Case 3 

 

• Time history of the ground flow displacements 

Figures 4.34 and 4.35 show the time history of the ground flow displacement 

for Case 1 and Case 3 respectively using Model 1 of the recovery of rigidity. 

As expected, the constitutive model for Case 1 was unable to reproduce the 

regain of the rigidity although a slight decrease is observed at depth h = 3 cm and at 

h = 12 cm. Moreover, the trend of the evolution of the curve is inconsistent with the 

experimental results, and the liquefied soil still undergoes a high viscosity at small 
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strain rate. The bottom part of the liquefied layer caused the upper part to move as a 

rigid body.  
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Fig. 4. 34: Time history of the ground flow displacement for Case 1 using 

Model 1 of the recovery of rigidity 

 

Unlike Case 1, the simulated time history of the flow ground displacement for 

Case 3 reproduced the trend of the derived experimental results. However, the 

introduction of the recovery of the rigidity was only able to decrease slightly the 

induced displacement at the three elevations without reaching a final asymptotic 

shape as observed during the experiment. Moreover in the bifurcation region, the 

induced displacement at depth h = 21cm is twice the value observed during the 

experiment and accordingly incompatible since the related particle is closer to the 

bottom of the soil box. By plotting the time history of the induced displacement at 

depth h = 28 cm as depicted in Fig. 4.36, the induced displacement reaches a 

maximum value of 1cm and keeps a constant value till the end of the simulation. 

This result is qualitatively consistent with the derived experimental results. 

Nevertheless, it is quantitatively incoherent and the discrepancy might be attributed 

to the wall boundary effect, particularly to the nature of the boundary particles 

simulated with Lennard-Jones potential.  This latter exert a driving force on adjacent 

particles which cause them to experience a large displacement during the early stage 
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of the simulation. In this respect, more investigations on the boundary wall effect 

deserve further attention to improve the results with respect to the experimental 

findings. 
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Fig. 4. 35: Time history of the ground flow displacement for Case 3 using 

Model 1 of the recovery of rigidity 
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Fig. 4. 36: Time history of the ground flow displacement for Case 3 

at depth h = 28 cm using Model 1 of the recovery of rigidity 
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Similarly, Fig. 4.37 depicts the time history of the flow ground displacements 

using Model 2 for the recovery of the rigidity where it is observed that the magnitude 

of the induced displacements slightly decreased without reaching an asymptotic final 

shape.  
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Fig. 4. 37: Time history of the ground flow displacement for Case 3 using 

Model 2 of the recovery of rigidity 

Further numerical simulations using steeper slopes for the recovery model were 

unable to improve the results, leading sometimes to a numerical instability attributed 

mainly to the abrupt change of the behavior of the liquefied soil materialized by the 

bilinear constitutive model. One of the solutions to overcome this instability consists 

in decreasing the time increment of the numerical simulation. In this respect, a 

smaller time increment equals to ∆t = 10-5 s was adopted to perform further 

simulations using both Model 1 and 2 for the recovery of rigidity. 

Figures 4.38 and 4.39 illustrate the time history of the flow ground 

displacement for Case 3 corresponding to Model 1 and Model 2 respectively. From 

these figures, we can observe that the time evolution of the induced displacement at 

the three respective elevations tend towards an asymptotic shape at the late stage of 

the simulation. Moreover, the steeper is the slope of the recovery Model; the smaller 

is the induced displacement as observed in Fig. 4.39. However, a slight numerical 

instability still exits as observed at depth h = 12 cm for Model 2. This can be 

 95



Chapter 4. Numerical simulations of liquefaction induced lateral spreading 
 

resolved by adopting a smaller time increment which leads to a large time consuming 

of the numerical simulations. Finally it should be emphasized that besides the time 

increment and the gradient of the slope of the bilinear Model, the difference in the 

final shape is attributed to the dissipation of the pore water pressure which is not 

accounted for in the bilinear recovery model. 
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Fig. 4. 38: Time history of the ground flow displacement for Case 3 using 

Model 1 of the recovery of rigidity corresponding to ∆t = 10-5 s 
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Fig. 4. 39: Time history of the ground flow displacement for Case 3 using 

Model 2 of the recovery of rigidity corresponding to ∆t = 10-5 s 
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• Distribution of  the ground flow displacements along the height 

This section discusses the distribution of the ground flow displacements at the 

central cross section along the height. The main purpose is to investigate the effect of 

the recovery model on the distribution of the induced displacement at the central 

cross section for Case 1 and Case 3.  

Fig. 4.40 illustrates the distribution of the ground flow displacement for Case 1 

at eight different time steps derived by using Model 1 of the recovery of rigidity. 

This distribution resembles to a curve which looks as one fourth of a sinusoidal 

wave. This results is consistent at the beginning of the simulation up to t = 1 s. If the 

soil has regained its rigidity, the distribution should have been a triangular one. 

However, the ¼ sinusoidal distribution of the ground flow displacement suggests that 

the upper layers of the liquefied soil move as a rigid body over the lower liquefied 

layers. This result is in accordance with the previous conclusions related to the time 

history of the flow velocity as well as the ground flow displacement for Case 1. 
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Fig. 4. 40: Distribution of the ground flow displacement at the central 

cross section at eight time reference 
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Fig. 4.41 depicts the same distribution of the ground flow displacement for 

Case 3 derived by using Model 1 of the recovery of rigidity. Similarly to Case 1, the 

distribution of the displacement for time span less than t = 2 s looks like a ¼ of a 

sinusoidal wave. However, as the soil regains its rigidity, the sinusoidal distribution 

moves towards a triangular one. This suggests that each liquefied layer moves 

separately without exhibiting a rigid body behavior. Finally, the simulated trend is 

consistent with the physical test results derived by Hamada and Wakamatsu, and 

consistent with the simulated time history of the ground flow displacement.  
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Fig. 4. 41: Distribution of the ground flow displacement at the central 

cross section at eight time reference 

 

• Maximum ground displacements  

The maximum ground displacement at three elevations computed at three 

distinct locations was also simulated and compared with available results given by 

Hamada and Wakamatsu for Case 3. In fact, the liquefied soil in this simulated case 

seems to have regained its rigidity with a level smaller than the observed one. 

Fig. 4.42 shows the distribution of the maximum ground displacement at three 

elevations at distances equals to 0.5 m, 1.5 m and 2.5 from the left side of the soil 

box obtained using Model 1 of the recovery of rigidity. 
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Fig. 4. 42: Maximum ground displacement 

 

Fig. 4.42 shows that the simulated maximum ground displacements are 

consistent with the experimental results. At a distance of 2.5 m from the left hand 

side, the simulated maximum ground displacement is well reproduced at the three 

respective elevations corresponding to depth h = 3 cm, h = 12 cm and h = 21 cm. 

However in the central part and at a position equals to 0.5 m from the left side of the 

soil container, the simulated ground displacements are smaller than the experimental 

ones. This expresses the fact, that the liquefied soil recovered its rigidity. 

 

• Time history of the induced shear strain rate 

The time history of the induced shear strain rate was also assessed for the 

simulated Case 1 and Case 3 using Model 1 of the recovery of rigidity. The results 

were compared with the experimental findings given in Table 4.1. 

Figures 4.43 and 4.44 illustrate the relationship between the viscosity and the 

induced shear strain rate for Case 1 and Case 3 respectively. The level of the induced 

shear strain rate in case 1 is almost similar to the case where the recovery of the 

rigidity is not accounted for. However for Case 3, the simulated induced shear strain 
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rates are found in the small strain rate region compared with the values given by 

Hamada and Wakamatsu. 
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Fig. 4. 43: Relationship between the equivalent viscosity and the 

induced shear strain rate for Case 1 
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Fig. 4. 44: Relationship between the equivalent viscosity and the 

induced shear strain rate for Case 3 
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• Time history of the induced shear strain  

The time history of the induced shear strain has been derived for Case 1 and 

Case 3. However unlike the previous simulations highlighted in section 4.3.3, only 

the time history of the second invariant of the strain tensor will be discussed and 

compared with the previous results. Fig. 4.45 depicts the time history of the second 

invariant of the strain tensor derived for Case 1 at three different elevations using 

Model 1 of the recovery of rigidity. From this figure, we can observe that only the 

bottom part of liquefied soil regained its rigidity, while the middle part and the upper 

part were insensitive since the maximum shear strain distribution was below the 

critical shear strain γc.  
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Fig. 4. 45: Time history of the second invariant of the deviatoric 

strain tensor for Case 1 

 

Fig. 4.46 shows the time history of the second invariant of the strain tensor 

computed at depth h = 21 cm by considering and disregarding the recovery of the 

rigidity. 
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Fig. 4. 46: Time history of the second invariant of the 

strain tensor for Case 1 at depth h = 21 cm 
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Fig. 4. 47: Time history of the second invariant of the strain tensor for Case 3 
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Likewise Case 1, the time history of the second invariant of the strain tensor 

for Case 3 using Model 1 of the recovery of rigidity is shown in Fig. 4.47. In this 

case, the liquefied soil regains its rigidity at the bottom as well as the middle part, 

since the induced shear strain is greater than the critical shear strain. Fig. 4.48 

illustrates the time history of the second invariant of the strain at depth h = 21 cm 

with and without considering the recovery of the rigidity. 
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Fig. 4. 48: Time history of the second invariant of the 

strain tensor for Case 3 at depth h = 21 cm 

 

• Summary of the simulations results taking into account the recovery of 

the rigidity 

In this section a simple phenomenological constitutive model was introduced to 

account for the recovery of the rigidity. Since this study uses the concept of fluid 

dynamics to simulate the liquefaction induced lateral ground displacement, it was 

rather difficult to derive a dilatancy stress model based on the experimental results 

conducted on the post-liquefaction shear deformation, like those obtained by Yasuda 

et al. In this respect, we introduced a bilinear model based on the dual behavior of 

the liquefied soil as introduced in Chapter 2. 
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However, there are no specific rules on how to select the parameters related to 

this model as it is not based on a physical testing. The appropriate parameters were 

selected by successive trials using the derived experimental results. 

Although the shape of the free surface in Case 1 did not experience any 

improvement after introducing the recovery constitutive model, this modification 

was able to reproduce the general trend in Case 3. Nevertheless, the central part of 

the free surface kept similar inclination as the initial surface in the downstream 

region only. As for the time history of the ground flow velocity, the maximum value 

for both cases became closer to the observed one. However, the liquefied soil 

continues flowing with a small velocity even after it recovers its rigidity. Since this 

tendency was even observed in Case 3 for which the minimum undrained shear 

strength is function of the confining pressure, and having in mind the results of the 

gravity flow of the water-clay mixture, it was concluded that this discrepancy may be 

attributed to the boundary wall effect. Regarding the time history of the induced 

lateral ground displacements, similar trend was observed for Case 1 when the 

recovery of the rigidity was not taken into account. However, a consistent trend was 

observed for Case 3 which was able to overcome the high viscosity at small shear 

strain rate although the asymptotic shape is not reproduced for both recovery models. 

In this respect, additional simulations by adopting a smaller time increment were 

conducted. It was observed that the steeper is the slope of the bilinear model; the 

smaller are the induced displacements though the asymptotic shape is only observed 

at the final stage of the numerical simulation. This difference with respect to the 

experimental findings is related besides the wall effect and the time increment, to the 

dissipation of the pore water pressure which is not taken into account in the bilinear 

recovery model. The distribution of the ground displacement at the central cross 

section along the height was also derived for eight time intervals. A consistent 

distribution of the displacement along the height was simulated in Case 3, where the 

trend changes from ¼ of a sinusoidal wave to a triangular one when the liquefied soil 

regains its rigidity. Moreover, the maximum ground displacement at three different 

locations at three specific elevations was estimated. It was found that the maximum 

values of ground displacement fit the observed ones with a good accuracy at a 

distance equals to 2.5 m from the left side of the soil box.  
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4.4 Numerical simulation of the flow velocity with respect to the 
gradient of the ground surface and liquefied layer thickness  

Once the mechanism of the liquefaction induced lateral ground displacement 

after the cease of the earthquake has been investigated and the nature of the liquefied 

soil has been clarified, Hamada and Wakamatsu (1998) used the same experimental 

setup depicted in Fig. 4.5 to perform several other experiments of a sloped ground 

model. In this respect, different layer thickness ranging between 15 and 38 cm and 

surface gradient varying between 1 and 5% were prepared in the same soil box.   

Hamada and Wakamatsu showed that the ground flow velocity is proportional to the 

square root of the layer thickness. By assuming a flow velocity distribution as ¼ of a 

sinusoidal wave, they proposed a relationship for the maximum velocity at the 

ground surface with respect to the soil layer thickness, ground slope and viscosity of 

the liquefied layer. 

In this section, we do not intend to simulate this experiment but rather use the 

same experimental setup to investigate the relationship between the maximum flow 

velocity, the liquefied layer thickness and the gradient of the ground surface.  

For this aim, we conducted numerical simulations using liquefied layer 

thickness ranging between 16 cm and 50 cm with a ground gradient slope of 3% and 

5%. We attempt to focus on how the maximum velocity and the required time to 

reach this maximum do very with the layer thickness and the gradient of ground 

surface.  

4.4.1 Numerical setup 

We performed 10 simulation cases in total, considering a liquefied ground 

model of thickness varying between 16 cm and 50 cm with a ground slope of 3% and 

5% inside a soil box of a 3m length. 

The Bingham model is taken as the constitutive law for the liquefied ground 

considering a yield viscosity η of 1 Pa⋅s. The recovery of the rigidity was not taken 

into account since our main concern is related to the occurrence time of the 

maximum velocity which takes place much more earlier before the soil regains its 

rigidity. 
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The minimum undrained shear strength was assessed for each case at the 

middle of the soil layer. Fig. 4.49 shows the relationship between the surface 

gradient slope and the minimum undrained shear strength for each soil layer 

thickness.  
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Fig. 4. 49: Relationship between the minimum undrained shear strength 

with respect to the liquefied layer thickness 

 

4.4.2 Simulations results 

Figures 4.50 and 4.51 show the time history of the ground flow velocity for 

each liquefied layer thickness for a ground slope θ = 3 % and θ = 5 % respectively. 

As expected, larger flow velocities occur for thicker layers with the steeper slope. By 

plotting the relationship between the ground flow velocities and the liquefied layer 

thickness for each ground gradient slope, we showed, as stated by Hamada and 

Wakamatsu (1998), that the flow velocity is a function of the square root of the 

liquefied layer thickness as illustrated in Fig. 4.52. 
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Fig. 4. 50: Time history of the ground flow velocity for slope gradient θ = 3 % 
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Fig. 4. 51: Time history of the ground flow velocity for slope gradient θ = 5 % 
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Fig. 4. 52: Relationship between the ground flow velocities                                        

versus the liquefied layer thickness 

 

A regression analysis to express the relationship and find the best estimate 

between the flow velocities V (cm/s) and the liquefied layer thickness H (cm) was 

performed and the result is given by Eq. (4.5) as follow: 

 

 HV 27.1=          (4.5) 

 

By analyzing the results shown in figures 4.50 and 4.51, we observe that the 

required time for the ground flow velocity to reach its maximum is a function of the 

liquefied layer thickness and the ground gradient slope as depicted in Fig. 4.53. A 

similar regression analysis enables us to find the best estimation of the required time 

T (s) for the ground flow velocity to reach its maximum value as a function of the 

liquefied layer thickness H (cm) and the ground gradient slope. This relationship is 

given by Eq. (4.6) and Eq. (4.7) for a ground gradient slope θ = 3 % and θ = 5 % 

respectively. 

 108



Chapter 4. Numerical simulations of liquefaction induced lateral spreading 
 

T = 1.8*(H)-0.5

T = 2.3*(H)-0.5

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

Liquefied layer thickness (cm)

Ti
m

e 
to

 re
ac

h 
m

ax
im

um
 v

el
oc

ity
 (s

)

θ = 5%
θ = 3%

 

Fig. 4. 53: Required time to reach the maximum ground flow velocities 

as a function of the liquefied layer thickness 

 

 HT 8.1=      (4.6) 

 HT 3.2=     (4.7) 

 

Fig. 4.53 states that the thicker is the liquefied layer, the shorter is the time 

required to reach the maximum flow. Conversely, the steeper is the ground slope; the 

larger is the required time to reach the maximum flow for the same liquefied layer 

thickness. 

 

• Summary of the simulations results  

In this section we conducted numerical simulations to investigate the 

relationship between the flow velocity, the liquefied layer thickness and the ground 

slope gradient by using the experimental setup developed by Hamada and 

Wakamatsu. The results showed that the both the ground flow velocity and the time 

required to reach the maximum velocity is the function of the square root of the 

liquefied layer. 
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4.5 Numerical simulation of the liquefied flow around a model pile 

This section discusses the ability of the SPH method to simulate the flow of a 

liquefied soil around a model by using the experimental setup developed by Hamada 

et al (1992). It is worth to mention that this problem represents a fundamental aspect 

in the assessment of the drag force applied by the liquefied flow and hence in the 

design of piles subjected to the exerted forces due to lateral spreading.  

In this respect, Hamada et al. conducted a 1g shaking table experiment to 

assess the effect of the liquefaction induced ground displacement on an acrylic model 

pile. A model ground 3 m long, 1 m wide and 25 to 31 cm deep was constructed 

inside a soil box with a surface gradient of 2 %. The model foundation pile of acrylic 

resin, 28 cm in length and 22 mm in diameter, was placed at the center of the soil 

box after fixing its lower part. The experimental setup is depicted in Fig. 4.54. The 

liquefaction was induced by subjecting the soil box to sinusoidal waves with a 

frequency of 5 Hz in the shorter direction for 10 seconds and thus the soil started 

moving due to the gradient surface inclination without any effect of the inertial 

forces. 
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Fig. 4. 54: Experimental setup for flow around a model pile 

(after Hamada et al., 1992) 
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4.5.1 Numerical setup 

The experimental setup developed by Hamada et al. is used to simulate the 

flow induced by the liquefied soil around the model pile by considering and 

disregarding the recovery of the rigidity. Since the SPH method has not been 

extended in the present study to account for solid problem, our interest is limited to 

investigate the distribution of the flow velocity, as well as the strain and stress field 

around the pile. In this respect, the problem resumes to a 2D representation of the 

induced flow around the pile at the top of the free surface. For a better efficiency of 

the SPH method, the problem is modeled using periodic boundaries in the direction 

of the flow by choosing a representative volume around the pile. For this purpose, a 

model of square lattice of 1 m ×  1 m is taken around the model pile as illustrated in 

Fig. 4.55. 
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Fig. 4. 55: Numerical setup 

 

In Total, 2500 particles equally spanning the channel with an initial spacing of 

1 cm were used to represent the domain. These particles were subjected to a body 

force equivalent to )sin(θgF = where θ = 2 %. The model pile was represented by a 

set of particles exerting a Lennard-Jones potential on surroundings medium.  
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Table 4.5 summarizes the numerical parameters used in the simulations. 

 

Table 4. 5: Numerical parameters 

Model dimensions                                        1 x 1m 

Number of particles                                      50 x 50 

Initial spacing        0.01 m 

Density of particles                                       1800 kg/m3

Yield viscosity                                               0.1 Pa⋅s 

Minimum shear strength τmin                         10 Pa 

Time increment                                             10-4s 

Sound speed          0.01 m/s 

ε (XSPH)          0.3  

 

4.5.2 Simulation results 

To investigate the nature of the liquefied flow around the model pile, two sets 

of numerical simulations were performed by disregarding and considering the 

recovery of the rigidity. Since the model is not subjected to any confined boundaries 

in the direction of the flow, the simulations present a good means to check the 

assumption so far made on the limitation of the bilinear constitutive model to 

represent the recovery of the rigidity. 

 

1. Simulation without recovery of rigidity 

The simulation was conducted during a time span of 12 s. The flow velocity 

profile in the longitudinal and transversal direction along three paths as depicted in 

Fig. 4.56 is illustrated at t = 0.5 s and t = 12 s in figures 4.57, 4.58 and 4.59 

respectively. The flow velocity profile along paths A, B and C is only illustrated at    

t = 0.5 s as the flow acts toward the longitudinal direction. The wraparound effect 

due to the periodic boundaries as well as the symmetry of the flow is well depicted.  
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Fig. 4. 56: Schematic representation of the paths along which 

the flow velocity profile is assessed 

Fig. 4.57 shows the velocity profile along path A, B and C at time t = 0.5 s. 

The maximum flow velocity is depicted at the center of the channel along path A and 

is equals to 0.012 m/s. Starting from X = 1 m, the velocity decreases as the flow 

approaches the pile and reaches zero at the contact boundaries. It starts increasing 

again behind the pile and gains its maximum value at X = 0 m. The flow velocity 

exhibits similar profile and intensity along path B and C due to the symmetry of the 

flow along the channel. 
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Fig. 4. 57: Flow velocity profile along paths A, B and C at time t = 0.5 s 
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Fig. 4.58 illustrates the flow velocity profile along path E, F and D at t = 0.5 s. 

The maximum velocity is observed along path E and F and describes a flow which 

did not reach the stationary regime yet. Along path D, the velocity profile exhibits a 

symmetric shape with two peaks along the channel. It became null when the flow 

approaches the model pile.  
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Fig. 4. 58: Flow velocity profile along paths E, F and D at time t = 0.5 s 

 

Similarly, Fig. 4.59 depicts the flow velocity profile along path E, F and D       

at t = 12 s. The flow along path E attains the stationary regime with a magnitude 

equals to 0.085 m/s. Along path D and F, the flow velocity profile is identical to           

t = 0.5 s with a reduced magnitude along path F due to the appearance of the yield/ 

unyield region. 
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Fig. 4. 59: Flow velocity profile along paths E, F and D at time t = 12 s 

 

The spatial distribution of the flow velocity, the second invariant of the strain 

tensor and the shear stress is depicted for 3 time intervals corresponding to t = 1 s,      

t = 6 s and t = 12 s. To respect the essence of the SPH method, the spatial distribution 

uses a discrete color representation for each particle. 

Figures 4.60, 4.61 and 4.62 illustrate the simulated spatial distribution of the 

flow velocity, second invariant of the strain tensor and shear stress around the pile 

respectively. In all the figures, the wraparound effect of the periodic boundary is 

clearly observed. 
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(a) t = 3 s 

 

(b) t = 6 s 

 

(c) t = 12 s 

Fig. 4. 60: Flow velocity distribution around the pile at t = 3 s, t = 6 s 

and t = 12 s respectively  
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(a) t = 3 s 

 

(b) t = 6 s 

 

(c) t = 12 s 

Fig. 4. 61: Distribution of the second invariant of the strain tensor 

around the pile at t = 3 s, t = 6 s and t = 12 s respectively 
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(a) t = 3 s 

 

(b) t = 6 s 

 

(c) t = 12 s 

Fig. 4. 62: Shear stress distribution around the pile at t = 3 s, t = 6 s 
and t = 12 s respectively 
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Fig. 4.60 illustrates the flow velocity distribution profile along the channel for 

three respective time span. The maximum flow velocity is of the order of 1 cm/s as it 

is observed in the upstream and downstream regions at the center of the channel or 

near the equator as termed in the fluid mechanics terminology. Near the boundary, 

the velocity is almost negligible. Near and around the pile, the velocity is almost 

negligible since it corresponds to the yielded zone.  

Fig. 4.61 depicts the spatial distribution of the shear strain along the channel. 

Starting from t = 3 s, the progressive increase of the shear strain near the boundaries 

and the pile is clearly observed. The maximum induced shear strain is 47% which is 

similar to the value computed during the lateral spreading simulation performed in 

Section 4.3 for Case 1. This result is also in accordance with physical testing and 

other numerical simulations using FEM approach showing the same tendency near 

the wall and around the cylinder, e.g., Zisis and Mitsoulis (2002).  

Fig. 4.62 illustrates the distribution and time evolution of the induced shear 

stress. Starting from an unyielded profile at t = 3 s, the progressive occurrence of the 

yield zone is well observed as long as the induced shear stress is smaller than the 

Bingham yield stress or the minimum undrained shear strength. The maximum shear 

stress is observed near the boundary wall and around the pile. At the stationary 

regime, a polar cap around the pile and an island are clearly distinguished.  
 

2. Simulation taking into account the recovery of  the rigidity 

The previous simulation confirmed the ability of the SPH method to simulate 

the flow of a liquefied soil around a model pile. The obtained results were 

qualitatively consistent with physical testing as well as other numerical simulations 

using FEM. In this section, the constitutive bilinear model for the recovery of rigidity 

will be introduced to simulate the flow of a liquefied soil around the model pile. In 

this respect, slightly larger parameters than that used in section 4.3.4 will be applied 

in this section. They are as follow: 

                                                         γc = 10% 

       A = ηy = 0.10 Pa⋅s 

B = 1.1 x 10 5

C = -1.1 x 10 4 
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Similarly to the previous results, the spatial distribution of the flow velocity, 

shear strain and shear stress along the channel are given for the same time points at   

t = 3 s, t = 6 s and t = 12 s respectively. 

Figures 4.63, 4.64 and 4.65 illustrate respectively the simulated spatial 

distribution of the flow velocity, shear strain and shear stress around the pile taking 

into account the recovery of the rigidity. 
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(a) t = 3 s 

 

(b) t = 6 s 

 

(c) t = 12 s 

Fig. 4. 63: Flow velocity distribution around the pile at t = 3 s, t = 6 s 

and t = 12 s respectively 
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(a) t = 3 s 

 

(b) t = 6 s 

 

(c) t = 12 s 

Fig. 4. 64: Distribution of the second invariant of the strain tensor around the 

pile at t = 3 s, t = 6 s and t = 12 s respectively 
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(a) t = 3 s 

 

(b) t = 6 s 

 

(c) t = 12 s 

Fig. 4. 65: Shear stress distribution around the pile at t =3 s, t = 6 s and 

t = 12 s respectively 
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Fig. 4.63 depicts the flow velocity distribution along the channel at three 

respective times. The profile of the velocity in the upstream region suggests that the 

soil starts regaining its rigidity gradually. In fact, the maximum flow velocity of        

1 cm/s at t = 3 s decreases sharply and becomes half of the maximum value at                     

t = 12 s. Similarly the spatial distribution of the shear strain is shows in Fig. 4.64. It 

is clearly observed that the level of the shear strain is lower compared to the case 

where the recovery of rigidity was not modeled. Moreover, the magnitude of the 

strain decreases by about half when considering the regain of the stiffness: it is only 

25 % compared to 47 % at t = 12 s for the previous simulations. Unlike the previous 

simulation, the spatial distribution of the shear stress do not exhibits any 

yielding/unyielding regions since the maximum induced shear stress at t = 3 s is 

larger than the minimum undrained shear strength. This is confirmed by plotting the 

shear stress distribution at t = 1 s as shown in Fig. 4.66, and allow us to state that the 

liquefied soil regained its rigidity between t = 1 s and t = 3 s. 

 

 

 

Fig. 4. 66: Shear strain distribution around the pile at t = 1 s 
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3. Summary of the simulations results  

In this section, numerical simulations of the flow characteristic of the liquefied 

soil around a model pile were carried out on the basis of the experimental setup used 

by Hamada et al. (1992) in their investigation of the applied lateral load on an 

embedded model pile foundation. 

In this respect, two type of numerical simulation were performed by 

considering and disregarding the recovery of rigidity. If the recovery of rigidity is not 

accounted for, the obtained results are similar to a viscoplastic flow around a pile, 

which is materialized by the appearance of the yielding/unyielding zone. The results 

resemble qualitatively to those published by Zisis and Mitsoulis (2002) using the 

FEM approach. 

The bilinear model considering the recovery of the rigidity so far introduced in 

Section 4.4 was used to simulate the regain of the soil stiffness and confirm some of 

the statements regarding the sensitivity of the model on the wall boundary. The 

simulated results showed clearly that the velocity profile distribution depends on the 

intensity of the induced shear strain and shear stress. In this particular case, the 

maximum flow velocity and maximum shear strain was almost half of those obtained 

in the case without considering the rigidity recovery. As for the shear stress 

distribution, the appearance of the yielding/unyielding zone is observed as long as 

the shear strain is smaller than the critical shear strain. Beyond the critical shear 

strain, the soil recovers its rigidity and the induced shear stresses are larger than the 

minimum undrained shear strength. 
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5.1 Summary of the obtained results 
 

This research deals with the analysis of liquefaction induced lateral ground 

displacement using Smoothed Particle Hydrodynamics (SPH) in the framework of 

fluid dynamics. 

Because liquefaction induces large displacement and large shear strain that can 

not be simulated by ordinary methods (FEM, FDM), the primary objective of this 

research was to investigate the applicability and the feasibility of a Lagrangian 

meshfree particle method to simulate and analyze problems involving large ground 

displacements. 

On the basis of field observations and laboratory tests findings on the 

mechanism of liquefaction induced lateral spreading and the nature of the liquefied 

soil, the viscous fluid analogy and the Bingham constitutive model was used to 

represent the behavior of the liquefied subsoil. 

An existing educational SPH code was extended to model hydrodynamics 

problems involving material with strength. 

The ability and the efficiency of the SPH code to simulate Newtonian and non-

Newtonian flow was first checked using three benchmark problems for which exact 

solution and experimental results exist. These problems consist of a Poiseuille flow, 

a dam break of a water column and a water-clay mixture. The findings can be 

summarized as follow:  
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1. The SPH results obtained for the Poiseuille flow are in good agreement 

with the time series solutions derived by Morris. 

2. The numerical instability during the simulation of the dam break problem 

of a water column was resolved using the artificial viscosity term. Since 

there are no clear rules on how to select the coefficients α and β introduced 

in the artificial viscosity term, a parametric study was conducted to find out 

the appropriate range without altering the physical phenomenon. It was 

concluded that provided smaller values of α and β are correctly selected, 

the numerical scheme is stable and the results fit the experimental 

observation. An appropriate range for β can be taken between 0.1 and 3 if α 

is to be neglected, or between 0.1 and 1 if α is accounted for. In general, 

since the physical viscosity is already there, the term α can be omitted as it 

brings additional viscosity to the problem. 

3. Similar parametric study was conducted for the dam break flow of a water-

clay mixture by considering the artificial viscosity terms as well as the 

XSPH technique proposed by Monaghan. The XSPH seems to have some 

physical meaning with respect to the SPH essence, and thus deserved 

further investigation in the framework of this study. The results suggest that 

the parameter ε of the XSPH is to be chosen in the range 10-3 to 10-2 for 

this particular case. On the other hand, if α is to be included in the artificial 

viscosity expression, then the additional viscosity is clearly perceptible, and 

hence should be disregarded. In this respect values between 0.1 and 1 for β 

seem to give good results. 

4. The quintic spline kernel function derived by Morris was used. It was 

found that a smoothing length 0.9 to 1.2 times the initial spacing between 

the particles gives sufficient number of particles (20 to 30) to perform the 

averaging without smoothing out the particles physical quantities. 

5. A typical value of sound speed between 1/10 and 1/75 of the actual sound 

speed of water constrains the density fluctuation within 1% if the velocity 

of the problem can not be predetermined. If the velocity is known through 
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exact solutions, a value equals to 1/10 the Mach number constrains the 

density fluctuation within 1%. 

6. For problems involving wall boundaries, the density continuity approach is 

preferred to the summation density approach. 

 

The SPH method was then extended to simulate the liquefaction induced lateral 

ground displacement. 

The main results can be summarized as follow: 

1-1– Numerical simulation of lateral spreading experiment performed by 

Hamada and Wakamatsu. 

• The method reproduced the general trend of the observed free 

surface to a certain extent, particularly at the upstream and 

downstream region. At the central part, the surface did not keep the 

same inclination as the initial surface but rather experienced a slight 

rotation in the upstream. In the downstream, the free surface keeps 

the same inclination as the initial surface. 

• The maximum ground flow velocity at depth h = 3 cm is well close 

to the experimental result in all the simulated cases. However, the 

velocities at the bottom part were overestimated and the liquefied 

soil continues flowing with a rate ranging between 1/20 and 1/30 of 

the maximum velocity. Similarly, the general trend of the time 

history of the ground displacement was simulated at the beginning 

of the simulation only in Case 3 whether the recovery of the rigidity 

is taken into account or not. However, the magnitude of the 

simulated displacement was larger than the observed one.  

• The simulated induced shear strain rate lies within a comparable 

range with respect to the value obtained by Hamada and Wakamatsu. 

• The distribution of the displacement along the height at the central 

cross section is consistent by the introduction of the recovery of 

rigidity. At the beginning of the simulation the displacement profile 
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looks like a ¼ of a sinusoidal wave; as the soil regains part of its 

rigidity, the distribution moves towards a triangular one. 

• The distribution of the maximum displacement was also computed 

at three elevations at three different positions and compared with 

experimental results. The obtained results are close to the observed 

one with an acceptable confidence. 

• On the basis of these findings along with the results of the gravity 

flow of a water-clay mixture, the discrepancy of the results may be 

attributed to the wall effect and particularly to the nature of the 

boundary particle represented by Lennard-Jones potential. 

1-2– Numerical simulation of the flow velocity with respect to the liquefied 

layer thickness and ground slope gradient. 

• The SPH simulations confirmed the similitude law proposed by 

Hamada and Wakamatsu for the liquefied soil. 

• The flow velocity is proportional to the square root of the liquefied 

layer thickness. 

• The time required for the liquefied soil to reach the maximum flow 

velocity is a function of the square root of the liquefied layer too. 

1-3– Numerical simulation of the liquefied flow around a model pile. 

• When the recovery of the rigidity is not taken into account, the flow 

of a liquefied soil around a model pile is equivalent to a typical 

viscoplastic flow around a cylinder placed in the middle of parallel 

plates. 

• The appearance of the yielded/unyielded zone is well materialized 

by the SPH simulation. The results resemble qualitatively to those 

published by Zisis and Mitsoulis (2002) using FEM approach. 

• The maximum value of the ground flow velocity is observed at the 

center of the channel. 

• The model pile is subjected to high strains and stresses at the polar 

caps in the upstream region. 
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• By introducing the bilinear constitutive model for the recovery of 

the rigidity, both the magnitude of the velocity and the shear strain 

decrease as the soil regains its rigidity. 

• The development of the yielded/unyielded zone is only observed 

when the induced shear strain is smaller than the minimum 

undrained shear strength. 

• Since the simulation uses the periodic boundary, the effect of the 

wall is not observed and the recovery model leads to a consistent 

qualitative results.  

 

5.2 Perspectives 
 

This research work investigates the applicability and the feasibility of the SPH 

method to simulate the lateral ground displacement induced by liquefaction. The 

approach represents a promising tool for the simulation of the problem involving 

large displacement and large strain. Even though a simple constitutive model for the 

behavior of the liquefied soil and for the recovery of the rigidity was considered, the 

simulated results were consistent to a certain extent with the experimental findings. 

However in the present state, the method needs more improvement to be applied to 

real problems. The following aspects deserve further investigations: 

• Clear criteria on the consideration of the artificial viscosity or the XSPH 

technique to stabilize the numerical scheme.  

• Simulations of the dissipation of the pore water pressure by considering 

the fluid-solid phase in the framework of SPH to improve the recovery 

of the rigidity. 

• Further investigations on the boundary wall effect and the necessity to 

represent the boundary particles with a potential other than Lennard-

Jones.  

• Extension of the SPH to treat solid material and hence assess the drag 

force acting on a model pile induced by the flow of the liquefied soil. 
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