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Notation

The letter p stands for a prime number, s = o + it is a complex variable
with o = Rs and ¢ = $s. The letter ¢ indicates a positive constant normally to
be regarded as being small, and not necessarily the same at each occurence.

The parenthesises ( , ) denote the greatest common divisor. The square
brackets [ , ] denote the least common multiple. (We also use square brackets
to denote intervals as usual.)

For a set S, we denote the cardinality of S by {S. For an interval I, we
denote the length of I by |I].

We also use the following symbols.

N : the set of all natural numbers,
Z : the integer ring,
Q : the rational number field,
R : the real number field,
e(a) = e,

I'(s) : the gamma. function,
¢(s) : the Riemann zeta function,
A(n) : the von Mangoldt function, that is
_Jlogp fn=pm withm>1,
Afn) = { 0 otherwise.
¢(n) : Euler’s totient function,
i(n) : the Mobius function,
¢g(n) : the Ramanujan sum, that is
g
. ,a
cq(n) = Z e(=n),
) a=1 q
(a,9)=1
7-(n) : the number of ways of writing n as the product of » natural numbers,
that is

e(n) = { (m1,...,m); [[mi=n, meN},
i=1

7(n) : the divisor function, namely 7(n) = m2(n).



§1. Introduction

In this dissertation we treat several important problems in additive number
theory.

In the first place, we consider the distribution of prime k-tuplets in arith-
metic progressions. Let £ > 2 be an integer, and let a;, b; (7 =0,1,...,k—1)
be 2k integers. We call {agn + by,. .., ax—1n+ bx—1} as "prime k-tuplets”, if all
the numbers ajn +b; (j = 0,...,k — 1) are primes. We can regard problems
concerned with prime k-tuplets as generalization of the prime twins problem and
the binary Goldbach problem.

In the study of the distribution of primes in arithmetic progressions, it is
important to estimate the ”error term”

z
E(z;q,a) = Aln) — ——
;S; ¢(q)

n=a (mod ¢)

for co-prime integers ¢ and a. In 1965 Bombieri established the important in-
equality (see [7, Ch 28] for example)

max_max |E(z;q,a)| < z(log z)“A
qsw%;gx)-a (a,9)=1 2<z

for any fixed constant A > 0 and a constant B > 0 depending only on A. (AL
Vinogradov proved, independently, a slightly weaker result, and the above in-
equality is known as the Bombieri—-Vinogradov theorem.) After a while, Barban
[3] showed, in 1966,

g
Z Z E(z;q,a)* < z?(logz)™4

¢<z(logz)—B  a=l1
) (a,9)=1

for any fixed constant A > 0 and a constant B > 0 depending only on A.
And this theorem was improved by Davenport—Halberstam [8], Gallagher [11],
Montgomery [26] and Hooley [16].

The results we shall show about prime k-tuplets are analogues to these

theorems. Now we fix an integer k > 2, non-zero integers ag, ..., ax—1, and an
integer by with (ag,bp) = 1. The symbol b stands for a (k — 1)-dimensional
vector in Z¥~1, and we set b = (by,...,bx_1). To count the number of n’s in

an arithmetic progression for which all ajn +b; (0 < j < k — 1) are primes and
< z, we introduce the function

k-1
U(z;big,a)= Y [[Alen+by),
ne€N(z;b) j=0
n=a (mod q)



where
N(z;b)={t€R;1<ajt+b <zforall0<j<k—1}.

On the other hand, for any prime p, let p(p) = p(p, b) be the number of
solutions of the congruence

k-1

H(ajn +b;)=0 (mod p),
=0
and let
Rb)= TJ[ lesl I lasbs —asbil.
0<i<k—1  0<i<j<k-1

We see that p + R(b) implies p(p) = k. So the infinite product appearing in the
definition of o(b;q), below, converges absolutely;

1 lplg (1 - %@)"11-11) (1 B B%l) (1-5)7*
o(b;q) = (if p(p) < p for all p and R(b) #0),

0 (otherwise),

Further we put

o(b;q) (f (aja+bj,q)=1forall0<j <k —1),
o(b;g,a) = :
0 (otherwise).
It follows at once that o(b;¢,a) = 0 holds, if, and only if
(1.1) p(p) = p for some prime p,
or
k—1
(1.2) [lGaa+b), ¢ |>1,
=0
or
(1.3) R(b) = 0.

Assume that (1.1) or (1.2) holds. Then, by an elementary argument, there exists
an integer j, with 0 < j < k — 1, such that a;n + b; takes a prime value for at
most one integer n satisfying n = a (mod ¢), and we get easily

(1.4) U (z;b;q,a) < (log z)k+1.

Next, assume that (1.1) is false, and that (1.3) holds. Then, noticing that the
former condition implies (a;, ;) = 1 for all 7, there exist distinct integers ¢ and
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j such that we have either a; = a;, b = b; or a; = —a;, bj = —b;. In other
words, two of k numbers a;n +b; (0 < j < k— 1) are always the same, or at
least one of these k numbers is not positive. Thus we have no interest in the
case o(b;¢q,a) = 0.

By a heuristic evidence (see Bateman—-Horn [4]), when o(b;¢,a) > 0, it
1s expected that

@ (x;b;q,a) ~ o(b;q,a)|N(z; b)|,

as ¢ tends to infinity. We define

E(z;b;q,a) = ¥(z;b;q,a) — o(b;g,a)|N(z; b)),
and

Z(z) = {b €T, |N(5b)| £0 .

We estimate the following sums &;(z; Q) and E2(z; Q);

E1(z;Q) =) max max Y [E(%b;q,a),

7Q )

1<a<g 2Lz
—7 T beZ(z

and

Sz(m;Q):ZZ Z E(z;b;q,a)?.

¢<Qa=1beZ(z)

As a generalization of the Bombieri—Vinogradov theorem, we expect
(1.5) &1(z; Q) < zF(logz) =4

for any fixed A > 0 and for the parameter ¢} in a certain range. In 1990, Maier
and Pomerance [23] showed that the inequality (1.5) is valid for & = 2 and for
Q < z° with some (small) positive constant §. And they applied this result to
their argument about the difference between consecutive primes. Later, Balog
[1] established (1.5) for the general case k > 2 and for Q@ < z!/3(logz)~2 with
a constant B > 0 depending only on k£ and A. He also stated that this result is
applicable to some interesting problems for primes (see [2]).

Recently, Mikawa [25] obtained (1.5) for Q@ < z/2(logz)~% in the case
k = 2, by means of the dispersion method, where B > 0 is a constant depending
only on A. We prove the same result for the general case k > 2 by the traditional
circle method which is also called as the Hardy-Littlewood method.

THEOREM 1. For any fixed A > 0, we have
&1(2;Q) < z*(logz)™

providing
Q < z'/*(logz) ™7,

4



where the constant B depends only on k and A.

By contrast with the Bombieri-Vinogradov theorem, the range of @ in
Mikawa’s result and our Theorem 1 seems the best possible for the present.

We turn to £5(x; Q). According to Montgomery [26] and Hooley [16], we
estimate £5(z; Q) asymptotically. We put

a. = Jnax  lajl,

and obtain the following Theorem 2.
THEOREM 2. Let A > 0 and B > 1 be arbitrary constants.
(I) For Q < z/a,, we have

1 il T \m
(1.6) &a(z;Q) = (P('aol)ka(loga: - 1)k — kag;ogm(log Qa*) +

+0 (xk”FiiQH:% + :ck'H(log m)’A) ,

where &y, €1,...,€k are constants depending only on ay, . ..,ag—1. Espe-
cially,
(1.7) b= =

' 7 p(lad))k

(I1) For z/a, < @ < zB, we have

1 % 5 kel (. @ax
Exz; Q) = IEQlog(B-—l) — Mo log———-+
X9 = Sagn® (og =)
+mzttt + 0 (:ckQ(log z)™1),
where 1o and n; are constants depending only on ag, . ..,ax—1. Further, we
can write ng explicitly. Let g(p) be the number of a;’s such that a; = 0
(mod p),

Al = (1 %)—k {(1 B %)z(g_z_?)k—g(p) 4 % _ 1_}2_},

and let
1/a. k=1
Q :/ T~ lash) du.
0 j=0
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Then,

2
(1.8) Mo = mﬂgfl@)-

We note that the formula (1.6) yields a non-trivial bound for &3(z;@),
namely

E1(z; Q) < ¥ (log z)~4

providing @ < z(log z)~4~*.

It is easy to obtain the same results for short intervals. We just change the
tools used in our proofs of Theorems 1 and 2.

For an interval I, we define
N(I;b)={teR; ajt+b; € [forall0<j <k—1},
Z()={bel*; IN(I;b)|#0},

k~1
U(I;b;g,a)= > ] Aan+b),
neN(I;b) j=0
n=a (mod gq)
and
E(I;b;q,a) = ¥(I;b;q,a) - o(b; g,a)|[N(I;b)|.

Especially, we write

Z(z,y) = Z([z — y,2]),
N(z,y;b) = N([z —y,z];b),
E(z,y;b5q,a) = &([z — y,z]; b5 ¢, a).

And we introduce

Ei1(z,4;Q) =) max max Y |E(I;b;q,a)],
9<Q 1sagqIClz-y.e] be Z(I)

where I runs over all intervals in [z — y, z], and

q
Ee,yQ) =)D Y, E&=ybiga)

g<Qa=1beZ(zy)

Then we have



THEOREM 3. Let A > 0 be fixed constant, and assume that
2?3(loge)® <y<=z
with some positive constant C depending only on k and A. Then we have

E(z,9;Q) < y*(logz) ™

providing

Q <yz~Y*(logz)~ P,
where the constant B depends only on k and A.
THEOREM 4. Let the constants A, B, mg, m and &n’s be the same as in
Theorem 2. Assume that

23 (logz)® <y < =,
where the constant C is the same as in Theorem 3.

(I) For Q < y/a., we have

1 k m
(1.9) Ea(z,y;,Q) = mka(IOgl‘ —1)F *kamz::OEm(log inz,,) +

+0 (-7 QFR 4y (log2) ™).
(II) For y/a. < Q < zB, we have

(1.10) &a(z,y;Q) = —(;(—I—l-c;a—ﬁka(logm — 1)F —noy* ! (log =
+my* + 0 (¥ Q(log z)™4)

By the formula (1.9), we obtain
E(w,y;Q) < y**(logz)™4
for Q < y(logz)~A4~*.

To compare with Theorems 3 and 4, we mention the corresponding results
for primes. Putting

Y
E(z,yga)= Y, An) - —=,
z—y<n<r <P(Q)
n=a (mod g¢)

we have

> max |E(z,y;4,a)] < y(logz) ™
qSQ(a’q)“ .



providing

Q <yz~?(logz)"f and 2¥5(logz)C <y <=,
where A > 0 is an arbitrary constant and where B and C' are positive constants
depending only on A (see Perelli, Pintz and Salerno [32]).

If we take k = 1, ap = 1 and by = 0 formally in Theorem 4, then we get
correct asymptotic formulae for the sum

g
> > Blzmyiga)
¢<Q  a=1

= (a9)=1

and our proof for Theorem 4 still work correctly. But, using the large sieve
method, we can prove that these asymptotic formulae are valid providing

g7 oy < g

We prove Theorem 3 in §§3-7, and Theorem 4 in §§8-10. Then Theorems
1 and 2 follow from Theorems 3 and 4, respectively, by taking y = z.

Next we consider problems on additive representation of natural numbers.

Let k£ > 2 be an integer, and, for a natural number n, let 7¢(n) be the
number of representations of nn as the sum of a prime number and a k-th power;

n=p+ m* .

Throughout this dissertation, a ”k-th power” means k-th power of a positive
integer.

We denote by Ex(N) the number of natural numbers n < N with rg(n) = 0.
In 1937, Davenport and Heilbronn [9] proved that

Ex(N) = O(N(log N)™*)

with a positive constant c; depending only on k&, in other words, almost all
natural numbers are representable as the sum of a prime and a k-th power.
After their result, some articles established sharper bounds for Ex(/V), and, at
present, the best result is

. Ek(N) = O(Nl_‘s")

with a positive constant ¢y depending only on k, which was proved by A.L
Vinogradov [41] and Brinner, Perelli, and Pintz [5] for k¥ = 2, and by Plaksin
[33] and Zaccagnini [44] for k > 3.



On the other hand, in the case k = 2, Hardy and Littlewood [14] conjec-
tured that

(1.11) ra(n) ~ Gy(n )lg/gi

as n tends to infinity providing that n is not a perfect square, where

Gy(n) = H (Q)

p>2 p-1

),

with the Legendre symbol (%) If n is a persect square, say n = n?, then we

have r5(n) = 1 or 0 according as 2n; — 1 is a prime or not. In 1968, Miech [24]
showed that the above asymptotic formula (1.11) is valid for almost all n. More
precisely, he proved that

dz

ro(n) = Gz(n)/ " Tog(n ) + O(v/n(logn)~ B)

for all but O( N(log N)~4 ) natural numbers n < N with any positive constants
A and B. Here we see forn > 3

/ n-2 dz _n +O<\/ﬁloglogn).
1

log(rn —z2)  logn (log n)?

For each k > 2, we put

eu(m) = [T0 - 221,

p

where pn(d) = pn k(d) denotes the number of solutions m of the congruence
z*¥ —n =0 (mod d)
with 1 < m < d. And we define the set
E; = {n € N; the polynomial ¥ — n is irreducible in @(z] }.

Then we can expect that

(1.12) rr(n) ~ Gk(n) Togn’
as n tends to infinity providing n € Ei. In the case k¥ = 2, this conjecture
coincides with the above Hardy-Littlewood conjecture, because Pn, 2(2)=1and
pn2(p) = (5) + 1 for p> 2. Our next purpose is to prove that, in the gengeral

case k > 3, the asymptotic formula (1.12) is true for almost all n.



The essential difference between the cases k = 2 and £ > 3 occurs in the
treatment of the singular series. The singular series in our problem is the sum
of the following form;

n He) _
(1.13) Gi(n, Q) = 2o H(ﬂn p)—1).

In the articles [9], [33] and [44], the singular series Gk(n, Q) is approﬁ-
mated, for almost all n, by a finite product of the form

H(l pﬂ(p )

p<P

with a suitable parameter P, and it was derived from this approximation a
good lower bound for &g (n,Q) which is sufficient to deduce rg(n) > 0. In
contrast with this way, we shall show, by using Perron’s formula, that G (n, Q)
is approximated by the infinite product &g (n) for almost all n.

To this end, we introduce the function

—1
Za(s)=]] (1— Mﬁ)
. (p—Dp
for o > 1. We see in §13,

Zn(s) = 2L e(5)E(9)
AOR
where ((s) and (,(s) are the Riemann zeta function and the Dedekind zeta
function of the field @(n!/*), respectively, and where &,(s) and Z,(s) are cer-
tain functions. Since the functions &,(s) and Z,(s) are quite easy to treat, we
may regard essentially Z,(s) as {(s)/¢n(s). We find here the most important
difference between k = 2 and k > 3. In the case k = 2, the function ((s)/Ca(5)
equals to the reciprocal of the Dirichlet L function for a certain real primitive
character. Therefore we can utilize known results on L functions to investigate
G,(n,Q). Especially, Bombieri’s zero density theorem for L functions plays es-
sential role in Miech’s treatment of Gy(n, Q) (see [24]). For k& > 3, however, there
is not such a known result, so we need to study the zero density for {(s)/¢n(s)’s.

In §16, we obtain an estimate for the zero density, then our treatment of
Sk(n, Q) with k > 3 is achieved by standard application of Perron’s formula.
Combining this argument with the frame work of the circle method, we have the
following result.

THEOREM 5. Let k > 3 be a fixed integer, and let A, B > 0 be arbitrary fixed
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constants. Then, for n < N, we have

tdz
rr(n) = Gk(n)/ k—lgg—-e-—c-l——)—-f-O(n%(logn) B)

with passible exception of O( N(log N)~™4 ) n’s.
We remark that
n=? g-ltidy  nk 40 nt loglogn
/; klog(n —z) logn (logn)? ’

Because of the possible existence of the Siegel zeros, Miech’s result [24]

and our Theorem 5 seem the best possible for the present. We prove Theorem
5in §§11-17.

for n > 3.

Page [29], [30] and Hooley [17] investigated the asymptotic behaviour of
the number of representations of a natural number as a sum of squares and
products of two positive factors, and established an asymptotic formula for the
number of representations in each case where it can exist. We consider here
similar problems for cubes instead of squares. As is mentioned in Hooley [17,
p.180], an asymptotic formula for the cases with at least five cubes and a product,
or with at least two products and a cube is obtained by standard application of
the circle method of Hardy and Littlewood. So we consider the number Ri(N),
say, of representations of a natural number N as the sum of four positive cubes
and a product of k positive factors;

(1.14) N=Uly.. .k +md+md+md+md

where k£ > 2 is a fixed integer. For the case k = 2, we can still apply the circle
method plainly.

In 1981, Hooley [17] published a new approach to problems in additive
number theory, different from the circle method. As a consequence of applica-
tion of his method, he obtained an asymptotic formula for Rg(N), namely,

(1.15) Ra(N) = gr(g)sﬁ(N)N%(log N)? +0 (N¥(log N3),

where G(V) is what is called the singular series.

Five years later from the above memoir, Vaughan [40] established an
asymptotic formula for the number of representations of a natural number as
the sum of eight positive cubes, in a frame of the circle method. Vaughan’s
ingenious treatment of the minor arcs [40, Theorem B] enable us to apply the
circle method to our Rg(N) with k& > 3.

11



For the sake of the successful use of Vaughan’s method, we should treat
separately those solutions of (1.14) for which m;, my and ms have no prime
factor in a certain range. The estimation of the number of such solutions is
accomplished by Wolke’s result [43, Satz 1]. Via this way, we establish the
following result which contains a refinement of (1.15).

THEOREM 6. For k > 3, we have

2
Re(N) = N3 37 eD(N)(log N)¥=1=7 4 O(N 4 (log N)*~*(loglog N)°*),

j=0

where

Ci = -é;k(k CD)(k+4)+3,

the implied constant depends only on k, and the coefficients E,(cj)(N) are defined
explicitly in §21 (see (21.8) below). In particular, we have ££J)(N) & 1 for all
0<j<2 and EP(N)> 1.

We can apply our argument to a similar problem. As a direct consequence
of the result due to Davenport [6] (see also [40, Theorem 4]), it follows that
every sufficiently large number is representable as the sum of four positive cubes
and a prime. We denote by Ro(N) the number of such representations of a
natural number N. In the same manner as for Rx(N) with & > 3, we obtain an
asymptotic formula for Ro(N).

THEOREM 7. We have
4\3 N(N —=1)3 s _
RO(N):F(;§> GO(N)/ L—lz)—-t—)—dt—i—O(NS(logN) “(loglog N)%),
‘ 2 g

where Go(N) is defined in §21 (see (21.7) below). In particular we have 1 <
G(N) K 1.

We note here that

N 1 4 4
(N=1)} 3 N N1
9 logt dt = 4log N +0 (log N)2 loglog IV | .

We prove Theorems 6 and 7 in §§18-22.

All the above Theorems come from the author’s study in University of
Tsukuba under guidance of Professor Saburé Uchiyama. As for the Theorems
1, 3 and 5, see [18] and [19].
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§2. Preliminaries for the proof of Theorem 3

We define three subsets in Z(I);
Zo(I;9,a) = {b € Z(I); o(b;q,a) #£0 },
Z1(I;q,a) = {b € Z(I); (1.1) or (1.2) holds. },
Zo(I;q,a) = {b € Z(I); (1.3) holds. }.

As we note in §1, if o(b;q,a) =0 then be | J,_, , Z,(I;q,a). So we have

2
51(17, y)Q) S Zgl,l/(m)y; Q)s
v=0

where

E1v(z,y;Q) =) max max 3 [E(I;b;g,a)|
i< SestICl vl T

forv=20,1, 2.
The inequality (1.4) and the trivial estimate §2(I) < y*~! yield
E11(2,v;Q) € v*1Q(log z)F+1.
We see easily §72(1;q,a) < y*~2, and get
E12(2,9;Q) < y* (log z)F+1.

Here we use the trivial bound ¥(I;b;q,a) < yg~!(log z)*. Therefore we obtain
(2.1) E1(z,3,Q) < E10(z,¥; Q) + O(¥F 1 Qlog x)* 1),

and we attend only to the interesting case o(b; ¢, a) # 0 in the sequel.

As mentioned in §1, our proof is in the frame work of the circle method.
We utilize the functions

P(a) = P(a;1) = ZA(n)e(na),

nel

Py a(a) = Py a(a; I) = E A(aon + bo)e(na).
aon-+bo€ld
n=a (mod ¢)

We take a constant Cy > 0 such that is larger than a certain number depending
only on k and A, and assume that

(2.2) 22/3(log £)3C1 657 < y < .

We put
Ql = (log :U)Cl and A = y—l(log ;1;)2'4+2cl+4,

14



and define the major and minor arcs;
c c
M(c,q) = |- — A, —+A},
(c,9) [ p p }

M= U U M(c,q),
¢<Q1 1<cgyg
(c,)=1

m= [:c“l/e, 1+m“1/6] \ .

We note that 9(c, ¢)’s are disjoint for ¢ < @1, 1 <e¢ < g, (¢,q) = 1. We also
note that if @ € m then there exist co-prime natural numbers ¢ and ¢ such that

<@ and A< a— Sl <qleml/

or

Q1 <q<=zY% and
q

a— E. < q_l:c_l/ﬁ.

Our proof is based on the following results.

LEMMA 2.1. Assume that o € M(c,q), ¢ < Q1, 1 <c < ¢, (¢,9) =1, and
write « = ¢/q + . Then we have

P(a) = %E—%T(ﬂ) + O(yexp(—éo(log z)l/S)),

where &y Is a positive constant and T(8) =T(8;1) = ,¢r e(nB).

LEMMA 2.2. We have

—-Ci1+1
max | P(a)| < y(log z) :

LEMMA 2.3. Let

. ||
B(oyi0) = jgpax x| ), Al = o)
(a,9)=1 nanl(reruod q)

where I runs over all intervals in [z — y,z]. Then, for any constant A; > 0, we
have

(2.3) S E*(2,y;q) < y(logz)™™,
g<yz—1/2(logz)~B1

15



where By > 0 is a constant depending only on A;.

Lemmata 2.1 and 2.2 are minor modifications of Pan and Pan [31, Theorem
3 and p.146]. Their proofs are based on the results about the zeros of Dirichlet’s
L functions, and Lemma 2.1 was showed for z7/12+¢ < y < z. But Lemma 2.2
is justified only for y satisfying (2.2) hitherto.

Lemma 2.3 1s a Bombieri—Vinogradov type theorem for short intervals, and
Perelli, Pintz and Salerno [32] proved this result for y > z3/5+¢,

We set a = (e, ...,ak-1), and

k-1 k—1
F(e) = Py, (—Zaja,-) [T P(ey),
i=1 '

ji=1

then we can write
1 1 k-1
!I/(I;b;q,a):/ / F(a)e —ijaj doy ... dog—1
0 0 j=1

k-1
(2.4) =Tm + ) Tup ,
h=1

where
k-1
Im = Fla)e | — bia; | day ...dag—1,
m /sm ./sn () j};] J
and, for 1 < h<k -1,

-1

Inp= / F(a)e (—— bjaj) doy ...dog_1,
m(h) =

m(h)z{a;aj eMforl<j<h,
ap € m,
a; €0,1] forh<j<k-1}.

with

16



§3. Integrals on minor arcs

The purpose of this section is to prove the following Lemma 3.1.

LEMMA 3.1. Suppose that Cy > 2A+k +4. Then, foreach1 < h <k —1, we
have

Somax g S [Tl <*loga) %,
q<Q bEZo(I,q,a)

providing Q < y(log z)~24-%~2,

We have by the Cauchy—-Schwartz inequality

1/2
mexlcr[?%x] }: Lo | < (Zl - 1) Si/?

9<5Q beZo(I,q,a) 9%Q

< (Shy*~tlogz) 12

)]

where

Sh-—qua,x Z Lo 1]2.
a ICw —y,2]

7<Q beZ(I)
So, it suffices to show that
Sh < Y+ (log z)~2A-!
for @ < y(logz)=24-k=2,

We use Bessel’s inequality repeatedly, and obtain

S P

beZ(I)
—Z bZ /P(al) (/---/...daz...dak_1> e(—bra;) doy :
§/|P(a1)|2;...bkz_l /P(ag)(/ ...... dag_1)e(—braz) day zdal

S .

/ [n(’l) (H |P(%)I2) ( ’ilaiaj) zdal---dak—l-

=1

IN

17



We see

k—1
Pya —E a; o
j=1
k-1

= > >~ Aaoni +bo)A(agnz + bo)e (— Y ajaj(ny —n)

2

agni+bo€l  agnatbo€l j=1
ni1=a (mod g) nz2=a (mod ¢)

ll

k-1
> Tleleies) D> Alaon +bo)A(ao(n +1) + bo),
<y =1 aon+bo€l
=0 (mod ¢) ao(n+i)+bo€el
n=a (mod ¢)

thus it follows uniformly in a and I C [z — y, z] that

Z lImlz < Z Z A(aon+b0)A(a0(n+1) +b0) X

beZ(I) <y aogn+bo€l
1=0 (mod ¢) \ ao(n+i)+bo€l
n=a (mod ¢)

k-1
X // o H (1P(aj)Pe(ajo;l)) do . .. dag-

([ 1ptapiaa;)

k-1
< %(logac)2 11

j=1
J#h
< 3 / |P(an) Pe(ananl) dan
, OII(ISyd ) "
=0 (mod ¢
yk——l
(3.1) <L (loga) T / |P(a)Pe(anal) dal,
1 <y 1
=0 (mod ¢)

because

Al |P(a)|? da = Z A(n)? € ylogz.

z—y<n<c

Dividing the summation over ! in (3.1) according as ! = 0 or not, we obtain

k
> P < Loga) i+ 3 /
m,apl

beZ(I) 0<iI<y
1=0 (mod ¢)

]

18
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where

L,, :/m |P(a)fe(ar) da.

Therefore
Sh < yFQlogz)* ! + v (loga)* Y Y /
¢<Q oIy Mmianl
1=0 (mod ¢)
(3.2) <*QUoga)+ +y*H(log)* 3 )| [ .
0<l§y m,ahl
Since
> (1) < y(logy)?,
0<i<y
we get
> o[
0<i<y wm, apl
1/2 N
<[ 3 -y D / |P(a)Pe(—anal) da
0<iI<y o<i<y V™ _
1/2
< (y(log z)? /IP(a)|4 da>
1 1/2
< (yaong x| P [ 1P(a>l2da)
aegm 0
< y(log z)” max | P(e)],
and this 1s

< y?(logz)~ 2,
by Lemma 2.2. In view of (3.2), we have

Sh & ka(log x)k+1 + yk+1(log m)—Cl+k+3
& yk+1(log x)—ZA—-l’

as required, providing @ < y(logz)~24"*-2 and C; > 24+ k + 4.
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§4. Integrals on major arcs

In this section, we evaluate Ion. We use the following notation for brevity’s
sake: The bold face letters q, ¢ and d denote elements in N*~!, and we set

- (ql, SN ,qk_l), c= (Cl, ...,Ck_l), d= (dl, ce ,dk-—l)-
The symbol q < @) denotes the condition
g; <Q forall1<j<k—-1

We write
[qJ = [qls"')Qk—l] and [qaq]:[Q)Q1a~-')qlc-—l]a

and so on. The symbols

q q
Z and Z*
d c

denote, respectively, the summation over all the d’s with 1 < d; < ¢; for all
1 < j<k—1, and the summation over all the c¢’s satisfying

1<¢j<gj and (c¢j,¢5)=1 forall 1<j<k—1

By the definition, we write

d k-1
Im= 3 Z// » Flaye | =S bjay | dew ...dog,.
Hj:l M(Qj,Cj)

q<@Q: ¢ Jj=1
For
k-1
e Hm(qf’cj):
j=1
we put 3; = «; —¢;/q; and
ﬂ: (ﬂl)' . ')ﬂk—l)'

Then, by Lemma 2.1, we have

e 3 (g e

q<@: ¢
do 1
+O<—exp( (logm)3)> ,
where

A A
J(b;q,C)=/_A-~/_AF(ﬁ;b;q,C)dﬁ1.--ﬂk_l,

20



with

j=1

k—1
F(B;b;a,¢) = [[(T(8)e(~b;5)) ( Za] —m)-
Let
1 1
Jo(b;q,C)=A A F(B;b;q,c)df ... fr-1,
and let, for 1 < h<k-1

Biae= [ [ F@biacds .. py
where
nM) = {8:8; €[-A,A] for 1<j<h,
ﬂh € [A?l—A]7
B; €[0,1] forh<j<k—1}.
Since J(b; q,c) = Jo(b;q,c) — i;i Jr(b;q,c), we have

k-1

(4.1) Im = IUJZO"ZIDJth+O <—6XP(——(IOg$)%)>

h=1
where
LT () g
Iop p = Z Z*H (” J 2Lp )) Jr(b;q,c),
q<@Q, ¢ j=1

for0< h<k-1.

As we did in the preceding section, we use Bessel’s inequality repeatedly,

and obtain for 1 <h <k -1
Pq.a( Zay +ﬂJ )

> 1In(b;q,0)
beZ(I)
k-1
|2
<[] o LTIT6)
k-1 1 1-A
Y1og z)? (2 dB: 2
< (qosa)” [T ([ wrsras) [ wonran
j#h

2

dp...dBk-1

k 1-A
< L(loge)? A T(6)* B
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It follows from the well-known estimate |T(3)| < ||8]|™* that

1-A %
/ IT(B)|? df < / B 2dp < AT,
A A

thus we get

Z 1In(b; q,¢)® < 2(logzc)zA !
bez ()

uniformly in q, ¢, a and I C [z — y, z]. Making use of this inequality, we have

>
beZ(I)
qQ q k-1
(zz o) (ST o o)

q<@Q1 ¢ <Qi ¢ J bEZ(])
<<q—2(log:r:)2A_1

hence

max Imax Z Lon|

a IC[z—y,x
1<Q N NI

1

1 2
v qufX, > [l
q<Q <Q Clo- ”]bezm

y*otast %(10817 @1
(4.2) <<y *(logz)~*,
foreach 1< h <k -—1.

We turn to Ign o. By simple calculation, we have

k~1
Jo(b;q,c) = Z A(aon + bo)e —Zf—aj .
neN(I;b) i U
n=a (mod ¢)

We divide this sum on residue classes of n to moduli ¢;’s, and write

Jo(b;q,c) =) e (-

bl

-1

d

I
—

J

q—JCL]d') W(q) d))

22



where
¥(q,d) = > Aaon + bo).
neN(I;b)
n=a (mod ¢)
n=d; (mod ¢;) (for 1<j<k—1)
Now we define the set

D(q,a;q) ={d;a=d; (mod (¢,¢;)) forall 1 <j<k—-1,
d; =d; (mod (gi,q;)) forall 1 <i< j<k—1,
(aodj +b0,qJ‘) =1 foralll S ] S k — 1}
Then, for d € D(q, a; q), we see plainly
¥(q,d) < (log z)*.

If d € D(q,a;q) then there is an integer ng = ng(q, a; q,d) such that

n=a (mod q) and

= d =
n=mno (mod fg,q)) { n=d; (modg) foralll<j<k-1.
Noticing (aono + bo, [g,q]) = 1 and (ao,bo) = 1, we get

![/(q, d) = Z A(aon + bo)
n€N(I;b)
n=ng (mod [¢,q])

= Z A(m)

(m—bo)/ao EN(I;b)
m=aono+bo (mod |aol[g,q])

_ |a0[|N(I,b)| *(laglz, laoly: |ao
= oleolld) + O(E" (laolz, |aoly; |aol[g, al) )-

Therefore we obtain

woy = |l )] NS U
T30 = agTlg ) de%a;q) ( 2 ’d1>""

+O((E* (laclz, laoly; laollg, a]) + (1og z)*) "),

and
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Imo = [ao||N(I;Db)| Z w(lagll[q,q]) ._ (5;)

q<

Y E*I—Ie(—%(%dﬁbﬁ)”

deD(g,a;q) ¢ j=1

e (Q}f-l Z E*(lao|, |aoly; |aollg,q]) +Qf(k_1)(10gx)2)

q<@:

(4.3) = laol|N(I;b)|S(b;q,a)+

+0 (@1 ST B (laole, laoly; aollg, a)) + Q2F D (log2)? |
Qs
where
k-1

o 1 T #(g) goap
ad) 5®ian)= X Salmay U o), 2 ea(@di+8)

q<Q: deD(g,a;q) j=1

By virtue of Lemma 2.3, we have

> > E*(laol=, laoly; |aollg, a))

9<Qash
< > E'(laols laoly;r) Y1
r<laolQQE ™t 325
|a0|{_q-)(ﬂ=r
<@ Y E(laole laoly;7)
r<laolQQE
(4.5) L y(log z)~A-Cr (k1)

providing that |ao|QQ¥ ! < yz~1/%(log )P, that is
Q < y&~/?|ao| " (log z)~Br =G k-1),

where B; is the constant in (2.3) of Lemma 2.3 corresponding to 4; = A +
C1(3k — 1). The restriction of @ in our Theorem 3 comes from here.

By (4.1), (4.2), (4.3) and (4.5), we come to the following conclusion;
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LEmMA 4.1. Putting
Im = |ao||N(I;b)|S(b;q,a) + E(I; b;q,a),
we have

max max Z |g(I;b;q,a)!<<yk(logw)‘A,

a IClz—y,x
9<Q -y ]bEZO(I;q,a)

providing
Q < ya~2(logz) ™7,

where B is a suitable positive constant depending on k and A.
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§5. The Singular Series
In this section, we evaluate S(b; g, a). We put

k-1

W(’I") Z H /"(QJ Z H qu(ajdj + bj),
(P(qj deD(g,a;q) 7=1
and
-~ k-1
Wl(r Z H (q ) Z chj(ajdj + bj).
qq<]Z{1 i=1 "M/ dep(q,4,q) i=1

Then, by the definition (4.4),

N WP
S®i19) = ) el O 2 W)

TSQI Q]_(TSQ;‘—]‘ @('aOI[Q)T])
(5.1) = S0+ 51, say.

A simple arithmetical deduction shows that W(r) is a multiplicative function.

Indeed, suppose that » = ryry and (r1,73) = 1. For q satisfying [q] = r, we put

QJ('i):(QJari) and q; = (Q§Z)""qlgz)1

for i = 1,2. And for d € D(q,q;q), we write

d; = Vg + g,

where eg) runs through residue classes of modulo q( Jfori=1,2and1<j<
k—1. Wenote, for 1 <i<j<k-—1,
1 (2) =

3¢ =a (mod (q ,q)) and

dj =a (mod (q,q;)) <= {
&V = a (wod (¢f,9)),

etV = Vg (mod (¢,¢f”))  and

d; =d; (mod (¢i,¢;)) <
J ! egz)qgl) = 652) ;1) (mod (qz(z), qJZ)))

(ao e() (2)+b s 4 ))—1 and

apd; +bo,¢j) =1 <=
( 7 0: 495 {(ae()()—*’b,qu)):l

Now we write d§.1> = eg-l)qj (2), d(z) - e§2> U and
di =P, d)
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for 1 = 1,2. Then we get

k-1 k-1
wine = 32 145 Y Tleuluds +4)
[al=rir27=1 7Y/ deD(q,a;q) i=1

_ ot u(“)u(q,@))
o [;H( (@) ell®) "

> > Il d" + b, )Cq<.2>(ajd§z) +5;))
d;1€D(q,a;q,) d2€D(g,a;q,) i=1 ’ 7
= W(ri)W(ra),
namely, W(r) is multiplicative.

Because W(r) occurs only for square—free r’s, it suffices to examine W(p)
for a prime p. If [q) =p then gj =1lorpforall 1 <j<k—1, and at least one
gj is p. We denote by M the set of all subscripts of ¢;’s such that ¢; = p. Then,

o= S S et

iM>1 d=a (mod (p,q))
(a0d+b0 )p)"’l

p
_ —Cp(ajd+bj) -1
_ ; (MC{Ek—l}j:E\[l< p—1 ) )
d=a (mOd (Py‘I))
(aod+bo,p)=1

P k-1
_ - olagd+b)y )
; (U ( p—1 )
d=a (mod (p,g))
(aod+bo,p):1

We remember here that we should consider for b with ¢(b;g¢,a) # 0, and that
the last condition is equivalent to

p(p) < p for all prime p,
and
(5.2) (agja+bj,q)=1 forall 1<j <k—1,

and

R(b) #0.
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Noticing this, we have
(1-3H~ -1 (ifp | 9),
Wp) =< @-p@)(1-3)""-p  (fptgandp|a)
(p—p(@)(1 -2 ~p+1 (ifptgandptao).

On writing
pllaolle, ]) = haslia, ) T[ (1= )
pl(aoqr)
(5.) =laly TT (1= ) [T TT0- 1
pl(aoq) plr  plr
pte  ptq
rlao  ptao
we obtain
_ ) ey = L _ Ly _ Ly
O el = g 1L 0= TI(0 =57 ~1)
rle
P(P) Lk 1_8_(.1..72 __.1_”“_1 .
<IT(0-2a-pm ) T (0- 207 )
ptq ptq
rlao ptao

It follows easily

1\ —k+1 1 p(p) 1\ —k+1 1
1— = -1 =, 1 —=222)(1 - = -1 -,
( p) P ( )( p) D

p
and
p(p) 1y-k 1
1——%)(1- -1~
-2y b el
Especially, if p + R(b) then
p(p) 1 1
1-—=)(1--) -1 —=,
(LTS
because p(p) = k in this case. Thus, by (5.4), we get

_op(r)® ‘ L L
aolle, D —|o|qp|(13q, I3 1 7
pl(aoqR(b)) pt(aogR(b))

65 < 009 g L),
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where L is a natural number which depends only on k. Since

ZTL <& z(log 2)F1
r<z

for 2 > 2, we have by partial summation

p(r)? TK(‘I)T -1(1o L-1
2 el )V € T (RE)AT (g @),

with a natural number K depending only on k. Then, it follows from (5.4) that

_ = _L(’i_ TK(Q) o L-1
So= 3 Slolla ) )+ O B rc(RO)AT (og @:))

= 11 <1—§>‘1n<1——§>“’““><

pl(aoq) rlg
_plp 1\ ~k+1 p(p) 1y -k
< JT1(- () 1= -9 0-0)7+
ptq rte
plao rtao

+ o(T-Kq(—Q)rK(R(b))@;l(log Q*)

= 10~ D)7 [T - 22y - b=y

|aolg ple P ptq P P

+ o(LI%Q_)TK(R(b))Qr‘(longJL*)

68 = oot + O L r(Rb)@r 10g @) ),

lao]

We next estimate S;. Let

k-1
Wa(r) = ZHM( S Fleyiot )]

[qJ=r j= deD(q,a;q) j=1

and let
p(r)?

So = B

2 Q1<§;gk—1 ©(|aollg, r]) 2(7)
then,
o0 1S1]| < 5.

By comparison with W(r), we see at once that W,(r) is multiplicative. For a
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prime p, we write W,(p), similarly to W(p), as follows.

-1 \im :
Wz(p).—_—M 1Zk 1 (p———-_l) dz I;[/!Cp(ajd-l-bj)
yore B =1 .
C{HMZI } d=a (mod (P,Q))JE
(aod+bo,p)=1

= 3 ()™M WM, sy

If p| ¢ then |Ws(p, M)| <1 by (5.2). For ptq, we see

H cp(a;d =+ b;)

jEM

<1 unless H cp(ajd+b;) =0 (mod p),
jeM

and |Wa(p, M)| < k(p — 1)*™ + p. Next assume, p { (aogR(b)). If §M = 1 then
Wa(p, M) =(p—1)+(-1)(p—2) =1,
and if {M > 2 then
Wa(p, M)| < (p— DM +1---(p— 1 —§M) < kp.

Thus we have

2k+1kp=t  (if p 4 (aogR(b))),
Walp) < { (k+2)2¥-1  (otherwise),

and
p(r)? 1 (k4 2)2F-1 2k+2k
a2 I —F— Il =%
pl(aogR(b)) pt(aogR(b))
7(aolq) p(r)2Tortag(r)
S ,aolq (T’, aoqR(b)) r2 .

Hence, by partial summation,

(5.8) S, < ’—Kq(q—)m(R(b»Q;laog QUL

We conclude from (5.1), (5.6), (5.7) and (5.8) that

LEMMA 5.1. There is a natural number K depending only on k such that

S(b;q,a) = I—C%O—lo(b; g,a) + O(TKq(q)TK(R(b))(log z)=C1+1).
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§6. Proof of Theorem 3
In view of (2.4), Lemmata 3.1, 4.1 and 5.1, we obtain

E(I;b;q,a) = ¥(I;b; q,a) — o(b; q,a)|N(I;b)]
= |aol [N (Z;b) (S(b; 0.0) - Tal_olo(b;q,a)) +

k—1
+E(ILbg,a) + > Twn
h=1
<y—_ =7k (R(b))(log )" ) +E(Lbig,a) + Y T s
h=1
and
£1.0(2,05Q) < pllog ) O Y T e a3 (b))
9<Q Clo=viely e 7o Taa)

+y (log m)_A,

providing @ < yz~/?(logz)~B. It is known on the divisor functions that
Z TK(Q) < (log@)¥, and Z Tk (R(b)) < y*~(log )%
<@ 1 beZo(I;q,a)

where K is a constant depending only on k. Therefore,

(6.1) E1,0(2,4;Q) < y* (log z) ™4,

if we choose C; > A+ K1+ K +1. By (2.1) and (6.1), we complete our proof
of Theorem 3.
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§7. Calculation on the singular series
We turn to prove Theorem 4.

We put
q

Ui()=Y_ > o(bg,a)’|N(z,y;b)?,

a=1be Z(z,y)

and we calculate 3~ . Ui(g) in this section. It follows from (5.6) that

o(b;q,a) = |ao|So + o(TKq(Q) i (R(b))(log z)~C1*1),
providing that R(b) # 0 and (aga + bo,q) = 1. And, by (5.5), we have
S K T—((]gl(log Q)"

in all cases. Since the number of b’s with R(b) = 0 is O(y*~?2), we obtain
(7.1)
g

Yu@=lal )y, Y SHN(z,yb) + O+ (log z) ™).

<Q <Q a=1 be Z(z,
! ! (aoa+do,g)=1 (=)

We substitute Sy by its definition and |N(z,y;b)|?* by

dtydt,
r—y<aj;ti+b; <z

for all 0<j<k-1
and for i=1, 2

then the calculation of the innermost sum can be reduced to that of the sum
h K
S (b,- (ty -7))
bs; q] q]

z—y<Lajt;+b;<z
for 1=1,2

with (h,q;) = (K, ¢}) =1 and ¢;, ¢; < Q1. Sofar as ”@% + %H # 0, we have an
estimate

h N 1 -
—+—|2 =2

G g 95 9;

then,
h K
S (bl hy) <ar
b G 95
z—y<Lajti+b; <z

for i=1,2
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I ”% + %” =0, then ¢; =¢;, h=Ah' (mod ¢;) and

>, e (bj (4 1—-)) = max{y — |aj (t1 — t2)], 0} +O(1).

b 9j q]
g-y<ajti+b;<z
for 1=1,2
Taking account of these results, we have
- k
(7.2) 3" SHN(z,y;b)? = S(g,a)] +O(yF () 2@ ),
beZ(z,y)

where

k-1
J :/ / H(y— |aj(t1 —tz)l) dtldtz,

z-y<aoti+bo<z j=1
for i=1,2
a.jti—t2|<y

Sway= Y s,

with
/‘ q; T : ’
Z (])2 > o IT ea(ai(d? = d8).
==l ¥ g d;€D(g,8;q) d2€D(g,0;q) 7=1

Here we use the notation d; = (dg"), ceey di‘ll) fori=1, 2.

It 1s easily seen that

k—1

H —la;t)) / dt; | dt

ji=1

a.|t|<y z—y<aot;+bo<z
z—y<ao(t;—1)+bo<z
;Ask 1
- ) I - fth e+ 0"
2 k+1 k

Similar to W(r) in §5, it is proved that Sp(r) is a multiplicative function.
in r. So it suffices to calculate So(p) only for each prime p. As in §5, we denote
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by M the set of subscripts of g;’s such that ¢; = p, and get

So(p) = Z (Ep—__l—'l')‘z‘)”M Z Z H cp(aj(di — da))

Mc{1,.. . k-1} d
fM>1 i= (mod (p,q)
(aodi+bo,p)=1 fori=1, 2)

-wo(, O L%

dy dy \MC{l,. k-1}j€EM

-y (H( Cp(a(ﬁill_)zdm) _1)

dy ds Jj=1

(=1 -1 (ifpl9),
p(1 - %)—k+l+(p2——p)(1— (p__ln‘z‘)k g(p)( )H(P) 1 —p?
(if p t ¢ and p | ao),
(p-1(I-1"H 4 (p- 12~ (-1~ i) %
><(1+p—£f)g(p)—(p—-1)2

X (if p 4 qao).

Noticing (5.3), we have for a square—free r

p(r)?So(r) et
¢(lacllg, 1)* |a0|2 > [1 (- *) H( 1—— l)x

rlaog plr

rle
X H( (1-= fz(P)—1> H (fo(p) - 1),
pir plr
rlao ptaog

rtq

where

flp) = (1-H* 2+ (1) ER)™).

Now it is clear that

————————”(r)250(r g’ 1—-— o k_laf> T, (r)r~?
H ( Qj];g Ky

ellaolle, )2 <7 1)
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hence

p(r)2So(r) p(r)?So(r
S(g,0) = ZW (Z ¢(laollg, 7 )2)

r>Q
|a0|2 2 H(l Hf3 p)Hfz
plang rlg
TKz(q) o (L‘_Cl 1
(14) +0(———q2 (oga) 4.

where K and K, are natural numbers depending only on k, and where

fa(p) = (; +(1- %) (i_ ?)k—gm)"l

Now we obtain from (7.1), (7.2), (7.3) and (7.4)

> Ui(g) = ’““QHf )Y - Hfs i 1+

7<Q <@ plg (aoaibil’q):l
+ O(y*+ (log ) =4).

Since
q

> 1=¢]J0-)),
@athon=t

we have

LEMMA 7.1. For any fixed A > 0,

> Ui0) = Sy ASIVEODYY S TL0) + 0w (0gz)4)

9<5Q 9<Q plq

For a square-free natural number d, we define
h(d) = [ [(fa(p) - 1),
pld

then

> o= Hfs(p) > - Z,u (d)?h(d)

q<Q ple 9<Q dlg
— Z p(d)*h(d) Z i
<o 4 wgga™
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We know the innermost sum equals to log @ — log d+ v+ O(d/Q) with the Euler
constant . Since f3(p) > 1, we see h(d) > 0 and

Zud) h(d <H1+hp)—-Hf3 < (log D)*.

d<D p<D p<D

So we have by partial summation

Y o= Hfa p)

4<Q rle

(7.5) =logQ[J(1- 11_7 + %fs(P)) +7, +0(Q " (log Q)**1),

V=2 T10- 1+ Lhe Z"‘ (D M) (1050,

P =1

which depends only on ag, a,...,ax_1. Therefore we derive from Lemma 7.1
that

LEMMA 7.2. For any fixed A > 0, we have

> Ui(q) = |)y'““ﬂ(log A AP) +ny*+'+
9<Q P
+ O(yk+l(log a;)_A + yk+1Q—1(log Q)k+1),

where v, Is a constant depending only on ag, ay,...,ax_1.
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§8. Montgomery’s argument

We put

k-1
Vo) = D > > [[AMain+b)A(ajm+b;),

beZ(x,y)n,ME N(z,y;b) j=0
ngm

n=m (mod ¢)

and evaluate ) .o Usz(g) in this section, according to Montgomery [26]. His
argument is based on the following lernma

LEMMA 8.1. Let

Flzygah)= > AmAn+h)-2]]( (_1
r—y<n<lz p>2 p
z—y<n+h<z
n=a (mod gq)

— |A)
X H ,
Jloh (Q)
p>2
if h=0 (mod 2) and (a,q) = (a+ h,q) =1, and, otherwise, let
F(z,y;q,a;h) = Z A(n)A(n+ h).
z—-y<n<r

z—y<n+h<z
n=a (mod ¢)

Then, for y satisfying (2.1), and for any A, B > 0, we have

> (k) F(z,y;4,0;h) < y*(log z) ™,

0<|h|<y

uniformly in q < (log z)? and a.

This lemma follows by taking ¥ =2, ag =a; = 1, by = 0 in our Theorem
3. In the case y = z, this lemma is due to Lavrik [22].
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In the definition of Uy(g), we write 7 = m — n and obtain

Uz(q) = Z Z A(agn + bo)A(ao(n + 7‘) + bg) X

0<| ly/a. T - y<aon+bo<:c
r=0 (mod q) z—y<Lag({n+r)+bo<z

k-1
X H Z A(ajn+bj)A(a,-(n+r)+b,-)

b
z—y<La;n+b;<z
z—y<Laj(n+r)+bj<z

By virtue of Lemma 8.1, we have

2 1
Luw=3 X Lt g

7<Q 9<Q 0<|r|y/a. p>2
r=0 (mod q)

x’f[j_[l H (i — |ajr]) )

plajr
p>2

p—l

0<|rly/a. j=1

O((ylog:ﬂ)"’—1 Z T(I"I)( (2,y; a0, bo; aor) + f(a:,y;l,l;aﬂ)))

_ 2 1 kP —1ya(p))
€0 = o L (0= o) G5)) @+
+ O(y*+ (log ) ™),
where
CICIED DD DI | ek “”’H (v — lasgml).
¢<Q 0<m§—L— plmq =0

a;jqm=0 (mod 2) p>2
for all 0<j <k—

We decompose Ho(Q,y) into

HQ,2)=) > H kg(p)H — lajgm).

7<QO0<mL 5 p[mq
p>2
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If g(2) = k, that is, all a;’s are even, then we have
(82) Ho(Q,y) = H(Q,y).

If g(2) < k, at least one a; is odd, then we have

q %

2747

As for H(Q, z), we shall prove the following Lemma 8.2. Here we define two
more functions;

83 Ho(@u)=2HQ Y+ 2 L) 2

b1 p—1ik—g(p)
::1—-+.. e ,
1,2 1 1 p—-l k—g(p)
=(1—--= A — =V (——— .
fs(p) ( p) +p( p)(p—2)

LEMMA 8.2. We have for Q < 2z/a.

(84) H(Q,2) =] falp) > ! II fstp)+0 (Z’“Q(logi%Qza )k) )
p>2 ¢<Q g g«g *

and, for Q > z/a.,

(85)  H(Q2) = 2"10log—) [] Sp) + 72"+ +0(F+ (log 2)}+2),
* p>2

where v- is a constant depending only on ag, ai,...,ax-1.

ProoF: Let w(d) be a completely multiplicative function defined by, for a prime
p,



For z > 1, we have

S TIE=)"0 = 3 S uare

m<z p{!g@ m<z dlm
_ e A’ w(d)
=z E_; —-——d—-——-'i-
+o(zﬁ@w@+§y@%@)
a>z d<z
(8.6) =z H fa(p) H fa(p)™' + O((log 2)*).
p>2 rlq

p>2

Then, for Q < z/a., the formula (8.4) follows by partial summation. And the
formula (8.4) is still valid for z/a, < Q < 2z/a, because

Z Hfs ) L L.

—<9<Q plg
p>2

Next we assume @ > z/a.. We have

HQ:)=H =33 1= k”ﬂ ~ |ajgml)

gm< z/as plqm
p>2

= Z )DEE D VDI DD
g< S mg\/}qua:m qs\/}?msﬁ

(8.7) =2H ( -Z—-,z> —Hy, say.

Ay

It follows by (8.6) that

m= 3% H ”(p)H(y lazlgmm)
q<\/—m<\/—plqm
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= Jk+1 H f4(p)><
p>2

alt

k-1
< / LT 5 TTCt - laglu) dust
=0

- ! 37 g
(2a)"% u(a)t<es(&)? 552

=)

+0 (zk+% (log z)k) .

We calculate the integrand by (7.5), then we get, by partial summation, that

a:l 1 u k=1
Hy = F+! Hfs(P)/ ——/ H(l — |aj|v) dvdu+
p>2 0 U Jo =0
+0 (z’“”"%(log z)k) .
We see this double integral depends only on ag, ...,ar—1. Thus we obtain (8.5)

by applying (8.4) and (7.5) to the first term of the right-hand side of (8.7). Now
we complete the proof of Lemma 8.2.

Noticing that fi(2) = 2% or 3 - 282 according as g(2) = k or not, we
conclude from (8.1), (8.2), (8.3) and (8.5) that

LEMMA 8.3. For Q > y/ax, we have

2 Y
U e — k+IQ l A -
qSZQ 1@ ©(laol) Y (log a*) ];Ifl(x?) + sy

+0 (yk"'l(log :z:)"A) ,

where v3 Is a constant depending only on ag, a1,...,ax-1.

Next we assume @Q < y/a.. If g(2) < k then f3(p) = 2, so we have by (8.3)
and (8.4)

Ho(Q,v) = v+ [ falp)x

p>2
WERSE! 1
5D . I 5E+ > . I f(p) p +
<Q 7 plg 7SQ * plg
2t p>2 ¢ p>2
k 2y \*
+0 (y Q(log Qa*) )
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(8.8) = %y’““ﬂﬂﬁz(p) D p Hfs(P) +0 (y Q(Iog Qa )k)

p>2 73<Q * plg

And if g(2) = k then f3(2) = 1, so we have by (8.2) and (8.4)

(8.9) Ho(Q,y) = yk+lQH fa(p) - Z Hfs (y"Q(log %y:)k) .

p>2 QSQ rlg

Since f(2) = 2% or 251 according as g(2) = k or not, we come to the following
conclusion by using (8.1), (8.8) and (8.9).

LEMMA 8.4. For Q < y/a., we have

Y Uilg) = (|a k+1QHf2(P > - Hfa (p)+

9<Q q<Q rlg

O (y Q(log '(%yj)k + yF+(log :z;)—A) )
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89. Hooley’s argument

Hereafter we set A
Qo = y(logz)™ """,
and, for Qo < @ < y/a, we put
v = Y, UAa).
Q<g<y/a.
The purpose of this section is to prove the following Lemma 9.1 along Hooley’s

way [16].

LEMMA 9.1. For Qo < @ < y/a*, and for any fixed A > 0,

— 2 k+1 k41
k
+1Q > émlog Q’; )" +0 (v PR QFE 4y (loga) ).
m=0 *

Proor: Putting m = n+ hgq,

k-1
V(@) =2 Z Z Z Z HA(ajn+bj)A(ajm+bj)

beZ(z,y) Q<g< K ME N(z,y;b) =

n<m (mod q)
- k-1
=2y > 3 HA(ajn+b,~) > I Maym+by).
h< 5% bEZ(z,y) nEN(z,y;b) =0 meEN(z,y;b) j=0
m>n+hQ
mz=n (mod h)

Since y/(Qa.) < (log z)4** we can apply Theorem 3 to the above, and obtain

V=23 3 o h)obl)/ / ity +

h< g4 beZ(z,y) t1,t2 €N(z,y;b)
12< t1—~hQ

+O(y ¥+ (log )~ )
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:22 Z

-Z)a. z—y<Lagti+bo<Lz
(a°a+b°’h) 1 ori=1,2
1<ty — hQ

> o(b;h,a)? dtydto+

b
z—y<La;ti+b;<z
for 1<j<k-1
and for 1=1,2

+ O (¥ ! (log z)=).
By the same argument we used for the calculation of

> SN (z,y;b)?
b

in §5, we can obtain

(9.1) V(Q) = (Ia y*H! Hfz ) -V,
where
asl k-1
Hf3 p)/ H (1—|aj|u) du.
h<3¥— "Bl v j=o
We put v =1 — a,u, and define ry,...,r; as
k-1 k—1 0] as] k
(9.2) H(l — |aj|u) du = H(l — _éli— -+ a_]U) = Z rmvm'
j=0 j=0 * * m=1

Then simple calculation shows

- Y - AQaeymit L T £a)

h<5¥7 y plh




Next we examine Z(z,m) for m > 2. For ¢ > 1, we define
o(s)=>_h~* [[ f(p),
h=1 plh
where s = o + it is a complex variable. And we define the function 6(s) by
(9.4 O(s) = C(s)C(s + 1)*0(s).

In the half plane 0 > —1/2+¢, it is easily seen that 8(s) is analytic and 6(s) < 1.
Thus, the relation (9.4) gives the analytic continuation of ©(s) over o > —1/2+¢.
For |t| > 1, we have (see Tichmarsh’s book [37], for example)

|tl-§-—0+€ (0 <0),
IK(s)] < { |t|%(1‘”)+e (0<ea <)

Therefore, for —1/2+¢ <o <0,
(9.5) O(s)] < [t~ E+Dr+i+e,

We note here that the exponent of |t| is less than 2 providing o > —3/(k + 2).
It is known that, for c >0, u>0and m>1,

+i00
1 utds #(1—u)m‘ (0<u<l),
2mi | Tlj=o(s+3) 10 (u>1).
C—100
Making use of this formula, we have
: 1+i00 s d
m! 2% ds
E(z,m) = — Os + ) =s—r—=
(z:m) 27”1_.,/ ( )Hj-_-o(s‘*‘i)
—-,’:—_"5:—%+ioo
m! 2% ds
= m! ! — —_
mRO,m+mR1,m+27ri / ®(s+1)1—1;?::0(8+]))
-,’:—ﬁ-—ioo
where Ry and Ry, are the residue of the integrand at s =0 and s = —1, re-

spectively. The inequality (9.5) shows, for m > 2, that the last integral converges
absolutely and is bounded by O(z~(*k+3)/(¥+2)),

On the other hand, we see by (9.4) that the integrand has poles of order 2
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and k+1 at s = 0 and s = —1, respectively. And we find that
MRy = ((2)F0(1) logz + 74,

k
MRy m = 271 Z'yj,m(log z)j,

where 4 and ; »,’s are constants depending only on ao, ..., ap-1. We note that

. Of(s 1 1
¢(2)*6(1) = lim C((s)) = [;I(l -t Ef?’(p))’

and that
(9-6) YVim = —77¢(0)9(0) = zk,Hfz(p)l

Taking account of these results, we have

(9.7) E(z,m) = H(l——+  fa(p) - og 2) + o+

k
+271> jm(logz) +0 (z'%) :

j=0

Since
1k-1

1 k
= U™ dv = ay 1 —Ja;j|u) du = a, 2,
1 /; /H< jaj )

our Lemma 9.1 follows from (9.1), (9.3) and (9.7). Further, by taking v =1 in
(9.2), we see Y F _, 7 = 1, and, combining this with (9.6), we obtain (1.7).
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§10. Proof of Theorem 4
By the definition of £(z,y; b;q,a), we see

E2(,y;Q) = ZZ Y. &zy;big,a)’

4£Q a=1beZ(z,y)

(10.1) =T+ Ug) -2 Us(e) = D Un(9),

<@ ¢<Q 9<Q

where

k—1
r-Q Y Y I[Awntb)?

beZ(z,y) neN(z,y;b) j=0

Us()=>_ > o(bjg,a)|N(z,y;b)lx

a=1beZ(zy)
x {¥([z -y, z];b; ¢, a) — o(b; ¢,a)|N(z,y;b)|},
and the definitions of U, (g) and Uz(q) are in §7 and §8, respectively.

Making use of the prime number theorem for short arithmetic progressions,
we obtain

k-1
T = Q Z A(aon -+ b0)2 . H Z A(ajn -+ bj)z
z—y<Laon+bo<z j=1 b

z—y<Lajnt+b;<c

£ |z 8 )

]
O

r—y<m<z
m= bo (mod GQ)

(10.2)
N Eﬂ%z?ﬁka(logx — 1)* + O(y*Qlog z)™4).

Next we see plainly

4\1.: ~q H P(P)

a=1 ]
(I (aa'a+bj),q)= i
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q

> {#([ — y, 2; b;,a) — o(b; 0, a)| N, y; b) |} =

(H _O(C:;H ),q)
=U([z —y,2];b;1,1) — o(b; 1,1)|N(z,y; b)| + O((log z)*+1),

so we have

DU = > a(big)|N(z,y;b)x
i<0
x {¥(

9<Q bEz(-‘v Y)
z;b;1,1) — a(b; 1,1)|N(z, y; b)| + O((log z)¥+1)}

<ylogz)® Y |¥([z—y,a];b;1,1) — o(b; 1, 1)|N(z, y; b)|| +
be Z(z,y)

+ yk(log .'I?)k+3.
Then, applying Theorem 3, we get
(10.3) Z Us(g) < y* 1 (logz) 4.
9<Q
By (10.1), (10.2) and (10.3), we obtain
1
(104) &o(z,y;,Q) = olaan? *QUogz - 1)* + Y " Us(g) — Y Un(g)+

<0 <Q
+O0(y*Q(log &)= + y*+1(log z)~4).

Firstly, we suppose @ > y/a,. Lemmata 7.2 and 8.4 yield

> Ula) = 32 Usa) = —moy* (log L) + a4 Oyt Qllog ) ),
9<Q <@

then the formula (1.10) follows at once from (10.4).
Secondary, we suppose @ < y/a.. We have by Lemmata 7.1 and 8.3
(105) > Uale) =Y Vi) <¢*Qog25-)" + 5+ (logz) ™4,
g<Q 95Q Qa.

and, in view of (10.4), this estimate shows the formula (1.9) providing Q < Qo =
y(log z)~A*.
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Finally, we suppose Qo < @ < y/a.. By (10.5),

S Uslg) = 3 Vala) < yFH(loga) 4,
94<Qo 9<Qo
therefore

(10.6) &a(z,y;Q) = 90—“%1—5 kQlog z — 1)* + Z Us(q Z Ui(g)+

Qo<g<Q Qo<¢g<Q
+ O+ (logz)~4).

By virtue of Lemma 9.1, it follows that
> U9 =V(Qo) - V(@)

Qo<¢L@

k
(10.7) = noy*** (log 'c%) —¥* QY ém(log
m=1

Yy \m
ga)
+O(yf T QER 4 44+ (log z) ).
And we see by Lemma 7.2
108) 3 Ui(@)=moytt (o 2) + O+ loga) ).
Qo<¢<Q

Hence we obtain the formula (1.9) in this case, by (10.6), (10.7) and (10.8). Now
we complete our proof of Theorem 4.
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§11. The circle method
We start here the proof of Theorem 5.

We introduce functions

e(mp)
Pla)= ) e(pa), T(8) = ,
& A 87
Fla)= 2 e(mFa), v(B) = Z %m'l""l?e(mﬂ) ,
m<N1/k m<N
V(asq) Ze(— ) )
and, for positive constants B and B; (which should be chosen later), we set
Q@ = N(log N)™5, = (log N)B
l a 1
+
m?(a q) = [ ~ 107 qQ]
1 1
= (064)1—1

Then, for n < N, we have
Q—l

ri(n) = / 7 P(e)F(a)e(~na) do

:/P(a)F(a)c(—-na) da+/ (a)F(a)e(—na) da
(11.1) =rro(n) +rk1(n), say.

In order to calculate the integral on the "major arcs” 901, we require the following
known results.

LEMMA 11.1. Letq < @1, 0<a <y, (a,9) =1, a € M(a,q) and let a = %+,B.
Then, there exist a positive constant cq such that

P(a) =L Eq;T(ﬁ) + 0 (Nexp(—cov/log V).

LEMMA 11.2. Let 0<a<¢< @, (a,9) =1, o € M(a,q) and let o = -;1-1—,8,
Then we have

F(a) = K(—Z’—Qv(ﬁ) + 0 (q%+€(1 + %)) .
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LEMMA 11.3. Let ||8|| denote the distance from (3 to the nearest integer. Then
we have

(112 [T0) < i (0 1),
(113) [0(8)] < min (W%, [|g]|73/+)

Lemma 11.1 is proved by the Siegel-Walfisz theorem, and, for the proof,
see Prachar [34, VI, Satz 3.2, p.181]. Lemma 11.2 and the inequality (11.3) of
Lemma 11.3 are proved in Vaughan’s book [39], see Theorem 4.1 and Lemma 2.8
of [39], respectively. The inequality (11.2) of Lemma 11.3 follows at once from
the well-known estimate Y e(mf) < min( N, ||f]|~!) by partial summation.

m<

As for the integral on the "minor arcs” m , we use the following lemma.
We postpone the proof of Lemma 11.4 until the end of this section.

LEMMA 11.4. Let B, be a positive constant, and we assume that B > B; >
28 By + k?. Then,

m%xlF(a)l & NY%(log N)=B2,

oaegm

By Lemma 11.3, we have

1 1/2
TE()e(-np)ds = [ T(Eu(B)(-n5)ds + 0( R ﬁ-l-%dﬁ)

181< 25 9
1 1 1
_ 2o - /
= m;ﬂ m 1+Flog(n ey + 0 ((qQ)l k)
= I(n)+0 ((qQ)lf k) ,
where
n=2 gl dg

Thus, by Lemmata 11.1 and 11.2, we obtain

T n)= —I;L—(—q-)— y a € "'ETL v e{—n
()= 32 00 2 Vedd-gn [ @)+
- ’ {a,9)=1 Imsq—lq

+ O (NH%Q‘lQl exp(—cg+/log N ))

q
=Y &%(%ZC“M —n)-I(n) + O (Nl/k(logN)-%BV‘—iﬂ‘-Bl).
<@ r=1
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Since cg(m) = 5 du(g/d), we see
dlm

p(m) :
qgl qso(q)ZCQ(r )= qg Q‘P(Q)Z Q) Z—; :
- r¥ —n=0(mod d)
Z Zu( )on(d
i<a, A0 G
= Gk(n:Ql) )

here G (n, Q) is defined in (1.13). Therefore, we get

(11.5) re,0(n) = Gk(n, @1)I(n) + O (Nl/k(log N)—-%B+f—#31) .
On the other hand, it follows from Bessel’s inequality and Lemma 11.4 that

> Irea)l” < [ 1P(@)P (@) da

n<N
<& NY/¥(log N)~25: / 1P(a)|? dov
0
(11.6) & N't% (log N)~2B2-1

Hence, by (11.1), (11.5) and (11.6) with suitable choices of constants B, B; and
B, we obtain the following lemma.

LEMMA 11.5. For any constant A; > 0, we have

Z Ire(n) — &(n, Q1) I(n)|* <« N1t (log N)~4A1 |
n<N

Now we are in the position to prove Lemma 11.4. By well-known Dirichlet’s
theorem, for any a € m, there exist integers a and q such that

(11.7) a€Ma,q), 0<a<gq, (a,¢)=1 and @Q;<¢<@.
Then, Weyl’s inequality (see [39, Lemma 2.4]) gives

1 1/2%-!
(11.8) |F(a)| < NE+e (q-l +N-UE L qN-l)

)

but when ¢ is near to @y or @, (11.8) gives only a trivial bound. If ¢ is near to @,
the required bound follows from Lemma 11.2 with the estimate V(a, ) < ¢*~*
([39, Theorem 4.2]). For ¢ near to @), we modify the proof of (11.8) slightly to
reduce the factor ” N*” in (11.8) which arise from estimating the divisor function.
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By Weyl’s method, we have (see [39, pp.11-12, Lemma 2.3 and the proof
of Lemma 2.4 |),

1

(11.9) |F()? <« NEET-D 4

+ NECUTR S () min (N, [kt
0O<h<kIN'~F

We take a constant C, and divide the last summation over h into two parts
according as 7 (h) < (log N)© or not. And we get

S>> me(hymin (NVF, [1B7) <

h<kIN'"F
<(logM)® 3 min (NYVE B)I7Y) +
h<EIN'~®
T (h)<(log N)©
+ (log N)=¢ Z i (R)2NY*
h<kIN'~H
e (h)>(log N)¢
(11.10) < N (g7 + (log N)™20++7=2 4 gN 1) (log V)1

here we use Lemma 2.2 of [39] and the well-known estimate 5, ., 7x(h)? <

z(logz)¥*~1. By (11.7), (11.9) and (11.10), we have Lemma 11.4 by choosing
C = (B +k*—2)/2.
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§12. Preliminary lemmata

First of all, we note that
LEMMA 12.1. {,(s)/{(s) is an entire function.

Lemma 12.1 is a consequence of Uchida [38] and van der Waall [42], because
the Galois group of the extension @(n'/* e(1/k))/Q is solvable.

We define the set
Ex(N) = {n < N;the polynomial z¥ — n is irreducible in Q[x]} .
We have easily
(12.1) f{n < N; n¢ By(N)} < VN,

where §| denotes the cardinality of the indicated set.

Let Dy, be the discriminant of @(n'/*), and let D), be the discriminant of
the polynomial z¥ —n. It is known that D/, = (—1)¥~!k*n*~1 and that there
exist an integer D/ such that D!, = D,(D!)2. Especially, we have

(12.2) |Dn| < n*~1.

By the functional equations of {(s) and {,(s), we get, for n € Ex(N) ,
(n(s) —ro __l,_g_ 1-2s ]_"(_1_13_) ri—1 F(]_ . S) ra Cn(l _ S)
(s) (2 i | nl) <F(§S) ) ( I'(s) ) ((1=s)’

where, as usual, 71 and 2r; are the numbers of real and complex conjugate
fields of Q(nl/ k)/Q, respectively. Then, by the Phragmen-Lindeldf theorem
with (12.2), we have

LEMMA 12.2. Let
k=l(1-20) (0 <0),
k(o) = E—;—l(l —0) (0<o<1),
0 (c>1),
and suppose that n € Ex(N), T > 1 and that |t| <T. Then we have

¢a(s)
()

where the implied constant depends only on k and €.

< (NT)n(a)-f-e

LEMMA 12.3. We have




Lemma 12.3 follows from a known estimate for the residue of (,(s) at s =1
(see, for example, [21, XVI, §1, p.322, proof of lemma 1 with o = log N]).

LEMMA 12.4. Let T > 2 and n € Ex(N). Suppose that s = o + it is not a zero
of ¢ (5)/¢(s), and that —1 < o < 2, |t| <T. Then we have

Ca(s) <ls) _ o
Cn(s)  C(s) — 2 5—, tOlogNT),

pily—t|<1

where p =  + iy runs through all nontrivial zeros (that means 0 < f < 1) of
¢n(8)/C(s) satisfying |y —t| < 1.

Lemma 12.4 is proved by similar argument to Davenport’s book [7, Ch.15,
p.99 (4)]. We also use the results in Landau [20, Satz 180 and (161)]. In these
results in [20], the dependency of n is not written explicitly, but we easily clarify
it from the proofs in [20] and the inequality (12.2).

Let Mn;a,T) be the number of zeros of ¢,(s)/¢(s) in the region o > «
and |t| < T. Then Satz 181 in [20] states that,

LEMMA 12.5.

Mn; %,T+ 1) — Mn; %,T— 1) < log NT .

LEMMA 12.6. Forn € Ex(N), 6 > 0andT > 2, assume that N(n;1—-6,T) =0
and that

| o
Co| =

<< =<

N o

Then there exist a positive constant ¢y such that

¢(s)
¢a(s)

¢ 8n/é
1—1153%(1%7 < exp ( n (log VT) ) .
[t|<T/2

ProoF: Let log (¢(s)/Cn(s)) be the branch of the logarithm of {(s)/¢,(s) that is
zero at s = ¢ = +o00. And let a,(f, p) be the number of prime ideals p in @(n'/*)
such that the norm of p is equal to p/. By the Euler product for {(s)/(,(s), we
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get that if ¢ > 1 4 7 then

IV
log CC(( )) Z (1 an(l,P) -1 + Z Z log(l _ ;73—> »(f,p)
p 2<j<k
<<zpm ;
p

1
12.3 < =
(12.3) ”

If o >1— £ and [t| <T/2 then we have, by Lemma 12.4,

l%w>~f@@_m%ﬁ+1<mm>

Cn(s) {(5) o) 8 a2 +it)

241t
.S / ds_ 4 O(log NT).

. S —_—
ly—t] <1 o+t p

Since B <1 -6, we see |s — p| > |o — 8| > §/2, and, with Lemma 12.5, we get

¢(s) 1
(12.4) log A0 L 67 log NT .

Now we suppose |1 — cr| <nand [t| <T/2. For j =1,2,3 let C; be the
circle centered at sg = n~! + it of radius r;, where ry = 7 “1l (1+ 77) Py =

nt—o, ra=n"t—=(1+n-1), 50 that s = o+t is on Cp. We set, for
i=123,
_ ¢(s)
M; = max log 73

The inequalities (12.3) and (12.4) imply
My <nt  and Mz« 6§ llogNT,
respectively. Then it follows from Hadamard’s three circle theorem that
My < M;™* Mg < 77" (log NT)*
with @ = (log(r2/71))/(log(rs/r1)). Therefore, our proof of Lemma 12.6 is com-
pleted by observing a < 8n/6.

Next we define arithmetical functions which are concerned with ¢, (s)/¢(s).
For o > 1, we write

$a(8) X an(m) ((s) _ <= aj(m)
() =m0 L) 2 m

96

m=1



and put
Pn(m) = m)2 H pn(p) — 1)

plm

We get at once |B,(m)| < me—1(m).

LEMMA 12.7. For n € Ey(N), there exist arithmetical functions {v,(m)},
{6n(m)}, {7 (m)} and {8/ (m)} which satisfy the following conditions;

(12.5) an(m) = Z _ Bn(m1)1n(ma2)én(ma)
(12.6) ap(m)= Y p(m)Ba(mi)ya(ma)6)(ms)

mimamaz=m
(12.7)  [6n(m)| < m%(m) and |6,(m)| < 7%(m) for alln € Ex(N) and m,

p . forallne E, (N
(12.8) Z 1< (NM)* and Z 1 < (NM) andM?_kQ(,)

m<M m<M
|6n(m)[>0 |6 (m)|>0

Further, there exists an arithmetical function {y(m)} satisfying the follow-
ing conditions;

(12.9)  |y(m)| <v(m) and |y,(m)| <y(m) foralln € Ex(N) and m,
(12.10) Z 7( ) & (log M) for any M > 2,
mSM

where Cy Is a constant depending only on k, and o¢ = }%g%;_—i}

Proor: Using the numbers a,(f,p) defined in the proof of Lemma 12.6, the
Euler product for ¢, (s)/{(s) is written as follows;

T == L IT =)0 o)

p 2<f<k

For n € Ex(N), assume that
g
¥ —n= qu(:c)ej (mod p),
ji=1

where g;(z)’s are distinct irreducible polynomials (mod p). It is known in al-
gebraic number theory that, if p + D], then a,(f,p) is equal to the number of
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an(1,p) = pa(p)
providing that n € Ex(N) and p t kn
Now we put, for o > 1
gn,l(s) =

g; (x)’s such that the degree of ¢;(z) is equal to f. In particular, we have

[T+ 8~

S -1 (1 ﬁ (P) i 77(1-1)
ms
—an(fp) o=
&na(s)=T[ T] Q-p7)"""" Z -
p 2Lf<k
En,S(S)

(2)
[T -8.p)

2 om)
. . 3 (m
(1= )P = }:7 (m)
En(S) _ ]:[ (1_p_3)-—an(1,p)+9n( ): i nllf’;n) )
plkn m=1
1L & () 1 & 8(m)
€na(s) 4 ¢ m' En(s) & m*
(12.11)
T(m)=" > AWmu)yP(ma), yp(m)= Y AD(mi)y$(ma)
then
) [T+ B0 - nr($Iena(s)5:(6)
C(S) . n n, n,2 —n
and
(12.12)
)

Cn(s) :];[(lm

Bn(p)p )'fn,S(s)fn 2(s) 1~n(5)~

By these relations, we have (12.5) and (12.6) at once

o 1
pn(p)| < k, we get (12.7). The first estimate of (12.8) follows from
2, lsar

m<M

Noticing |an(1,p)
S S em J[a-p)
me —

< m<M plkn

[6n(m)[>0 [6n(m)|>0
with the well-known bound

log N
(12.13) v(kn) < Toglog NV
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where v(m) denotes the number of distinct prime factors of m. The second
estimate of (12.8) is obtained similarly.

We define the arithmetical function ¥(?)(m) by

k
[T1II -p)~" = ( I1 C(fs)) =27(2,2§”’ (o> 1).

P 2<f<k 2<f<k

We see plainly that

(12.14) Y (m)] <P (m) for j=2, 4,
and that
(2) m _ -k
(12.15) > 7m1(/2) <II II (1-—p f”) < (log M)* .
m<M P<M 2<[ <k

Next, we define the multiplicative function 4(})(m) by the following 3 con-
ditions;

(a) ~¥V(p) =0 for all prime p,

(®) YD(p') = (min(k — 1, p—2)) (I + k —2)*~*
for all odd primes p and for { > 2,
(c) yM@2Y=1 forl>2,

Since |G, (p)| < min(k — 1, p — 2), simple calculation shows
(12.16) WD) <1 D(m) forj=1, 3.
For p > k + 2, there is a constant Ci, depending only on k, such that

7(1) (pl )p-lag < Clp—ZUo )
2<i<log M

Noticing that p~?° min(k — 1, p—2) <1 and o > 1, we get

(1)

Z 7 (m) H Z (D (1N —170
meo < (1+ 7 (P )p

< < 2<1<log M

m<M 2<p<M
< I [+ > a+k-=21)- J] @+Cip2)
2<p<k+2 2<i<log M k+2<p<M
(12.17) < (log M)“?

where C, is a constant depending only on k.
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Now, let

ym)= > A D(m)y®(ms),

mimaoa=m

then (12.9) and (12.10) follow from (12.11), (12.14), (12.15), (12.16) and (12.17),
and our proof of Lemma 12.7 is complete.

For a squarefree integer m, we define two sets Cy,, and C}, of Dirichlet
characters as follows;

Cn = {x(mod m); x* = xo,m and x # xo,m },
Ch. = {x € Cp; x is primitive. },

where xg,m denotes the principal character (mod m). As for the cardinalities
1Cr and §C%,, it is easily seen that

(12.18) iy < HCm < () — 1.

LEMMA 12.8. For a squarefree integer m, we have

Ba(m)= > x(n).

X€ECT,

ProOF: This is the equation (10) in [33]. It suffices to show that, for any prime
p,

(12.19) Palp)= D x(n),

X€C:
because of multiplicity. If p | n then p,(p) = 1 and (12.19) is true. If p + n then

1 14
pn(p) = s Yo x()d X0

X (mod p) =1

= > x(n) =14+ > x(n).

x*=xo0,p eC

x

AR 2

Thus, in both cases, we have (12.19) as required.

We state here three well-known results without proof.

LEMMA 12.9. Let 0 <y <1lory>1 and let

(0 (0<y<1l),
6(y)_{1 (y>1).
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Then, for ¢ > 0, T > 0, we have
1 C+1T 3

- y_ . C s -—11 -1
2w Jo_ir sds—é(y)"‘o(ymm(l’T [logyl™) ) -

LEMMA 12.10. Suppose 0 < 8 < 1/2 and z > 2. Then we have

Y n(m) < ylogz)*

g—y<m<z
uniformly in y providing z% < y < .
LEMMA 12.11. For any sequence {an} of complex numbers, and for Q > 1, we

have
2

< (y + Qz) Z |anl2 .

r—-y<n<lx

Z anX(n)

r—y<n<z

q %*
Doy 2

9LQ x (mod g¢)

Here, > * indicates a sum over all primitive characters y (mod q).
x (med g)

For a proof of Lemma 12.9, see, for example, Davenport [7, p.105, Lemma].
Lemma 12.10 1s a special case of Shiu [36, Theorem 2|. Lemma 12.11 is the well
known large sieve inequality due to Gallagher [11].
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§13. An asymptotic formula for &(n,Q)

In this section, we treat our singular series

_ v )
615(”5@) - % SD(Q') /Bn(Q)

and our goal is to prove the following lemma.
LEMMA 13.1. Let M be a real number satisfying
exp ((log N)™) < M < N
with some constant 0 < ¢; < 1. We assume n € Ex(N) and

Mn;1 -6, 2exp(2y/logM)) =0

with some constant § > 0. Then we have

(13.1) Si(n, M) = Ei(n) + O ((exp(~(log N)™/2)),
and
(13.2) Gi(n) > (log N)"**1(loglog N)~F.

Proor: We put, for o > 1,

_ 3 pm) ﬂn(p)

m=1 P

Simple calculation with (12.12) gives

Zn(s):H<1—@%@>.g(l_Gg%%T> (1—%,(3—1))>_1

_ G(s) = s €n,2(s) _ Bn(p)

= o V650 H (l TR
C(s) =n(s s
= 25 (6l s

We may assume 1 — 6 > o9, and set T = exp (2¢/log M). By (12.14), (12.15),
(12.16), (12.17) and the fact p?® > min(k — 1,p — 2) > |8, (p)| for all primes p,
we see that £,(s) is analytic in the half plane ¢ > 0y, and that

(13.3) 1< E(s) <1,

for ¢ > o + ¢. Noticing Lemma 12.1 and the assumption Mn;1 - §,2T) = 0,
we see that Z,(s) is analytic in the region o > 16, |t| < 2T
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For ¢ > 1 — n with some 0 < n < 1, we get easily

(134)  [Za(s)] < exp (k > o<1>) < exp((log N)),

plkn
and
(13.5) 150 (1) < (loglog N)F,
because of (12.13). From (13.3), (13.5) and Lemma 12.3, we have (13.2).

Now we suppose 2/T < n < §/4, then it follows from (13.3), (13.4) and
Lemma 12.6 that

¢ 8n/s 7
1~n%1cz§1+n |Zn(5)] < exp (77 (log NT)*"® + (log N) )
t —

(13.6) < exp (2—;0-(log N)S"/5> |

Without loss of generality, we suppose that M is not an integer. Making
use of Lemma 12.9, we obtain, with b = 1+ (log N)~!,

Me-1 >
G(n,M)_% . Z,,}(S)S_1 ds+0(n;}?,m)

(13.7)
1 1—n—iT 1—n+iT b+1iT Ms—-l
=Zn(1)+ =— / +/ "|‘/ Zn(s ds+
(1) 2w \ Jo—ir 1—p—iT l—niT ( )3—1
4o (z Rm) ,
m=1
where

R, = Tk(m)m“b min <1, T"1|log %I——l) ,

h}(lere we note that Ef—llﬂn (p)| < k for all primes p. It is easily obtained by (13.6)
that
(13.8)

1—n—iT b+iT s—1
/ +/ Zn(s)M ds
b—iT 1—n+iT s—1

and that

< T texp (g;—o(log N)S"/é) ,

(13.9)

1—n+iT s—1
/ Zn(5) M ds
1

—p—iT s—1

<K M™"(logT) exp (2?_ (log N)8’7/5> :
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We turn to estimate 3 -, R,. We see clearly

( >+ > )M«T‘li%@zT"lC(@’“

m<iM m>imM m=1
(13.10) <L T (log N)* .

For VM < U < M/2,if U < |m — M| < 2U then

M M—-m U
|log—n7]_|log (1+ — )|>> —

and, using Lemma 12.10,

R <T7'U™ ) re(m) € T~ (log M)*~ 1.
U<|m-M|<L2U U<|m-M|<L2U

So that we have

(13.11) ( >+ > ) Ry < T (log M)*

iM<m<M—vM M4+/M<m<iM
2 2

We use Lemma 12.10 again to get
(13.12)
Z Ry < M1 Z mi(m) <€ M~ 2(log M)*—1.
M—\/J\_l_<_mSM+\/1\_'f M—\/JTIS_mSm-h/A—J

We choose n = 4¢, then, with (13.8)-(13.12), the formula (13.7) shows
(13.1), and which completes our proof of Lemma 13.1.
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§14. Fundamental Lemmata

In the study of zero density estimates for Dirichlet L-functions, the large
sieve inequality (Lemma 12.11) is one of main tools. The following Lemma. 14.1
takes similar play as the large sieve inequality in our estimate for M(n;o,T).

LEMMA 14.1. Let {a,,} be any sequence of complex numbers, and let 0 < y < z.
Then we have

2

2

Z amPn(m)| < (N +zylogz) Z p(m)?ri(m)?|am|? .

n<N |z—y<m<cz r—y<m<z
ProoF: By Lemma 12.8, we get
2
D | 2. ambalm)| =
n<N [z—y<m<zx
=YY e Y Y Y
T—y<mi ,m,<c X1€CT, | X2€Cr, n<N

Since x; and x2 are primitive characters, if x;¥z is principal, then m; = my
and x1 = x2. Thus, by (12.18),

141) >0 D amfa(m)

n<N |lz—y<m<z

2
<N Y pmPr(mlant + Sy

r—-y<m<z

where

Sey = D D mm)*u(ms)’lam, am,|x

z—y<my, ma<zc

<22

X1 EC,',11 X2 GC:,LQ
X1Xz is non-principal.

Z x1xz(n)

n<N

Making use of the Pdlya-Vinogradov inequality, we have

Sey K zlogz Z Z p(m1)2p(ma) 2 me(m) me(ma)|am, Gm,

x'—y<m1 ) mlsx

(14.2)
< zylogz Z p(m)?m(m)?laml?

z—y<m<zw

Lemma 14.1 follows from (14.1) and (14.2).

65



When z > N, Lemma 14.1 gives only a trivial bound. In this case, we need,
instead of the Pdlya-Vinogradov inequality, a non-trivial bound for the sum

2, 2|2 X

m<M x€Cpn [n<N
u(m)*=1

)

which is trivially <« NM(log M)*~1. We shall prove

LeMMA 14.2. Let h be a natural number, and let r be a natural number satis-
fying

(14.3) NT=1) > prtt

Then we have

(14.4) Z h(m) Z Z x(n)| < N1~ 77 M(log N)5+2h7%-1.
p(m)?=1

ProOF: We denote the conductor of a character x by cond.y. If x € Cpy, is
induced by x1 (mod [), then we have, by the Pdlya-Vinogradov inequality,

doxm= 3 =Y udxid) Y xa)

n<N n<N d| 3 n'<f
(n,)=1

< m(m)V1ilogl .

Thus,
(14.5) Z Th(m) Z Z x(n)| < M~/L(log LM)"*,
m<M X€Cm |[n<N
u(m)?=1 cond.x<L

where L is a parameter chosen later.

We estimate the sum over x with cond.y > L by the method indicated in
Elliott [10]. For a natural number r, we evaluate the sum

S=3 % [T

m<M x (mod m) [n<N
cond.x>L

2r
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by the large sieve. We denote, by 7. n(n), the cardinality of the set

;
{(ny,n2,---,ny); n; <N forall 1 <j<r, and Hnj =n},

Jj=1

so that

2r 2
(14.6) x| =D mnln)x(n)| -

n<N n<NT
When x (mod m) is induced x; (mod {), we have
Z Tr,N(n)X(n) = Z Tr,N(n)Xl (Tl)
n<NT n<NT

(n'rzln"):l
(14.7) = Zu(d) Z . n(n)x1(n) .

|z n<NT

n=0 (mod d)

It follows from (14.6), (14.7) and Cauchy’s inequality that

S< > 3y r(ﬁ;—)z Yo mn(n)x(n)

L<I<M x (modl) m<M dj n<N’
m=0 (mod I) n=0 (mod d)

(14.8)

<<MlogMZ%Q > -}- Yl YD mn(n)x(n)

d<M L<i<¥  x (mod 1) n<NT
n=0 (mod d)

Making use of Lemma 12.11, we have, for L < U < %,

2

LS| Y matnm| <

U<i<2U  x (mod ) n?N’;i 0
n=0 (mo:
NT NT 2
< (U‘i-—(T) Tr(d)z d (IOgN)r —1.

Summing this inequality over U = L-27 for an appropriate range of j, we obtain,
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from (14.8),

S < MlogM )~
d<M

(14.9) < MN* L™ Y(log N)",

T(d);;(d) (%“‘FELC) Nr(lOgN)rg—l

providing that
(14.10) N" > ML.

We deduce from (14.9) and Holder’s inequality that

S a0«
m<M XECm |n<N
”(m)zzl cond.x>L
-
<< Z Tk(m)Th(m)zr/(zr—l) : S%
m<M
p(m)?=1
(14.11) &« NML™% (Jog N)5+h° k=1,
Now we take
L= N+,

then (14.10) is equivalent to (14.3), and the required bound (14.4) follows from
(14.5) and (14.11). Hence we get Lemma 14.2.

We use Lemma 14.2 to prove the following lemma.

LemMMA 14.3. Let {a} be any sequence of complex numbers, and let r be a
natural number satisfying N™"=1) > 22('+1) " Then we have

2

n<N

2

<N Y p(m) m(m)am [+

m<z

Z amﬁn(m)

m<z

2
1- 4y . L418k541
# VT e (M, e fonl) - (og W34

Proor: In view of (14.1) with z = y, it suffices to show that

1— 4 2 2 L+18k%+1
e € N7 (M 1205 ol >(logN)’ |

68



We put, for My, M, <z,

S(Ml, Mz) =
= E E |am1am2| E Z E Xl%(n) )
M;<m;<2M; Ma<ma<2M, X1€Cn,  X2€C,, |nSN
p(mi)*=1 p(ma)’=1 X1Xz is non-principal.

then, because x1%z € Cpn, we have

S(My, M3) € op, Jhax |@m, Gmg | X

1<m<2M;
Ma<ma<2M-
2
x Y m(m) > 1 > D x(n)
m<4M, M, [m1, ma]=m XECh [n<N
p(m)?=1

Since (M M,) +1 < g2r+1) < N7(r=1) we obtain, by virtue of Lemma 14.2,

S(My, My)  N*""H MM, max_ |am,am,| - (log N)ZH8° =1

Mi<mi1<2M,
My<maZ2M;

and

Sa.z < (logz)” max S(Mi, Ms)
Mgs.’ﬁ
& N1 (max M?  max iam|2> (log N5 +18k°+1
M<z  M<m<2M
as required.
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§15. Mean value estimate for (,(s)/{(s)

LEMMA 15.1. For a natural number r, let

1
01:1——7'(1*——1)'
We suppose o1 > o and
(15.1) (NT)r+D(k=1)@3=201) < Nr(r=1),
Then we have
Cn(s) ’ 1+¢
(15.2) Z 0 < Nt

nEEk(N)

uniformly for s satisfying |t| < T and ¢ > o1 — (log NT)~*

ProoF: If o > 1 then (15.2) is true by Lemma 12.2, so we assume o < 1. We
apply the method of Ramachandra [35].

We put X = (NT)(*-1)3-29)/2 and Y = X(log NT)~2. Making use of a

well-known Mellin transform, we have

(15.3) Z on(m) —mpy _ 1 / e (8 +9) by w oy

m=1 m? 27”’ 2—ico C(S + )
We shift the contour to the line Rw = —1+ (log NT)~!. By Lemma 12.2 and a
known estimate I'(w) < e~19%! the right-hand side of (15.3) becomes
—14(log NT)~ 4400
(n (3) L Cn(s + w)
¢(s) 2m ¢(s+w)

—14(log NT)-1—ico

w)YY w:(:n(s) €
I'(w)Y" d Fy T OW).

On the other hand, the left-hand side of (15.3) turns into

Y- eelmlemiy 1oy =

— Z 2711 m2)5 T(nma) Z /3 ( ) —-mlmgma/Y +O(1),

mj
mamg <X 3 mi1< 1

- m2m3

by (12.5). Accordingly we get, by (12.7), (12.8), (12.9), (12.10) and Cauchy’s
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inequality,

2

TLEEk(N)

Ga(s) [
()

<N"H 4 S (Z 27 - |5, (ms I)

neB(N) \mama <X
2

1 e ™ms
X Z Z 720 UO;I—"’;%? Z ﬁ'r(;';l) mamafY

mMoms3 <X

— mzma

2

cwran eI 5| 5 By

mams <X n<N |m; <X _

mam3

Since 20 — gg > 0 and 20 > 1, in view of (12.10), it suffices to show that

(15.4) >

n<N

2

Z ﬁn(m)e_mz/y < N

S

m<X/1

for any [ < X. We note here X20"+1) < N7("—1) by (15.1). Therefore, by virtue
of Lemma 14.3, the left-hand side of (15.4) is

<<N+N1——+——I-EX2(1 o) <<N+N1—— 7(1=r(r—1)(1- a))-{—e

and which is < N'*¢ providing that o > o7 — (log N7)~!. Now we obtain
Lemma 15.1.
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§16. Zero density estimate

From Lemmas 14.1 and 15.1 we obtain the following two lemmata which
we use to estimate the zero density for (,(s)/¢(s)’s.

LEMMA 16.1. Let T > 6 > 0. And let S, be a finite set of complex numbers
s = o + it with the following properties;

(a) To+-g—§t§To+T‘—g— and o>c¢ foralls=c+1w €Sy,

(b) [t —t'|> 6 forall distinct s=o+it ands’' =o' +it' in Sy, .

Then we have

2
S 3Y amBa(mm| <
n<N;e§, |Mm<M
< (NT + M?log M)(5™ +1og M) 3 [am[me(m)m (1 + log {2521,
m<M " log 2m

LEMMA 16.2. Let T'> 6 > 0. And let 7, be a finite set of real numbers in the
interval [Ty + &, To + T — ] with the property;

[t—t'|>6  for distinct ¢, t' € Tp.
Assume that oy and r satisfy the conditions in Lemma 15.1. Then we have

Z Z Cn(o' + it)

n€EK(N)teT,

2
L NYT(67 +1og NT),

((o +1t)

for o > o;.

Theorem 7.5 of Montgomery’s lecture note [27, Ch.7] is derived from the
large sieve inequality (Lemma 12.11), using two important lemmata [27, Lemma
1.2 and Lemma 1.10], both of which are due to Gallagher. The proof of Lemma
16.1 proceeds on the same lines, except that we use Lemma 14.1 instead of the
large sieve inequality.

The proof of Lemma 16.2 is almost the same to that of Theorem 10.3 of
[27], except for using Lemma 15.1 instead of Theorem 10.1 of [27].

The purpose of this section is to prove the following Lemma 16.3.

LEMMA 16.3. Let T' > 1 and assume that oy and r satisfy the conditions in
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Lemma 15.1. Then we have, for 1/2 <o < 1,

Mn; o, T) < (NT)I_gz:”l te,
nEEk(N)

PrOOF: We prove Lemma 16.3 by standard argument (see [27, Ch.12, pp.103-
110]). Let X and Y be parameters satisfying 2 < X <Y and log XY < log NT..

We put )
ol (m
)= 3 22,
m<X

and

Tn(s) = %‘((SS)) Ha(s).

For o > 1, it 1s clear that

Ju(s) =1+ Z P%m—),

m>X
where
m
(16.1) apn(m)= ) an()on(d).
d|m
d<x

Now we suppose
o1 +logNT' <o <1,
because, otherwise, Lemma 16.3 is trivial from Lemma 12.5. We get, using a
Mellin transform,
1y Iy 1 2+ico
—_ 1" -8 ,—m —_ w
e +”§an(m)m e =i oo Jn(s + w)IN(w)Y" dw.

We shift the contour to the line Rw = o1 — ¢, then noticing -1 < 01 — o < 0,
the last integral turns into

Cn(s)
—=Hp(s)+ J,
0 n(s)
where
1 o .
J = Jn(Ul -+ it -+ iu)r(o'l -0+ iu)YU1—0+zu du .
27 J_ o

We set Z = (log NT)2. 1t is easily seen that

< % (/luISZ i /luIZZ )

< B3Y?1 7 log NT - max |70 (o1 +i(t + )| + %e‘l/z,
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where Bgs is an absolute constant.

It 1s also easily observed that

3 ali(mym=teY | < [Ga(s)] + 3¢,
m>X

where

Gn(s) = Z o (m)ym=*e~™/Y
X<m<YZ

Taking account of these results, when s = p = f+1y is a zero of () /{(s),
we get

U2 < |Goa(p)| 4+ YT PZ max |Jn(or + it)| + 2e=1/2.
lt—~1<2 2

Thus, we have whether

(16.2) Galp)] 2 e,
or

YO P Z|Tn(oy +it,)| > %6_1/2,

forsome t, € [y — Z, v+ Z].

Then, in view of Lemma 12.5, for each n € Ex(N), we can define the sets
R and REY of zeros p = B+ iy of (n (s)/¢(s) which satisfy the following 5

conditions;

(@) peRY) (=1,2) implies B> ¢ and |y|<T.

(b) For any distinct p = B +iv, p = +iy € RY) (j=1,2) we have

ly—+'1>32.
(c) I p e R then we have (16.2).
(d) If p € R$?) then there exists a real number ¢, € [y — Z, v + Z] such that
YO0 2 n(o1 + it,)| 2 3¢

() Let R and R be the cardinality of R{Y and R(?), respectively. Then

Mn; o, T) < (R + RP)(log NT)3.

We put, for j = 1,2, RO) = RY). Then, by the condition (e), we have
nEEk(N)

(16.3) 3 Mmoo T)< (R(l) + R(z)) (log NT)?.
nGEk(N)
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Now we estimate R(?). Obviously, we get

RO «<y=7z 3= 3 |Ju(o1+it,)l

x( S % |Hn(<71+z't,,)|2) .

ne Ej (N) pERS?)

B

Cn(dl +Zt
01+Zt

nEEk(N) R(g)

(16.4) <<Y°'1"”Z( >

We note here that if p and p’ are distinct elements in R’ then [ty —ty| > Z.

Making use of Lemma 12.7, we have
2

: v(m2) 1 p(my) B (m1)
|Hn (o) +it,)|> < N¢ S — —— |
’ m;a ; m%al ’ mg 1 m Szm:xm mclf e

and, by Lemma 16.1,

(16.5) S>° > Ha(or+it,)P < (NT + X*)N®.
n€EL(N) pe R

By (16.4), (16.5) and Lemma 16.2, we obtain

(16.6) R® <« Y71 =9 (NT)He,

providing that X <+/NT.
Next we treat R(1). By (12.5), (12.6) and (16.1),
ap(m) = > B (1) B (2) u(m2) Y (M3) Y (Ma)bn (ms) 8, ().

momame <X

We put I; = (my, my), my = lim}, my =Ilymj and [ = mym5. Then

o (m) = > B (1) B (1) (1) 1 (m3) 75 (ma) X
e
x ba(ms)i(me) Y p(my),
Ilm'gnn;;zrl;eSX
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accordingly, 1t follows from Lemma 12.7 that

(16.7) |Gn(p)|* < N° ) lf"l“l (thzlrril;gz4")° (msfils)z"

BZmamgmsme<YZ

x 2
X
lfrnam.;msms <I$lz

,37;(1) Z u(mlz)e——llfmam.;msms/Y
P
ma|l
M2 g

For U < U’ < 2U, we obtain, by Lemma 16.1,

YZ
1m3m4m5ms

2
Al -1
DD IR DI D WIS i
n€EL(N) peRWM |UISU! mb|l
M2S e

2
< (NT+U%oglU) Y 1(—1)752‘@
U<I<u’
< (NTUl—Za + US—ZU)Ue'

Therefore, by (16.7), we have

R« 3 Y [Galo)P

nEEk(N) PERELI)
Z 1 y(ma)y(ma) 1
£
<N I‘f”'l (mamq)2=70 (msme)?? )

Ifmam.;msms SYZ

' X 1—2¢ Y 3—2c
% {NTmm (1, (lfm3m4m5m6) ) +(l:fm3m4m5m6)

&K NE(NTW + Y3~%),

where

w=3 3 ’7’2(0"1_2 7’;(172738) min (l, (_}(__)1—20)’

mrm
mems<YZ 7 e
with

Y(m)= > y(ms)y(ms) and y(m)= Y k.

mama=m Pmsgme=m
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By (12.10), we have

2
/
(169 ST < 3 T < ogmye,
m<M m m<M m
and, plainly,
I/( )
(16.9) Z < (log M)3.
m<M
Straightforward calculation with (16.8) and (16.9) shows that
-20 Y (m7 ) Y (m7) 7,/(m8)
W< xi-2 550 e + 3 L o
momg <X me<YZ "7 _<m S‘,;— 8
< X~ Ho=o0)(log NT)2Co+3,
and
(1610) R(l) & (NTX—Z(U—UO) + Y3—20)NE'

Now we take
X=vNT and Y =(NT)¥7-"1 oo ,
then Lemma 16.3 follows from (16.3), (16.6) and (16.10).
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§17. Proof of Theorem 5

By virtue of Lemma 14.1, we get

p(m)*r(m)?
p(m)?

Z ’Gk(n,\/]_\’—)—Gk(n,Ql)]2<<NlogN Z

n<N Q1<m§\/—lv
& N(log N)~Bitk+1,

This inequality with Lemma 11.5, we have

> |re(n) = Eu(n, V) I(m)| <

n<N
Y Irnk(n) = Gi(n, Q) I(n)* +
nN
+ 3 |8 V) - Gi(n, Q)| ()P
n<N
(17.1) & Nt (log N)=41,

On the other hand, we apply Lemma 16.3 with
1
T—2€Xp(2\/IOgN), 7"——-k‘+1, Ul—l—m,
and obtain
. : 1 9
ﬂ{n € Ex(N); /\/(n,l TR 2exp(2\/logN)> > O} <K N,

for a certain § < 1. Therefore, by (12.1), (17.1) and Lemma 13.1, we obtain, for
any A >0,

re(n) = 1:[ (1 - ————””(p_)I 1) { 1)+ 0 (N¥(log N)~(hi=Aa-2ky2) |

p

with at most O(N (log N)~#) exception of natural numbers n < N. Hence, our
proof of the Theorem 5 is competed. And we see easily, for N(log N)™1 < n <
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n—n(log N)~? n—2 -’L'“l+%d$
I(n) = —l—/ ————
( ) ~/1 n—n(log N)—2 klog(n - m)

1 "1 ) I 1 .
< —g R de 4 —————-/ —eT M E dp
= log(n(log N)—2) /1 k log 2 n—n(log N)=2 k
nli/k loglog N
~ logn (1 +0( log N )> ’
and | 2 1/k
1 n- 1 1 n 1
> —g it =
I(n) 2 logn/l P Fdo logn+0(logN)’
therefore

ni/k loglog N
I(n) = (1 + O(Tg(;g}g’v‘_)> .

log n
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§18. Preliminaries for the proof of Theorems 6 and 7
Next we prove Theorems 6 and 7.

We denote by pn(d) the number of solutions of the congruence
22 =n (mod d),
with 1 < z < d. It is easily seen that

(1 (p % 1 (mod 3), or p|n),
(18.1) pn(p) = { Oor3 (p=1(mod3)andptn).

For k > 1, we define di(m) as the number of ways of writing m as the product
of k positive factors, in other words, S °o_ dj(m)m=* = {(s)*, for o > 1. And
for k = 0, we define

1 (if mis a prime ),
0 ( otherwise ).

do(m) = {
Then, for k > 0,
Ry (N) = Z dp(N —m3 —m3 —mj —m3) .

mi4+mItmd4mi<N

Let J be the set of all natural numbers < N3, and let

A = {m € 7 m has no prime factor p such that (log N)*Be < p < N'?lT},
A= 7\,

where By = Bo(k) = 2B+k?+2 with a constant B > 5. Making use of Selberg’s
upper bound sieve (see {13, Theorem 3.3]), it follows that

N3 loglog N
logN

Here, the symbol § denotes the cardinality of the indicated set.

(18.2) <

Now we put e(z) = 2™, and, for a subset B C J, we introduce the
function

F(a;®B) = Ze(m3a)‘

me'B

In particular, for B = J, we write
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Fla)=F(;J) = Z e(mia).

mSN%>

And, for £ > 0, we define

Dy(a) = Z dr(n)e(na).

n<iN
Next, we put By = By(k) = 6B + 3k? and

Q1= Qu(k) = (log N)*Pr | Q3 = Qa(k) = N(log N)™ 1.
For1<a<qg<@Q1, (a,q)=1,let

a 1
Mo(g,a) =< a; la—=| < = »,
O(Q) { q’ Q2}
1 a 1
Mi(g,0) =< a;, — < |a— = <L ,
w0 ={eoi g <fo- 5l < 5 |

M(g,a) = { o

Further, we set

mi= ) |J Mi(ga) (forj=0,1),

g<@Qr , a=1
(a,9)=1

= U U M)

1 a=1
Qu<gSNE (q,0)=1

and

m= [N-%, 1+N-%} \ (s.moUED"clemz) .
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Then we have, for £ > 0,

(18.3)

where

and

for Nt =

1+N~1
Rk(N):/ ’ Dy(a)F(a)*e(—Nea) da

N—§

1+N~%
_ /N S Du@)F(){F(@)? = Flos 2)°)e(~No) doc +

14N
+ [V L De@F(@)F(e32)e(~Ner) da
= I;(Mo) + L (9M1) + I (M) + Le(m) + R (N),

Ri(N) = 3 di(N —m$ —m3 —m3 —m3)

my, My, M3€EY

my <(N—mf—mg-—mg)13'

(o) = A Di(@)F(@){F(a)® — F(o; 2)}e(—Na) da

Mo, Py, My and m.
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19. Estimation of Ij(m)

Our estimate for Iy(m) is based on Vaughan’s work [40] on Waring’s prob-
lem for cubes. By his method, we have, for any B C J,

191) [ 1F(@) PP R PIF(os B de < VE (l0g NP0

In fact, we write

|[Fes 2)|* = > Y. ellmi—mia) | +

(logN)4BO<d§N% my, ma€U
(ml,mg):d

fY - )
my, ma€YU
(m1,m2)<(log N)*Po

= 3 FPa) + FO(a),  say,
(log N)4Bo <d<N'%

and note that each m € ® has a prime factor p satisfying (log N)*% < p <
N1/21 Then Vaughan’s methods for estimating 7(€) and I(®D) in [40, pp. 137-
138] yield the required bounds for

> /meﬁW®W@%ww
(log N)4Bo <d5N% "

and

waWﬂmwwmﬁww,

respectively.

Now we can estimate Ix(m) easily. Since
F(a)® = F(os 2)° = (F(0) — F(o; 2))(F(2)” + F(e) F(o; %) + F(o; 2)%)
| F (o5 H)|(1F () + [F (o5 D)%),

we have, using the Cauchy-Schwartz ineduality,

I(m) < ([)1 | D () dc’f)% X

e

2

2 .oN 12 014 o 4 o
X<LWMNwm%HWUIHN,%Ud>
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By (19.1) and the well-known fact

(19.2) /01 IDk(Oﬁ)lz do = Z dk(n)2 < N(log N)kz_l,
n<N

for k£ > 0, we obtain

(19.3) Iy(m) < N¥(log N)™B.
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20. Estimations of I () and I;(9N,)

Essentially, it is not so difficult to treat Ix(90g), Ix(M1), and Ix(M3). In
this section, we shall estimate I (9%;) and Iz(9My). We start with summarizing
known results on the function F(«).

Let
q
a
V(g,a) = 26 (Er3),
vo= Yy L2l

(ap=1 !

& & (V@) [ a

V](Q:h) - ; <—q——) e<_'q_h>a
(a,9)=1

and let

o) =3 3 mFe(mp).

m<N

We note that V*(g) and V;(g, h) are multiplicative functions of g.

LEMMA 20.1.

(i) Assume that o = (a/q)+ B, (a,q) =1 and || < (6¢N?/3)~1. Then we
have

Flo) = L2%y(p) 4 0(g+9),
(i) For |8] < %, we have
v(f) < min( N¥, |6]7%).

(ii1) For @ > 1, we have

d V(@) <L

¢<5Q

(iv) For @ > 2, k > 1 and for any integer h, we have

> 70,1 < (og 9%,

9<Q

where C}, = k(k + 1)(k +5)/6.
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(v) For Q > 2 and for any integer h, we have

> U070, <108
¢<@

(vi) Suppose § > ¢ > 0 and ©(q) < ¢~°. Then the series ) .2, O(q) Valg,N)
converges absolutely, and we have, for @ > 1,

S 0()Valg, N) < Q%+

>Q

ProoF: As for (1) and (ii), see Theorem 4.1 and Lemma 2.8 in Vaughan’s book
[39].
Now we prove (iv). First, for I > 1, we write [ = 3u + v with integers u
and 1 < v < 3. By Lemma 4.7 of [39], we get
pY (when v =1 and p t h),
p~v! (when v # 1 and p 1 h),
pu—3+ (when v =1 and p | h),
p~ ¥~ (when v # 1 and p | h).

‘74(171) h) <

Secondly, by simple calculation, we see V; (', h) = pr(p") —pn(p'~1), there-
fore we have by (18.1)

- 0 1 (mod 3),or p| h),
Vo) = o e oY
2or =1 (p=1(mod 3) and pt h),
and if p | A then Vl(p”,h) <p'"!forv=23.

Taking account of these results, we obtain

Z dk(q)|vl( R < H (1+de(p |V1 : h)')

<@ r<Q

< I‘E (1 + ?5 + O(p—3+€)> X

pth
x 1] (1 + Gy O(p—%+f)>
P
p<Q
plh

<L H (1+ %) & (log Q)%*.

p<Q
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Similarly, we obtain (v) and

>0 Vata M)l < T (14067 9) [T (1+069) < 1,

ptN pIN
which gives (vi).
We turn to (iii). As is mentioned in [39, p.50], we get
—6u—3+1 —
D (v=1),
vV (p

for l =3u+v, 1<wv<3, and we have

Sevi <] (1+szv* )

95Q r<Q

<<,,I<—£(1+O )) <1.

Now we use Lemma 20.1, and obtain

[ reracy > (‘Y_ng__)

<@ a=1
" (a,0)=1 4 <IN~

<3V [ lards + N

1= 35<ipI<s
(20.1) & Q2 = N(log N)~B,

6

lv(B)I° + q3+6‘) g

and,
6 ! V(Qra) °
|F(a)| de Y > —
Qu<asNE (gl <g v

Z VaV*(q) / min( N2, |8]7%)dB + Nit2e

q<N% EES:

lv(B)I° + q3+‘"’f> B

N o B,
(20.2) <<ﬁ_N(l gN) )

On the other hand, for any B C 7, we have trivially |F(c; B)] < N3, and,
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by [40, Theorem 2],
1
(20.3) / |F(a; B))2da < N3,
0

These estimates with (19.2), (20.1) and (20.2) yield, for j = 1,2,

i
2

() < max(|F@)] + 170520 ( [ D) o)

X (/mle(a)lGdaf ([(IF(a)lB—FIF(a;‘A’l)IS) dOZ)%

< N3(log N)~5.

(20.4)
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21. On the integral I;(9M)

In order to evaluate I(9My), we need an appropriate approximation of
Dy(a) for o € My. As for k = 0, we know the following result.

LEMMA 21.1. Let

To(B;q) = wa) Z dnf)

(i) Supposethatl <a<¢<Qq, (a,9)=1, a€My(qg,a)anda = (a/q)+p.
Then we have

Do(a) =To(B;9) + O (N exp(—c1+/log N)) ,
where ¢y Is a positive constant depending only on B.
(ii) For |B| < 1/2, we have

. H__(_q_)in,un N -1
To(6:0) < A0 i (2 16171

And for |8| < 1/+/N, we have

, M) gt
TO(ﬁ’Q)<<<p(q)logN (N: Iﬂl )

For the proof of (i), see Prachar [34, VI, Satz 3.2, p.180]. The inequalities
in (ii) follow easily from the well-known estimate }°, ., e(nf) < min(z, |5|~")
for |8] < 1/2, by partial summation.

As for the case k > 2, Motohashi [28] showed a sufficient result for our
aim. Though he confined his attention within square free ¢’s, his argument [28,
Lemmata 5, 6 and p.60] still work for all ¢’s with slight differences. Here we
follow his way.

For s = o +1it, o > 1, and for k > 1, we introduce the functions

0

| 1 d .ay 1 —s
Ui(s;q) = @ Z Ag (s, —q—) = chq(n)dk(n)n ,

n=1

and
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N SO L = XA
Pulsig) =J[q1--p™)" | X =05

plq v=0

(1-p~H)7'(1 —p”’)kd—k(ﬁl—)},

p(gv“l)-’

where gp = g,(g) is the number such that p9» is the highest power of p dividing
q. After some calculation, we obtain

(21.1) Ui(s;q) = ()" Dr(s; q).

If k> 2 and (a,q) = 1 then we have

A (s ._) Zi Z e(glm)dk_l(m)um)*s

b=11=1
am= b(modq)

=" ] (1 —(1-p)Ft (i %)) +

plg v=0
i} : Lal
R DR & (R

Then we see the following facts by induction on %k with known results on the
Lerch zeta functions A;(s;a/q) and the Riemann zeta function ((s).

(1) Ax(s;a/q) can be analytically - continued to a meromorphic function over
the whole complex plane, which is holomorphic save a possible pole at
s =1.

(ii) If (a,q) = 1 then the meromorphic part of Ag(s;a/q) at s = 1 does not de-

pend on a, therefore, Ag(s;a/q) has the same meromorphlc part as W (s; q)
at s = 1. A

(iii) For any fixed § > 0, we have
.a k—1 k(1—o+e)/2
Ak(s,q)<<q (141 )

uniformly for [s — 1| > 1/2, o > 1/2.

Now we suppose ¢ < @1, (a,¢) =1, and z > +/N, and put T = =% with
6 = 6(k) = (10k)~!. Applying Perron’s formula with the facts listed above, we
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obtain

) 146 44T

ay - 1 e 14671

de(n)e<qn) = 5 / Ak(s, q) . ds+ O(z"T°T7)
niw 144—iT

(21.2) = T4(q) +O0(&'~2%),

where T (q) is the residue of Wi (s;q)z*/s at s = 1. For k > 2, it follows from
(21.1) that \Ilk(s q) has a pole of order k at s = 1. To write down Yx(g), w

use the value <I> (q) say, of the j-th derivative of ®(s;q) at s = 1, and the
numbers 7 (7) deﬁned by

(s = 1)R(s)¥s an(y)(s—l)’ (a5 5 — 1)
Putting
0F6) = Gty 52 s - (o)

we have, for k > 2,

Tr(q) = IIIZ@(]) )(log z)*—1-7.

Then, Lemma 21.2 (i) below is derived from (21.2) by partial summation.

Next we estimate 653' )(q). After some computation, we get

k-2

plq u=0

(gp :_kl_ 2)1)6—1(1 “p"s)k—.l(l _p—l)—l(l _p—s—{-l)}’

and @
. _ 1 , dr-1(g
Oy ’'(a) = = 1)!<I>k(1,Q) <=
For 1 <j <k —1, we have
J! Pr(s;9)
(.7) k )q —1+4e€

|s—1]=(log 2¢)~*

and @Scj)(q) < g~ !*¢. From these estimates, we deduce Lemma 21.2 (ii) below.

We come to a conclusion;
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LEMMA 21.2. For k > 2, let

T(8;q) = }:e°>(q) >~ {(logn) =17 + (k — 1 — j)(log n)* =2~ }e(nB).

n<N

(i) Supposethatl <a<q¢< @1, (a,q9)=1, o€ My(q,a)anda = (a/q)+p.
Then we have

Di(a) = Tx(8;.4) + OV ~CO9™),
(i) For |B| < 1/2 and for ¢ < @y, we have

7u(650) < 228 tog M) min(w, 19172).

We write

Lu(9Mo) = /m Di()F(a)*e(—Na) da — / Di () F(a)F(a: 2)3e(—Na) do

(21.3)
= IV (9m,) — IV (9M,),  say.

By virtue of Lemma 20.1 (iv), Lemma 21.2 and the estimate (18.2), we have, for
k>3,

q
Pew= Y Y [ o0 i)

A ¢g<
G ml’gs)q < (ap=11A1<Q;"

‘e (<m? 44 ) (2 +ﬂ)) 4B + O(N3 (log N)~P)

<OogMFt Y S Bl v g - i
m;EYA ¢<Qa 9
(j:1,2,3)
<[ min(v3, |87 ds + N¥(og )"
181<Q;"
(21.4)
& N3 (log N)*~*(loglog N)s¥(E=1)(k+4)+3

Similarly, by Lemma 20.1 (v), Lemma 21.1 and (18.2), we have
(21.5) IV (MM < N3 (log N)~*(loglog N)*.
We can also evaluate I,c )(i)ﬁo) straightforwardly by Lemmata 1, 2, 3 and
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[39, Theorem 2.3]. For k = 0, we have

(21.6)  I{O(9Mo) = 60 (N) / t)_ dt + O(N'3 (log N)~B),
where
(21.7) Go(N) = Z #g v (g, N) = 1;[ (1 - Z;‘;(%lﬂ) .

For k > 3, we put
6P () =30 (@)Va(a,N)
g=1
and

(21.8)
. PN ; | 2
) =51(3) (’“ ]. i h) sg)(N)A tlogty ~h(1—t)~4 di,

then we have

(21.9)
k-1
I (9m0) = N¥ 5" (W) (log V)¥~1~7 4 O(N3(log N)™B),

We note that
3..74\3
(V) = Zr(g) G(N)

3 43 Z. Va(p', N)
= mr<§) Ipl{l +21=1 -——%,—-—— %
k-2
.5 (1+1;— 2)(1 _p-l)up_(k~z~u)}_

u=0

By Lemma 20.1 (vi), we see at once Go(N) <« 1 and E,(cj)(N) Llfor0<j<k.
In order to observe Go(N) > 1 and E,EO)(N) > 1 for k > 3, it suffices to show

V4(p’ N)

p—1 >

(21.10) 1-
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and
(21.11) 1+ 5"V, MV (") > o,
=1

for all primes p. Since |V4(p, N)| < 2 and @(Q,N) = V4(3,N) = 0, we get
(21.10). Next, for k > 3 we put S, = S o Va(p', N). Then, by [39, Lemma
2.12], we have S,, > 0 and

m m—1
_ -9
1) Va0, MO = 1- 0@ + Y p7 (1 - p ) (H/; i >S‘+
=1 =1
+ 3 (p™)Sm

which yields (21.11).
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22. Treatment for E;(N)
In view of (18.3), (19.3), (20.4), (21.3), (21.4), (21.5), (21.6) and (21.9), it
suffices to prove
(22.1) R (N) < N3 (log N)*~*(log log N)
with some constant C} < Cy depending only on k.
We put, for £ > 0,
Wk(n Z dk(n—

m<n1/3

r(n; 2A) = Z 1,

my, ma, MaE A
m§+m3+mg=n

then
Re(N)= 3 Wi(N —m}—m}—m)
ml;mzymaEQ(
(22.2) =3 r(N = n; ) Wi(n).
n<N

By (18.2), we get

r(n: N(loglog N)3
(22.3) nSZN (n;2) < — log N)®

And, by Hua’s lemma (see [39, Lemma 2.5]), we have

S r(m;20)? < L |F(a)[6 dar

n<N 1 1
< (f F(a)* da>§ (Al F(a)[? da>§

(22.4) & N¥te,

We first consider the case k > 3. It follows from Wolke’s result [43, Satz
1] that, for n < N,

(22.5) Wi(n) < N¥ exp ( Y p“(p))

p<N
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Since

anzgp) < Z i_}. Z % :210glog:c+0(1);

<z p<z p<z
pZ1 (mod 3) p=1 (mod 3)

]

E(N,M) = {n<N;

we have Wi (n) < N'/3(log N)2(*~1) but this bound is not sufficient to obtain
(22.1).
Now we put mg = [elog V] and define the sets
p |Tmo [’
E(N) = &N, 27" (log N)M€) .
m=1
Since N¢/2 < 2mo(log N)M/¢ < N¢, we see that if n ¢ £(N) and n < N then
n 1
3 enlp) 3 ~+0(1)

M<p<2M
(log N)/e<p<amo(log N)t/e  F (log N)V/e<p<2mo(log Ny/e ¥
=loglog N —logloglog N + O(1),

whence

pn(p) _ Z Pn(p) + Z Pn(p) +O(1)
p<N P pcaogmve P gogmyvecp<amoognyre P
<loglog N + logloglog N + O(1).

Thus, by (22.3) and (22.5), we have
(22.6) > r(N = n; 2)Wi(n) < N3 (log N)*~*(loglog N)*+2.
ngE(N)
Next, we estimate the cardinality of £(/N) through the way indicated in
Plaksin’s paper [33]. For (log N)/¢ < M < N¢ and a natural number v, we put

pn(p) —1 ’
>, T

M<p<2M

S(N,M,v)=">"

n<N

And let C, be the set of non—principal characters x modulo p for which x3 is
principal. It is easily observed that §C, = 2 or 0 according as p = 1 (mod 3) or

96



not, and that

pn(p) —1= " x(n).

XECy

Making use of the Pdélya—Vinogradov inequality, we get

2v 2v
1
soMyy= 3 TI— > > IIxtm
M<p;<2M j=1 P X;j€Cp; n<Nj=1
(1<i<w) (1<j<2w)

(22.7) < NM~25(M,v) + 25 M" log((2M)?),

where

Sl(M,V) = E Z 1.

M<ij2M XJ'GCPJ-
(1<j<2v) (1<j<2w)
2v . . .
=y Xi s principal.

We note that if x; € C,; (1 <j < 2v) and Hfil x; 1s principal, then Hfil p; is
a powerful number. A natural number [ is called ”powerful” if p? | { for all prime

factors p of {. The number of powerful numbers not exceeding z is O(\/z). (See
Golomb [12].) So we have

Si(Mv) <2*(2v)! Y 1< 2P ()M

I<(2M)*
1 is powerful.

Then, by (22.7) and the definition of £(N, M), we obtain
(22.8)
1E(N, M) < m3¥S(N, M,v) < (log N)* ((2v)INM ™" + M” log((2M)*)) .

We choose v so as to satisfy MY < /N < M**t!. Since (log N)/¢ < M <
Ne¢, 1t follows that

1 1 € IogN
7€ v 2 —_—
N <M< Nz and v< Sioglog N’

therefore, (20)! < exp(2vlog(2v)) < N¢, and (log N)* < N2 So (22.8) gives
HE(N, M) <« N3+,
Hence,
(22.9) BE(N) < ST HE(N, 2 Y (log N)Y¢) < NH+5¢
m=1
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By (22.4), (22.9) and a trivial bound Wy (n) < N(/3)+¢ we have

> r(N””nQQ()Wk(n)<<N%+C( 3 1) (Z,,(n;m)z)

ne€(N) neE(N) n<N
(22.10) & N+,

The inequalities (22.6) and (22.10) yield (22.1) with C¥ = k+ 2 for k£ > 3, and
which completes our proof of Theorem 6.

We proceed to the case k = 0. By (22.3), we have at once
Ro(N) < N#(log N)~3(loglog N)?,

and which is sufficient to obtain an asymptotic formula for Ro(N). To show
(22.1), we should improve this trivial bound slightly.

We use Selberg’s upper bound sieve. Taking z = N7 and k = 3 in
Theorem 4.1 of [13], we obtain

Wo(n) < N7 H ( fm}(P)) & N3 exp ( Z pn(p )

p<n? PN

for n < N. It follows from the definition of the set E(N) that if n ¢ £(N) and
n < N then

1
Z ﬂn P) Z - + Z Pn(P)
p<N pﬁ(log N)l/" r (log N)t/e<p<2amo(log NI/« p
p#El (mod 3)

= log log N — % log log log N + O(1),

whence

Wo(n) < N (log N)~*(log log N)%.

Therefore, in the same manner as for the case k > 3, we conclude that the
inequality (22.1) holds for k = 0 as well, with Cf = 7/2. Now we obtain
Theorem 7.
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