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Abstract

In this thesis, we study the geometric properties of the Ricci flow. We mainly restrict
our attention to a special class of them consisting of ancient solutions. An ancient
solution is a solution to Hamilton’s Ricci flow equation which exists for an infinite time
in the past. It plays a key role in the singularity analysis of the Ricci flow. Our main
tool is Perelman’s reduced volume which is an integral quantity known to be monotone
non-increasing in the backward-time along the Ricci flow.

We first generalize the monotonicity of the reduced volume to the super Ricci flow.
The super Ricci flow is a generalization of the Ricci flow as well as of Riemannian
manifolds of non-negative Ricci curvature. This provides a unified approach to the
comparison geometry of these two objects.

One of our main results is a gap theorem for ancient solutions to the Ricci flow which
states that any ancient solution with the asymptotic limit of its reduced volume being
sufficiently close to that of the Gaussian soliton must be isometric to the Euclidean
space for all time. This is a natural generalization of Anderson’s result for Ricci-flat
manifolds. As a corollary, we also obtain a gap theorem for gradient shrinking Ricci
solitons. This result confirms the recent conjecture of Carrillo–Ni.

Subsequently, we consider the monotone quantity discovered by Ecker–Knopf–Ni–
Topping after Perelman’s significant works. We prove that the asymptotic limit of
this quantity is equal to that of Perelman’s reduced volume for any ancient solution
to the Ricci flow with bounded curvature. This provides a relation between these two
monotone quantities defined for Ricci flows.

Most of the results of this thesis appear in author’s papers [Yo, Yo2, Yo3, Yo4].
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Chapter 1

Introduction

1.1 Overview

In his fundamental paper [Ha], Hamilton introduced the following evolution equation
for Riemannian metrics on a fixed manifold:

∂

∂t
g = −2Ric(g(t)), (1.1)

where Ric(g(t)) denotes the Ricci tensor of g(t). We shall refer to a solution of this
equation as a Ricci flow. He proved the short-time existence and uniqueness of the
Ricci flow for any given initial metric on a compact manifold. Shortly later a drastically
simplified proof was provided by DeTurck [De], and Shi [Sh] extended the short-time
existence to complete metrics of bounded curvature on non-compact manifolds. The
uniqueness problem on non-compact manifolds are discussed in Chen–Zhu [ChZh].

Helpful references for the basics of the Ricci flow are Chow–Knopf [Vol1], Chow–
Lu–Ni [CLN] and Topping [Topp2].

In [Ha] and the subsequent paper [Ha2], Hamilton studied the Ricci flow and showed
that the positivity of the Ricci curvature in dimension 3 and that of the curvature
operator in arbitrary dimensions are preserved by the Ricci flow. This was done by
applying the maximum principle to the evolution equations which the curvature tensor
of the Ricci flow enjoys. Then the main results of these papers are that any Ricci
flow starting an initial metric satisfying one of such curvature assumptions is deformed
into a metric of positive constant curvature. This implies that the universal covering
of a manifold admitting a Riemannian metric satisfying such curvature conditions is
diffeomomrphic to the sphere. In this direction, recent striking progresses are the works
of Böhm–Wilking [BöWi] and Brendle–Schoen [BrSc].

After that, Hamilton considered to use the Ricci flow to study the geometry of
general 3-dimensional closed manifolds. This approach made a success in dimension 2;
see Chen–Lu–Tian [CLT] and the references therein. He then proposed a program of
proving Thurston’s geometrization conjecture by means of the Ricci flow. This is the
so-called Hamilton program.

In general, a Ricci flow on a closed manifold develops a singularity in finite time. If
(Mn, g(t)), t ∈ [0, T ) is a maximal solution to the Ricci flow with T < ∞, as was shown
by Hamilton [Ha], the norm of the curvature tensor Rm becomes arbitrarily large as t

approaches the singular time T . (Subsequently, Sesum [Se] showed that the Ricci tensor
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also blows-up in finite-time singularities of the Ricci flow; it is not known whether or
not the same is true for the scalar curvature.)

In analyzing singularities of solutions of geometric PDEs, a strategy which we usually
adopt is to take a blow-up limit; take a sequence {(pk, tk)} of points in Mn × [0, T )
such that Qk := |Rm|(pk, tk) tends to infinity and consider the rescaled flows g̃k(t) :=
Qkg(Q−1

k + tk), t ∈ (−Qktk, 0].
If we choose the points (pk, tk) properly and the local collapse does not occur, by

applying Hamilton’s compactness theorem (Theorem 3.20), we are able to find a sub-
sequence of {(Mn, g̃k(t), pk)} conversing to the limit Ricci flow (Mn

∞, g∞(τ), p∞), t ∈
(−∞, 0] which is an ancient solution to the Ricci flow. An ancient solution is, in Hamil-
ton’s terminology, a Ricci flow which exists on the infinite interval (−∞, 0]. Ancient
solutions are important objects in the study of singularities of the Ricci flow. To rule
out the local collapse was the crucial missing step in the Hamilton program.

It was Perelman who made the breakthrough and proved the geometrization con-
jecture by completing a weak form of the Hamilton program in his papers [Pe, Pe2].
He established the no local collapsing result by introducing the integral quantity which
he calls the reduced volume. The reduced volume is monotone non-decreasing in time
along the Ricci flow and plays an important role in his argument [Pe, Pe2]. Detailed
accounts of Perelman’s argument are given in Kleiner–Lott [KL], Cao–Zhu [CaZhu] and
Morgan–Tian [MoTi].

In this thesis, we are concerned with the geometric properties of ancient solutions
to the Ricci flow which do not necessarily arise as blow-up limits of singularities of the
Ricci flow. As hinted above, the main tool for our investigation is Perelman’s reduced
volume. In the next section, we list the main theorems of the present theses.

We remark here that the classification of 2-dimensional complete non-compact an-
cient solution to the Ricci flow with bounded curvature was obtained by Daskalopoulos–
Sesum [DaSe] and Chu [Chu]. Recently, the classification of 2-dimensional compact
ancient solutions was done by Daskalopoulos–Hamilton–Sesum [DHS]. However, we
are far from a complete understanding of the whole picture of all ancient solutions in
dimensions 3 (e.g. [CLN, Problem 9.75]) and higher.

1.2 Main results

In this thesis, we adopt the convention that the reduced volume is identically 1 for
the Gaussian soliton. The Gaussian soliton is the trivial Ricci flow (Rn, gE) on the
Euclidean space regarded as a gradient shrinking Ricci soliton

(
Rn, gE, | · |2

4

)
.

In dealing with the reduced volume of an ancient solution (M, g(t)), t ∈ (−∞, 0], we
find it convenient to introduce the reverse-time parameter τ := −t ∈ [0,∞). Now we
state our main theorems of this thesis.

Theorem 1.1 (Gap theorem for ancient solutions). For any n ≥ 2, there exists a con-
stant εn > 0 which depends only on n and satisfies the following: let (Mn, g(τ)), τ ∈
[0,∞) be an n-dimensional complete ancient solution to the Ricci flow with Ricci curva-
ture bounded below. Suppose that the asymptotic limit of the reduced volume
limτ→∞ Ṽ(p,0)(τ) is greater than 1 − εn for some point p ∈ M . Then (Mn, g(τ)), τ ∈
[0,∞) is the Gaussian soliton (Rn, gE), i.e., it is isometric to (Rn, gE) for all τ ∈ [0,∞).
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In the statement above, the limit Ṽ(g) := limτ→∞ Ṽ(p,0)(τ) will be referred to as the
asymptotic reduced volume of the flow (M, g(τ)). We will see in Section 3.2 below that
Ṽ(g) is independent of the choice of the base point p ∈ M .

The asymptotic reduced volume Ṽ(g) is a Ricci flow analogue of asymptotic volume
ratio of Rimenannian manifolds of non-negative Ricci curvature. The asymptotic vol-
ume ratio ν(g) of a complete Riemannian manifold (Mn, g) with Ric(g) ≥ 0 is defined
as ν(g) := limr→∞ Vol B(p, r)/ωnrn, which is well-defined due to the Bishop–Gromov
inequality (Theorem 2.11). Here Vol B(p, r) is the volume of the metric ball B(p, r) of
center p ∈ M and radius r > 0, and ωn stands for the volume of the unit ball in the
Euclidean space (Rn, gE).

By regarding a Ricci-flat metric, i.e., a Riemannian metric whose Ricci tensor van-
ishes, as an ancient solution as in Theorem 1.1, we recover the following result, which
is the motivation of the present work.

Theorem 1.2 (Anderson [An, Gap Lemma 3.1], also Petersen [Pet]). For any n ≥
2, there exists a constant εn > 0 which satisfies the following: let (Mn, g) be an n-
dimensional complete Ricci-flat Riemannian manifold. Suppose that the asymptotic
volume ratio ν(g) of (Mn, g) is greater than 1 − εn. Then (Mn, g) is isometric to
(Rn, gE).

On the way to the proof of Theorem 1.1, we establish several lemmas. Here we state
one of them as a theorem, which is of independent interest.

Theorem 1.3 (Finiteness of fundamental groups). Let (Mn, g(τ)), τ ∈ [0,∞) be a
complete ancient solution to the Ricci flow on M with Ricci curvature bounded below.
If its asymptotic reduced volume Ṽ(g) is strictly positive, then the fundamental group
π1(M) of M is finite.

More generally, Theorem 1.3 is shown for super Ricci flows in Section 3.3 under
certain assumptions. The super Ricci flow, introduced by McCann–Topping [McTo], is
a generalization of the Ricci flow as well as of Riemmanina manifolds of non-negative
Ricci curvature. A few applications of Theorem 1.3 are offered in that section.

Next, we apply Theorem 1.1 above to gradient shrinkers. We call a triple (Mn, g, f)
a gradient shrinking Ricci soliton, or gradient shrinker, when

Ric(g) + Hess f − 1
2λ

g = 0 (1.2)

holds for some positive constant λ > 0. Shrinking Ricci solitons are typical examples of
ancient solutions to the Ricci flow. We refer the reader to Cao’s survey article [Ca] for
recent advances in the geometry of gradient Ricci solitons.

We always normalize the potential function f ∈ C∞(M) by adding a constant so
that

λ(2∆f − |∇f |2 + R) + f − n = 0 on M, (1.3)

where R denotes the scalar curvature of (Mn, g). Since taking the trace of equation (1.2)
yields R + ∆f = n/2, (1.3) is equivalent to

λ(|∇f |2 + R) − f = 0 on M. (1.4)
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The left-hand sides of (1.3) and (1.4) is known to be constant (e.g. [Vol2-I, Proposi-
tion 1.15]). Then we define the Gaussian density Θ(M) of (Mn, g, f) by

Θ(M) :=
∫

M
(4πλ)−n/2e−f dµg. (1.5)

Corollary 1.4 (Gap theorem for gradient shrinkers). Let (Mn, g, f) be a complete
gradient shrinking Ricci soliton with Ricci curvature bounded below. Then

(1) the Gaussian density Θ(Mn) does not exceed 1.

(2) Suppose that Θ(Mn) > 1 − εn, then (Mn, g, f) is, up to scaling, the Gaussian
soliton

(
Rn, gE, | · |2

4

)
, i.e., (Mn, g) is isometric to (Rn, gE). Here the constant εn

comes from Theorem 1.1.

The statements in Corollary 1.4 are intimately related to the results of Carrillo–
Ni [CaNi]. In particular, Corollary 1.4.(2) confirms their speculation that the Gaussian
density is 1 only for the Gaussian soliton [CaNi]. See Remark 5.14 below.

After that, we consider another monotone quantity defined for the Ricci flow. This
quantity I(p,0)(r) was discovered and shown to be non-increasing in r > 0 by Ecker–
Knopf–Ni–Topping [EKNT]. We prove the following theorem which gives a relation
between I(p,0)(r) and Perelman’s reduced volume Ṽ(p,0)(τ).

Theorem 1.5. Let (Mn, g(τ)), τ ∈ [0,∞) be a complete ancient solution to the Ricci
flow with bounded curvature. Then for any p ∈ M , we have

lim
τ→∞

Ṽ(p,0)(τ) = lim
r→∞

I(p,0)(r). (1.6)

Our starting point of this work was provided by the viewpoint that the Ricci flow is
a generalization of Einstein metrics; an Einstein metric is a Riemannian metric whose
Ricci tensor is constant. We should mention the results of Fang–Zhang–Zhang [FZZ]
and Ishida [Is], which are also the results of this direction. They regard a non-singular
solution ([Ha7]) (M, g(t)), t ∈ [0,∞) to the normalized Ricci flow:

∂

∂t
g = −2Ric(g(t)) +

2
n

rg(t), (1.7)

where r = r(t) denotes the averaged scalar curvature

r :=

∫
M R(·, t) dµg(t)∫

M 1 dµg(t)
,

as a generalization of Einstein metrics. They derive conclusions about the topology of
the underlying manifold from the existence of a non-singular solution.

The organization of this thesis is as follows.
In Chapter 2, we review definitions and Perelman’s results in [Pe]. We will do this for

super Ricci flows. The main theorem of this chapter is the monotonicity of Perelman’s
reduced volume along the super Ricci flow satisfying a few natural assumptions. Two
different proofs are presented as in the literature in Sections 2.3 and 2.4. This is why
the difference lies in the assumptions of Theorems 1.1 and 1.5.

In Chapter 3, some lemmas which are required in the proof of the main theorem
will be established. Among them, we prove that the asymptotic reduced volume Ṽ(g) is
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independent of the choice of the base point. Theorem 1.3 is also shown for super Ricci
flows in this chapter.

In Chapter 4, we give a proof of Theorem 1.1.
In Chapter 5, we prove Corollary 1.4 and consider gradient expanding Ricci solitons

with non-negative Ricci curvature.
In Chapter 6, we investigate the asymptotic volume ratio of Ricci flows of non-

negative Ricci curvature. It is shown that the asymptotic volume ratio ν(g(t)) of the
Ricci flow (Mn, g(t)) is constant in t provided its Ricci curvature is non-negaive and
bounded.

In Chapter 7, Theorem 1.5 will be proved. Actually, we prove a theorem which
slightly generalizes Theorem 1.5. The generalization is done in two directions; we prove
Theorem 1.5 with the Ricci flow being replaced with the super Ricci flow and the reduced
volume being replaced with its slight generalization considered in Section 2.4.

Finally, in Chapter 8, we prove a proposition about the Harnack inequality of the
Ricci flow on surfaces. More precisely, we show that any complete Ricci flow on a
surface with non-negative curvature satisfying Harnack inequality must have bounded
curvature.

Appendix A is devoted to a detailed proof of Perelman’s point picking lemma. This
lemma will be used several times in the argument.
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Chapter 2

Comparison geometry of super

Ricci flows

In the present chapter, we recall and generalize the definitions and results established by
Perelman in Sections 6 and 7 of his seminal paper [Pe] where he introduced a comparison
geometric approach to the Ricci flow, which is often called the reduced geometry. The
main result of this chapter is the monotonicity of Perelman’s reduced volume Ṽ(p,0)(τ)
along the super Ricci flow (Theorems 2.12 and 2.17). We present two different proofs.

A main application of the monotonicity of the reduced volume is the following no
local collapsing result for the Ricci flow.

Theorem 2.1 (No local collapsing theorem [Pe]). Let (Mn, g(t)), t ∈ [0, T ) be a com-
plete Ricci flow with Ricci curvature bounded below, T < ∞ and

Volg(0)Bg(0)(p, r0) > ∃ v1 > 0 for all p ∈ M.

Then for any ρ > 0, there exists a constant κ = κ(g(0), T, ρ) > 0 such that (Mn, g(t))
is (weakly) κ-noncollapsing at any (p∗, τ∗) ∈ Mn × (T/2, T ) and on any scale r ∈ (0, ρ].

See Definition 3.16 below for the definition of being κ-noncollapsing.
The main references for this chapter are, apart from Perelman’s original paper [Pe],

Chow et al. [Vol2-I], Kleiner–Lott [KL], Morgan–Tian [MoTi] and Ye [Ye2]. Among
them, Ye [Ye2] paid careful attention to argue under the assumption of Ricci curvature
bounded below rather than bounded sectional curvature (see also [EKNT, Appendix]).
The assumption of Theorem 1.1 on the curvature of the Ricci flow (Mn, g(τ)) is the
same as that considered in [Ye2]. We mainly follow the notation of [Vol2-I].

2.1 Super Ricci flow

As mentioned above, we would like to develop Perelman’s reduced geometry in more
general situation, that is, the super Ricci flow. This will provide us with a convenient
setting for comparison geometry of the Ricci flow. A smooth one-parameter family of
Riemannian metrics (M, g(τ)), τ ∈ [0, T ) is called a super Ricci flow when it satisfies

∂

∂τ
g ≤ 2Ric(g(τ)). (2.1)
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Super Ricci flow was introduced by McCann–Topping [McTo] in their attempt to gen-
eralize the contraction property of heat equation in the Wasserstein spaces, which char-
acterizes the non-negativity of the Ricci curvature of Riemannian metrics (see von
Renesse–Sturm [ReSt]), to time-depending metrics. They give the following charac-
terization of the super Ricci flow; see the original paper [McTo] for definitions and the
precise statement.

Theorem 2.2 (McCann–Topping [McTo]). Let (Mn, g(τ)) be a one-parameter family
of Riemannian metrics on a closed manifold Mn and u1(τ) = u1(·, τ) and u2 = u2(·, τ)
be two smooth positive solutions to the conjugate heat equation:

∂

∂τ
u = ∆g(τ)u − Hu (2.2)

with
∫
M ui(·, τ) dµg(τ) = 1 for i = 1, 2. Then the following are equivalent.

(1) (Mn, g(τ)) is a super Ricci flow.

(2) The Wasserstein distance W
g(τ)
2 (u1(τ), u2(τ)) between u1(·, τ) and u2(·, τ) induced

by g(τ) is non-increasing in τ .

The Wasserstein geometry has been intriguing Riemannian geometers due to its
potential connection to the geometry of Ricci curvatures. Consult Villani’s book [Vi]
for this fascinating area of research.

Basic and important examples of super Ricci flows are

Example 2.3. (1) A solution to the backward Ricci flow equation ∂
∂τ g = 2Ric(g(τ))

and

(2) g(τ) := (1 + 2Cτ)g0, τ ∈
[
0, 1

|C|−C

)
for some fixed Riemannian metric g0 with

Ricci curvature bounded from below by C ∈ R.

Therefore, it can be said that the study of super Ricci flows includes those of (back-
ward) Ricci flows and manifolds with Ricci curvature bounded from below.

We will see that it is straightforward to generalize Perelman’s reduced geometry to
the super Ricci flow if we impose the following assumptions.

Assumption 2.4. Putting 2h := ∂
∂τ g and H := trg(τ)h, h satisfies

(1) contracted second Bianchi identity 2 div h(·) = 〈∇H, ·〉 and

(2) heat-like equation −trg(τ)
∂
∂τ h ≥ ∆g(τ)H, or equivalently,

− ∂

∂τ
H ≥ ∆g(τ)H + 2|h|2. (2.3)

Clearly, the ones in Example 2.3 above satisfy Assumption 2.4. It is known that the
evolution equation for the scalar curvature R under the Ricci flow g(τ) is given by

− ∂

∂τ
R = ∆g(τ)R + 2 |Ric|2 (2.4)

(e.g. Hamilton [Ha], also Ehrlich [Eh]).
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Due to the entropy formulae which we meet now, it seems quite natural to consider
super Ricci flows which satisfy Assumption 2.4.

Let (Mn, g(τ)), τ ∈ [0, T ) be a super Ricci flow ∂
∂τ g =: 2h ≤ 2Ric(g(τ)) on a closed

manifold M . Put H := trg(τ)h. Following Perelman [Pe, Section 3], we define the
W-entropy for a triple (g(τ), f, τ) by

W(g(τ), f, τ) :=
∫

M

[
τ(|∇f |2 + H) + f − n

]
u dµg(τ) (2.5)

where f is a smooth function on Mn, τ > 0 and u := (4πτ)−n/2e−f .

Proposition 2.5 (W-entropy for the super Ricci flow). Let (Mn, g(τ)), τ ∈ (0, T ) be
a super Ricci flow satisfying Assumption 2.4 on a closed manifold Mn. We evolve a
positive function u := (4πτ)−n/2e−f by the conjugate heat equation(

∂

∂τ
− ∆g(τ) + H

)
u ⇐⇒ ∂f

∂τ
= ∆g(τ)f − |∇f |2 + H − n

2τ
.

Then the W-entropy W(g(τ), f, τ) is non-increasing in τ .

Proof. Following Perelman [Pe, Section 9], we first let

v :=
[
τ(2∆f − |∇f |2 + H) + f − n

]
u (2.6)

(cf. (1.3)). Then, integrating by parts, we have

W(g, f, τ) =
∫

M
v dµg,

which leads us to the computation of the evolution equation of v.
We obtain the following equation for general evolving Riemannian metrics by routine

calculation:(
∂

∂τ
− ∆ + H

)
v = − 2τ

[∣∣∣∣h + Hess f − 1
2τ

g

∣∣∣∣2 + (2div h − dH)(∇f)

− 1
2

(
∂H

∂τ
+ ∆H + 2|h|2

)
+ (Ric − h)(∇f,∇f)

]
u

(cf. [Pe, (9.1)]). In the derivation of the above equation, we used the derivative formula
for the time-dependent Laplacian (e.g. [CLN, Lemma 2.30]):

∂

∂τ
∆g(τ)f = −2〈h,Hess f〉 + (dH − 2divh)(∇f) + ∆g(τ)

∂f

∂τ
,

and the Bochner–Weitzenböck formula (e.g. [Vol1, Appendix B]):

1
2
∆|∇f |2 = |Hess f |2 + 〈∇∆f,∇f〉 + Ric(∇f,∇f).

Then, using the well-known formula ∂
∂τ dµg(τ) = H dµg(τ), we obtain

d

dτ
W(g(τ), f, τ) =

∫
M

(
∂

∂τ
− ∆ + H

)
v dµg(τ)

≤ −2τ

∫
M

∣∣∣∣h + Hess f − 1
2τ

g

∣∣∣∣2 u dµg(τ)

≤ 0.

(2.7)

This ends the proof.
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From (2.7), we simultaneously recover the entropy formulae of Perelman (h =
Ric) [Pe] and Ni (h = 0) [Ni].

An application of the monotonicity of W-functional for the Ricci flow is the following
theorem due to Perelman [Pe, Theorem 4.1] (cf. Theorem 2.1).

Theorem 2.6 (No local collapsing theorem improved [Pe], also [KL, Vol2-I]). Let
(Mn, g(t)), t ∈ [0, T ) be a Ricci flow on a closed manifold Mn with T < ∞. Then
for any ρ > 0, there exists a constant κ = κ(g(0), T, ρ) > 0 such that

R(·, t) ≤ r−2 on Bg(t)(p, r) =⇒ Volg(t)Bg(t)(p, r) ≥ κrn

for any p ∈ M , t ∈ [0, T ) and r ∈ (0, ρ].

Another application of the monotonicity of W-entropy is Topping’s diameter esti-
mate [Topp] for the Ricci flow. The W-entropy is intimately tied to the Logarithmic
Sobolev inequality (e.g. Ye [Ye]); see also Theorem 5.15 below.

We also have a similar formula for the super Ricci flow analogue of F-entropy in-
troduced in [Pe, Section 1]. Introducing this F-functional enabled Perelman to give a
gradient flow interpretation of the Ricci flow (see [Pe, Section 1]), although it is known
that the Ricci flow is not a gradient flow (e.g. Müller [Mü]). This gradient flow formula-
tion allows us to rule out non-trivial breathers, i.e., periodic solutions to the Ricci flow
equation [Pe, Sections 2 and 3].

Proposition 2.7 (F-entropy for the super Ricci flow). Let (Mn, g(τ)), τ ∈ (0, T ) be
a super Ricci flow satisfying Assumption 2.4 on a closed manifold Mn. We evolve a
positive function u = e−f by(

∂

∂τ
− ∆ + H

)
u = 0 ⇐⇒ ∂

∂τ
f = ∆g(t)f − |∇f |2 + H. (2.8)

Then the F-entropy

F(g(τ), f) :=
∫ (

|∇f |2 + H
)
e−fdµg(τ)

is non-increasing in τ .

Proof. Let v′ :=
[
2∆f − |∇f |2 + R

]
e−f . Then, by a calculation similar to the one we

have done in the proof of the previous proposition, we obtain(
∂

∂τ
− ∆ + H

)
v′ = − 2

[
|h + Hess f |2 + (2div h − dH)(∇f)

− 1
2

(
∂H

∂τ
+ ∆H + 2|h|2

)
+ (Ric − h)(∇f,∇f)

]
e−f .

Hence,

d

dτ
F(g(τ), f) =

d

dτ

∫
M

v′dµg(τ) ≤ −2
∫

M
|h + Hess f |2e−fdµg(τ) ≤ 0.
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Remark 2.8. Alternating proofs for the monotonicity of W-entropy and F-entropy as
well as the reduced volume which is defined below are provided by Topping [Topp3] and
Lott [Lo], respectively. Their proofs are based on the Wasserstein geometric considera-
tion of the space-time M × [0, T ].

Throughout this thesis, we denote by (Mn, g(τ)), τ ∈ [0, T ) a complete super, or
backward Ricci flow on an n-manifold Mn satisfying Assumption 2.4. It is also assumed
that the time-derivative ∂

∂τ g is bounded from below in each compact time interval, that
is, for any compact interval [τ1, τ2] ⊂ [0, T ), we can find K = K(τ1, τ2) ≥ 0 such that
−Kg(τ) ≤ ∂

∂τ g ≤ 2Ric(g(τ)) and hence

eK(τ2−τ)g(τ2) ≥ g(τ) ≥ e−K(τ−τ1)g(τ1)

for all τ ∈ [τ1, τ2]. Although Assumption 2.4 looks too restrictive, the author’s intention
is a unified treatment of backward Ricci flows and Riemannian manifolds with non-
negative Ricci curvature.

2.2 Definition of the reduced volume

In this section, we recall the definitions from [Pe, Sections 6 and 7]. To begin with, fix
a point p ∈ M , [τ1, τ2] ⊂ [0, T ) and τ̄ ∈ (0, T ).

Definition 2.9. Let γ : [τ1, τ2] → M be a curve. We define the L-length of γ and the
L-distance between two points (p, τ1) and (q, τ2) ∈ M × [τ1, τ2], respectively, by

L(γ) :=
∫ τ2

τ1

√
τ

(∣∣∣∣dγ

dτ

∣∣∣∣2
g(τ)

+ H(γ(τ), τ)

)
dτ

and
L(p,τ1)(q, τ2) := inf L(γ).

Here we take the infimum over all curves γ : [τ1, τ2] → M with γ(τ1) = p and γ(τ2) = q.

The lower bound of ∂
∂τ g guarantees that the L-distance between any two points is

achieved by a minimal L-geodesic (e.g. Morgan–Tian [MoTi]). This is the only place
where we employ the assumption on ∂

∂τ g. A curve γ(τ) is called an L-geodesic when it
satisfies the Euler–Lagrange equation:

2∇XX +
X

τ
−∇H + 4h(X, ·) = 0, where X :=

dγ

dτ
(τ). (2.9)

Then the reduced distance and the reduced volume based at (p, 0) are defined, re-
spectively, by

ℓ(p,0)(q, τ̄) :=
1

2
√

τ̄
L(p,0)(q, τ̄)

and
Ṽ(p,0)(τ̄) :=

∫
M

(4πτ̄)−n/2 exp
(
−ℓ(p,0)(q, τ̄)

)
dµg(τ̄)(q)

where dµg(τ̄) denotes the volume element induced by g(τ̄).

12



We can rewrite the reduced volume as

Ṽ(p,0)(τ̄) =
∫

TpM
(4πτ̄)−n/2 exp

(
−ℓ(p,0) (L expτ̄ (V ), τ̄)

)
LJV (τ̄)dxg(0)(V ) (2.10)

by pulling back the integrand by the L-exponential map L expτ̄ : TpM → M which
assigns γV (τ̄), if exists, to each tangent vector V ∈ TpM . Here γV is the L-geodesic
determined by γV (0) = p and limτ→0+

√
τ dγ

dτ (τ) = V . In (2.10), dxg(0) denotes the
Lebesgue measure on the tangent space TpM induced by the metric g(0), and LJV (τ̄)
is called the L-Jacobian. Remember that we are using the convention that LJV (τ̄) = 0
unless V ∈ Ω(p,0)(τ̄). By V ∈ Ω(p,0)(τ̄), we mean that q := L expτ̄ (V ) exists and lies
outside the L-cut locus at time τ̄ , i.e., there is a unique minimal L-geodesic from (p, 0)
to (q, τ̄) and LJV (τ̄) > 0. It follows that Ω(p,0)(τ̄) is an open set of TpM , on which
L expτ̄ is a diffeomorphism, and that Ω(p,0)(τ2) ⊂ Ω(p,0)(τ1) for τ2 > τ1 > 0. The base
point (p, 0) will often be suppressed.

Remark 2.10. A prototype of the reduced distance function appears in Li–Yau’s pa-
per [LiYa].

In the next section, we will prove that the reduced volume is non-increasing for any
super Ricci flow satisfying Assumption 2.4. Before going into the detail, we recall a
heuristic argument given in [Pe, Section 6].

First, let us recall the Bishop–Gromov comparison theorem. We only state it for
the case of non-negative Ricci curvature.

Theorem 2.11 (Bishop–Gromov comparison theorem, e.g. Chavel [Cha]). Let Mn be
a complete Riemannian manifold of non-negative Ricci curvature. Then

(1) Area ∂B(p, r)/αn−1r
n−1 is non-increasing in r > 0.

(2) Vol B(p, r)/ωnrn is non-increasing in r > 0.

Here αn−1 := nωn stands for the area of the unit sphere in the Euclidean space Rn.

For a backward Ricci flow (Mn, g(τ)), τ ∈ [0, T ), Perelman equips the space-time
M̃ := M × SN × (0, T0], for large N ≫ 1, with a metric g̃ written as

g̃ = g(τ) + τgSN +
(

R +
N

2τ

)
dτ2. (2.11)

Here, (SN , gSN ) is the N -sphere with constant curvature 1
2N . He observed that (M̃, g̃)

has vanishing Ricci curvature up to modN−1 (e.g. Wei [We]). An easy way to get a
feeling of this is to regard g̃ as a cone metric by setting η :=

√
2Nτ . Recall that the

metric cone (N × (0, T ), dη2 + η2gN ) of (N, gN ) is Ricci-flat if and only if RicgN =
(dimN − 1)gN .

Then he applied the Bishop–Gromov inequality (Theorem 2.11.(1)) to (M̃, g̃) for-
mally so as to obtain an monotone quantity Ṽ(p,0)(τ) which he called the reduced volume;

Area ∂BM̃ (p̃, r)
αn+Nrn+N

≈ αN

(2Nτ)n/2αn+N

∫
M

(
1 − 1

N
ℓ(·, τ) + O(N−2)

)N

dµg(τ)

→
∫

M
(4πτ)−n/2e−ℓ(·,τ)dµg(τ) as N → ∞

13



for p̃ = (p, s, 0) ∈ M × SN × {0} and r :=
√

2Nτ .
As expected, it turns out that the reduced volume is non-increasing in τ (Theo-

rems 2.12 and 2.17).

2.3 Monotonicity of the reduced volume I

Next, we recall the computations performed in [Pe, Section 7].

Let q ∈ L expτ̄ (Ω(p,0)(τ̄)) and γ : [0, τ̄ ] → M be the unique minimal L-geodesic from
(p, 0) to (q, τ̄). Take a tangent vector Y ∈ TqM and extend it to the vector field along
γ by solving

∇XY = −h(Y, ·) +
Y

2τ
, Y (τ̄) = Y

so that |Y |2(τ) = τ
τ̄ |Y |2.

Then we have ∇ℓ(q, τ̄) = dγ
dτ (τ̄) and

∂

∂τ
ℓ(q, τ̄) = H(q, τ̄) − ℓ(q, τ̄)

τ̄
+

1
2τ̄3/2

K

|∇ℓ|2(q, τ̄) = −H(q, τ̄) +
ℓ(q, τ̄)

τ̄
− 1

τ̄3/2
K

Hess ℓ(Y, Y )(q, τ̄) ≤ −h(Y, Y ) +
|Y |2g(τ̄)

2τ̄
− 1

2
√

τ̄

∫ τ̄

0

√
τH(X,Y ) dτ (2.12)

∆ℓ(q, τ̄) ≤ −H(q, τ̄) +
n

2τ̄
− 1

2τ̄3/2
K (2.13)

∂

∂τ
log LJV (τ̄) = ∆ℓ(q, τ̄) + H(q, τ̄) ≤ n

2τ̄
− 1

2τ̄3/2
K.

We also have [
τ̄

(
2∆ℓ − |∇ℓ|2 + H

)
+ ℓ − n

]
(q, τ̄) ≤ 0

and [
∂

∂τ
ℓ − ∆ℓ + |∇ℓ|2 − H +

n

2τ̄

]
(q, τ̄) ≥ 0. (2.14)

Here, following [Pe, Section 7], we have put

H(X) := −∂H

∂τ
− H

τ
− 2〈∇H,X〉 + 2h(X,X)

K :=
∫ τ̄

0
τ3/2H(X)dτ

H(X,Y ) := −〈∇Y ∇H,Y 〉 + 2〈R(X,Y )Y,X〉 + 4∇Y h(X,Y ) − 4∇Xh(Y, Y )

− 2
∂h

∂τ
(Y, Y ) + 2|h(Y, ·)|2 − 1

τ
h(Y, Y ).

The point where we have used Assumption 2.4 is the derivation of (2.13) from (2.12)
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(cf. [Vol2-I, Lemma 7.42)]):

trH(X, ·)

= −∆H + 2Ric(X,X) + 4 div h(X) − 4〈∇H,X〉 − 2
∂H

∂τ
− 2|h|2 − H

τ

= H(X) + 2
[
Ric(X,X) − h(X,X)

]
+

[
−∂H

∂τ
− ∆H − 2|h|2

]
+ 2

[
2 div h(X) − 〈∇H,X〉

]
≥ H(X).

The quantities corresponding to H(X) and trH(X, ·) appear in Theorems 8.1 and 8.2
below as the trace Harnack expressions of Hamilton [Ha3] and Chow–Hamilton [ChHa],
respectively.

We now state the main theorem of this chapter (cf. [Pe, Vol2-I, KL, Ye2]).

Theorem 2.12. Let (Mn, g(τ)), τ ∈ [0, T ) be a complete super Ricci flow satisfying As-
sumption 2.4 with time derivative bounded below. Then for any p ∈ M and V ∈ TpM ,

(4πτ)−n/2 exp
(
−ℓ(p,0)(γV (τ), τ)

)
LJV (τ) (2.15)

is non-increasing in τ and

lim
τ→0+

[
(4πτ)−n/2 exp

(
−ℓ(p,0)(γV (τ), τ)

)
LJV (τ)

]
= π−n/2e−|V |2

g(0) .

Moreover, (2.15) is constant on (0, τ̄ ] if and only if the shrinking soliton equation:[
1
2

∂g

∂τ
+ Hess ℓ(p,0) −

1
2τ

g

]
(γV (τ), τ) = 0 (2.16)

holds along the L-geodesic γV (τ) for τ ∈ (0, τ̄ ].
Hence, Ṽ(p,0)(τ) is non-increasing in τ , limτ→0+ Ṽ(p,0)(τ) = 1 and Ṽ(p,0)(τ) ≤ 1.

Moreover, Ṽ(p,0)(τ̄) = 1 for some τ̄ > 0 if and only if (Mn, g(τ)), τ ∈ [0, τ̄ ] is the
Gaussian soliton.

We comment here that Theorem 2.12 is essentially the same as the main theorem of
the recent paper [Mü], where Müller also considers the reduced volume in the context
more general than that of the Ricci flow; but the rigidity case of Theorem 2.12 is not
discussed there.

As for the proof of the theorem, we need to give a proof that Ṽ(p,0)(τ̄) = 1 for some
τ̄ > 0 implies that (Mn, g(τ)) is the Gaussian soliton on [0, τ̄ ]. The proofs of the other
statements are minor modifications of those of Lemma 8.16 and Corollary 8.17 of [Vol2-I]
for the Ricci flow. The first half of the proof of the rigidity case is identical to the one
given in Morgan–Tian [MoTi]. It should be noted that we have no assumption on the
curvature of g(τ) other than the lower bound of ∂

∂τ g in contrast to [Vol2-I, Corollary
8.17].

Proof of Theorem 2.12. Suppose that Ṽ(p,0)(τ̄) = 1. This implies that M is simply con-
nected. Otherwise, the reduced volume of the universal covering (M̄, ḡ(τ̄)) of (M, g(τ̄))
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must be greater than 1, which is a contradiction (see the proof of Lemma 3.3 below).
Now we are going to show that (Mn, g(τ)) is flat; the only flat manifolds with finite
fundamental group is the Euclidean space.

Fix some small τδ ∈ (0, τ̄). For any τ ∈ (τδ, τ̄ ], let ϕτ−τδ
: M → M be the map

which sends q ∈ M to γ(τ), where γ : [0, τ̄ ] → M is the minimal L-geodesic passing
(q, τδ) with γ(0) = p.

Since
∂

∂τ
ϕτ−τδ

(q) =
dγ

dτ
(τ) = ∇ℓ(p,0)(γ(τ), τ),

we deduce from (2.16) that

∂

∂τ

1
τ
(ϕτ−τδ

)∗g(τ) =
1
τ
(ϕτ−τδ

)∗
[
−1

τ
g(τ) + 2Hess ℓ(p,0) +

∂g

∂τ
(τ)

]
= 0.

Hence,

1
τ
(ϕτ−τδ

)∗g(τ) =
1
τδ

g(τδ) or equivalently g(τ) =
τ

τδ
(ϕ−1

τ−τδ
)∗g(τδ).

Since g(τ) is smooth around (p, 0), we have

|Rm|(q, τ) =
τδ

τ
|Rm|(ϕ−1

τ−τδ
(q), τδ)

≤ τδ

τ
(|Rm|(p, 0) + θ(τδ)) → 0 as τδ → 0

where Rm denotes the Riemann curvature tensor of g(τ) and θ(τδ) is a function such
that θ(τδ) → 0 as τδ → 0. Consequently, (Mn, g(τ)) is flat and hence isometric to
(Rn, gE) for each τ ∈ [0, τ̄ ]. Thus we can write g(τ) = v(τ)−2gE for some positive
non-decreasing function v(τ) with v(0) = 1. It remains to show that v(τ) = 1 for all
τ ∈ [0, τ̄ ].

Introduce a new parameter σ := 2
√

τ to write g(σ) = v(σ)−2gE for σ ∈ [0, σ̄],
where σ̄ := 2

√
τ̄ . In this case, it is easy to calculate the reduced distance and volume

(cf. [Vol2-I, Lemma 7.67]).

Sublemma 2.13.

ℓ(p,0)(q, σ̄) =
v(σ̄)2

σ̄
∫ σ̄
0 v(σ)2 dσ

dg(σ̄)(p, q)2 − n

2
log v(σ̄) +

n

2σ̄

∫ σ̄

0
log v(σ) dσ (2.17)

and

Ṽ(p,0)(σ̄) = exp

[
n

2

(
log

∫ σ̄
0 v2 dσ

σ̄v(σ̄)
− 1

σ̄

∫ σ̄

0
log v dσ

)]
. (2.18)

Proof. We know that H = −n d
dτ log v. Let γ : [0, σ̄] → M be a curve connecting p and

q. Then

L(γ) =
∫ σ̄

0
v(σ)−2

∣∣∣∣dγ

dσ

∣∣∣∣2
gE

dσ − n

2

∫ σ̄

0
σ

d log v(σ)
dσ

dσ

≥

(∫ σ̄
0

∣∣ dγ
dσ

∣∣
gE

dσ
)2

∫ σ̄
0 v(σ)2 dσ

− n

2
σ̄ log v(σ̄) +

n

2

∫ σ̄

0
log v dσ

≥ dE(p, q)2∫ σ̄
0 v2 dσ

− n

2
σ̄ log v(σ̄) +

n

2

∫ σ̄

0
log v dσ.

16



in these inequalities, the equality is attained if γ is the minimal geodesic connecting p

and q parametrized so that
∣∣ dγ
dσ

∣∣
gE

= Cu(σ) on [0, σ̄] for some constant C > 0. This
proves equation (2.17).

Using (2.17),

Ṽ(p,0)(σ̄) =
∫

Rn

(
v(σ̄)
πσ̄2

)n/2

exp

[
−

v(σ̄)2dg(σ̄)(p, q)2

σ̄
∫ σ̄
0 v2 dσ

− n

2σ̄

∫ σ̄

0
log v dσ

]
dµg(σ̄)

=

(∫ σ̄
0 v2 dσ

σ̄v(σ̄)

)n/2

exp
[
− n

2σ̄

∫ σ̄

0
log v dσ

]
.

Substituting (2.17) into the shrinking soliton equation (2.16) implies that

−v′(σ)
v(σ)

+ 2
v(σ)2∫ σ
0 v2 dσ

− 2
σ

= 0 for σ ∈ (0, σ̄].

From this, we obtain
∫ σ
0 v2 dσ = σv(σ) and v(σ) = 1 for all σ ∈ [0, σ̄].

This completes the proof of Theorem 2.12.

As an important example, let us look at a static super Ricci flow. Then we obtain
an invariant which is called the static reduced volume in [Vol2-I]. Its relation to the
volume ratio is given by

Lemma 2.14 ([Vol2-I, Lemma 8.10]). Let (Mn, g) be an n-dimensional complete Rie-
mannian manifold of non-negative Ricci curvature regarded as a static super Ricci flow,
i.e., ∂

∂τ g = 0 ≤ 2Ric. Then for any p ∈ M and τ > 0, we have

Ṽ(p,0)(τ) =
∫

M
(4πτ)−n/2 exp

(
−d(p, q)2

4τ

)
dµ(q) ≤ 1, (2.19)

and
Ṽ(g) := lim

τ→∞
Ṽ(p,0)(τ) = lim

r→∞

VolB(p, r)
ωnrn

=: ν(g).

Furthermore, the equality holds in (2.19) for some τ > 0 if and only if (Mn, g) is
isometric to (Rn, gE).

By virtue of Lemma 2.14, we know that Theorem 1.1 generalizes Theorem 1.2.
One can easily compute how the reduced distance and reduced volume change under

parabolic rescaling.

Proposition 2.15 ([Vol2-I, Lemma 8.34]). If g(τ), τ ∈ [0, T ) is a super Ricci flow, then
(Qg)(τ) := Qg(Q−1τ), τ ∈ [0, QT ) is also a super Ricci flow for any Q > 0. Under this
parabolic rescaling, we have

ℓQg(q, τ) = ℓg(q,Q−1τ) and Ṽ Qg(τ) = Ṽ g(Q−1τ).

In particular, the asymptotic reduced volume is invariant under the parabolic rescaling,
i.e., Ṽ(g) = Ṽ(Qg), for any ancient super Ricci flow g(τ), τ ∈ [0,∞).
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2.4 Monotonicity of the reduced volume II

In this section, we present an alternating proof of the monotonicity of the reduced
volume along the super Ricci flow. We shall say that a super Ricci flow (M, g(τ)), τ ∈
[0, T ] is C1-controlled when we can find a positive function K(τ) > 0 of τ such that

sup
M×[0,τ ]

{
|h| + |∇H|2

}
≤ K(τ) for each τ ∈ (0, T ].

According to Shi’s gradient estimate (Theorem 3.19), any Ricci flow with bounded
curvature is C1-controlled in this sense.

We let
K(q, τ) = K(p,0)(q, τ) := (4πτ)−n/2 exp

(
−ℓ(p,0)(q, τ)

)
be the integrand of the reduced volume Ṽ(p,0)(τ). For any non-negative function ϕ(·, τ) ≥
0 on M × [0, T ], we define a slight extension of Perelman’s reduced volume Ṽ(p,0)(τ) by

Ṽ ϕ
(p,0)(τ) :=

∫
M

K(p,0)(·, τ)ϕ(·, τ) dµg(τ). (2.20)

The following proposition follows from inequality (2.14).

Proposition 2.16. We have
(

∂
∂τ − ∆g(τ) + H

)
K ≤ 0 in the distributional sense. More

precisely, for each τ > 0,∫
M

[
−〈∇ℓ,∇ξ〉 +

(
−|∇ℓ|2 + H +

1
K

∂K

∂τ

)
ξ

]
dµg(τ) ≤ 0 (2.21)

holds for any non-negative Lipschitz function ξ ≥ 0 with compact support.

Morally, when two non-negative functions u ≥ 0 and v ≥ 0 satisfying(
∂

∂τ
− ∆g(τ) + H

)
u ≤ 0 and

(
∂

∂τ
+ ∆g(τ)

)
v ≤ 0,

respectively, we are able to obtain a monotone quantity;

d

dτ

∫
M

uv dµg(τ)

=
∫

M

[(
∂

∂τ
− ∆g(τ) + H

)
u

]
v + u

[(
∂

∂τ
+ ∆g(τ)

)
v

]
dµg(τ)

≤ 0.

(2.22)

(As a mater of course, these inequality needs justification.)
We now state a theorem asserting that the quantity introduced above is monotone.

Theorem 2.17 (cf. [Pe], [Ye2], [Vol2-I]). Let (Mn, g(τ)), τ ∈ [0, T ] be a complete C1-
controlled super Ricci flow satisfying Assumption 2.4. Suppose that ϕ ≥ 0 satisfies(

∂
∂τ + ∆g(τ)

)
ϕ ≤ 0 in the distributional sense, namely,∫

M

[
ξ
∂ϕ

∂τ
− 〈∇ξ,∇ϕ〉

]
dµg(τ) ≤ 0 (2.23)

for any non-negative smooth function ξ ≥ 0 with compact support. Then for any p ∈ M ,
Ṽ ϕ

(p,0)(τ) is non-increasing in τ ∈ (0, T ) and limτ→0+ Ṽ ϕ
(p,0)(τ) = ϕ(p, 0).
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Proof. The proof of the theorem is identical to the original one for

d

dτ
Ṽ(p,0)(τ) ≤ 0;

the monotonicity of the reduced volume along the Ricci flow with bounded curvature
(e.g. [Vol2-I, Theorem 8.20]). See the previous section for how the original proof is
modified for the super Ricci flow satisfying Assumption 2.4. We leave the details to the
interested reader.

We close this section with several facts which will be required later in Chapter 7.
They are also utilized in the proofs of Theorems 2.17. The proofs can be found in [Ye2]
and [Vol2-I] etc.

Proposition 2.18. If −K1g(τ) ≤ ∂
∂τ g ≤ K2g(τ) on M × [0, τ̄ ] for some non-negative

constants K1,K2 ≥ 0, then for any q ∈ M ,

e−K1τ̄ dg(0)(p, q)2

4τ̄
− nK1τ̄

3
≤ ℓ(p,0)(q, τ̄) ≤ eK2τ̄ dg(τ̄)(p, q)2

4τ̄
+

nK2τ̄

3
.

Proposition 2.19. Let (M, g(τ)), τ ∈ [0, T ] be a complete C1-controlled super Ricci
flow. Then there exists a positive function K∗(τ) > 0 of τ such that

max
{
|∇ℓ|2,

∣∣∣∣ ∂ℓ

∂τ

∣∣∣∣} ≤ K∗(τ)
τ

(ℓ + 1) a.e. on M

for each τ ∈ (0, T ). In particular,
∫
M |∇ℓ|2e−ℓ dµg(τ) and

∫
M

∂ℓ
∂τ e−ℓ dµg(τ) make sense.
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Chapter 3

Three lemmas

In this chapter, we prove a series of lemmas which we will require in the proof of our
main results.

3.1 Preliminary estimates

Given a super Ricci flow (Mn, g(τ)), τ ∈ [0, T ), take p ∈ M and τ ∈ (0, T ). Let us put

LBτ (p, r) :=
{
L expτ (V )

∣∣ V ∈ Ω(p,0)(τ), |V |g(0) < r
}

.

This notation comes from the fact that a geodesic ball B(p, r) in a Riemannian manifold
is the image of ball of the same radius in the tangent space under the exponential map.

In this section, we derive a few estimates of which we shall make frequent use in the
remaining of this thesis. The first one is the following proposition, which says that the
contribution of long tangent vectors to the value of the reduced volume can be ignored.

Proposition 3.1. Let u(·, τ) := (4πτ)−n/2 exp
(
−ℓ(p,0)(·, τ)

)
.

(1) For all r > 0 and τ ∈ (0, T ), we have

Ṽ(p,0)(τ) − ε(r) ≤
∫
LBτ (p,r)

u(·, τ) dµg(τ).

(2) Given r > 0 and τ0 ∈ (0, T ), we can find a family of subsets LKτ,τ0(p, r) of M for
τ ∈ (0, T ) satisfying the following properties:

(a) For all τ ≤ τ0,LKτ,τ0(p, r) is compact.

(b) For all τ ≤ τ̄ ,LKτ,τ0(p, r) contains all of the points γ(τ) on any minimal
L-geodesics γ : [0, τ̄ ] → M connecting (p, 0) and (q, τ̄) with q ∈ LKτ̄ ,τ0(p, r).

(c) For all τ ≥ τ0 we have

Ṽ(p,0)(τ) − 2ε(r) ≤
∫
LKτ,τ0 (p,r)

u(·, τ) dµg(τ).

Here, ε(r) is a function of r > 0 with ε(r) ≤ e−r2/2 for all r large enough. Clearly,
ε(r) decays to 0 exponentially as r → ∞.
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Proof. (1) We deduce from (2.10) and Theorem 2.12 that∫
M\LBτ (p,r)

u(·, τ) dµg(τ) =
∫

Ω(p,0)(τ)\B(0,r)
u(L expτ (V ), τ)LJV (τ)dxg(0)(V )

≤
∫

TpM\B(0,r)
π−n/2e−|V |2

g(0) dxg(0)(V ) =: ε(r).

(2) Take a compact set K of TpM so that K ⊂ B(0, r)∩Ω(p,0)(τ0) and the Lebesgue
measure of B(0, r) ∩ Ω(p,0)(τ0) \ K, induced by g(0), is less than πn/2ε(r). We show
that LKτ,τ0(p, r) := L expτ

(
K ∩ Ω(p,0)(τ)

)
has the desired properties. It is clear that

(a) and (b) hold by construction, since Ω(p,0)(τ0) ⊂ Ω(p,0)(τ) for τ ≤ τ0. Furthermore,
by the same argument as in (1), we deduce that∫

M\LKτ,τ0 (p,r)
u(·, τ) dµg(τ)

=
∫

M\LBτ (p,r)
+

∫
LBτ (p,r)\LKτ,τ0 (p,r)

u(·, τ) dµg(τ) ≤ 2ε(r)

for τ ≥ τ0.
Finally, we estimate ε(r) for r ≥ r0 by

ε(r) = nωnπ−n/2

∫ ∞

r
e−r2

rn−1 dr ≤
∫ ∞

r
e−r2/2r dr = e−r2/2.

Here r0 ≫ 1 is taken so that nωnπ−n/2e−r2/2rn−2 ≤ 1 for all r ≥ r0.

Proposition 3.2 (cf. Kleiner–Lott [KL]). Assume that h ≥ −C0g(τ) and |∇H| ≤ D0

on K× [0, T0] for some compact set K ⊂ M containing a ball Bg(0)(p, r). Consider the
L-geodesic γV : [0, τ̄ ] → M with

γV (0) = p and lim
τ→0+

√
τ
dγV

dτ
= V.

Then we can find constants C = C(C0T0), D = D(C0T0, D0T
3/2
0 ) and small δ =

δ(C,D, |V |g(0)) > 0 such that

dg(0)(p, γV (τ)) ≤ (C|V |g(0) + D)
√

τ (3.1)

and hence γV (τ) ∈ Bg(0)(p, r) ⊂ K for all τ ∈ [0, min{δr2, T0}].

Proof. Let τ ′ ∈ [0, T0] be the maximal time such that γV ([0, τ ′]) ⊂ K. For τ ≤ τ ′, we
use the L-geodesic equation (2.9) to obtain

d

dτ
|
√

τX|2g(τ) = |X|2g(τ) + 2h(
√

τX,
√

τX) + 2τ〈∇XX,X〉

= −2h(
√

τX,
√

τX) + τ〈∇H,X〉
≤ −2C0|

√
τX|2g(τ) + D0

√
τ |
√

τX|g(τ).

Then

d

dτ
|
√

τX|g(τ) =
1

2|
√

τX|g(τ)

d

dτ
|
√

τX|2g(τ)

≤ C0|
√

τX|g(τ) +
1
2
D0

√
T0.
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From this, we derive that

|
√

τX|g(τ) ≤ eC0τ |V |g(0) +
D0

√
T0

2C0

(
eC0τ − 1

)
≤ C|V |g(0) + D

for C = C(C0T0) and D = D(C0T0, D0T
3/2
0 ), and hence

dg(0)(p, γV (τ)) ≤
∫ τ

0
|X|g(0) dτ ≤

∫ τ

0
eC0τ |X|g(τ) dτ

≤ (C|V |g(0) + D)
∫ τ

0
τ−1/2 dτ = (C|V |g(0) + D)

√
τ .

As a consequence, we can find δ = δ(C,D, |V |g(0)) > 0 such that

dg(0)(p, γV (τ)) < r holds for τ ∈ [0, min{δr2, T0}].

This finishes the proof.

3.2 Asymptotic reduced volume

Given an ancient super Ricci flow (M, g(τ)), τ ∈ [0,∞), it is natural to expect that the
asymptotic reduced volume

Ṽ(g) := lim
τ→∞

Ṽ g
(p,0)(τ)

is well-defined, namely it does not depend on p ∈ M , as the asymptotic volume ratio
ν(g) of a Riemmanian manifold (Mn, g) of non-negative Ricci curvature is. In this
section, we prove the following

Lemma 3.3. Let (Mn, g(τ)), τ ∈ [0,∞) be a complete ancient super Ricci flow satisfying
Assumption 2.4 with time derivative bounded from below. Then for any (pk, τk) ∈ M ×
[0,∞) for k = 1, 2 with τ2 ≥ τ1, we have

lim
τ→∞

Ṽ g2

(p2,0)(τ) ≥ lim
τ→∞

Ṽ g1

(p1,0)(τ)

where gk(τ) := g(τ + τk), τ ∈ [0,∞).

Corollary 3.4. In the setting of Lemma 3.3, we have

lim
τ→∞

Ṽ g
(p2,0)(τ) = lim

τ→∞
Ṽ g

(p1,0)(τ),

that is, Ṽ(g) is well-defined.

The proof of Lemma 3.3 utilizes the following result of Chen [Che] (cf. [Yo2, Propo-
sition A.3]).

Proposition 3.5 (Chen [Che]). Any complete ancient super Ricci flow (Mn, g(τ)),
τ ∈ [0,∞) satisfying

− ∂

∂τ
H ≥ ∆g(τ)H +

2
n

H2 (3.2)

has non-negative trace of time derivative 2H := trg(τ)
∂
∂τ g ≥ 0. In particular, any

complete ancient solution to the Ricci flow has non-negative scalar curvature.
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To be precise, what Chen proved in [Che] is the second statement of Proposition 3.5.
However, it is easy to see that his argument works well for the super Ricci flow satisfy-
ing (3.2) (cf. [Yo2, Proposition A.3]). Recall that the scalar curvature R of a backward
Ricci flow (Mn, g(τ)) satisfies the following evolution equation:

− ∂

∂τ
R = ∆g(τ)R + 2 |Ric|2. (3.3)

Then the Cauchy–Schwartz inequality implies that R satisfies inequality (3.2).
Note that we have no assumption on the bound of ∂

∂τ g in Proposition 3.5. If the an-
cient solution to the Ricci flow has bounded curvature, the second statement of Proposi-
tion 3.5 is shown by a standard maximum principle argument (e.g. [CLN, Lemma 2.18]).
Chen’s proof of Proposition 3.5 makes effective use of the non-linear term 2

nH2 in (3.2).
Chen [Che] also proves that any 3-dimensional complete ancient solution to the Ricci

flow has non-negative curvature operator. In dimension 3, curvature operator being non-
negative is equivalent to the non-negativity of the sectional curvature. The main result
of Chen’s paper [Che] is the uniqueness of the complete Ricci flow with curvature not
necessarily bounded and the Euclidean space as the initial metric in dimensions 2 and
3.

Subsequently, modifying Chen’s argument, Zhang [Zh] proved that the scalar cur-
vature R of any complete gradient shrinking Ricci soliton (Mn, g, f) is non-negative.
Then the inequality

λ|∇f |2 ≤ λ(R + |∇f |2) = f

implies that |∇
√

f |2 ≤ (4λ)−1 and hence

λ max
{
R, |∇f |2

}
(x) ≤ f(x) ≤ 1

4λ

(
d(x, p) +

√
f(y)

)2
(3.4)

for any x and y ∈ M (cf. Theorem 5.4.(2)). His main result is

Theorem 3.6 (Zhang [Zh]). Let (Mn, g, f) be a gradient Ricci soliton which is not
necessarily shrinking. Then the gradient vector field ∇f is complete provided the metric
g is complete.

Proof of Lemma 3.3. Put τ∆ := τ2 − τ1 ≥ 0 to notice that g2(τ − τ∆) = g1(τ). We first
verify

Sublemma 3.7. For any (p, τp), (q, τ̄) ∈ M × [0,∞) with τ̄ > τp ≥ τ∆,

1
2
√

τ̄ − τ∆
Lg2

(p,τp−τ∆)(q, τ̄ − τ∆) ≤ 1
2
√

τ̄
Lg1

(p,τp)(q, τ̄)

and
1

2
√

τ̄ − τ∆
Lg2

(p,τp−τ∆)(q, τ̄ − τ∆) ≥ α(τ∆; τp, τ̄)
1

2
√

τ̄
Lg1

(p,τp)(q, τ̄),

where α(τ∆; τp, τ̄) :=
√

τp−τ∆
τp

τ̄
τ̄−τ∆

≥
√

1 − τ∆
τp

.

Proof. We use the fact that H(·, τ) ≥ 0 for ancient super Ricci flows (Proposition 3.5)
and the inequality

1
2
√

τ̄

√
τ ≥ 1

2
√

τ̄ − τ∆

√
τ − τ∆ for all τp ≤ τ ≤ τ̄
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to obtain

1
2
√

τ̄
Lg1

(p,τp)(q, τ̄) =
1

2
√

τ̄
inf
γ

{∫ τ̄

τp

√
τ

(
|γ′|2g1(τ) + Hg1(τ)(γ(τ))

)
dτ

}

≥ 1
2
√

τ̄ − τ∆
inf
γ

{∫ τ̄

τp

√
τ − τ∆

(
|γ′|2g1(τ) + Hg1(τ)(γ(τ))

)
dτ

}
=

1
2
√

τ̄ − τ∆
Lg2

(p,τp−τ∆)(q, τ̄ − τ∆).

Here inf runs over all curves γ : [τp, τ̄ ] → M with γ(τp) = p and γ(τ̄) = q.
To see the second inequality, we use instead

α(τ∆; τp, τ̄)
1

2
√

τ̄

√
τ ≤ 1

2
√

τ̄ − τ∆

√
τ − τ∆ for all τp ≤ τ ≤ τ̄ .

We return to the proof of Lemma 3.3. Fix r > 0 and τ̄ ≫ 1. Take q ∈ K(τ̄) :=
Lg1Kτ̄ ,2τ∆(p1, r) and the point p∆ = γ(2τ∆) ∈ M on the minimal Lg1-geodesic γ :
[0, τ̄ ] → M from (p1, 0) to (q, τ̄) such that

Lg1

(p1,0)(q, τ̄) = Lg1

(p∆,2τ∆)(q, τ̄) + Lg1

(p1,0)(p∆, 2τ∆)

≥ Lg1

(p∆,2τ∆)(q, τ̄).
(3.5)

The inequality in (3.5) is due to the non-negativity of H (Proposition 3.5). Recall that
K := Lg1K2τ∆,2τ∆(p1, r) is compact and p∆ ∈ K by construction (Proposition 3.1). It
follows from the combination of the triangle inequality for L-distance, Sublemma 3.7
and (3.5) that

ℓg2

(p2,0)(q, τ̄ − τ∆) ≤ 1
2
√

τ̄ − τ∆

(
Lg2

(p∆,τ∆)(q, τ̄ − τ∆) + Lg2

(p2,0)(p∆, τ∆)
)

≤ 1
2
√

τ̄
Lg1

(p∆,2τ∆)(q, τ̄) +
1

2
√

τ̄ − τ∆
max
K

Lg2

(p2,0)(·, τ∆)

≤ ℓg1

(p1,0)(q, τ̄) + C(r)τ̄−1/2.

Thus, as τ̄ > 0 is large enough,

lim
τ→∞

Ṽ g2

(p2,0)(τ) ≥ Ṽ g2

(p2,0)(τ̄ − τ∆) − ε(r)

≥
∫
K(τ̄)

(4πτ̄)−n/2 exp
(
−ℓg2

(p2,0)(·, τ̄ − τ∆)
)

dµg2(τ̄−τ∆) − ε(r)

≥ e−C(r)τ̄−1/2

∫
K(τ̄)

(4πτ̄)−n/2 exp
(
−ℓg1

(p1,0)(·, τ̄)
)

dµg1(τ̄) − ε(r)

≥ e−C(r)τ̄−1/2
Ṽ g1

(p1,0)(τ̄) − 3ε(r)

≥ e−C(r)τ̄−1/2
lim

τ→∞
Ṽ g1

(p1,0)(τ) − 3ε(r).

We have used Proposition 3.1 to derive the fourth inequality. Since τ̄ > 0 and r > 0
are arbitrary, the proof of Lemma 3.3 is now complete.
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3.3 Finiteness of fundamental group

Now we are ready to establish Theorem 1.3. Let us restate it here.

Theorem 3.8. Let (Mn, g(τ)), τ ∈ [0,∞) be a complete ancient solution to the Ricci
flow on M with Ricci curvature bounded below. If Ṽ(g) > 0, then the fundamental group
π1(M) of M is finite.

As mentioned in the introduction, we intend to prove this theorem for super Ricci
flows.

Lemma 3.9. Let (Mn, g(τ)), τ ∈ [0,∞) be a complete ancient super Ricci flow satisfy-
ing Assumption 2.4 with time derivative bounded below. We lift them to the universal
covering M̄ of M to obtain the lifted flow (M̄, ḡ(τ)). Take p ∈ M and p̄ ∈ π−1(p),
where π : M̄ → M is the projection. Suppose that Ṽ(g) := limτ→∞ Ṽ g

(p,0)(τ) > 0. Then
we have

|π1(M)| = Ṽ(ḡ)Ṽ(g)−1 < +∞.

Before we begin the proof of Lemma 3.9, let us state the following immediate corol-
lary, which follows from Lemma 3.9 combined with Lemma 2.14.

Corollary 3.10 (Anderson [An2], Li [Li]). Let (M, g) be a complete Riemmanian man-
ifold with non-negative Ricci curvature and (M̄, ḡ) be the universal covering of (M, g).
If (M, g) has Euclidean volume growth, i.e., ν(g) > 0, then we have

|π1(M)| = ν(ḡ)ν(g)−1 < +∞.

Here, ν(g) denotes the asymptotic volume ratio as before.

Proof of Lemma 3.9. The proof is a modification of that of [An2, Theorem 1.1]. Fix
large τ̄ ∈ (0,∞) and define

F :=
⋂

α∈π1(M)\{e}

{
q̄ ∈ M̄

∣∣∣ Lḡ
(p̄,0)(q̄, τ̄) < Lḡ

(αp̄,0)(q̄, τ̄)
}

.

Then F is a fundamental domain of π : M̄ → M , namely

F ∩ αF = ∅ for α ∈ π1(M) \ {e} and
⋃

α∈π1(M)

αF̄ = M̄.

We claim that π : F̄ → M is locally isometric and surjective. To see this, pick q ∈ M

and connect (p, 0) and (q, τ̄) by a minimal Lg-geodesic γ : [0, τ̄ ] → M . Then the lift γ̄

of γ with γ̄(0) = p̄ is a minimal Lḡ-geodesic in M̄ . Let q̄ := γ̄(τ̄). Then we have q̄ ∈ F̄

and π(q̄) = q.
Furthermore, F̄ \ F has measure 0, since π(F̄ \ F ) consists of the points in M such

that minimal Lg-geodesic from (p, 0) is not unique. The set of such points has measure
0 [Vol2-I, Lemma 7.99].

Fix any finite subset Γ ⊂ π1(M) and set DΓ := max{dḡ(0)(p̄, αp̄) |α ∈ Γ}. Take
C0 < ∞ such that

|h| ≤ C0 on Bḡ(0)(p̄, DΓ + 1) × [0, 1]
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and
|∇H| ≤ C0 on Bg(0)(p, 1) × [0, 1].

Fix a positive r > 0. Due Proposition 3.2, we can find δ = δ(C0, r) > 0 such that
dḡ(0)(γ̄V (τ), αp̄) ≤ 1 for any Lḡ-geodesic γ̄V starting from αp̄ with |V |ḡ(0) < r and
τ ∈ [0, δ].

For any α∈Γ and q̄ ∈ LBτ̄ (αp̄, r)∩αF̄ , let γ̄ be the minimal Lḡ-geodesic from (αp̄, 0)
to (q̄, τ̄) in M̄ and connect p̄ and γ̄(δ) by a minimal ḡ(0)-geodesic ξp̄,γ̄(δ) : [0, δ] → M̄ .
Define a curve γ̂ : [0, τ̄ ] → M̄ by

γ̂(τ) :=

{
ξp̄,γ̄(δ)(τ) on [0, δ]

γ̄(τ) on [δ, τ̄ ]

Then, letting q := π(q̄),

ℓḡ
(p̄,0)(q̄, τ̄) ≤ 1

2
√

τ̄
Lḡ(γ̂)

=
1

2
√

τ̄

(
Lḡ(γ̄) − Lḡ(γ̄|[0,δ]) + Lḡ(ξp̄,γ̄(δ))

)
≤ ℓḡ

(αp̄,0)(q̄, τ̄) +
1

3
√

τ̄
δ3/2

(
e2C0δ

(
DΓ + 1

δ

)2

+ 2nC0

)
= ℓg

(p,0)(q, τ̄) + C(δ, Γ)τ̄−1/2

where we have used that

ℓḡ
(αp̄,0)(q̄, τ̄) = ℓg

(p,0)(q, τ̄) for any q̄ ∈ LBτ̄ (αp̄, r) ∩ αF̄ .

We apply Proposition 3.1 to obtain

Ṽ ḡ
(p̄,0)(τ̄) ≥

∑
α∈Γ

∫
LBτ (αp̄,r)∩αF̄

(4πτ̄)−n/2 exp
(
−ℓḡ

(p̄,0)(·, τ̄)
)

dµḡ(τ̄)

≥ |Γ|
∫
LBτ (p,r)

(4πτ̄)−n/2 exp
(
−ℓg

(p,0)(·, τ̄) − C(δ, Γ)τ̄−1/2
)

dµg(τ̄)

≥ e−C(δ,Γ)τ̄−1/2 |Γ|
(
Ṽ g

(p,0)(τ̄) − ε(r)
)

and taking τ̄ → ∞ and r → ∞ yields that

Ṽ(ḡ) ≥ |Γ|Ṽ(g) for any finite subset Γ ⊂ π1(M). (3.6)

Thus, π1(M) is finite and (3.6) holds for Γ = π1(M).
On the other hand, since

ℓḡ
(p̄,0)(q̄, τ) ≥ ℓg

(p,0)(π(q̄), τ) for any (q̄, τ) ∈ M̄ × (0,∞)

we have
Ṽ ḡ

(p̄,0)(τ) ≤ |π1(M)|Ṽ g
(p,0)(τ)

and hence Ṽ(ḡ) ≤ |π1(M)|Ṽ(g). This finishes the proof of the lemma.

Let us give a corollary of Theorem 3.8, which was pointed out by Professor Lei Ni.
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Corollary 3.11 (Finiteness of fundamental groups of singularity models). Let (Mn, g(t)),
t ∈ [0, T ) be a complete Ricci flow with bounded curvature and positive injectivity radius
at t = 0 which develops singularity at finite time t = T < ∞. Then any singularity
model of (Mn, g(t)) has finite fundamental group.

The singularity model is a Ricci flow which arises as a limit of dilations of a Ricci
flow (Mn, g(t)) around a singular point (see [CLN, Chapter 8] for the precise definition).
We can take such a blow-up limit in the corollary by virtue of Perelman’s no local
collapsing theorem (Theorem 2.1) and Hamiton’s compactness theorem (Theorem 3.20).
The corollary immediately follows from the fact that such a singularity model is an
ancient solution with positive asymptotic reduced volume. This is verified by combining
Lemma 3.22 below with the following fact.

Lemma 3.12 ([Vol2-I, Lemma 8.22]). Let (Mn, g̃(t)), t ∈ [0, T ) be a complete Ricci flow
with Ricci curvature bounded below and T < ∞ such that

inf
{
Volg̃(0)Bg̃(0)(p, r1)

∣∣ p ∈ M
}
≥ v1 > 0

and
sup

{
|Ric|(p, t)

∣∣ (p, t) ∈ M × [0, T/2]
}
≤ C0 < ∞.

For any T0 ∈ [T/2, T ), let g(τ) := g(T0−τ), τ ∈ [0, T0] be the backward Ricci flow. Then
there exists a constant C = C(r1, v1, n, T, C0) > 0 such that

Ṽ(p,0)(τ) ≥ C for any p ∈ M and τ ∈ [0, T0].

We will be able to use this corollary in order to understand the singularities of the
Ricci flow further. For example, we can prove the following: for any ancient solution
(Nn−1, gN (t)), t ∈ (−∞, α), the canonical ancient solution on S1 × Nn−1 cannot occur
as a blow-up limit of the Ricci flow as in Corollary 3.11. In the case where N is
a sphere, this result was conjectured by Hamilton [Ha5, Section 26] and proved by
Ilmanen–Knopf [IlKn] with a different method.

We should mention that Naber [Na] proved that any blow-up limit of Type I singu-
larity of the Ricci flow is a gradient shrinking Ricci soliton. (See also Zhang [Zh2] for
a relevant result.) Although we already know that any gradient shrinking Ricci soliton
has finite fundamental group (e.g. Wylie [Wy]), Corollary 3.11 is applicable even to a
blow-up limit of Type IIa singularity as well.

Here we briefly recall the classification of types of finite time singularities of the
Ricci flow.

Definition 3.13. Let (Mn, g(t)), t ∈ [0, T ) be a Ricci flow. If T < ∞ is the finite
singular time,

(Mn, g(t)) is of Type I ⇐⇒ sup
M×[0,T )

|Rm|(T − t) < ∞

(Mn, g(t)) is of Type IIa ⇐⇒ sup
M×[0,T )

|Rm|(T − t) = ∞.

Typical examples of the Ricci flow of Type I singularity are provided by shrinking
Ricci solitons (cf. (5.3)). The existence of Type IIa singularity of the Ricci flow was
confirmed by Gu–Zhu [GuZh].
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The result of Naber [Na] mentioned above can be regarded as a Ricci flow analogue
of the following theorem of Cheeger–Colding [ChCo2, Theorem 5.2].

Theorem 3.14 (Tangent cone is a metric cone [ChCo2], also Cheeger [Chee]). Let a
complete metric space (X,x) be a pointed Gromov–Hausdorff limit of a non-collapasing
sequence {(Mn

k , pk)}k∈Z+ of complete Riemannian manifolds whose Ricci curvature is
uniformly bounded below. Then for any p ∈ X, any tangent cone Cp at p is a metric
cone.

In the statement above, a tangent cone Cp at a point p of a metric space X is a
pointed Gromov–Hausdorff limit of the sequence {(riX, p)} for some sequence ri → ∞
as i → ∞. See Burago–Burago–Ivanov [BBI] for the definition of a metric cone.

We close this section giving another corollary of Theorem 3.8.

Corollary 3.15 (Finiteness of fundamental groups of κ-solutions). Any ancient κ-
solution to the Ricci flow has finite fundamental group.

We have to give a definition of ancient κ-solutions (cf. the statement of Theorem 2.1).

Definition 3.16. Let (Mn, g(τ)), τ ∈ [0, T ) be a backward Ricci flow and κ > 0 be a
positive constant. We say that the backward Ricci flow is (weakly) κ-noncollapsing at
(p∗, τ∗) ∈ M × [0, T ) on scale r > 0 if

|Rm| ≤ r−2 on Bg(τ∗)(p∗, r) × [τ∗, τ∗ + r2]

implies that
Volg(τ∗)Bg(τ∗)(p, r) ≥ κrn.

An ancient solution (Mn, g(τ)), τ ∈ [0,∞) is an ancient κ-solution, by definition, if
it satisfies that

(1) (Mn, g(τ)) is complete and has uniformly bounded non-negative curvature oper-
ator, and

(2) (Mn, g(τ)) is κ-noncollapsing at all (p∗, τ∗) ∈ M × [0,∞) and on all scale r > 0.

According to Hamilton’s Harnack inequality (Theorem 8.1), the scalar curvature R

of any ancient solution to the Ricci flow with bounded non-negative curvature operator
satisfies that ∂

∂τ R(·, τ) ≤ 0. If the curvature operator is non-negative, the scalar curva-
ture controls the curvature operator. Hence it turns out that any ancient solution to
the Ricci flow with non-negative bounded curvature operator has uniformly bounded
curvature operator.

The importance of ancient κ-solutions comes from the fact that any blow-up limit
of a singularity of the Ricci flow of dimension 3 is an ancient κ-solution. This is a
consequence of the Hamilton–Ivey estimate (e.g. [Ha5, Theorem 24.4]) and Perelman’s
no local collapsing theorem (Theorem 2.1).

The proof of Corollary 3.15 is immediate since any ancient κ-solution has positive
asymptotic reduced volume (e.g. [Vol2-I, Lemma 8.38]). Meanwhile, Perelman [Pe,
Proposition 11.4] has shown the following.

Proposition 3.17 (Perelman [Pe]). Any ancient κ-solution has zero asymptotic volume
ratio.
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This is why Corollary 3.15 does not follow from Corollary 3.10, but from Theo-
rem 3.8.

Remark 3.18. Carrillo–Ni [CaNi] proved that any complete gradient shrinking Ricci soli-
ton of non-negative Ricci curvature has zero asymptotic volume ratio. This generalizes
Perelman’s result mentioned above, since any ancient κ-solution has asymptotic soliton.

On the other hand, any complete gradient expanding Ricci soliton with non-negative
Ricci curvature has Euclidean volume growth (Hamilton [CLN, Proposition 9.46], Carrillo–
Ni [CaNi]).

3.4 Reduced volume under Cheeger–Gromov convergence

Although we have considered the super Ricci flow so far, Theorem 4.1 is not true for
them. In this section, we concentrate on the Ricci flow. To begin with, let us recall
Shi’s gradient estimate. Shi’s derivative estimate was also employed in the proof of the
compactness theorem for the Ricci flow (Theorem 3.20), which we will use later.

Theorem 3.19 (Shi’s local gradient estimate, e.g. [Ha5, Theorem 13.1], also [CLN]).
There exists a constant C(n) <∞ satisfying the following: let (Mn, g(τ)), τ ∈ [0, T0] be
a complete backward Ricci flow on an n-manifold M . Assume that the ball Bg(T0)(p, r)
is contained in K and |Rm| ≤ C0 on K × [0, T0] for some compact set K ⊂ M . Then
for τ ∈ [0, T0),

|∇Rm|2(p, τ) ≤ C(n)C2
0

(
1
r2

+
1

T0 − τ
+

1
C0

)
. (3.7)

Recall that we say that a sequence of pointed backward Ricci flows

{(Mn
k , gk(τ), pk)}k∈Z+ , τ ∈ [0, T )

converges to a backward Ricci flow (Mn
∞, g∞(τ), p∞), τ ∈ [0, T ) in the C∞ Cheeger–

Gromov sense if there exist open sets Uk of M∞ with p∞ ∈ Uk and ∪k∈Z+Uk = M∞
and diffeomorphisms Φk : Uk → Vk := Φk(Uk) ⊂ Mk with Φk(p∞) = pk so that
{(Uk, Φ∗

kgk(τ))}k∈Z+ converges to (Mn
∞, g∞(τ)) in the C∞ topology on each compact

set of Mn
∞ × [0, T ).

Theorem 3.20 (Compactness theorem for the Ricci flow, Hamilton [Ha6], also [Vol2-I]).
Let {(Mn

k , gk(t), pk)}k∈Z+ , t ∈ (0, T ] be a pointed sequence of complete Ricci flows such
that

(1) (Mn
k , gk(t)) has bounded curvature and bounds are independent of k ∈ Z+, and

(2) the injectivity radii injgk(T )(pk) at the base points (pk, T ) ∈ Mk×{T} are uniformly
bounded from below.

Then there exists a subsequence of {(Mn
k , gk(t), pk)}k∈Z+ converging to the limit Ricci

flow (Mn
∞, g∞(t), p∞), t ∈ (0, T ] in the C∞ Cheeger–Gromov sense.

By carefully investigating the proof of [Vol2-I, Lemma 7.66], where curvature is
assumed to be bounded on the whole of Mk × [0, T ), one can show the following lemma
without modification (cf. [Vol2-I, Lemma 7.66]).
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Lemma 3.21. Let {(Mn
k , gk(τ), pk)}k∈Z+ , τ ∈ [0, T ) be a converging sequence of pointed

backward Ricci flows in the sense of C∞ Cheeger–Gromov and (Mn
∞, g∞(τ), p∞), τ ∈

[0, T ) be the limit. Then we have

lim sup
k→∞

ℓgk

(pk,0)(Φk(q), τ) ≤ ℓg∞
(p∞,0)(q, τ) (3.8)

for τ ∈ (0, T ). The equality is achieved in (3.8), with lim sup replaced by lim, provided
(Φk(q), τ) can be joined to (pk, 0) by a minimal Lgk-geodesic within the image Φk(K) ⊂
Mk of some compact set K ⊂ M∞ for all large k ∈ Z+.

Now we verify the convergence of reduced volumes.

Lemma 3.22. Let {(Mn
k , gk(τ), pk)}k∈Z+ , τ ∈ [0, T ) be a sequence of pointed backward

Ricci flows converging to (Mn
∞, g∞(τ), p∞). Assume that

|Rm| ≤ C0 on Vk × [0, T ) and
⋃

k∈Z+

Uk = M∞.

Then for any τ ∈ (0, T ),
lim

k→∞
Ṽ gk

(pk,0)(τ) = Ṽ g∞
(p∞,0)(τ). (3.9)

Proof. Let us put u⋆(q, τ) := (4πτ)−n/2 exp
(
−ℓg⋆

(p⋆,0)(q, τ)
)

for ⋆ ∈ Z+ ∪ {∞}, and fix
τ̄ ∈ (0, T ) and T0 ∈ (τ̄ , T ). Set V∞ := M∞.

We invoke Shi’s gradient estimate (Theorem 3.19):

|∇R|2(·, τ) ≤ C(n)C2
0

min{C0, T0 − τ}
on B[0,T0]

(
V⋆,−

√
C0

)
for τ ∈ [0, T0)

where

B[0,T0]

(
V⋆,−

√
C0

)
:=

{
x ∈ V⋆

∣∣∣ Bg⋆(τ)

(
x,

√
C0

)
⊂ V⋆ for all τ ∈ [0, T0]

}
.

Fix r > 0. Then by Proposition 3.2, we can find C(r) < ∞ such that any Lg⋆-geodesic
γV ([0, τ̄ ]) in M⋆ with γV (0) = p⋆ and |V |g⋆(0) ≤ r can not escape from B0(p⋆, C(r))
when ⋆ is sufficiently large or = ∞.

Define ûk(·, τ) : Mk → [0,∞) by

ûk(q, τ) :=

{
uk(q, τ) if q ∈ LBτ (pk, r)

0 otherwise

Then each ûk(·, τ̄) has a compact support contained in Bgk(0)(pk, C(r)) and it follows
from Lemma 3.21 that

lim sup
k→∞

ûk(Φk(q), τ̄) ∈ {u∞(q, τ̄), 0}. (3.10)

Therefore, noting that ûk(·, τ̄) ≤ (4πτ̄)−n/2 exp
(

1
3n(n − 1)C0τ̄

)
, we derive from

Proposition 3.1, Fatou’s lemma and (3.10) that

lim sup
k→∞

Ṽ gk

(pk,0)(τ̄) − ε(r) ≤ lim sup
k→∞

∫
LBτ̄ (pk,r)

uk(·, τ̄) dµgk(τ̄)

= lim sup
k→∞

∫
B0(p∞,C(r))

ûk(Φk(·), τ̄) dµΦ∗
kgk(τ̄)

≤
∫

B0(p∞,C(r))
lim sup

k→∞
ûk(Φk(·), τ̄) dµΦ∗

kgk(τ̄)

≤ Ṽ g∞
(p∞,0)(τ̄).
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On the other hand, by combining Fatou’s lemma and (3.8), we obtain

lim inf
k→∞

Ṽ gk

(pk,0)(τ̄) ≥ lim inf
k→∞

∫
LBτ̄ (p∞,r)

uk(Φk(·), τ̄) dµΦ∗
kgk(τ̄)

≥
∫
LBτ̄ (p∞,r)

lim inf
k→∞

uk(Φk(·), τ̄) dµΦ∗
kgk(τ̄)

≥
∫
LBτ̄ (p∞,r)

u∞(·, τ̄) dµg∞(τ̄)

≥ Ṽ g∞
(p∞,0)(τ̄) − ε(r).

We also used Proposition 3.1 to get the last inequality. Since r > 0 and τ̄ ∈ (0, T ) are
chosen arbitrarily, we conclude that

lim
k→∞

Ṽ gk

(pk,0)(τ) = Ṽ g∞
(p∞,0)(τ)

for any τ ∈ (0, T ). This completes the proof of Lemma 3.22.

Equipped with these three lemmas, we will give the proof of Theorem 1.1 in the
next chapter.
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Chapter 4

A gap theorem for ancient

solutions

In the present chapter, we present the proof of the main theorem of this thesis (The-
orem 1.1). Now that we have seen that the asymptotic reduced volume Ṽ(g) :=
limτ→∞ Ṽ(p,0)(τ) of an ancient solution (Mn, g(τ)), τ ∈ [0,∞) is independent of the
choice of the base point p ∈ M in Corollary 3.4 in the previous section, our main
theorem (Theorem 1.1) can be restated as follows.

Theorem 4.1 (Gap theorem for ancient solutions). For any n ≥ 2, there exists εn > 0
which depends only on n and satisfies the following: let (Mn, g(τ)), τ ∈ [0,∞) be an
n-dimensional complete ancient solution to the Ricci flow with Ricci curvature bounded
below. Suppose that the asymptotic reduced volume Ṽ(g) is greater than 1 − εn. Then
(Mn, g(τ)), τ ∈ [0,∞) is the Gaussian soliton (Rn, gE).

In the following section, we begin by showing the technical lemma. Then Theo-
rem 4.1 will be established in Section 4.2.

4.1 Technical lemma

Before proceeding to the proof of Theorem 4.1, we first establish the following technical
lemma.

Lemma 4.2. For any α > 0 and τ̄ > 0 with ατ̄−1 > 2, we can find εn(ατ̄−1) > 0 de-
pending on ατ̄−1 and n ≥ 2 which satisfies the following: let (Mn, g(τ)), τ ∈ [0, T ), T <

∞ be a complete backward Ricci flow with Ricci curvature bounded bellow. Put

M(α) :=
{
(p, s) ∈ M × [0, T )

∣∣ |Rm|(p, s) > α(T − s)−1
}
.

Suppose that the reduced volume based at (p, s) satisfies

Ṽ(p,s)(Q
−1
(p,s)τ̄) > 1 − εn(ατ̄−1) at all (p, s) ∈ M(α)

with Q(p,s) := |Rm|(p, s). Here we define Ṽ(p,s)(τ̄) as Ṽ gs

(p,0)(τ̄) for gs(τ) := g(τ + s), τ ∈
[0, T − s). Then M(α) = ∅, that is,

|Rm|(·, τ) ≤ α(T − τ)−1 on M × [0, T ).
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One might notice the similarity of the statement of Lemma 4.2 to those of Perelman’s
pseudolocality theorem [Pe, Theorem 10.1] and Ni’s ε-regularity theorem [Ni3, Theorem
4.4]. In fact, there is a close relation between gap and local regularity theorems. The
proof of Lemma 4.2 follows the same line as those of the theorems mentioned above.

Theorem 4.3 (Pseudolocality theorem, Perelman [Pe, Theorem 10.1]). For every α >

0, we can find δ > 0 and ε > 0 with the following property: let (Mn, g(t)), t ∈ [0, (εr0)2]
be a Ricci flow on a closed manifolds Mn with

R(x, 0) ≥ −r−2
0 and Volg(0)(∂Ω)n ≥ (1 − δ)cnVolg(0)(Ω)n−1

for any x and Ω in Bg(0)(x0, r0), where cn is the isoperimetric constant for Rn. Then
we have

|Rm|(x, t) ≤ αt−1 + (εr0)−2

for all (x, t) with 0 < t ≤ (εr0)2 and dg(t)(x, x0) < εr0.

Remark 4.4. Later, Perelman’s pseudolocality theorem was extended to the complete
Ricci flow with bounded curvature by Chau–Tam–Yu [CTY].

Proof of Lemma 4.2. We prove by contradiction. Fix α > 0 and τ̄ > 0 with ατ̄ > 2.
Assume that we have a sequence {(Mn

k , gk(τ))}k∈Z+ , τ ∈ [0, Tk) of complete backward
Ricci flows with Ricci curvature bounded below such that

• Mk(α) :=
{
(p, τ) ∈ Mk × [0, Tk)

∣∣ |Rm|(p, τ)(Tk − τ) > α
}
̸= ∅ and

• Ṽ gk

(p,τ)(Q
−1
(p,τ)τ̄) > 1 − k−1 for any (p, τ) ∈ Mk(α), where Q(p,τ) := |Rm|(p, τ).

Applying Perelman’s point picking lemma (Lemma A.2) for (A, B) = (k, α), we can
find a point (pk, τk) ∈ Mk(α) such that Ṽ gk

(pk,τk)(Q
−1
k τ̄) > 1 − k−1 and that

|Rm|(x, τ) ≤ 2Qk := 2|Rm|(pk, τk)

for all (x, τ) ∈ Bgk(τk)(pk, kQ
−1/2
k ) × [τk, τk + 1

2Q−1
k α].

Consider the sequence {(Mn
k , g̃k(τ), pk)}k∈Z+ of rescaled Ricci flows

g̃k(τ) := Qkgk(Q−1
k τ + τk), τ ∈ [0, α/2].

Then every g̃k(τ) has |Rm|(pk, 0) = 1, |Rm| ≤ 2 on Bg̃k(0)(pk, k) × [0, α/2], and
Ṽ g̃k

(pk,0)(τ̄) > 1 − k−1 by Proposition 2.15.
Now we observe that the injectivity radius of (Mk, g̃k(0)) at pk is uniformly bounded

from below. To see this, we use Proposition 3.2 to get small δ = δ(r) > 0 so that
L expδ(pk, r) ⊂ Bg̃k(0)(pk, 1) for some large r > 0 and all large k. Then

1 − k−1 < Ṽ g̃k

(pk,0)(τ̄) ≤ Ṽ g̃k

(pk,0)(δ)

≤ (4πδ)−n/2en(n−1)δVolg̃k(0)Bg̃k(0)(pk, 1) + ε(r)

from which we obtain a uniform lower bound for Volg̃k(0)Bg̃k(0)(pk, 1). The lower bound
for the injectivity radius is equivalent to the bound of the volume of a metric ball if the
sectional curvature is bounded in absolute value.
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Since each (Mn
k , g̃k(τ)) has a uniform curvature bound and lower bound for the injec-

tivity radius at (pk, 0), according to Hamilton’s compactness theorem (Theorem 3.20),
we can take a subsequence of {(Mn

k , g̃k(τ), pk)}k∈Z+ converging to the limit Ricci flow
(Mn

∞, g∞(τ), p∞), τ ∈ [0, α/2). From Lemma 3.22, we infer that Ṽ g∞
(p∞,0)(τ̄) = 1, which

implies that the limit (Mn
∞, g∞(0)) is isometric to the Euclidean space by Theorem 2.12.

This is in conflict with that |Rm|(p∞, 0) = 1. The proof of Lemma 4.2 is now com-
plete.

4.2 Proof of Theorem 4.1

Now we present the proof of Theorem 4.1.

Proof of Theorem 4.1. Take εn := εn(3) > 0 from Lemma 4.2. Suppose that (Mn, g(τ)),
τ ∈ [0,∞) is a complete ancient solution to the Ricci flow with Ricci curvature bounded
from below satisfying that

Ṽ(g) > 1 − εn.

Due to Lemma 3.3 in the previous chapter and the monotonicity of the reduced volume,
we know that

Ṽ(p,τ)(τ̄) > 1 − εn for all (p, τ) ∈ M × [0,∞) and τ̄ > 0.

By Lemma 3.9, we know that π1(M) is finite, and applying Lemma 4.2 for all T > 0
yields that (Mn, g(τ)), τ ∈ [0,∞) is flat. The only flat manifold with finite fundamental
group is the Euclidean space. Thus (Mn, g(τ)) is isometric to (Rn, gE) for all τ ∈
[0,∞), i.e., (Mn, g(τ)), τ ∈ [0,∞) is the Gaussian soliton. This concludes the proof of
Theorem 4.1.

Remark 4.5. Theorem 4.1 may have several variations. (See the questions in [Ni] for
instance.) The two chapters following the next chapter are devoted to such an issue.
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Chapter 5

A gap theorem for gradient

shrinkers

In this chapter, we present the proof of the gap theorem for gradient shrinking Ricci
solitons (Corollary 1.4), which is obtained by applying Theorem 4.1 to them.

Recall that a triple (Mn, g, f) is called a gradient shrinking Ricci soliton, or gradient
shrinker, if

Ric(g) + Hess f − 1
2λ

g = 0, (5.1)

for some positive constant λ > 0. The tensor Ric + Hess f is called the Bakry–Emery
Ricci tensor. There has been intense study of the comparison geometry of the Bakry–
Emery tensor; see Morgan [Mo, Mo2] and Wei–Wylie [WeWy] for instance.

The potential function f ∈ C∞(M) of a gradient Ricci soliton (Mn, g, f) is normal-
ized so that

λ(|∇f |2 + R) = f, (5.2)

where R is the scalar curvature of (Mn, g). Due to Zhang [Zh], R is non-negative and
∇f is complete for any complete gradient shrinking Ricci soliton (see the paragraph
preceding Theorem 3.6).

The object of this chapter is to prove the following.

Corollary 5.1 (Gap theorem for gradient shrinkers). Let (Mn, g, f) be a complete
gradient shrinking Ricci soliton with Ricci curvature bounded below. Then

(1) the Gaussian density Θ(M) :=
∫
M (4πλ)−n/2e−f dµg does not exceed 1.

(2) Any gradient shrinking Ricci soliton (Mn, g, f) satisfying that Θ(M) > 1 − εn is,
up to scaling, the Gaussian soliton

(
Rn, gE, | · |2

4

)
. Here the constant εn comes

from Theorem 4.1.

We will do this in the first section. In the second section, we discuss the case of
expanding Ricci solitons.

5.1 Shrinking Ricci solitons

In the present section, we describe the proof of Corollary 5.1.
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For the proof of the corollary, we first construct an ancient solution to the Ricci
flow. (Recall the proof of Theorem 2.12. See also [CLN, Theorem 4.1].) Define a
one-parameter family of diffeomorphisms ϕτ : M → M, τ ∈ (0,∞) by

d

dτ
ϕτ =

λ

τ
∇f ◦ ϕτ and ϕλ = idM .

The result of Zhang [Zh] (Theorem 3.6) says that the gradient vector field ∇f is com-
plete; however, it is easy to see that ∇f is complete in our situation, thanks to the
assumption on the lower bound for Ric.

Then we pull back g by ψτ := ϕ−1
τ so as to obtain a backward Ricci flow (Mn, g0(τ))

determined by

g0(τ) :=
τ

λ
(ψτ )∗g, τ ∈ (0,∞) with g0(λ) = g. (5.3)

Put gS(τ) := g(τ +s), τ ∈ [0,∞) for some fixed s > 0 and fix some point p ∈ M . In what
follows, abusing the terminology, we call both of (Mn, g, f) and (Mn, gS(τ)), τ ∈ [0,∞)
a gradient Ricci soliton. It suffices to show that the Gaussian density Θ(M) and the
asymptotic reduced volume Ṽ(gS) satisfies

Ṽ(gS) ≥ Θ(M) (5.4)

since the left-hand side of (5.4) is ≤ 1.
Let us first give a heuristic argument. It seems reasonable to hold that

Ṽ g0

(p,0)(τ) = Ṽ(g0) = Θ(M) for all τ > 0

(cf. Cao–Hamilton–Ilmanen [CHI]). Then inequality (5.4) will follow from Lemma 3.3,
if it is applicable to this case. Of course, the problem arises from the fact that τ = 0 is
the singular time for g0(τ).

Now we give a rigorous proof of inequality (5.4).

Proof of Corollary 5.1. Recall that we have normalized f in (1.3) so that

Rg0(τ) + |∇fτ |2g0(τ) −
fτ

τ
= 0 for τ > 0 (5.5)

where fτ = f(·, τ) := (ψτ )∗f = f ◦ ψτ . Since Rg0(τ) is non-negative, so is fτ . Put
x1 := ϕτ1(x) and x2 := ϕτ2(x) for some x ∈ M . Then the argument in [Vol2-I, p. 344]
yields the following proposition.

Proposition 5.2. In these notation, γ(τ) := ϕτ ◦ ϕ−1
τ1 (x1) is the unique Lg0-minimal

geodesic from (x1, τ1) to (x2, τ2) and

1
2
√

τ2
Lg0

(x1,τ1)(x2, τ2) = f(x2, τ1) −
√

τ1

τ2
f(x1, τ1). (5.6)

Proof. Let η : [τ1, τ2] → M be a curve from x1 to x2. Then, using (5.5), we obtain

2
√

τ2f(η(τ2), τ2) − 2
√

τ1f(η(τ1), τ1)

=
∫ τ2

τ1

√
τ

(
fτ

τ
+ 2

∂f

∂τ
+ 2

〈
η′,∇f

〉)
dτ

=
∫ τ2

τ1

√
τ
(
|η′|2 + Rg0(τ)(η(τ)) − |η′ −∇f |2

)
dτ

= L(η) −
∫ τ2

τ1

√
τ |η′ −∇f |2 dτ.
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Hence
2
√

τ2f(η(τ2), τ2) − 2
√

τ1f(η(τ1), τ1) ≤ L(η), (5.7)

and the equality is attained in (5.7) for and only for the curve η(τ) = γ(τ). This proves
the proposition.

Fix a compact set K ⊂ M , ε > 0 and τ̄ ≫ 1. Take q ∈ ϕτ̄ (K) and p2 ∈ ϕ2s(K) with
q = ϕτ̄ ◦ϕ−1

2s (p2). From the triangle inequality for L-distance, Sublemma 3.7 and (5.6),
it follows that

ℓgS

(p,0)(q, τ̄ − s) ≤ 1
2
√

τ̄ − s

(
LgS

(p2,s)(q, τ̄ − s) + LgS

(p,0)(p2, s)
)

≤ 1
2
√

τ̄
Lg0

(p2,2s)(q, τ̄) +
1

2
√

τ̄ − s
max

ϕ2s(K)
LgS

(p,0)(·, s)

≤ f(q, τ̄) −
√

2s

τ̄
f(p2, 2s) + C(K)τ̄−1/2

≤ f(q, τ̄) + C(K)τ̄−1/2.

From this, we deduce that

Ṽ(gS) ≥ Ṽ gS

(p,0)(τ̄ − s) − ε

≥ e−C(K)τ̄−1/2

∫
ϕτ̄ (K)

(4πτ̄)−n/2e−f(q,τ̄) dµg0(τ̄)(q) − ε

= e−C(K)τ̄−1/2

∫
K
(4πλ)−n/2e−f dµg − ε.

We have used the equation∫
M

h ◦ ψτ̄ dµ(ψτ̄ )∗g =
∫

M
h dµg for any h ∈ L1(dµg)

which follows from the definition of pull back. Inequality (5.4) then follows from the
arbitrariness of τ̄ > 0, ε > 0 and K ⊂ M .

By using (5.4), Theorem 4.1 immediately implies Corollary 5.1. As for (2) of Corol-
lary 5.1, it is easy to see that the only way to regard a Ricci-flat space as a shrinking
soliton is the Gaussian soliton up to scaling (e.g. Tashiro [Ta], Naber [Na]). This con-
cludes the proof of Corollary 5.1.

In the above proof, inequality (5.4) was enough for our purpose, however, we can
actually show that the equality holds in (5.4) in this situation. Here we describe the
proof of this for future applications.

Proposition 5.3. Let (Mn, g, f) be a complete gradient shrinking Ricci soliton with
Ricci curvature bounded below. Assume that the potential function f ∈ C∞(M) is
normalized so that (1.3) holds. Then, with notation as in the proof of Corollary 5.1, we
have

Ṽ(gS) = Θ(M) :=
∫

M
(4πλ)−n/2e−f dµg. (5.8)

For the proof of Proposition 5.3, we will require the following estimates.

Theorem 5.4 (Cao–Zhou [CaZho]). Let (Mn, g, f) be a complete gradient shrinking
Ricci soliton. Fix a point p ∈ M . Then
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(1) it has at most Euclidean volume growth, i.e., VolB(p, r) ≤ Crn for some constant
C > 0.

(2) There are constants c1, c2 > 0 such that

1
4λ

(
d(x, p)2 − c1

)
≤ f(x) ≤ 1

4λ

(
d(x, p)2 + c2

)
for any x ∈ Mn.

From this theorem, we deduce that the integral
∫
M e−αf dµg makes sense for any

positive constant α > 0.

Proof of Proposition 5.3. Take a sequence {τi}i∈Z+ with τi → ∞ as i → ∞ and put
αi :=

√
1 − s

τi
. Fix r > 0 and τ̄ > 0 sufficiently large. We let

Ki(τ̄ − s) := LgSKτ̄−s,τi−s(p, r) and Ki := LgSKτi−s,τi−s(p, r).

For any q ∈ Ki(τ̄ − s), take pi := γ(τi − s) ∈ Ki, where γ is the minimal LgS -geodesic
from (p, 0) to (q, τ̄ − s).

It follows from the combination of Sublemma 3.7 and (5.6) that

ℓgS

(p,0)(q, τ̄ − s) =
1

2
√

τ̄ − s

(
LgS

(pi,τi−s)(q, τ̄ − s) + LgS

(p,0)(pi, τi − s)
)

≥ αi
1

2
√

τ̄
Lg0

(pi,τi)
(q, τ̄)

= αi

(
f(q, τ̄) −

√
τi

τ̄
f(pi, τi)

)
≥ αi

(
f(q, τ̄) −

√
τi

τ̄
max
Ki

f(·, τi)
)

= αif(q, τ̄) − C(τi)τ̄−1/2.

Recall that LgS

(p,0)(·, ·) ≥ 0, which follows from the non-negativity of the scalar curvature
of gS(τ) (see the paragraph before Theorem 3.6), and that Ki is compact.

Thus, by Proposition 3.1,

Ṽ(gS) ≤
(
1 − s

τ̄

)n/2
Ṽ gS

(p,0)(τ̄ − s) + ε(r)

≤
∫
Ki(τ̄−s)

(4πτ̄)−n/2 exp
(
−ℓgS

(p,0)(·, τ̄ − s)
)

dµg0(τ̄) + 3ε(r)

≤ eC(τi)τ̄
−1/2

∫
Ki(τ̄−s)

(4πτ̄)−n/2e−αif(·,τ̄) dµg0(τ̄) + 3ε(r)

≤ eC(τi)τ̄
−1/2

∫
M

(4πλ)−n/2e−αif dµg + 3ε(r).

Since r > 0 and τ̄ > 0 are arbitrary, we have obtained that

Ṽ(gS) ≤
∫

M
(4πλ)−n/2e−αif dµg (< ∞) (5.9)

and the right-hand side of (5.9) converges to the Gaussian density Θ(M) as i → ∞.
Combined with (5.4), this completes the proof of the proposition.
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We close this section by giving an application of Proposition 5.3 (cf. Naber [Na]).
Recall the definition of being κ-noncollapsing from Definition 3.16.

Proposition 5.5 (Gradient shrinking Ricci solitons are κ-noncollapsing). Let
(Mn, gS(τ)), τ ∈ [0,∞) be a complete gradient shrinking Ricci soliton with Ricci cur-
vature bounded below. Then we can find a constant κ > 0 depending only on n and
its Gaussian density Θ(M) such that (Mn, gS(τ)), τ ∈ [0,∞) is κ-noncollapsing on all
scale r > 0.

This is an immediate corollary of Proposition 5.3 and the following (cf. [Vol2-I,
Theorem 8.24]).

Proposition 5.6 (Ṽ(g) > 0 implies κ-noncollapsing). Let (Mn, g(τ)), τ ∈ [0,∞) be a
complete ancient solution to the Ricci flow with Ricci curvature bounded below. Suppose
that the asymptotic reduced volume Ṽ(g) of the ancient solution is strictly positive. Then
we can find κ > 0 depending only on n and Ṽ(g) > 0 such that (Mn, g(τ)), τ ∈ [0,∞)
is κ-noncollapsing on all scale r > 0.

5.2 Expanding Ricci solitons

Next, we consider gradient expanders of non-negative Ricci curvature and prove the
result corresponding to Corollary 5.1 for them. A gradient expanding Ricci soliton, or
gradient expander, is a triple (Mn, g, f) satisfying

Ric(g) − Hess f +
1
2λ

g = 0 (5.10)

for some positive constant λ > 0. We normalize the potential function f ∈ C∞(M)
so that λ(R + |∇f |2) − f = 0 on M for the expander (M, g, f) too. Beware that our
definition of gradient expanding Ricci solitons differs from the traditional one. The use
of equation (5.10) as the definition makes the statement of the following proposition
compatible with that of Corrollary 5.1.

Proposition 5.7 (Carrillo–Ni [CaNi]). Let (Mn, g, f) be a complete expanding Ricci
soliton with non-negative Ricci curvature. Then

(1) Mn is diffeomorphic to Rn.

(2) We have ∫
M

(4πλ)−n/2e−f dµg ≤ 1 (5.11)

and the equality holds if and only if (Mn, g, f) is, up to scaling, the expanding
Gaussian soliton

(
Rn, gE, | · |2

4

)
.

As in the case of gradient shrinking Ricci solitons, we will also refer to the left-hand
side of inequality (5.11) as the Gaussian density.

We remark that the proposition is a restatement of a result of Carrillo–Ni [CaNi].
Because our proof is simple and purely geometric in contrast to the one in [CaNi], we
decided to include it here.
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Proof of Proposition 5.7. First, we note that the potential function f ∈ C∞ is bounded
below and 1

2λ -convex, i.e., Hess f ≥ 1
2λg > 0. Therefore, f has the unique critical point

p ∈ M where the minimum value of f is attained. Part (1) of the proposition follows
from this and a Morse theoretic argument.

Next, as in the proof of Corollary 5.1, we construct a self-similar solution to the
(forward) Ricci flow g0(t) := t

λ(ψt)∗g, t ∈ (0,∞) and put g1(t) := g0(t + 1), t ∈ [0,∞).
Define the forward reduced distance at (q, t̄) ∈ M × (0,∞) by

ℓ+
(p,0)(q, t̄) :=

1

2
√

t̄
inf

{
L+(γ)

∣∣ γ(0) = p, γ(t̄) = q
}

where we defined the forward L-length L+(γ) of γ : [0, t̄] → M by

L+(γ) :=
∫ t̄

0

√
t

(∣∣∣∣dγ

dt

∣∣∣∣2
g1(t)

+ Rg1(t)(γ(t))

)
dt.

Then we consider the formal reduced volume defined by

V̂ g1

(p,0)(t) :=
∫

M
(4πt)−n/2 exp

(
−ℓ+

(p,0)(·, t)
)

dµg1(t). (5.12)

We do not care whether V̂ g1

(p,0)(t) is monotone. (This is the case when g1(t) has bounded
non-negative curvature operator or non-negative bisectional curvature in the Kähler
case [Ni4].)

Since (Mn, g1(t)) has non-negative Ricci curvature, we have

ℓ+
(p,0)(q, t̄ − 1) ≥ 1

2
√

t̄ − 1
inf
γ

∫ t̄−1

0

√
t

∣∣∣∣dγ

dt

∣∣∣∣2
g1(t̄−1)

dt

=
1

4(t̄ − 1)
dg1(t̄−1)(p, q)2 ≥ 1

4λ
dg(p, ψt̄(q))

2

and by Lemma 2.14,(
t̄ − 1

t̄

)n/2

V̂ g1

(p,0)(t̄ − 1) ≤
∫

M
(4πt̄)−n/2 exp

(
− 1

4λ
dg(p, ψt̄(·))2

)
dµg0(t̄)

=
∫

M
(4πλ)−n/2 exp

(
−dg(p, ·)2

4λ

)
dµg

≤ 1.

Then, from the same argument as in the derivation of (5.4) in the proof of Corol-
lary 5.1, we derive that ∫

M
(4πλ)−n/2e−f dµg ≤ lim inf

t→∞
V̂ g1

(p,0)(t)

and hence ∫
M

(4πλ)−n/2e−f dµg ≤
∫

M
(4πλ)−n/2 exp

(
−dg(p, ·)2

4λ

)
dµg ≤ 1 (5.13)

which yields (5.11).
When the Gaussiand density is 1, we have equalities in (5.13). Then we know from

the equality case of Lemma 2.14 that (Mn, g) is isometric to the Euclidean space. The
only way to regard (Rn, gE) as a gradient expanding Ricci soliton is the Gaussian soliton,
up to rescaling. This finishes the proof.
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5.3 Concluding remarks

In this section, we collect some remarks on the gap theorems we established in Chapters 4
and 5.

Remark 5.8. There is the optimal value εn of the constant obtained in Theorem 4.1,
namely εn := 1 − max Ṽ(g) > 0. We take the maximum over all the complete n-
dimensional non-Gaussian ancient solutions to the Ricci flow with Ricci curvature
bounded below. The maximum is achieved, as is seen by the limit argument used
in the proof of Lemma 4.2. Then it is easy to see that {εn}∞n=2 is a non-increasing
sequence. It seems interesting to determine the exact value of limn→∞ εn.

Proposition 5.9. In the above notation, there exists an n-dimensional complete ancient
solution (Mn, gmax(τ)), τ ∈ [0,∞) to the Ricci flow with uniformly bounded curvature
such that Ṽ(gmax) = 1 − εn.

Furthermore, for n = 2, 3, (Mn, gmax(τ)), τ ∈ [0,∞) is the shrinking round sphere.

Proof. The second statement of this proposition is a consequence of the facts that in di-
mensions 2 and 3, any ancient solution with bounded curvature and positive asymptotic
reduced volume is an ancient κ-solution (Proposition 5.6), and there is an asymptotic
soliton for any ancient κ-solution.

An asymptotic soliton of an ancient κ-solution (Mn, g(τ)), τ ∈ [0,∞) is a blow-down
limit of it around points {(qi, τi)} of Mn×[0,∞) where ℓ(p,0)(qi, τi) ≤ n/2 with τi → ∞ as
i → ∞; the existence of such (qi, τi)’s is guaranteed by the maximum principle applied
to inequality (7.5). An asymptotic soliton of any ancient κ-solution exists and is a
gradient shrinking Ricci soliton whose Gaussian density equals the asymptotic reduced
volume of the original ancient κ-solution ([Pe, Proposition 11.2]).

Then we can appeal to the classification results (Theorem 5.10) of gradient shrinkers
in dimensions 2 and 3, according to which, the asymptotic soliton of (Mn, gmax(τ)) is
the round sphere. Hamiton’s results on 3-dimensional Ricci flows with positive Ricci
curvature [Ha] and on 2-dimensional Ricci flows with positive curvature [Ha4] tells us
that an ancient κ-solution with the round sphere as an asymptotic soliton cannot be
anything but the shrinking round sphere. This proves the second statement of the
proposition.

Theorem 5.10 (Classification of gradient shrinking Ricci solitons). Let (Mn, g, f) be
a non-flat complete gradient shrinking Ricci soliton.

(1) If n = 2, (Mn, g, f) is the round sphere S2 or its quotient (e.g. Hamilton [Ha4],
Petersen–Wylie [PeWy]).

(2) If n = 3, (Mn, g, f) is the round sphere S3, the round cylinder S2 × R or their
quotient (e.g. Perelman [Pe2], Ni–Wallach [NiWa]).

The construction of an asymptotic soliton has in common with that of an asymptotic
cone of a manifold of non-negative Ricci curvature. We recall the following theorem of
Cheeger–Colding [ChCo, Theorem 7.6].

Theorem 5.11 (Asymptotic cone is a metric cone [ChCo], also Cheeger [Chee]). Let
Mn be a complete Riemannian manifold of non-negative Ricci curvatue with Euclidean
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volume growth, i.e., ν(g) > 0. Then any asymptotic cone, i.e., a pointed Gromov–
Hausdorff limit of (r−2

i Mn, o) with ri → ∞ for some fixed point o ∈ M , is a metri
cone.

The definition of metric cones is in Burago–Burago–Ivanov [BBI] for example.

Remark 5.12. Now we calculate an asymptotic reduced volume (or the Gaussian density)
for the round n-sphere (Sn, gSn) with constant Ricci curvature Ric(gSn) = 1

2gSn . Then
g(τ) := (1 + τ)gSn , τ ∈ [0,∞) is an ancient solution to the Ricci flow, while (Sn, gSn , f)
with f ≡ n

2 is a gradient shrinking Ricci soliton. By Proposition 5.3,

Ṽ(g) =
∫

Sn

(4π)−n/2e−n/2 dµgSn

=
√

2πmm+ 1
2 e−m

Γ(m + 1)

√
2
e
↗

√
2
e

as n ↗ ∞.

Here we have put n = 2m+1,m ∈ 1
2Z+ and used that Vol(Sn, 1

2(n−1)gSn) = 2πm+1/Γ(m+
1) and Stirling’s formula:

Γ(m + 1) =
√

2πmm+ 1
2 e−meθ(m) for m > 0,

where θ(m) ↘ 0 as m ↗ ∞. This gives an upper bound for the constant εn obtained
in Theorem 4.1:

εn ≤ 1 − e−θ(m)
√

2e−1 ↘ 1 −
√

2e−1 as n ↗ ∞.

Remark 5.13. (1) Feldman–Ilmanen–Ni [FIN] have discovered the forward reduced vol-
ume Ṽ +

(p,0)(t) for the (forward) Ricci flow (Mn, g(t)), t ∈ [0, T ) which is non-increasing
in t. However, its definition is given by

Ṽ +
(p,0)(t) :=

∫
M

(4πt)−n/2 exp
(
ℓ+
(p,0)(·, t)

)
dµg(t)

(cf. with (5.12)) and it is not well-defined for general non-compact manifolds. It is not
likely that Theorem 4.1 has an analogue for the forward reduced volume Ṽ +

(p,0)(t).

(2) One can also easily generalize the monotonicity of Ṽ +
(p,0)(t) to the forward super

Ricci flows ∂
∂tg ≥ −2Ric(g(t)), if the condition corresponding to Assumption 2.4 is

imposed; see also Müller [Mü].

Remark 5.14. In Carrillo–Ni’s preprint [CaNi], the potential function f ∈ C∞ of the
gradient Ricci soliton (Mn, g, f) is normalized so that∫

M
(4πλ)−n/2e−f dµg = 1.

Then their main result is the logarithmic Sobolev inequality for gradient Ricci solitons
with the constant µ(g, f) := λ(R + |∇f |2) − f as the best constant.

Theorem 5.15 (Logarithmic Sobolev inequality for gradient shrinkers [CaNi]). Let
(Mn, g, f) be a complete gradient shrinking Ricci soliton. Then∫

M

[
λ(|∇ψ|2 + R) + ψ − n

]
ρ dµg ≥ −µ(g, f) (5.14)

for any non-negative function ρ := (4πλ)−n/2e−ψ ≥ 0 with compact support and∫
M ρ dµg = 1.
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They also showed that µ(g, f) ≥ 0 for gradient shrinking Ricci solitons under the
curvature condition stronger than ours and conjectured that µ(g, f) = 0 implies that
it is the Gaussian soliton. It is easily checked that µ(g, f) = − log Θ(M), where Θ(M)
is the Gaussian density of (Mn, g, f) with f being normalized in our sense as in (1.3).
Hence, Corollary 5.1.(2) gives an affirmative answer to the conjecture in [CaNi].

The Logarithmic Sobolev inequality of Carrillo–Ni was utilized by Cao–Zhu in order
to prove that any complete non-compact gradient shrinking Ricci soliton has infinite
volume (see Cao [Ca]).

Remark 5.16. Recall that, in the proof of Corollary 5.1, we have used the assumption
that Ric ≥ −K for some K ∈ R only to ensure the existence of minimal L-geodesics
connecting any point in space-time to the base point. A natural question is whether the
assumption on Ric in the statement of Corollary 5.1 is superfluous.
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Chapter 6

Asymptotic volume ratio under

the Ricci flow

In this short chapter, we consider the behavior of the asymptotic volume ratio under
the Ricci flow. Recall that the asymptotic volume ratio, or shortly AVR, ν(g) of a com-
plete Riemannian manifold (Mn, g) with non-negative Ricci curvature is, by definition,
ν(g) := limr→∞ VolB(p, r)/ωnrn. Here ωn represents the volume of the unit ball in the
Euclidean space (Rn, gE).

The purpose of this chapter is to prove the following.

Proposition 6.1. Let (Mn, g(t)), t ∈ [0, T ] be a complete Ricci flow with bounded non-
negative Ricci curvature. Then its asymptotic volume ratio ν(g(t)) is independent of
t.

Hamilton [Ha5, Theorem 18.3] proved this proposition under the assumption that
the curvature operator is non-negative and decays to 0 at the spacial infinity, i.e.,
|Rm|(xi) → 0 as xi → ∞.

We invoke the following theorem of Cheeger–Colding [ChCo2, Theorem 5.9] to prove
Proposition 6.1.

Theorem 6.2 (Volume convergence theorem [ChCo2], also Cheeger [Chee]). Let
{(Mi, pi)} be a sequence of pointed n-dimensional complete Riemannian manifolds with
uniform lower Ricci curvature bound Ric(gi) ≥ −(n − 1)K for some constant K ≥ 0.
Suppose that there is a positive constant v > 0 such that

Vol (BMi(pi, 1)) ≥ v for all i = 1, 2, . . . ,

and {(Mi, pi)} converges to a metric space (X,x) in the pointed Gromov–Hausdorff
topology. Then, for any r > 0,

lim
i→∞

Vol (BMi(pi, r)) = Hn(BX(x, r)), (6.1)

where Hn denotes the n-dimensional Hausdorff measure which is normalized to agree
with the n-dimensional Lebesgue measure.

We need to give the definition of pointed Gromov–Hausdorff convergence. At first,
recall that a metric space is said to be proper if any closed metric ball in it is compact.

44



Definition 6.3. We say that a sequence {(Xi, xi)} of pointed proper metric spaces
converges to (X,x) in the pointed Gromov–Hausdorff topology if for any ε > 0, there
exists an ε-approximation map from (X,x) to (Xi, xi) for all large i. A map f : (X, p) →
(Y, q) with f(p) = q is called an ε-approximation map if

the ε-neighborhood of f(BX(p, 1/ε)) contains BY (q, 1/ε), (6.2)

and
|d(x, y) − d(f(x), f(y))| < ε for any x, y ∈ BX(p, 1/ε). (6.3)

An ε-approximation map does not need to be continuous.

Proof of Proposition 6.1. We fix 0 ≤ t1 < t2 ≤ T and K < ∞ such that 0 ≤ Ric ≤ K

on M × [t1, t2]. Since it follows easily from

e2K(t2−t1)g(t2) ≥ g(t1) ≥ g(t2)

that ν(g(t1)) = 0 if and only if ν(g(t2)) = 0, we may assume that ν(g(t)) > 0.
We recall the following lemma (e.g. [Ha5, Theorem 17.2]) which can be deduced

from the second variational formula.

Lemma 6.4 (Hamilton [Ha5], cf. Lemma A.1). Let (Mn, g(t)), t ∈ [0, T ] be a Ricci flow
which is complete with Ricci curvature bounded above Ric ≤ K by K ≥ 0. Then, for
any two points x, y ∈ M ,

d−

dt
dg(t)(x, y) ≥ −Const.

√
K. (6.4)

This lemma tells us that when the Ricci flow shrinks the metric, the distance does
not shrink so much. From this lemma and the non-negativity of the Ricci curvature, we
have

dg(t1)(x, y) ≥ dg(t2)(x, y) ≥ dg(t1)(x, y) − Const.
√

K(t2 − t1), (6.5)

for any x, y ∈ M .
By Gromov’s pre-compactness theorem [Gr], there exists a sequence ri → ∞ such

that {(M, r−2
i g(t1), p)} converges to a metric space (X,x) in the pointed Gromov–

Hausdorff topology. This (X,x) is called an asymptotic cone of (M, g(t1), p). In our
case, due to (6.5), we know that {(M, r−2

i g(t2), p)} also converges to (X,x), because
an ε-approximation map of (X,x) into (M, r−2

i g(t1), p) is a 2ε-approximation map of
(X,x) into (M, r−2

i g(t2), p) as well for sufficiently large i. Namely, both of (M, g(t1))
and (M, g(t2)) have (X,x) as an asymptotic cone.

Under this setting, Proposition 6.1 follows from the volume convergence theorem
quoted above. Indeed,

ν(g(t1)) = lim
i→∞

Vol B(p, 1; r−2
i g(t1))

= Hn(BX(x, 1))

= lim
i→∞

Vol B(p, 1; r−2
i g(t2)) = ν(g(t2)).

This proves Proposition 6.1.
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As a first application of Proposition 6.1, we are able to state a variant of the gap the-
orem we obtained in Chapter 4. Notice that Theorem 6.5 also generalizes Theorem 1.2
in the introduction which is a gap theorem for Ricci-flat manifolds.

Theorem 6.5 (Gap theorem II for ancient solutions). For any n ≥ 2, there exists a
constant ε′n > 0 satisfying the following: let (Mn, g(τ)), τ ∈ [0,∞) be an n-dimensional
complete ancient solution to the Ricci flow with bounded non-negative Ricci curvature.
Suppose that the asymptotic volume ratio ν(g(τ∗)) of g(t∗) is greater than 1−ε′n at some
time τ∗ ∈ [0,∞). Then (Mn, g(τ)), τ ∈ [0,∞) is the Gaussian soliton.

It follows from Proposition 6.1 that the asymptoic volume ratio ν(g(τ)) of a Ricci
flow with bounded non-negative Ricci curvature is constant in τ . The proof of Theo-
rem 6.5 is essentially the same as that of Theorem 4.1 and we leave it to the interested
reader.

We also comment here that Theorem 6.5 is not true when the ancient solution g(τ)
in the statement is replaced with an immortal solution g(t), t ∈ [0,∞) to the (forward)
Ricci flow. In fact, one can show that any Ricci flow g(t), t ∈ [0, T ) which has bounded
non-negative curvature operator and the initial metric g(0) = g0 with positive ν(g0) > 0
extends to the immortal solution g(t), t ∈ [0,∞) (see Proposition 6.6 below). (See also
the example in [CLN, Chapter 4, Section 5].)

The following proposition is another useful application of Proposition 6.1.

Proposition 6.6. Let (Mn, g(t)), t ∈ [0, T ) be a complete Ricci flow with non-negative
bounded curvature operator whose initial metric g(0) = g0 has Euclidean volume growth,
i.e., ν(g(0)) > 0. Then we can extend (M, g(t)) to the immortal solution (M, g(t)), t ∈
[0,∞) to the Ricci flow.

Proof. Let (Mn, g(t)), t ∈ [0, T ) be a Ricci flow as in the proposition. Proposition 6.1
says that ν(g(t)) = ν(g(0)) is constant in t and positive. Assume that it develops a
singularity in finite time T < ∞. Then we know that supM×[0,T ) |Rm| = ∞ (Shi [Sh])
and take a blow-up limit (Mn

∞, g∞(t)), τ ∈ (−∞, 0] of (Mn, g(t)) around the singular
time t = T . Then the asymptotic volume ratio of (Mn

∞, g∞(t)) is not less than ν(g(0)) >

0 and hence (Mn
∞, g∞(t)) is a κ-solution with ν(g∞(t)) ≥ ν(g(0)) > 0. This is in conflict

with Proposition 3.17.

Proposition 6.6 is closely related to the result in Ni [Ni2] for the Kähler Ricci flow.
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Chapter 7

Asymptotic reduced volume

In the study of the Ricci and other geometric flows, monotone quantities have been
playing significant roles. One of Perelman’s achievements in his seminal paper [Pe] is
the monotonicity of the reduced volume given by

Ṽ(p,0)(τ) :=
∫

M
(4πτ)−n/2 exp

(
−ℓ(p,0)(·, τ)

)
dµg(τ) for τ > 0

(Theorems 2.12 and 2.17). Here, ℓ(·, τ) = ℓ(p,0)(·, τ) is the reduced distance from the
base point (p, 0) (Definition 2.9). An application of the monotonicity of the reduced
volume is to rule out local collapsing for the Ricci flow (Theorem 2.1), and even for the
Ricci flow with surgery (see [Pe2]).

Subsequently, another monotone quantity of the form

I(p,0)(r) :=
1
rn

∫∫
Er

[
|∇ℓ|2 + R

(
n log

r√
4πτ

− ℓ

)]
dµdτ for r > 0

was also discovered by Ecker–Knopf–Ni–Topping [EKNT]. Here Er is a certain sub-
set, called ‘pseudo heat ball’, of the space-time. The precise definition is given in the
following section.

At this point, it is natural to ask the following question ([EKNT]).

How is the local monotone quantity I(p,0)(r) related to the global one
Ṽ(p,0)(τ)?

Partially motivated by this question, we now state the main result of this chapter
as follows:

Theorem 7.1. Let (Mn, g(τ)), τ ∈ [0,∞) be a complete ancient solution to the Ricci
flow with bounded curvature. Then for any p ∈ M , we have

lim
τ→∞

Ṽ(p,0)(τ) = lim
r→∞

I(p,0)(r). (7.1)

Our Theorem 7.1 can be thought of as a general answer to the question quoted above,
as well as a Ricci flow analogue of the following (cf. Lemma 2.14): for any Riemannian
manifold (Mn, g) with non-negative Ricci curvature,

lim
τ→∞

∫
M

(4πτ)−n/2 exp
(
−d(·, p)2

4τ

)
dµ = lim

r→∞

Vol B(p, r)
ωnrn

. (7.2)
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7.1 Definition

We first give a definition of the monotone quantity I(p,0)(r). Suppose that we have a
supper Ricci flow (Mn, g(τ)), τ ∈ [0, T ] which is complete and whose time-derivative
∂
∂τ g is bounded below by a constant on M × [0, T ]. Let K = K(p,0) be a reduced volume
density:

K(q, τ) = K(p,0)(q, τ) := (4πτ)−n/2 exp
(
−ℓ(p,0)(q, τ)

)
. (7.3)

Recall that if (Mn, g(τ)) is C1-controlled, we have seen in Theorem 2.17 that the
quantity defined by

Ṽ ϕ
(p,0)(τ) :=

∫
M

K(·, τ)ϕ(·, τ) dµg(τ)

is non-increasing in τ for any non-negative function ϕ(·, τ) ≥ 0 on M × [0, T ] satisfying(
∂
∂τ + ∆g(τ)

)
ϕ ≤ 0 in the distributional sense, i.e.,∫

M

[
ξ
∂ϕ

∂τ
− 〈∇ξ,∇ϕ〉

]
dµg(τ) ≤ 0 (7.4)

for any non-negative smooth function ξ ≥ 0 on M × [0, T ] with compact support.

Definition 7.2 ([EKNT], [Ni3]). For any r > 0, we let Er denote the ‘pseudo heat ball’
given by

Er :=
{
(q, τ) ∈ M × (0, T ]

∣∣ K(q, τ) > r−n
}

.

Then for a non-negative function ϕ ≥ 0 on M × [0, T ], we define

Iϕ
(p,0)(r) :=

1
rn

∫∫
Er

(∣∣∇ log(Krn)
∣∣2 + H log(Krn)

)
ϕdµdτ

and

Jϕ
(p,0)(r) :=

∫∫
∂Er

|∇K|2√
|∇K|2 +

∣∣ ∂
∂τ K

∣∣2 ϕdÃ +
1
rn

∫∫
Er

Hϕdµdτ.

Here dÃ is the area element induced by the product metric g̃ := g(τ)+dτ2 on M×(0, T ).

The following proposition stated in [Ni3] gives the relation between Iϕ
(p,0)(r) and

Jϕ
(p,0)(r).

Proposition 7.3 (Ni [Ni3]). For any r > 0,

Iϕ
(p,0)(r) =

n

rn

∫ r

0
ηn−1Jϕ

(p,0)(η) dη.

We state a theorem stating that the quantity defined above is monotone.

Theorem 7.4 (Monotonicity of I(p,0)(r) [EKNT]). Let (Mn, g(τ)), τ ∈ [0, T ] be a com-
plete super Ricci flow satisfying Assumption 2.4 with time-derivative ∂

∂τ g bounded below.
Suppose that ϕ ≥ 0 satisfies

(
∂
∂τ + ∆g(τ)

)
ϕ ≤ 0 in the distributional sense. For any

p ∈ M , find r∗ > 0 such that r ∈ (0, r∗) implies that Er ⊂ M × [0, T − ε) for some ε =
ε(r) > 0. Then Iϕ

(p,0)(r) is non-increasing in r ∈ (0, r∗) and limr→0+ Iϕ
(p,0)(r) = ϕ(p, 0).
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It was shown by Ni [Ni3] that Jϕ
(p,0)(r) is non-increasing in r as well for any smooth

ϕ ≥ 0 and sufficiently small r > 0 so that K is also smooth on Er. His point is that the
monotonicity of Iϕ

(p,0)(r) is a consequence of that of Jϕ
(p,0)(r) and Proposition 7.3. The

following fact is well-known:

If
f(r)
g(r)

is non-increasing in r > 0, then so is

∫ r
0 f(η)dη∫ r
0 g(η)dη

.

An example of a locally Lipschitz function ϕ ≥ 0 on the space-time as in the above
theorems, other than the constant function ϕ ≡ 1, is the function

ϕ(q, τ) := max

{
0,

L̄(p∗,0)(q, τ) − 2nτ

ρ2

}
,

where L̄(p∗,0)(q, τ) := 4τℓ(p∗,0)(q, τ) with (p∗, 0) ∈ M × {0} and ρ > 0 is a positive
constant. This is a consequence of the inequality ([Pe, (7.15)]):(

∂

∂τ
+ ∆g(τ)

)
L̄ ≤ 2n, (7.5)

which follows from the computations in Section 2.3. A function which is similar but has
compact support was utilized by Ni [Ni4] in order to localize the forward Reduced volume
of Feldman–Ilmanen–Ni [FIN] and Perelman’s W-functional (cf. Proposition 2.5).

See Ecker [Ec] for earlier works on (local) monotonicity formulae and their applica-
tions for mean curvature flow.

Let us look at examples. In our terminology, Watson’s mean value formula for heat
equations ([Wa], also Evans [Ev]) can be stated as follows:

Example 7.5. Let (Rn, g(τ) ≡ gE), τ ∈ [0,∞) be the Gaussian soliton and ϕ = ϕ(·, τ)
be a smooth solution to the heat equation

(
∂
∂τ + ∆

)
ϕ = 0. (Recall that τ is the

backward time.) Take any p ∈ Rn. Then K(p,0)(·, τ) is the heat kernel and

Iϕ
(p,0)(r) =

1
rn

∫∫
Er

∣∣∇ log K
∣∣2ϕdµdτ = ϕ(p, 0) for all r > 0.

As a special case, we consider the static super Ricci flow.

Proposition 7.6. Let (Mn, g) be a complete Riemannian manifold of non-negative
Ricci curvature regarded as a static super Ricci flow, i.e., g(τ) ≡ g. Then for any
p ∈ M ,

lim
r→∞

I(p,0)(r) = ν(g) = lim
τ→∞

Ṽ(p,0)(τ). (7.6)

Here ν(g) denotes the asymptotic volume ratio of (Mn, g) as before.

Proof. Because the second equality of (7.6) is a consequence of Lemma 2.14, it suffices
to show the first equality.

As was shown in [EKNT, Lemma 9], with ψ := log K,

I(p,0)(r) =
1
rn

∫∫
Er

[
|∇ψ|2 − ∂ψ

∂τ

]
dµdτ for all r > 0. (7.7)
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Using (7.7) and that ℓ(p,0)(·, τ) = 1
4τ d(·, p)2, we know

I(p,0)(r) =
1
rn

∫∫
Er

n

2τ
dµdτ =

1
rn

∫ r2

4π

0

n

2τ
VolB

(
p,

√
2nτ log

r2

4πτ

)
dτ

=
1
rn

∫ ∞

0
Vol B

(
p,

√
r2

π
u exp

(
− 2

n
u

))
du,

where we change the variable by u := n
2 log

(
r2

4πτ

)
.

Since, by the Bishop–Gromov inequality,

ωnrn ≥ Vol B(p, r) ≥ ν(g)ωnrn for any r > 0,

we have
I(p,0)(r) ≥ ν(g)

ωn

πn/2
Γ

(n

2
+ 1

)
= ν(g).

On the other hand, for any ε > 0, find R(ε) > 0 such that

Vol B(p, r) ≤ (ν(g) + ε)ωnrn for r ≥ R(ε),

and for some fixed r > 0, let [u1, u2] be the maximal interval such that

r2

π
u exp

(
− 2

n
u

)
≥ R(ε)2 for u ∈ [u1, u2].

Notice that [u1, u2] → [0,∞) as r → ∞. Letting Γ(a, b) :=
∫ b
a un/2e−udu, we obtain

I(p,0)(r) ≤
ωn

πn/2

[
(ν(g) + ε)Γ(u1, u2) + Γ(0, u1) + Γ(u2,∞)

]
→ ν(g) + ε as r → ∞.

Since ε > 0 is arbitrary, this proves the proposition.

Now, let us go back to the question at the beginning of this chapter. In order to
answer the question, Ecker et al. [EKNT] focused on gradient shrinking Ricci solitons.
Recall that a gradient shrinking Ricci soliton is a triple (Mn, g, f) satisfying

Ric(g) + Hess f =
1
2λ

g for some constant λ > 0.

A shrinking Ricci soliton naturally gives rise to an ancient solution (M, g0(τ)), τ ∈ (0,∞)
(see (5.3)). An important geometrical quantity associated to a gradient shrinking Ricci
soliton (Mn, g, f) is the Gaussian density

Θ(M) :=
∫

M
(4πλ)−n/2e−f dµg.

In this setting, Ecker et al. prove

Proposition 7.7 ([EKNT, Corollary 18]). Let (M, g0(τ)), τ ∈ (0,∞) be the ancient
solution to the Ricci flow determined by a compact gradient shrinking Ricci soliton
(M, g, f). Fix any p ∈ M . Then for any τ > 0 and r > 0,

Ṽ(p,0)(τ) = I(p,0)(r) = Θ(M).

50



Note that in the situation of Proposition 7.7, (M, g0(τ)) shrinks to a point as τ → 0+
and what they are dealing with is the reduced distance and volume from the singular
point. Hence the results like

• Θ(M) ≤ 1 and

• Θ(M) = 1 ⇐⇒ (Mn, g) is isometric to (Rn, gE)

does not follow from Proposition 7.7 (immediately, at least). It was [CaNi] and [Yo2]
where such comparison geometric results were established under respective curvature
conditions. This is how our Theorem 7.1 differs from Proposition 7.7.

We should mention Hamilton–Sesum [HaSe], Naber [Na] and Enders [Ed] where the
reduced distance/volume based at a singular point was studied under some singularity
assumptions. Among them, Naber [Na] used the reduced distance function from the
Type I singular point to prove that any blow-up limit of Type I singularity of the Ricci
flow is a gradient shrinking Ricci soliton (see the remark following Corollary 3.11).

Now we are in a position to formulate the main result of this chapter. Recall that
we say that a super Ricci flow (M, g(τ)), τ ∈ [0, T ] is C1-controlled (section 2.4) when
we can find a positive function K(τ) > 0 of τ such that

sup
M×[0,τ ]

{
|h| + |∇H|2

}
≤ K(τ) for each τ ∈ (0, T ].

Theorem 7.8. Let (Mn, g(τ)), τ ∈ [0,∞) be a super Ricci flow which is complete,
ancient and C1-controlled. Then for any p ∈ M and a non-negative locally-Lipschitz
function ϕ ≥ 0 on M × [0,∞) with

(
∂
∂τ + ∆g(τ)

)
ϕ ≤ 0 in the distributional sense, we

have
lim

τ→∞
Ṽ ϕ

(p,0)(τ) = lim
r→∞

Iϕ
(p,0)(r). (7.8)

Clearly, Theorem 7.8 contains Theorem 7.1 as a special case.

7.2 Proof of Theorem 7.1

In this section, we describe the proof of Theorem 7.8 which generalizes Theorem 7.1.

Proof of Theorem 7.8. In order to establish (7.8), we follow the same line as in the proof
of Theorem 7.4 given in [EKNT].

First of all, we fix small ε > 0. Take a C∞-function η : (−∞,∞) → [0,∞) such that
the support is contained in [0, ε] and

∫ ∞
0 η(y)dy = 1. We define

ζ(x) :=
∫ x

0
η(y)dy and Z(x) :=

∫ x

0
ζ(y)dy.

Notice that η is a smooth approximation of the Delta function, and hence, ζ and Z

approach to the Heviside function χ and the function x 7→ [x]+ := max{x, 0} as ε → 0+,
respectively. More precisely, for any x ∈ (−∞,∞), we have

χ(x − ε) ≤ ζ(x) ≤ χ(x)

and hence
[x − ε]+ ≤ Z(x) ≤ [x]+.
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Set

Q(s, r) :=
∫∫

M×[s,∞)

(∣∣∇ log K
∣∣2ζ(log(Krn)) + HZ(log(Krn))

)
ϕdµdτ

for all s ≥ 0 and r > 0. We also put I(s, r) := Q(s, r)/rn and I(r) := I(0, r). Then we
know

e−εIϕ
(p,0)(e

−ε/nr) ≤ I(r) ≤ Iϕ
(p,0)(r) for all r > 0. (7.9)

Here we used the fact (Proposition 3.5, cf. Chen [Che]) that: For any complete ancient
super Ricci flow (M, g(τ)) satisfying (2.3), H is non-negative on M × [0,∞).

Next, we have

d

dr
I(s, r)

=
n

rn+1

(
r

n

d

dr
Q(s, r) − Q(s, r)

)
=

n

rn+1

∫∫
M×[s,∞)

(∣∣∇ log K
∣∣2ζ ′ + HZ ′ −

∣∣∇ log K
∣∣2ζ − HZ

)
ϕdµdτ.

We use the well-known formula ∂
∂τ dµg(τ) = H dµg(τ) to get

d

dτ

∫
M

Z(log(Krn))ϕdµg(τ) =
∫

M

[(
Z ′ 1

K

∂K

∂τ
+ ZH

)
ϕ + Z

∂ϕ

∂τ

]
dµg(τ).

Since
∫
M×{s′} Zϕdµ = 0 for all s′ >> 1 with M × [0, s′) ⊃ Er, we obtain

−
∫

M×{s}
Z(log(Krn))ϕdµ =

∫∫
M×[s,∞)

[(
Z ′ 1

K

∂K

∂τ
+ ZH

)
ϕ + Z

∂ϕ

∂τ

]
dµdτ.

Thus
d

dr
I(s, r) =

n

rn+1

∫∫
M×[s,∞)

A dµdτ +
∫

M×{s}
Z(log(Krn))ϕdµ, (7.10)

where we let

A :=
(∣∣∇ log K

∣∣2ζ ′ + HZ ′ −
∣∣∇ log K

∣∣2ζ + Z ′ 1
K

∂K

∂τ

)
ϕ + Z

∂ϕ

∂τ
.

We also let

A∗ := − 〈∇ℓ,∇(ζϕ)〉 +
(
−|∇ℓ|2 + H +

1
K

∂K

∂τ

)
(ζϕ)

+
(

Z
∂ϕ

∂τ
− 〈∇Z,∇ϕ〉

)
to observe that ∫

M
A dµg(τ) =

∫
M

A∗ dµg(τ) ≤ 0 for all τ > 0. (7.11)

To show (7.11), we have used∫
M

|∇ log K|2ζ ′ϕ dµ =
∫

M
〈∇ log K,∇ζ〉ϕdµ

=
∫

M

[
〈∇ log K,∇(ζϕ)〉 − ζ〈∇ log K,∇ϕ〉

]
dµ

=
∫

M

[
〈∇ log K,∇(ζϕ)〉 − 〈∇Z,∇ϕ〉

]
dµ.
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The last inequality in (7.11) follows from (7.4) and (2.21).
Integrating (7.10) for r1 ≤ r ≤ r2 yields

I(s, r2) − I(s, r1)

=
∫ r2

r1

n

rn+1
dr

∫ ∞

s
dτ

∫
M

A dµg(τ) + E(s; r1, r2)

=
∫ ∞

s
dτ

∫ r2

r1

n

rn+1
dr

∫
M

A∗ dµg(τ) + E(s; r1, r2),

where E(s; r1, r2) denotes the extra term:

E(s; r1, r2) :=
∫ r2

r1

dr

∫
M×{s}

Z(log(Krn))ϕdµ.

We have applied Fubini’s theorem. This can be done freely due to (7.11).
Now we see that E(s; r1, r2) → 0 as s → 0+. Indeed,

lim sup
s→0+

E(s; r1, r2)

≤ lim sup
s→0+

(r2 − r1)
(

n log
r2√
4πs

)
Volg(s)

{
ℓ(·, s) < n log

r2√
4πs

}
≤ lim sup

s→0+
(r2 − r1)

(
n log

r2√
4πs

)
ωn

(
4ns log

r2√
4πs

)n/2

=0.

With this observation, letting s → 0+ yields

I(r2) − I(r1) =
∫ ∞

0
dτ

∫ r2

r1

n

rn+1
dr

∫
M

A∗ dµg(τ) ≤ 0, (7.12)

which implies the monotonicity of I(r) in r > 0. (We can now let ε → 0+ to see that
Iϕ
(p,0)(r) is non-increasing in r > 0.)

Here, for any positive K > 0, we set

Kη :=
∫ ∞

0

n

rn+1
η(log(Krn)) dr,

and Kζ and KZ are also defined similarly. It is easy to check by using the integration
by parts that

Kη = Kζ = KZ = eδ(η)K, where eδ(η) :=
∫ ∞

0
η(y)e−ydy.

Notice that δ(η) ≤ 0 and δ(η) → 0 as ε → 0+.
Then for any τ > 0,∫ ∞

0

n

rn+1
dr

∫
M

A dµg(τ)

=
∫

M

[(
|∇ℓ|2Kη + HKζ − |∇ℓ|2Kζ +

Kζ

K

∂K

∂τ

)
ϕ + KZ

∂ϕ

∂τ

]
dµg(τ)

=eδ(η)

∫
M

[(
|∇ℓ|2K + HK − |∇ℓ|2K +

∂K

∂τ

)
ϕ + K

∂ϕ

∂τ

]
dµg(τ)

=eδ(η)

∫
M

[(
HK +

∂K

∂τ

)
ϕ + K

∂ϕ

∂τ

]
dµg(τ).
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We are implicitly using the integrability of each term (Proposition 2.19) to derive the
equations above.

By letting r2 → ∞ and r1 → 0 in (7.12), we then get

lim
r→∞

I(r) − lim
r→0

I(r)

=
∫ ∞

0
dτ

∫ ∞

0

n

rn+1
dr

∫
M

A dµg(τ)

=eδ(η)

∫ ∞

0
dτ

∫
M

[(
HK +

∂K

∂τ

)
ϕ + K

∂ϕ

∂τ

]
dµg(τ).

Finally, we take ε → 0+ and use (7.9) to conclude that

lim
r→∞

Iϕ
(p,0)(r) − ϕ(p, 0) =

∫ ∞

0
dτ

∫
M

[(
HK +

∂K

∂τ

)
ϕ + K

∂ϕ

∂τ

]
dµg(τ). (7.13)

On the other hand, we know that

lim
τ→∞

Ṽ ϕ
(p,0)(τ) − ϕ(p, 0) =

∫ ∞

0
dτ

∫
M

[(
∂K

∂τ
+ KH

)
ϕ + K

∂ϕ

∂τ

]
dµg(τ). (7.14)

Combining (7.13) and (7.14) completes the proof of Theorem 7.8.

Now, with the help of Theorem 7.1, we are able to restate Theorem 4.1 as follows:

Theorem 7.9 (Gap theorem III for ancient solutions). The constant εn > 0 we obtained
in Theorem 4.1 satisfies the following property as well: Let (Mn, g(τ)), τ ∈ [0,∞) be an
n-dimensional complete ancient solution to the Ricci flow with bounded curvature such
that

lim
r→∞

I(p,0)(r) > 1 − εn for some p ∈ M.

Then (Mn, g(τ)), τ ∈ [0,∞) must be the Gaussian soliton (Rn, gE).

It is interesting to compare Theorem 7.9 with the following local regularity theorem
for the Ricci flow, which is originally due to Ni [Ni3, Theorem 4.4]. See [Ec] and [Si] for
local regularity theorems for mean curvature flow and harmonic maps, respectively.

Theorem 7.10 (ε-regularity theorem, cf. [Ni3]). For any n ≥ 2, there exists constants
ε = ε(n) > 0, C < ∞ and ρ0 > 0 such that: Let (Mn, g(τ)), τ ∈ [0, r2

0) be a complete
backward Ricci flow and o ∈ M be a fixed point. Suppose that (Mn, g(τ)) satisfies that

I(p,τ)(ρ0) > 1 − ε

for all (p, τ) with |Rm|(p, τ) > C(r2
0 − τ)−1, dg(τ)(o, p) < 2r0, τ ∈ [0, r2

0) and

|Rm| ≤ 2|Rm|(p, τ) =: 2Q on Bg(τ)(p, r0Q
−1/2) × [τ, τ + CQ−1].

Here I(p,τ)(ρ0) denotes Igτ

(p,0)(ρ0) for gτ (s) := g(s− τ), s ∈ [0, r2
0 − τ), as in Lemma 4.2.

Then we have
|Rm|(p, τ) ≤ C(r2

0 − τ)−1

for all (p, τ) with dg(τ)(o, p) < r0 and τ ∈ [0, r2
0).
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Let us reconsider gradient shrinking Ricci solitons. We let gS(τ) := g0(τ + s), τ ∈
[0,∞) for some fixed s > 0, where g0(τ) is the ancient solution defined in (5.3). Notice
that τ = 0 is no longer the singular time for (M, gS(τ)).

Combined with Proposition 5.3, Theorem 7.1 implies the following corollary (com-
pare with Proposition 7.7).

Corollary 7.11. Let (Mn, gS(τ)), τ ∈ [0,∞) be the ancient solution to the Ricci flow
determined by a complete gradient shrinking Ricci soliton (Mn, g, f) with bounded cur-
vature. Then for any p ∈ M ,

lim
τ→∞

Ṽ(p,0)(τ) = lim
r→∞

I(p,0)(r) = Θ(M).

We conclude this chapter with a few remarks.

Remark 7.12. (1) The author wonders whether Theorem 7.1 still holds under the
assumption of Theorem 4.1, i.e., only the Ricci curvature is bounded from be-
low. He believes that a more understanding of Perelman’s reduced geometry
from a geometric viewpoint is required to attack the problem. The reduced vol-
ume Ṽ(p,0)(τ) and I(p,0)(r) are well-defined as long as ∂

∂τ g is bounded from below
(see [Ye2], [EKNT]).

(2) The reader is referred to Ni’s paper [Ni] where he raises an interesting question
closely related to our Theorem 7.1.
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Chapter 8

Harnack implies bounded

curvature in dimension 2

In this chapter, we consider the Ricci flow (Mn, g(t)), t ∈ [0, T ] with non-negative cur-
vature operator. A remarkable achievement of Hamilton [Ha3] is the following Harnack
inequality for the Ricci flow with non-negative bounded curvature operator, by which
we are able to compare the curvatures at different points in space-time. We state its
trace version.

Theorem 8.1 (Trace Harnack inequality, Hamilton [Ha3]). Let (Mn, g(t)), t ∈ [0, T ] be
a complete Ricci flow with bounded non-negative curvature operator. Then, we have

∂R

∂t
+

R

t
+ 2 〈∇R, V 〉 + 2Ric(V, V ) ≥ 0 (8.1)

for any vector field V on M .

Hamilton’s Harnack inequality has its root in Li–Yau’s paper [LiYa]. This inequality
was generalized by Chow–Hamilton [ChHa] as follows. We use the Einstein convention
to state it.

Theorem 8.2 (Linear trace Harnack inequality, Chow–Hamilton [ChHa]). Let
(Mn, g(t)), t ∈ [0, T ] be a complete Ricci flow with bounded non-negative curvature oper-
ator. Suppose that we have a weakly positive definite symmetric 2-tensor hij ≥ 0, with
appropriate bound on the growth order, evolving the heat equation:

∂

∂t
hij = ∆hij + 2 Rpijqhpq − Riphjp − Rjphip. (8.2)

Then, letting H := trg(t)h be the trace of hij, we have

Z := div(div(h)) + 〈Ric, h〉 + 〈2 div(h), V 〉 + h(V, V ) +
H

2t
≥ 0 (8.3)

for any vector field V on M .

Recall that the Ricci tensor Rij of the Ricci flow (Mn, g(t)) evolves along the heat
equation (e.g. [Vol1, Lemma 6.9]):

∂

∂t
Rij = ∆Rij + 2 RpijqRpq − 2 RipRjp, (8.4)
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while the evolution equation for the scalar curvature R is given by

∂

∂t
R = ∆R + 2 |Rij |2 (8.5)

(e.g. [Vol1, Lemma 6.7]). From these equations and the second Bianchi identity: 2∇jRij =
∇iR, we know that Theorem 8.2 indeed generalizes Theorem 8.1.

The proofs of Theorems 8.1 and 8.2 rely on the argument based on the maximum
principle. Hence the assumptions of bounded curvature are essential. Now, here is a
natural question: Is it possible to show Hamilton’s Harnack estimate for the Ricci flow
if we do not assume that the curvature is bounded (e.g. [CLN, Problem 10.45]).

The goal of this chapter is to prove the following proposition, which can be regarded
as a negative answer to the above question. In dimension 2, the Ricci curvature is the
Gauss curvature as well as the half of the scalar curvature.

Proposition 8.3 (Harnack implies bounded curvature). Let (M2, g(t)), t ∈ [0, T ] be
a complete Ricci flow with non-negative curvature on a surface M2. Suppose that it
satisfies the trace Harnack inequality:

∂R

∂t
+

R

t
+ 2〈∇R, V 〉 + R g(V, V ) ≥ 0. (8.6)

Then (M2, g(t)) has bounded curvature. More precisely, we can find a positive constant
C > 0 such that

R ≤ CTt−1 on M2 × (0, T ].

Corollary 8.4. Any two-dimensional complete ancient solution with Harnack (M2, g(t)),
t ∈ (−∞, 0], i.e., ancient solution satisfying

∂R

∂t
+ 2〈∇R, V 〉 + R g(V, V ) ≥ 0, (8.7)

has uniformly bounded non-negative curvature. More precisely, we can find a positive
constant C > 0 such that

0 ≤ R ≤ C on M2 × (−∞, 0].

These results are rephrased as follows: In dimension 2, any Ricci flow with non-
negative unbounded curvature, if exists, does not enjoy the Harnack inequality.

In the following section, we will prove Hamilton’s point picking lemma for Rieman-
nian manifolds whose scalar curvature are not necessarily assumed to be bounded. After
that, we turn to the proof of Proposition 8.3 in the second section.

8.1 Hamilton’s point picking lemma

In order to prove Proposition 8.3 by contradiction, we need a sort of point picking
argument. For this purpose, we prove the following lemma, which was shown by Hamil-
ton [Ha5, Lemma 22.2] for manifolds with bounded scalar curvature.
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Lemma 8.5 (Hamilton’s point picking lemma, cf. [Ha5]). Let Mn be a complete non-
compact Riemannian manifold with non-negative scalar curvature R ≥ 0. Fix a base
point o ∈ M and suppose that we have a sequence {p0,j} of points in M such that

R(p0,j)s2
0,j → ∞ as j → ∞, (8.8)

where s0,j := d(p0,j , o) is the distance from the base point.
Then we can find sequences {pj} of points in M , {rj} of radii and {δj} of positive

constants with δj → 0 as j → ∞ such that

(a) R(p) ≤ (1 + δj)R(pj) for all p in B(pj , rj).

(b) R(pj)r2
j → ∞ as j → ∞.

(c) sj/rj → ∞ as j → ∞, where sj := d(pj , o).

(d) R(pj) ≥ R(p0,j) for each j = 1, 2, . . . .

The assumption (8.8) implies that the asymptotic scalar curvature ratio, often ab-
breviated to ASCR, defined by

A(M) := lim sup
x→∞

R(x)d(o, x)2 (8.9)

is equal to ∞. The value of ASCR is independent of the choice of the base point o ∈ M .
The invariant, which appears in the paper of Petrunin–Tuschmann [PeTu], obtained
by replacing the scalar curvature R(x) in (8.9) with the maximum absolute value of
the sectional curvature at x ∈ M also contains important geometric information of the
manifold M .

Proof of Lemma 8.5. First, set Aj := R(p0,j)s2
0,j and find a sequence {εj} of positive

numbers with
Ajε

2
j → 0 and εj → 0 as j → ∞.

Define δj > 0 by (1 + εj)2 = 1 + δj . We then take the smallest σj > 0 such that

max
{
R(q)d(q, o)2

∣∣ d(q, o) ≤ σj

}
≥ Aj .

Then there exists a point qj in M with

R(qj)σ2
j = Aj and d(qj , o) = σj .

By construction, we know that

σj ≤ s0,j and R(qj) ≥ R(p0,j).

Now we can find a point pj in M \ B(o, σj) such that R(pj) ≥ R(qj) and

R(p) ≤ (1 + δj)R(pj) for all p ∈ B(pj , rj),

where rj := εjσj

√
R(qj)/R(pj). Indeed, if this is not true for some j, we can find a

sequence {qj,k} of points in M \ B(o, σj) with qj,0 = qj satisfying that

d(qj,k+1, qj,k) < εjσj

√
R(qj)
R(qj,k)

and R(qj,k+1) > (1 + δj)R(qj,k)
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for k = 1, 2, . . . . Then we obtain

R(qj,k) > (1 + δj)kR(qj) → ∞ as k → ∞,

which contradicts to

d(qj,k, o) ≤ d(qj,k, qj,k−1) + · · · + d(qj,0, o) < (1 + εj)σj + σj .

Now it is easy to see that the sequence {pj} satisfies the desired properties.

8.2 Proof of Proposition 8.3

In this section, we give a proof of Proposition 8.3. Since we are dealing with the Ricci
flow possibly of unbounded curvature, we cannot appeal to the following injectivity
radius estimate, which seems to be originally due to Toponogov [Topo].

Theorem 8.6 (e.g. [Vol1, Appendix B]). Let Mn be a complete non-compact Rie-
mannian manifold with strictly positive sectional curvature. Suppose that the sectional
curvature is less than or equal to K for some positive K > 0. Then the injectivity radius
inj(M) of M satisfies

inj(M) ≥ π/
√

K.

Instead, we invoke the following theorem of Hamilton [Ha5, Theorem 21.5].

Theorem 8.7 (Finite bump theorem, Hamilton [Ha5], also [CLN]). For every positive
β > 0, there exists a constant λ > 0 such that any complete Riemannian manifold Mn of
non-negative curvature can contain at most finite number of disjoint λ-remote β-bumps.

Definition 8.8. Let B(p, r) be a metric ball of radius r > 0 in a Riemannian manifold M

with a fixed point o ∈ M . We say that B(p, r) is a β-bump if the sectional curvature K

satisfies K ≥ βr−2 on the ball. The ball B(p, r) is λ-remote if d(p, o) ≥ λr.

Proof of Proposition 8.3. First of all, because we know from the Harnack inequality (8.6)
that tR(·, t) is pointwise non-decreasing, it suffices to show that (M2, g(T )) has bounded
curvature. More strongly, we will show that the curvature of (M2, g(T )) decays to 0
at the spacial infinity, i.e., R(xj , T ) → 0 as xj → ∞. (This was shown by Chu [CLN,
Lemma 9.7] in the bounded curvature setting.)

Fix a point o in M2. Suppose that there exists a sequence {p0,j} of points of M2

such that R(p0,j , T ) ≥ β > 0 and dg(T )(p0,j , o) → ∞ as j tends to infinity. By applying
Hamilton’s point picking lemma (Lemma 8.5), we can find a small constant r0 > 0 and
a sequence {pj} of points such that R(pj , T ) ≥ β > 0 and

R(·, T ) ≤ r−2
0 R(pj , T ) on Bg(T )(pj , 2r0).

Harnack inequality (8.6) implies that

R(·, t) ≤ 2r−2
0 R(pj , T ) on Bg(t)(pj , r0) for all t ∈ [T − r2

0, T ].

Then, by Shi’s gradient estimate (Theorem 3.19),

|∇R|(·, T ) ≤ Cr−3
0 R(pj , T ) on Bg(T )(pj , r0).
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Using this, for some sufficiently small ε0 ≪ r2
0,

R(·, T ) ≥ R(pj , T ) − Cε0r
−2
0 R(pj , T ) ≥ ε0βr−2

0 on Bg(T )(pj , ε0r0).

Taking a subsequence, we may assume that the balls Bg(T )(pj , r0) are pairwise disjoint.
This contradicts to the finite bump theorem quoted above.
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Chapter A

Appendix

In this appendix, we present a very detailed proof to the fact on the super Ricci flow
used in the proof of main theorem, i.e., Perelman’s point picking lemma (Lemma A.2),
which is found in [Pe, Section 10]. The proof rely on the following lemma whose proof
in [Pe] works as well for the super Ricci flow.

Lemma A.1 (Perelman [Pe, Lemma 8.3]). Let (Mn, g(τ)) be an n-dimensional complete
super Ricci flow.

(a) Assume that Ric(·, τ0) ≤ (n − 1)K on the ball Bg(τ0)(x0, r0). Then outside of
Bg(τ0)(x0, r0),(

∂

∂τ
+ ∆g(τ0)

)
dg(τ0)(·, x0) ≤ (n − 1)

(
2
3
Kr0 + r−1

0

)
.

The inequality is understood in the barrier sense.

(b) Assume that Ric(·, τ0) ≤ (n − 1)K on the union of the balls Bg(τ0)(x0, r0) and
Bg(τ0)(x1, r0). Then

d+

dτ
dg(τ)(x0, x1)

∣∣∣∣
τ=τ0

≤ 2(n − 1)
(

2
3
Kr0 + r−1

0

)
.

Here, d+

dτ f(τ) := lim supε→0+
f(τ+ε)−f(τ)

ε denotes the upper Dini derivative.

Lemma A.2 (Perelman’s Point picking lemma [Pe], also Kleiner–Lott [KL]). Let
(Mn, g(τ)), τ ∈ [0, T ) be a complete super Ricci flow and A, B > 0 are arbitrary numbers.
Fix x0 ∈ M . Assume that there exists a point (x1, τ1) ∈ M(B) with Q1 := |Rm|(x1, τ1),
where

M(B) :=
{
(x, τ) ∈ M × [0, T )

∣∣ |Rm|(x, τ)(T −τ) > B
}

.

Then we can find a point (p∗, τ∗)∈M(B) with

dg(τ∗)(x0, p∗) < dg(τ1)(x0, x1) + 2max{3A, 4(n − 1)B}Q−1/2
1

such that
|Rm|(x, τ) ≤ 2|Rm|(p∗, τ∗) =: 2Q (A.1)

for all (x, τ) with dg(τ∗)(x, p∗) < AQ−1/2 and τ∗ ≤ τ ≤ τ∗ + 1
2BQ−1.
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The proof is divided into two steps as in [Pe].

Claim 1. Take A′ > 0 satisfying that

4(n − 1)Bε ≤ 1 and (εA′)2 ≥ 3/4 for some small ε > 0 and A′ ≥ 3A.

Then we can find a point (p∗, τ∗) ∈ M(B) such that (A.1) holds for all (x, τ) with

dg(τ)(x, x0) < dg(τ∗)(p∗, x0) + A′Q−1/2 and τ∗ ≤ τ ≤ τ∗ +
1
2
BQ−1.

Proof. If not, we can construct a sequence {(xi, τi)}i∈Z+ of points of M × [0, T ) starting
from (x1, τ1) ∈ M(B) satisfying that

Qi+1 > 2Qi, di+1 < di + A′Q
−1/2
i and τi ≤ τi+1 ≤ τi +

1
2
BQ−1

i

where we put Qi := |Rm|(xi, τi) and di := dg(τi)(xi, x0). We see that (xi+1, τi+1) lies in
M(B) if (xi, τi) does. Indeed,

Qi+1(T − τi+1) − B > 2Qi

(
T − τi −

1
2
BQ−1

i

)
− B

= 2 (Qi(T − τi) − B) > 0.

This implies that {(xi, τi)}i∈Z+ ⊂ M(B).
Then Qi > 2i−1Q1 → ∞ as i → ∞, which contradicts to that

τi < τ1 + BQ−1
1 < T − ε1 < T and di < d1 + 2A′Q

−1/2
1 .

Here ε1 > 0 is taken so that |Rm|(x1, τ1)(T −τ1−ε1) > B. Hence the sequence {(xi, τi)}
stops at finite steps and the terminal one is the desired point (p∗, τ∗).

Claim 2. The point (p∗, τ∗) just obtained satisfies the desired property.

Proof. Take x ∈ Bg(τ∗)(p∗, AQ−1/2) and put r0 := εA′Q−1/2. Let τ ′ ∈ [τ∗, τ∗ + 1
2BQ−1]

be the supremum of τ ′′ such that

|Rm|(·, τ) ≤ 2Q on Bg(τ)(x0, r0) ∪ Bg(τ)(x, r0) for all τ ∈ [τ0, τ
′′].

It follows easily from the choice of (p∗, τ∗) that τ ′ > τ∗ and |Rm| ≤ 2Q on Bg(τ)(x0, r0)
for τ ∈ [τ∗, τ∗ + 1

2BQ−1].
Applying Lemma A.1.(b) for r0 = εA′Q−1/2,

dg(τ ′)(x, x0) − dg(τ∗)(x, x0) ≤ 2(n − 1)
(

4
3
εA′Q1/2 + (εA′)−1Q1/2

)
(τ ′ − τ∗)

≤ 8
3
(n − 1)εA′BQ−1/2

≤ 2
3
A′Q−1/2.

Therefore, we have

dg(τ ′)(x, x0) ≤ dg(τ∗)(x, p∗) + dg(τ∗)(p∗, x0) +
2
3
A′Q−1/2 < dg(τ∗)(p∗, x0) + A′Q−1/2

and τ ′ = τ∗ + 1
2BQ−1. As x ∈ Bg(τ∗)(p∗, AQ−1/2) is arbitrary, we conclude that

|Rm| ≤ 2Q on Bg(τ∗)(p∗, AQ−1/2) × [τ∗, τ∗ + 1
2BQ−1].

This completes the proof of the lemma.
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