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Abstract

Let T be a complete theory in a first order language.

A model M of T is said to be minimal if there is no proper elementary
submodel of M. In [17] Shelah showed that if F is totally transcendental then
there is no infinite indiscernible set in a minimal model. On the other hand
Marcus has constructed a minimal structure with an infinite indiscernible set
([11]). His structure is stable but not superstable. In chapter 1 we shall prove
the following theorem:

Theorem A ([9]). Let T be superstable and let A be any set. Then there is
no minimal model over A which has an infinite set of indiscernibles over A.

Let T be countable. It is still open whether there is T' having exactly ®;
non-isomorphic minimal models, or not. In [12] Marcus showed that if a theory
with one unary function has a minimal non-prime model, then T has 2%X° minimal
models. Our purpose is to generalize Marcus’s result. In chapter 2 we will prove
the following theorem:

Theorem B ([8]). Let T be stable and trivial. Suppose that T has a model
M such that (i) M is minimal and non-prime, and (ii) U(a) < 1, for alla € M.
" Then T has 2%° minimal models.

In [16] Shelah has solved the central problem on the number of uncount-
able models. In his proof he introduced a dividing line, the dimensional order
property. (DOP). A theory said to have the DOP if there exist tuples a,b, a
finite set F' and a non-algebraic type p such that p LabF, pLlaF, pLbF and
a |r b. Let a theory S be interpretable in T' and ¢ a formula in 7" which defines
the universe of an S-model. Then we say that S is fully interpreted in 7' if
for any S-model M there is a T-model N such that ¢ = M . In chapter 3 we
show the following theorem:

Theorem C ([10]). Let T be w-categorical and w-stable. Then T has the DOP
if and only if S1, Sy or S (for some q < w) can be fully interpreted in Tj' for
some finite set F'.



Chapter 0. Introduction

In this chapter we summarize some basic definitions and results necessary
for proving our main theorems.

0.1. Structures, Languages and Satisfaction

0.1.1. Definition. (1) A similarity type 7 is a 5-tuple (I, J, K, o, §) such
that ¢ : ] —wand f:J — w.
(2) A structure M of similarity type T consists of :

(i) A nonempty set M (called the universe of M);

(i) A family {RM : i € I} such that for each i € I, RM is an a(i)-place
relation on M. An n-place relation on M is a subset of M". If a4,..,a, € M,
then it is customary to write R(ay, ..., a,) instead of (a1,...,a,) € R;

(iii) A family {ij : j € J} such that for each j € J, ij is a A(j)-place
function on M is a function from M™ into M;

(iv) A subset {c} : k € K} of M.

A useful form of notation for M is (M, RM, fM,c[)ierjespex. The
cardinality of M (in symbols |M|)is defined to be the cardinality of M. We do
not often distinguish between a structure M and its universe M.

Associated with each similarity type 7 is a first order language L..

0.1.2. Definition. The primitive symbols of L, are: -
(1) variables z1, 24, ...;
(ii) logical connectives = (not), A (and), 3 (there exists), = (equal);
(iii) o(7)-place relation symbols R; for ¢ € I;
(iv) B(j)-place function symbols f; for j € J;
(v) individual constants c; for k € K.

0.1.3. Definition. The terms of L, are generated by two rules:
(1) all variables and individual constants are terms;

(i) if f is an n-place function symbol and t,,1s,...,t, are terms, then
f(t1,t2,...,tn) is a term.

0.1.4. Definition. The atomic formulas of L, are given by:



(1) if t; and ¢y are terms, then ¢; = ¢, is an atomic formula.
(ii) if R is an n-place relation symbol and ¢;,%s,...,t, are terms, then
R(t1,1s,...,1,) is an atomic formula.

0.1.5. Definition. The formulas of L, are generated by two rules:
(1) every atomic formula is a formula,
(1) if ¢ and ¢ are formulas, then —¢, ¢ A+ and Jz¢ are formulas

0.1.6. Note. The symbols V (or), — (implies) and V (for all) are useful abbre-
viations:

(i) ¢ V¢ for (=g A —1b);

(ii) ¢ — 9 for ¢ V ;

(iil) V¢ for =(Iz(—¢)).

0.1.7. Definition. The notion of free variable of a formula is defined induc-
tively. The induction is on the number of steps needed to generate the formula:
(1) if 4 is atomic and 2 occurs in ¢, then z is a free variable of ¢;
(1) if z is a free variable of ¢, then z is a free variable of Jyg;
(iii) if = is free variable of ¢, then 2 is free variable of —¢ and of ¢ A .

A sentence is a formula without free variables. The cardinality of L,
(in symbols |L.|) is the cardinality of the set of all formulas of L,. Clearly
lLfI = ma‘z(NO) IIla |J|> IKD

If M is an L-structure and A C M, then L(A) denotes the language ob-
tained by adjoining to L new individual constants ¢, for a € A.

0.1.8. Definition (Satisfaction). Let M be a structure of similarity type 7.
(1) For a term ¢ of L,(M) without free variables, we define tM as follows:

(i) ca’ = g

(1) (f(E1, ... ta))™ = MM, . tM).
(2) Let ¢ be a sentence of L(M). Then relation “M |= ¢” (read ¢ is true in M)
is defined by induction on the number of steps needed to generate ¢.

() M=t =1ty iff tM =1},

(i) M |= R(t1, ..., t,) iff RM (M, ... tM).

(i) M =gpAyYif M ¢ and M 9.

(iv) M | —¢ iff it is not true that M = 4.

(v) M = Jz¢(z) if M |= ¢(cq) for some a € M.

0.1.9 Definition. Let ¢(z1,...,z,) be a formula of L, and let a4, ...,a, € M.
(1) Then ay...a, is said to satisfy (or realize) ¢(z1,..,2,) in M if M |



¢(ay,...,an). Let M denote the set of realizations of ¢ in M.

(2)é(21, ..., Tn) 1s said to be valid in M if (Vz,...Vz,)é(z1, ..., zn) is true in M.
(3) M is elementarily equivalent to N (in symbols M = N) means: M |= ¢
iff N |= ¢ for every sentence ¢ of L.

0.2. The Number of Models

0.2.1. Definition. Let M and N be L-structures.

(1) Let m be a map from M into N. m is an elementary mapping means:
M E ¢(a1,...,an) iff N | ¢(m(a1),...,m(a,)) for every formula ¢ of L and
every ay,..,a, € M. Note that m is an elementary mapping iff (M,a).enmr =
(I, m(a))GEM'

(2) M is an elementary substructure of N (in symbols M < N) if the identity
map iy : M C N is an elementary mapping. If M < N, then N is said to be
an elementary extension of M.

0.2.2. Remark. (Tarski-Vaught) We can see that M < N if and only if, for
every ¢(z) € L(M) if N |= Jz¢(z) then there is a element a € M such that

N = ¢(a).

0.2.3. Definition. Let T be a set of sentences of some language L, and let ¢
a formula of L. ¢ is a logical consequence of T' (in symbols T' F @), if 9 is
among the formulas generated from T as follows:

(i) if § € T, then T | ¢;

(ii) if ¢ 1is a logical axiom, then T'F ¢;

(ii) if T+ @; when 1 < i < n, and if ¢ is the result of applying some logical
rule of inference to the sequence ¢, ..., ¢,, then T I ¢.

0.2.4. Definition. (1) T is consistent if no sentence of the form ¢ A ¢ is a
logical consequence of T'.

(2) M is said to be a model of T' (in symbols M = T), if every member of T'is
true in M.

It is clear that if T + ¢, then Ty F ¢ for some finite Ty C 7. Exploiting
repeatedly this finitary character of the consequence relation b, we can prove
the following theorem:
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0.2.5. Theorem (Completeness). If T is a consistent set of sentences, then
T has a model of cardinality < maz(Xo,|T|).

0.2.6. Definition. (1) 7 is said to be a theory in L if it is a consistent set of
L-sentences.

(2) T is said to be complete if either T'+ ¢ or T'+ —¢ for every sentence ¢ of
T.

(3) Let Th(M) denote the set of all sentences of L true in M.

By 0.2.5, T is complete iff all models of T' are elementarily equivalent.

0.2.7. Theorem (Compactness). Let T be a theory such that every finite
subset of T' has infinite model. Then T has a model of cardinality « for every
& > maz(Ro, [T]).

Proof. Let {ca}acs be a set of individual constants, none of which occur in the
language of 7. Let T* =T U {cy # ¢ : « < f < &}. If S C T™* is finite, then S
is consistent, since S NT has an infinite model. By 0.2.5, T* has a model M of
cardinality < x. But M must have cardinality at least &, since ¢,’s must name
distinct elements of M. O

Consider the number of models. By 0.2.5, any theory has at least one
model. If a complete theory has a finite model, then it has exactly one model,
up to isomorphism. But if not, the situation changes. By 0.2.7 we have:

0.2.8. Theorem (Upward Loéwenheim-Skolem). Let M be an infinite
structure. Then M has an elementary extension N of cardinality & for every
x > maz(|M|,[T]).

It is clear that, if two structures have different cardinality, then they are
non-isomorphic. Therefore, by the above theorem, if T has an infinite model
then T" has infinitely many models.

So we consider the number of models with cardinality A, for fixed A. I(A, T')
denotes the number of models of T of cardinality A, up to isomorphism. If
I(\,T) =1, we say that T is A-categorical.



0.3. Countable Models

We consider the number of countable models. Let 7' be a countable com-
plete theory in L. First observe the following easy example.

0.3.1. Example. Let L be the language with no relation other than equality
and T the theory which says that there are infinitely many elements. Then
clearly I(Ro, T) =1 (i.e., T' is Rp-categorical).

Is there a theory T" such that I(Xp,T) = n, for every n with 1 < n < w?
For every n with 3 < n < w, there is a theory T' which satisfies [(Ro,T) = n
(Ehrenfeucht). On the other hand it is known that there is no 7' such that
I(Ro,T) = 2 (Vaught). To prove the Vaught theorem, we need some notions
and results of classical model theory.

0.3.2. Definition. Let 1" be a complete theory in L.

(1) A complete n-type of T' (n < w) is a set of ¥ of L-formulas in n free
variables, say x1, 23, ..., T, which is maximal consistent with T. A type of T is
an n-type for some n < w.

(2) The set of n-types of T'is denoted by S, (T") and we put S(T") = |J
Types are denoted by p,q,r, ....

(3) If M is an L-structure, A C M, and b is a tuple from M, then tppr(b/A) =
{¢(z) € L(A) and M = #(b)}. Let S,(A) denote S,(Th(M,a)sca). Thus
tpar(b/A) € S, (A). Let tppr(b) denote tpar(b/0).

Su(T).

n<w

0.3.3. Definition. Let ¥(Z) be a consistent set of L-formulas. Then ¥ is said
to be isolated if there is a consistent L-formula ¥ (&) such that T+ (Vz)(¥(z) —
#(z)) for every ¢ € X, and 9 is said to isolate ¥ (relative to 7' of course).

0.3.4. Theorem (Omitting Types). Let T be a countable theory in L For
each n < w let X, be a consistent set of L-formula with free variables. Suppose
that for each n, X, is non-isolated. Then T has a countable model which omits
each X,,.

Proof. To simplify our proof we concentrate on omitting “one” non-isolated type
¥(z). Let M be a countable model of 7. By compactness we get next claim:
Claim: Let A C M and let ¢(z) € L(A). Then if () is non-isolated over
A, then there is a realization a of ¢ in M such that ¥ is non-isolated over Aa.
Using the claim repeatedly, we can construct in M a (countable) model
such that ¥ is non-isolated over N. Clearly N omits ¥. 0O
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0.3.5. Theorem (X,-Categoricity). Let T' be a countable theory in L. Then
T is Ro-categorical iff for each n < w, all p € S,(T") is isolated.

Proof. (only if) If there is a non-isolated type p, then, by 0.3.4, we have a model
which omits p. On the other hand there is a model realizing p. This is contradicts
Ng-categoricity of T'.

(if) By the back-and-forth method. O

0.3.6. Definition. (1) A prime model of the theory T'is a model M of T
such that , for all N |= T, there is an elementary mapping of M into N.
(2) M is said to be an atomic model of T' if tpys (@) is isolated for every a € M.

0.3.7. Remark. By 0.3.4 and (one half of) the back-and-forth method, we
obtain that M is prime if and only if M is countable atomic.

By 0.3.7 , we have:

0.3.8. Theorem (Prime Models). Let T be a complete theory in L.
(1) If S(T) is countable, then T has a prime model.
(1) Any two prime models of T' are isomorphic.

0.3.9. Definition. (1) M is said to be s-saturated if, for any A C M with
|A| < &, for all p(z) € S(A), p is realized in M.
(2) M is said to be countably saturated if it is countable and Rg-saturated.

0.3.10. Theorem (Saturated Models). Let T be a complete theory in L.
(1) If S(T') is countable, then T has a countably saturated model.
(2) Any two countably saturated models of T' are isomorphic.

Proof. (1) Let My be a countable model of T. Let X = J{S(F) : F C My, |F| <
Rp}. Then X is countable, since S(T) is countable. By 0.2.8 we can get a
countable elementary extension M; of My which realizes every member of X. In
the similar way we obtain a countable elementary chain (M;)i<.. Set M = |J M;.
By 0.2.2 M is a model of 7' and moreover countably saturated. [J

0.3.11. Theorem (Vaught). For any complete T, I(®o,T) # 2.

Proof. Suppose that I(Ro, T') = 2. Then S(T) is countable. By 0.3.8 and 0.3.10,
there are a countably saturated model M and a countable atomic model N.
Since T is not Ng-categorical we can find, by 0.3.5, a non-isolated type p € S(T)).
Hence M and N is non-isomorphic. Let a realize p. Since S(a) is also countable,
there is a countable model N’ atomic over @. Then we obtain that N’ is both non-
saturated and non-atomic. It follows that I(Ro,T") > 3. A contradiction. O
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0.3.12. Example. (1) Let T be the theory of algebraically closed fields of
some fixed characteristic. Any model of T" is determined up to isomorphism by
its transcendence dimension over the prime field. Namely, for any model M of
T all maximal algebraically independent subsets of M have same cardinality,
which is the transcendence dimension of M. Moreover two models with same
transcendence dimension are isomorphic. Therefore we have I(Rg, T') = Ro.

(2) Let T be the theory which says that E, is an equivalence relation for each
n < w, such that Eg has two infinite classes and E,; partition each En class
into two infinite classes. Let E be the infinitary conjunction of all the F,,. Each
model will have infinitely many F-classes, but the cardinality of each class can
be chosen arbitrary. Thus we have I(Ro, T) = 2%o.

Is there a theory T such that I(Rq,T) = &, for some k with Ry < & < 2%¥0?
But the question is still open:

Vaught Conjecture. I(Ro,T") > Ro implies I(Ro,T) = 2%e.

, Shelah partially solved the conjecture, using machinery of so-called “sta-
bility theory”.
The following table summarizes the discussion above. The columns indicate
the number of countable models. An entry of “x” means there is no theory of
this kind; an entry of “?” means the existence of such a theory i1s unknown.

The Number of Countable Models I

1 2 3 Ro 280
o X o 0 0 ? 0

0.4 Stability Theory

0.4.1. Definition. (1) Let A > Ng. Then T is A-stable if, for all A, |4] < A
implies |S;(A4)] < A

(2) T is stable if T is A-stable for some A.

(3) T is superstable if T" is A-stable for all A > 2o,

0.4.2. Remark. (1) T is said to have the order property if T' has a model
which contains a set totally ordered by a formula. Then it is well-known that T°
is unstable iff 7" has the order property.
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(2) We can see that if T' is w-stable, then T is A-stable for all A\. Hence we have
“w-stable = superstable = stable”.

0.4.3. Definition. (1) Let A C B. Let p € S(A) and ¢ € S(B) such that p C g.
Then g is said to be a forking extension of p if there are ¢(z,b) € L(B) and
M D A such that ¢ is not satisfied in M. And we say that ¢ is a non-forking
extension of p if ¢ is not a forking extension of p.

(2) Let @ be a tuple and let A and B sets. Then we say that @ is independent
from B over A (in symbols @ |4 B) if ¢p(a/B U A) is non-forking extension of
tp(a/A).

(3) Let A, B and C be sets. Then we say that C is independent from B over A
(in symbols C |4 B) if, for every @ € C is independent from B over A.

0.4.4. Remark. If T is stable, we have the symmetry property: B |4 C =
C |4 B.

0.4.5. Theorem (Existence of non-forking extensions). Let T be stable.
Then for any p € S(A) and B D A there is a non-forking extension of p over B.

0.4.6. Definition. Let A be any set and let p € S(A). We say that p is
stationary if it has exactly one non-forking extension over any set (O A).

0.4.7. Definition. (1) Let A be a set. Let p and ¢ be stationary types over
A. Then p and ¢ are almost orthogonal (in symbols p1%q) if whenever a = p
and b = ¢ then @ and b are independent over A.

(2) Let A be a set. Let p and q be stationary types over A. Then p and ¢ are
orthogonal (in symbols p.lq) if any nonforking extensions of p and ¢ over any
set are almost orthogonal.

(3) Let A and B be any sets. Let p be a stationary type over A and let q a
stationary type over B. Then p and ¢ are orthogonal if non-forking extensions
of p and g over AU B are orthogonal.

(4) Let A and B be any sets. Let p € S(A) be stationary. Then p is orthogonal
to B (in symbols p.L B) if any type over B is orthogonal to p.

0.4.8. Definition. T be stable. Then U-rank is defined on (complete) types
as follows:

(1) If p € S(A), then U(p) > 0;

(it) If 6 is limit, p € S(A) and U(p) > « for all a < 6, then U(p) > §;

(ii) If « = B+ 1, p € S(A), and p has a forking extension ¢ € S(B) for
some B D A such that U(g) > £, then U(p) > o;

(iv) We say that U(p) = « if U(p) > o and not U(p) > o+ 1.
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(v) If U(p) > « for all o, we say U(p) = oo, with the convention that
a < oo for all ordinals o.

0.4.9. Remark. (1) Let p, ¢ be types such that p C ¢ and U(gq) < oo. Then
U(p) = U(q) if and only if ¢ is a non-forking extension of p.
(2) We can see that T' is superstable if and only if, for all p € S(A), U(p) < oo.

0.4.10. Definition. Let A be a set and let p a stationary type over A. Then
p is said to be regular if any forking extension of p is orthogonal to p.

0.4.11 Remark. If p € S(A) is regular and M D A, then all maximal inde-
pendent sets for p in M have the same cardinality. So “dimension” exists for
regular types.

0.4.12. Theorem (Existence of Regular Types). Let T be w-stable. Let
M C N. Then there is an element a € N — M such that tp(a/M) is regular.

0.4.13. Theorem (Existence of Prime Models). If T is w-stable, then T
has a unique prime model over any set.

By the above existence theorems, many useful results can be proved. We
summarize such results:

0.4.14. Theorem (Morley). If for an uncountable cardinal A a theory T is
A-categorical, then T is p-categorical for every uncountable cardinal p.

0.4.15. Theorem (Baldwin-Lachlan). If for an uncountable cardinal A a
theory T is A-categorical, then I(Ro,T) =1 or Ro.

0.4.16. Theorem (Lachlan). If T' is superstable and Xo-categorical, then T
is w-stable.

0.4.17. Theorem (Lachlan). If T is superstable then I(Ro,T") = 1 or > Xo.

0.4.18. Theorem (Shelah). If T is w-stable then I(Ro,T) > 8y implies
I(Ro, T) = 2%,

0.4.19. Theorem (Hrushovski). There is an Ro-categorical theory which is
stable and unsuperstable.

The next problems are still open.
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Open Problems. (1) Is there a stable unsuperstable theory T such that 1 <
I(No, T) < Rp?
(2) Is there a non-w-stable theory T such that Ro < I(Ro, T) < 2%e?

The following table summarizes the above results. The rows describe a
place in the stability classification. The columns indicate the number of count-
able models. An entry of “x” means there is no theory of this kind; an entry of
“?” means the existence of such a theory is unknown.

The Number of Countable Models II

1 Ng 2Ro
& -categorical o X 0 X X
not ®;-categorical, w-stable 0 X o X 0
not w-stable, superstable X X 0 ? 0
not superstable, stable 0 ? o ? 0
unstable 0 0 0 ? )

0.5. Uncountable Models and DOP

We consider the number of uncountable models. Let T' be a complete
theory. We say that T has many models if I(\,T) = 2* for every A > |T].
And we say that T is classifiable if T' does not have many models. Shelah has
solved the central problem on the number of uncountable models. His strategy
is as follows:

(1) First he introduced a number of conditions of T' (stable, superstable,
NDOP, shallow and NOTOP).

(2) Next he proved that if T' does not have these condition, then T has
many models.

(3) On the other hand if T has these condition then he proved structure
theorems (Existence of the independence relation, of regular types, of prime
models and of presentations....).

Then Shelah’s main theorem states that
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0.5.1. Theorem(Shelah). T is classifiable if and only if T' is superstable,
NDOP, shallow and NOTOP.

The number of uncountable models

unsuperstable = many models
DOP = many models
deep = many models
superstableq ) op OTOP = many models
shallow

NOTOP => classifiable

a theory

We observe here one of the above conditions, the dimensional order prop-
erty.

0.5.2. Definition. We say that a theory has the dimensional order prop-
erty (for short DOP) if there exist tuples a, b, a finite set F' and a non-algebraic
type p such that p YabF, plaF, pLbF and a |p b.

0.5.3. Example. Let L = {V, E, R}, where V(vertex) and E(edge) are unary
predicates and R is a ternary predicate. Let T be the following theory in L: any
model of T"is the union of the two disjoint infinite sets V and E; RC V xV x E;
for each pair (u,v) € V x V and e € E, R(u,v,e¢) holds iff R(v,u,e) holds; for
each pair (u, v) € V' xV satisfying u # v there are infinitely many elements e € F
such that R(u,v,e) holds; for each ¢ € F there is a unique pair {u,v) € Vx V
satisfying u # v such that R(u,v,e) holds. Take any distinct elements a, b of V.
Let p(z) = R(a, b, ). Then a,b and p witness that 7" has the DOP. Each model
of T' above is constructed by first choosing its set of vertices, and then for each
pair of vertices, by choosing the edges between them. In this case second-level
choice is a function of a pair of vertices chosen at the first level. Then we can
count the number of models: I(Ro,T) = 1 and I(s,T) = 2%. It follow that T
has many models.

In chapter 3 we shall show that if T" is an w-categorical w-stable theory with
DOP, then essentially 7" can be regarded as one of three concrete examples.
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0.6. Minimal Models

We restrict ourselves here to a countable complete theory 7. M is said to
be minimal if it has no proper elementary submodel (and hence it is countable).
Our concern here is to count the number of minimal models. We observe first
easy examples:

0.6.1. Example. Let T be the theory of an infinite set (see example 0.3.1).
Then any countable models of 7' is prime. But each of them is not minimal.
Hence T has no minimal models.

0.6.2. Example. Let T be the theory of an algebraically closed field with a
given characteristic. Then the algebraic closure of the prime field is prime and
minimal. Moreover it is the unique minimal model.

Each of the above theories has a prime model. In general if a theory with
a prime model has a minimal model, it has the unique minimal one. So we
consider a theory having a minimal non-prime model. In [6] Fuhrken gave an
example of such a theory:

0.6.3. Example ([6]). For each v < 2<“ we define a function F, : 2¥ — 2v
by (F, (7)) = v(i) + n(i) mod 2 for n € 2¥, i < w. And for n € 2<¢,
P,={r€e2¥:np<7} Let M = (2% {F,},<2<v,{Py}ly<a<v) and T = Th(M).
Then each model generated by only one element is minimal and non-prime. Then
T has 2%° minimal models.

A natural question will arise: Is there a theory which has £ minimal models
for some k with 1 < k& < 2% ? In [12] Marcus showed that if T' is a theory of
one unary function symbol and 7" has a minimal non-prime model then 7' has
2% minimal models. On the other hand Shelah [15] showed that for every &
with 1 < k < Rq, there is a theory with exactly & minimal non-prime models.
By Morley’s result, we can see that if 7' has more than R; minimal models then
it has 2%° minimal ones. The following problem is still open:

Open Problem. Is there a theory which has exactly R; minimal models?

In chapter 1 we prove a theorem on indiscernible sets in a minimal model.
In chapter 2 we give a result on the number of minimal models. Our result is
an expansion of Marcus’s result [12].

The following table summarizes the discussion above. The columns indicate
the number of minimal models. An entry of “x” means there is no theory of
this kind; an entry of “?” means the existence of such a theory is unknown.



The Number of Minimal Models

2

Ro

R

0O

?

13
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Chapter 1. Indiscernible Sets in Minimal Models

A model M is said to be minetmal if there is no proper elementary submodel
of M. We consider the size of indiscernible sets in a minimal model. Shelah
showed that if a theory T is totally transcendental then there is no infinite
indiscernible set in a minimal model of T' (see [15, IV, Theorem 4.21]). On the
other hand, in [11] Marcus constructed a minimal (and prime) structure with an
infinite indiscernible set. His structure is stable and non-superstable. Our aim
is therefore to extend Shelah’s result to a superstable theory.

Theorem A. Let T be superstable and let A be any set. Then there is no
minimal model over A which has an Infinite set of indiscernibles over A.

To illustrate our proof, we observe Shelah’s proof: Let M be a model
having an infinite indiscernible set I. Pick any a € I and let J = I — {a}.
Since T 1s totally transcendental, there is N < M which is atomic over J. By
indiscernibility of I, we have a ¢ N. Hence M is not minimal.

However, if T' is not totally transcendental , then we do not necessarily have
an atomic model inside M. So, instead of N above, we take in M a maximal set
E which includes J but is independent from a. We call such E a tp(a)-envelope
of J in M (see Definition 1.2.1 for the exact definition). First we show that if
T is superstable, F is an elementary submodel of M (Lemma 1.2.3). It follows
that M is not minimal, and hence we can obtain our theorem. In the end of the
paper, we give a stable structure having an infinite indiscernible set (Example
1.3.2). The way of the construction is essentially the same as Marcus’s one [11].

1.1. Notation.

We fix a (possibly uncountable) stable theory T'. We usually work in a big
model C of T. Our notations are fairly standard. A, B, ... are used to denote
small subsets of C. @, b, ... are used to denote finite sequences of elements in C.
®,%, ... are used to denote formulas (with parameter). p, g, ... are used to denote
types (with parameter). The nonforking extension of a stationary types p to
the domain A is denoted by p|A. The type of a over A is denoted by tp(a/A).
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R>(p) (resp. R®(yp)) is the infinity rank of a type p (resp. a formula ¢). We
simply write R>®(a/A) instead of R*(¢p(a/A)). The set of realizations of a type
p (resp. a formula ¢) in a model M is denoted by pM (resp. ™).

1.2. Lemma.

1.2.1. Definition. Let M be a model and A C B C M. Let p € S(A)
be stationary. Then a p-envelope of B in M is a maximal set £ such that
B C E C M and any element of (p|B)™ is independent from E over A.

1.2.2. Remark. The notion of “envelopes” was introduced in [4], and was
defined in the context of totally categorical theories. Our definition is a gener-
alization of that in [4].

1.2.3. Lemma. Let T be superstable. Let M be a model and A C M. Let
p € S(A) be stationary. Suppose that M contains some infinite Morley sequence
I of p. Then a p-envelope of IA in M is an elementary submodel of M.

Proof. For the simplicity of the notation, we may assume that A = @. Take
any p-envelope E of I in M. If (p|[)® = @, then E = M. So we assume
that (p|I)™ # @. Assume by way of contradiction that E is not an elementary
submodel of M. Then, by the Tarski criterion, there is a consistent formula
o(z, €0) € L(F) such that o™ N E = 0. By superstability, pick an element b of
™ such that R*(b/E) is minimal.

Claim. Any a € (p|I)™ is independent from b over E.

Proof. Assume otherwise. Then there is an element a of (p|I)™ such that
tp(a/Eb) forks over E. Take a formula 6(z, &) € tp(b/E) such that R®(b/E) =
R>(f). Now tp(a/Eb) forks over §, so there is & € E such that tp(a/eb) forks
over §. Then we may assume that €, é; C & Note that tp(a/€) does not fork
over @ (because & € E). It follows that ¢p(b/éa) forks over & So we can get a
formula ¥(z,¢&, a) € tp(b/ea) such that, if = (', €, a) then tp(b’ /éa) forks over
€. Let I'(a,&) denote (3z)(p(z, én) A ¥(z,&,a) AbB(z,é1)). Now the weight of
€ 1s finite since R™°(€) < oo. Therefore we can pick a’ € I such that tp(a’/e)
does not fork over . Remember that ¢p(a/€) does not forks over @. It follows
that tp(a/€) = tp(a’/€). Hence I'(a’,&) holds. Therefore there is an element
b € oM such that R®(b'/e) < R®(b/E) and tp(V' /ea’) forks over &. Thus
R*®(b/E) > R>™(¥ /&) > R™(V[ea') > R™(b'/E). Moreover R®(V'/E) # 0
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because b' satisfies ¢. But this contradicts the minimality of R*°(b/E). Hence
the claim holds.

Thus any a € (p|I)™ is independent from bE over I. But this contradicts
that E is an envelope. Hence E is an elementary submodel. This completes the
proof of the lemma. O

1.2.4. Example. Let Per(w) denote the set of permutations of w which move
only a finite number of elements. For each i < w, define a function 7; : Per(w) —
w such that m;(0) = o(i). Let A = w U Per(w). Consider the structure M =
(A;w, Per(w), {m}icw). Then w is a Morley sequence of ¢p(0). Note that for
any 0 € Per(w), w C dcl(o)(=the definable closure of ). Therefore w — {0} is
the tp(0)-envelope of w — {0} in M. However w — {0} is not a model. Moreover
T = Th(M) is not superstable (since the weight of ¢ is infinite). This example
shows that we need, in lemma 1.2.3, the assumption that T is superstable.

1.3. Theorem and Example.

1.3.1 Theorem A. Let T be superstable and let A be any set. Then there is
no minimal model over A which has an infinite set of indiscernibles over A.

Proof. Suppose that M has an infinite set I of indiscernibles over some set A.
We can assume that [ is already an infinite Morley sequence of some p € S(A)
because &(T') is countable. Pick any a € I. By lemma 1.2.3, a p-envelope E of
(I —{a}) UA in M is an elementary submodel of M. It is clear that a ¢ E.
Hence M 1s not minimal. A contradiction. 0O

1.3.2. Example (see [11]). Theorem 1.3.1 can not be extended to a stable
theory. We construct a minimal structure with an infinite indiscernible set.
Recall the structure M = (A;w, Per(w), {mi}icw) (see Example 1.2.4). Note that
this structure is not minimal. But by modifying the construction, we can obtain
a minimal one: For each n < w, we define inductively P, and {#? : a € P,}
which satisfy the following properties:

(i) Po=w, and 70 = 7, (a € Py);

(ii) P41 = Per(P,) (n < w);

(iii) 73*! : Poy1 — P, is a function such that 72*+1(0) = o(a) (a € P,, n < w).
Let A* = [J{P, : n < w}. Consider the structure M* = (A*;{P, : n < w}, {#7 :
a € P,,n < w}). Then for each n < w, if ¢ € P,,; then we have P, C del(o).
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Hence M* is a minimal model (Proof: Take any N < M* and a € M*. Then
there is some n such that ¢ € P,. Now P,y 1 NN # 8, so we can pick some
0 € Pyy1 N N. Therefore a € del(c) C N, so a € N. It follows that N = M*).
It is easy to see that Py = w is an infinite indiscernible set. Moreover M* is not
superstable, since M is interpreted in M* (Recall that M is not superstable).
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Chapter 2. The Number of Minimal Models

The algebraic closure Q of the rationals @ in the complex number field C
is small in the following two senses: (i) There is no proper elementary subfield
K of @, and (ii) every field which is elementarily equivalent to @ has a copy
of Q in it. In algebraic model theory, it is often the case that one of the two
properties stated above implies the other. But in general model theory we have
to distinguish these two notions. The notion expressing the first property is
called ‘minimal’, and the other for the the second ‘prime’ (see Definition 2.1.1).
The following is an example of a theory having a minimal non-prime model:

Ezample (see [6]). The following theory T satisfies our assumption: For each
v < 2<“ we define a function F, : 2¥ — 2¢ by (F,(9))(¢) = v(i) + n(i) mod
2forne2¥,i<w. Andforne2<w, P, ={re2¥ :9p <7} Let M =
(2¢,{F, }uca<w,{Py}n<ca<w) and T = Th(M). Then each model generated by
only one element is minimal and non-prime.

Our concern is the number of minimal models of a theory with no prime
model (In fact if a theory has a prime model then it has at most one minimal
model). In [12] Marcus showed that if T is a theory of one unary function
symbol and T has a minimal non-prime model then 7" has continuously many
such models. On the other hand, Shelah proved that for every &, 1 < & < Ro,
there is a theory with exactly x minimal non-prime models(see [15]).

Here we extend Marcus’ result. Theories of one unary function symbol may
have the Lascar rank greater than 1 (U(Z) > 1), however if such a theory T
has a minimal model then any element a of the model has the minimum Lascar
rank (i.e. U(a) < 1). Moreover a theory of one unary function symbol has some
‘naive’ property called trivial. In this paper we show the following theorem:

Theorem B. Let T be stable and trivial. Suppose that T' has a model M such
that (i) M is minimal and non-prime, and (ii) U(a) <1, foralla € M. Then T
has 2%° many minimal models.

2.1. Definitions and Preliminary results

Our notations and conventions are standard. We fix a complete theory T
formulated in a countable language L. We work in a big model C of T. 4, B, ...
are used to denote small subsets of C. @, b, ... are used to denote finite sequences
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of elements in C. ¢, 9, ... are used to denote formulas (with parameter). p,q, ...
are used to denote types (with parameter). The types of a over A is denoted by
tp(a/A). M denotes the set of realizations of ¢ in M. The Lascar rank of p is
denoted by U(p). We simply write U(a/A) instead of U(tp(a/A)). U(a) means
U(a/9).

2.1.1. Definition. Let M be a model of the theory T

(1) M is said to be ménimalif there is no proper elementary submodel oaf
M.

(2) M is said to be prime if M can be elementarily embedded in any model
of T

2.1.2. Definition. (1) Let A be aset. Then an L(A)-type I'(z) (not necessarily
complete) is said to be princepal over A if it is generated by one L(A)-formula
©(z) (¢ need not be a formula in I').

(2) A formula ¢(z) € L is said to be atomless if there is no formula ¢ (z)
with the following properties:

(i) T+ Va((z) — ¢(2));
(i) ¥(z) is complete i.e. ¥(z) determines a complete type p(z).

If S(@) is countable, then there is a prime (and atomic) model. On the
other hand, if S(@) is uncountable then there is an atomless formula.

We prove a version of Lemma 1.3 of [12].

2.1.3. Lemma. Let ['(Z) be a non-principal (possibly incomplete) type over
a countable set A. Suppose that there is an atomless formula ¥ (y) over § such
that if d is a realization of 1 then d and A are independent. Then there are
continuously many countable models (O A) omitting I'.

Proof. First we show the following claim:

Claim 1. Let 6(Z,y) and o(y) be L(A)-formulas. If §(Z,y) A ¢(y) is consistent
then there is an L(A)-formula ¢*(y) with ¢*© C € such that 6(%,d) does not
generate I' for any realization d of ¢*.

Proof. Since I' is non-principal over A there is a realization d of ¢ such that
8(z,d) does not generate I'. So we can pick v € I' such that 8(Z,d) A ~v(Z) is
consistent. Define ¢*(y) = (3z)(¢(y) A8(Z,y) A—=v(&)). Then ¢* is a consistent
L(A)-formula. It is clear that I" is not generated by 6(z,d) for any d € @*€.

Let I'(Z) have k-variables. Let 8,(Z,y) (n < w) be an enumeration of all
L(A)-formula with (k + 1)-variables.
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Claim 2. We can define inductively L(A)-formulas ¥, (y) and L-formula o, (y)
(n < 2<¥) satisfying the following conditions: for each n < 2<%,

(1) <> (y) = ¥(y);

(2) = (Yy) (g ~i(y) — ¥u () (i=0,1);

(3) there is an L-formula o, (y) such that |= (Vy)(¢¥y~o(y) — a,(y)) and
E (V9)($n~1(y) = —an(y);

(4) If ¥, (y) A 6,(Z,y) is consistent then 0,(Z,a) does not generate I' for
any realization a of ¢, (the length of n isn+1).

Proof. Suppose that v,’s (the length of n is < n + 1) have been defined. Fix
any n with length n + 1. First we see that there is an L-formula a(y) such that
both a(y) A ¥,(y) and —o(y) A ¥,(y) are consistent. If not, 1, generates some
complete L-type ¢. Since 9 is atomless ¢ is non-principal. On the other hand, by
the assumption, 1, does not fork over §. So ¢, is realized by every model. This
means that ¢ is principal, which is a contradiction. Therefore we get such an
a(y). Put ay(y) = ay). Let o(y) = ay(y) Ay (y) and $1(y) = —on () Ay (3).
Suppose that o(y) A fn+1(2,y) is consistent. By claim 1 we obtain an L(A)-
formula 13 (y) with ¥4€ C o such that 8,41(%, d) does not generate I'(z) for
any realization d of ¥§. Put v,~o = 4. Similarly we can get ¥,~1. Then they
satisfy our requirement. This completes our construction.

For 7 < 2¥, define Z,(y) = {¥rn(y) : » < w}. It is easy to see that
Z.’s are L(A)-types which satisfy that 1) 7 # A implies tp(d,) # tp(dy) for any
realization d, of X, and d) of X, and ii) if d, is a realization of X, then I' is
non-principal over A Ud,. By 1i), for every 7 < 2* there is a countable model
M, (D Aud,) omitting I". By i), for any M, there are at most countably many
M,’s isomorphic to M,. Thus there is an X C 2* with |X| = 2% such that
M, (7 € X) are pairwise non-isomorphic. Hence we obtain continuously many
countable models omitting I". This completes the proof of the lemma. O

2.1.4. Definition. T is said to be trivial if it has the following property: for
any three elements a,b,c € C and any set A C C, if ¢,b and ¢ are pairwise
independent over A then they are independent over A.

2.2. Theorem and Proof

2.2.1 Theorem B. Let T be stable and trivial. Suppose that T' has a model
M such that

(1) M is minimal and non-prime;

(2)U(a) <1, foralla € M.
Then T has continuously many minimal models.

Proof. First we show the following claim:
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Claim 1. There are an element a of M and a finite subset F of M such that
tp(a/F) is non-principal.

Proof. M is a non-prime model. So it is not atomic, hence there is a minimal
finite subset E of M such that ¢p(E) is non-principal. Pick any element a of
E. Let F = E — {a}. By the minimality of E tp(F) is principal, so tp(a/F) is
non-principal.

By a minimal component we mean a set whose any two elements are inter-
algebraic. Let C = acl(a) — acl(B) and A = M — C. C is a minimal component
since U(a) = 1.

Claim 2. There are a finite subset F' of A and an atomless formula ¢ (y) over
F’ such that any realization d of ¢ is independent from A over F'.

Proof. Since M is a minimal model, by the Tarski-Vaught test, we can easily
find an L(A)-formula 9(y, a) such that ™ C C. Let F' = FUa. We notice that
under the assumption (2), in M the general notion of independence coincides
algebraic independence. So C and A are independent by using the triviality of 7.
First we will show that 1) is atomless over F”. If not, there is a complete formula
'(y) over F’ such that »'C %€. Then 1’ is realized by some element e of C.
On the other hand, by claim 1, ¢p(e/F) is non-principal. Thus using the Open
Map Theorem we obtain that ¢p(e/F’) is non-principal, which contradicts that
1’ is complete. Hence 1 is atomless over F'. Next we show that any realization
d of ¢ is independent from A over F'. Take any formula 8(y) € tp(d/A). Then
¥(y) A 8(y) is consistent. Notice that ™ C C. So we can pick a realization d'
of § in C. Now tp(d’'/A) does not fork over F' since C and A are independent.
Hence 6 does not fork over F'. This shows that ¢p(d/A) does not fork over F'.

Define I'(z,y) = {z and y are not interalgebraiclU{z #c:c€ A} U{y #
c:c € A}. I is non-principal over F' because our model M (D F') omits it.
From claim 2 it follows that I" and v satisfy the assumptions of the lemma. So
we get the following claim (Note that F' is finite):

Claim 3. There are pairwise non-isomorphic countable models M, (r < 2¥°)
omitting I.

Claim 4. Each M, is a minimal model.

Proof. Since M, omits I there is a minimal component D such that M, = DUA.
Suppose that M, is not minimal. Then there is a proper subset B of A such that
D U B is an elementary submodel of M. So we can pick a minimal component
E C A— B. By the minimality of M there is a formula ¥(z,b) over M — E such
th.at Y™ is contained in E. By the triviality of T E and b are independent.
Therefore 9 does not fork over @, so ™~ N D # @. On the other hand, by the
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minimality of M, there is a formula o(z, @) over A such that ¢™ is contained in
C. By the triviality C and a are independent. Therefore ¢ does not fork over
B, so oM N D # 0. Hence we can assume that o™+ N M+ # @ (because any
two elements of D are interalgebraic). So we have M |= (3z)(¢(z, @) A ¢(z, b)).
This contradicts that C and E are disjoint. Hence M, is minimal.

By claim 3, 4 we obtain 2%° minimal models. This completes the proof of
the theorem. O

2.2.2. Remarks. (1)It is known that a theory of one unary function symbol f
is stable and trivial (see e.g. [18]). Moreover a minimal model of such a theory
has minimum Lascar rank. This can be shown as follows: Pick any element a of
a minimal model of the theory. Let ¢tp(a/B) be any forking extension of ¢p(a).

Then by Lemma 1 in [12], there is an element b of B which is contained in
the connected component C(a) of a, where b € C(a) if and only if there are n, m <
w such that f®(a) = f™(b). On the other hand we see that each connected
component in a minimal model is a minimal component in our language (see
Lemma 3.1 in [12]). Therefore C(a) is a minimal component, so a and b are
interalgebraic. Thus tp(a/B) is algebraic. Hence U(a) < 1.) So our theorem is
a generalization of Marcus’ one.

(2) The following theory T satisfies our assumption: For each v < 2<“
we define a function F, : 2¥ — 2¢ by (F,(n))(i) = v(¢) + n(r) mod 2 for
n €2 i< w And forn € 2<% P, ={r €2 :n <71} Let M =
(2% {F,}r<2<w,{Pp}n<c2<v) and T = Th(M). Then it is easy to see that T
is stable and trivial. Each model generated by only one element is minimal and
non-prime. And the Lascar rank of the model is minimum.

(3) In [15] Shelah has shown that any & with 1 < & < Rg there is a complete
theory, with no prime model, and exactly £ minimal models . Theories he gave
are stable, trivial and have a minimal non-prime model. But all minimal models
of them have the Lascar rank 2. This shows that the condition (2) of our theorem
is essential.
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Chapter 3. w-Categorical w-Stable theories with DOP

In [16] Shelah classified the sufficiently saturated models of a superstable
theory. In his proof he introduced a dividing line, the Dimensional Order Prop-
erty (DOP), and showed that if a superstable theory has the DOP then it has
2* models for uncountable A.

We say that a theory has the DOP if there exist tuples a, b, a finite set F'
and a non-algebraic type p such that p YabF, pLlaF, p1bF and a |r b. Shelah’s
proof distinguishes three types of superstable theories with the DOP, i.e.,

Case 1. tp(a/F) and tp(b/ F) are trivial; tp(a/F)Ltp(b/F);
Case 2. tp(a/F) and tp(b/ F) are trivial; tp(a/F) = tp(b/F);
Case 3. Either tp(a/F) or tp(b/F') is nontrivial.

Examples 1, 2 and 3 below have the DOP, and fall into cases 1, 2 and 3
respectively.

Ezample 1. Let S; be the theory which says that F; and Fy are equivalence
relations with infinitely many infinite classes such that the intersection of each
Ei-class and FE»-class is infinite (see, e.g., [1]). Let ¢ be any element. Take a
and b such that Ey(a,c) A =Es(a,c) and Fs(b,c) A—E;(b,c). Then tp(a/c) and
tp(b/c) are trivial and orthogonal. Let p(z) = Ei(x,b) A E3(z,a). Then a, b, ¢
and p witness that S; has the DOP. Hence S; falls into case 1.

Ezample 2. Let L = {V, E, R}, where V(vertex) and E(edge) are unary pred-
icates and R is a ternary predicate. Let Sy be the following theory in L: any
model of Sy is the union of the two disjoint infinite sets V and E; R C V xV x E;
for each pair (u,v) €V x V and e € E, R(u,v,e) holds iff R(v,u, €) holds; for
each pair (u, v) € V xV satisfying u # v there are infinitely many elementse € E
such that R(u,v,e) holds; for each e € E there is a unique pair (u,v) € V x V
satisfying u # v such that R(u,v,e) holds. Take any distinct elements a,b of V.
Clearly tp(a) = tp(b) is trivial. Let p(z) = R(a,b, z). Then a,b and p witness
that S, has the DOP. Hence S; falls into case 2.

Ezample 3. Let ¢ = p™ (pis a prime number, n < w). Let S5 be the theory of the
structure (D U G, 7, G) defined as follows: G = (G,¢l) is a projective geometry



24

of infinite dimension over a finite field Fy, where ¢l is a closure operator on G;
D = w x G; 7 is a function from D onto G such that 7 : (m,g) — g. Take
any distinct elements a,b of G. Then we can get ¢ € cl(a,b) — {a,b}. Define
the type p(z) by m(z) = c. Then a,b and p witness that S§ has the DOP: Now
pL@. Thus we have pla and plb since ¢ | @ and ¢ | b. On the other hand we
have p Yab since ¢ € acl(ab). Hence Si has the DOP. Clearly G is non-trivial.
It follows that S falls into case 3.

Clearly these examples are w-categorical and w-stable. In this note we
prove the following theorem.

Theorem C. Let a theory T be w-categorical and w-stable. Then T has the
DOP if and only if Si, Sy or S (for some q < w) can be fully interpreted in T?.

3.1. Preliminaries.

We fix a countable stable theory T". We usually work in the big model
C*®1 of T®. Our notations are fairly standard. Types are complete types with
parameters, and they are denoted by p,q,.... The nonforking extension of a
stationary type p to the domain A is denoted by p|4. The type of a over A is
denoted by tp(a/A). And the strong type of a over A is denoted by stp(a/A).
If p and q are stationary types over A then p ® q denotes the type tp(ab/A),
where @ realizes p and b realizes ¢/Aa. When a type p is orthogonal to the set
A we write pLA. The canonical base of a strong type stp(a/A) is denoted by
Cb(a/A). RM(p) is a Morley rank of a type p. We simply write RM(a/A)
instead of RM (tp(a/A)). The set of realizations of a type p (resp. a formula ¢)
in a model M is denoted by pM (resp. pM).

The following definition of the DOP is different from original one ([1], [7],
[16]). But it is easy to see that they are equivalent (if T' is superstable).

3.1.1. Definition. We say that T has the Dimensional Order Property (DOP
for short), if there are tuples a,b, a finite set F' and a non-algebraic type p such
that p LabF,plaF,plbF and a |F b.

3.1.2. Definition. We say that a stationary type p € S(A) is frivial if it has
the following property: for any set B containing A and any realizations a, b and
c of p|B, if a, b and c are pairwise independent over B then they are independent
over B.

The following definition is due to Baudisch [2].
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3.1.3. Definition. Let a theory S be interpretable in 7' and ¢ a formula in T
which defines the universe of an S-model. Then we say that S is fully interpreled
in T if for any S-model M there is a T-model N such that ¢ = M .

In general the DOP is not always preserved under interpretations. But
Baudisch showed that the situation changes if the interpretation is full, i.e.,

3.1.4. Fact ([2]). Let T be superstable and assume that S is fully interpreted
in T. If S has the DOP then T has the DOP.

Finally we state some facts on w-categorical w-stable theories:
3.1.5. Fact ([4]). A strongly minimal set is locally modular.

3.1.6. Fact (The Coordinatization Theorem [4]). For any element a and
set A with a & acl(A) there Is e € acl(aA) with RM(e/A) = 1.

3.1.6. Fact ([4]). T is 1-based.

3.1.7. Fact ([3]). Suppose that p is a type with Morley rank 1 which is non-
orthogonal to a set A. Then there is r € S(A) with Morley rank 1 such that

pir.

3.2. Lemmas.

From now on T is w-categorical and w-stable.

3.2.1. Lemma. Suppose that T has the DOP. Then there are tuples a, b, d and
a finite set F' which satisfy the following conditions:

(i) tp(d/abF)LaF,tp(d/abF)LbF,a |F b;

(ii) tp(d/abF) has Morley rank 1;

(iii) tp(a/ F) and tp(b/F) are strictly minimal;

(iv) tp(a/ F) = tp(b/ F) or tp(a/F)Lip(b/ F).

Proof. First we prove the following claim:

Claim. There are tuples a,b, a model M and a nonalgebraic type p satisfying
the following:

(a) p YabM, pLaM, pLbM and a |y b;

(b) p has Morley rank 1;
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(c) tp(a/M) and tp(b/M) are strongly minimal;
(d) tp(a/M) = tp(b/M) or tp(a/M)Lip(b/M).

Proof. By the definition of the DOP, we get a,b, M, and p satisfying condition
(a). In addition we can assume that p is regular. By fcat 3.1.5 there is a type
p' with Morley rank 1 which is non-orthogonal to p. By the regularity of p, we
have p’ YabM. Replacing p by p’, we may assume moreover that p satisfies (b).
Now we show that there are a* and M™ with RM (a*/M*) = 1 and RM(b/M*) =
RM(b/M) such that a*,b, M™ and p satisfy (a) and (b). This can be shown as
follows. By fcat 3.1.5, there is a’ € acl(aM) with RM(a'/M) =1. ¥ pLla'bM,
then we finish (by renaming a’ by a* and M by M*). So assume that p Ya'bM.
Take a prime model M’ over Ma' such that abC' |prer M', where C is the
domain of p. Then we have pLaM' and p LbM'. Thus a,b, M’ and p satisfy (a)
and (b). Moreover RM(b/M) = RM(b/Md') = RM(b/M') and RM(a/M) >
RM(a/Md') = RM(a/M'). So, by iterating this process we can get a* and M*
as required.

Again, by using the similar argument above, we can assume that a,b, M, and
p satisfy (a),(b), and (c). Finally we arrange that tp(a/M) = tp(b/M) and
tp(a/M)Ltp(b/M). Suppose that tp(a/M) and ¢tp(b/M) are not orthogonal. By
w-stability they are not almost orthogonal. So we have a realization b’ of tp(b/M)
such that ¢ and b’ are interalgebraic over M. Let a’ be a realization of tp(a/M)
such that {p(ad’ /M) = tp(a’b/M). Replace a by ab’ and b by a'b. Then they still
satisfy (a), (b) and (c). Hence we assume that tp(a/M) = tp(b/M). It follows
that a,b, M and p satisfy (a), (b), (c), and (d).

Now we can assume that C(the domain of p) is finite. Thus we can replace
the model M by some finite set F' (by taking F satisfying ¢bC |p M). Then,
by w-categoricity and (a), we can assume that tp(a/F) and tp(b/F') are strictly
minimal. Using (a), (b) and fact 5, we can get ¢ € S(a¢bF) with Morley rank
1 which is non-orthogonal to p. Let d be a realization of ¢. So the quadruple
(a, b, d, F') satisfies conditions (i), (i), (iii) and (iv). O

By a DOP-gquadruple we mean a quadruple which satisfies conditions (i),
(i), (iii) and (iv) of lemma 3.2.1. By lemma 3.2.1 (iv), a DOP-quadruple
(a,b,d, F') always satisfies one of the following conditions:

Case 1. tp(a/F) and tp(b/F) are trivial, tp(a/F)Lip(b/F);
Case 2. tp(a/F) and tp(b/ F) are trivial, tp(a/F) = tp(b/F);
Case 3. tp(a/F) or tp(b/F) is nontrivial.

3.2.2. Lemma. Let {(a,b,d, F) be a DOP-quadruple. If case 1 or case 2 occurs,
then

(i) acl(dF) N (tp(a/F)° U tp(b/F)°) = {a,b};

(ii) Any subset of tp(a/F)C Utp(b/ F)C which is pairwise independent over F is
independent over F.
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Proof. To simplify the notation we assume that F' = 0.

(i) First we show that a,b € acl(d). Suppose not. Without loss of generality,
we assume that a € acl(d), so a | d. Then we have b ¢ acl(d) (If not, we have
a |y d. Thus we get ¢p(d/ab) Ltp(d/ab) since tp(d/ab)Lb. A contradiction). So
we have b | d. Let ¢ = Cb(d/ab). Note that T is 1-based(see fact 3.1.6). Thus
the set {a,b, c} is pairwise independent, but each of a, b and c is algebraic over
the other two. Let b'c’ be a realization of ¢p(bc) such that abe | b'c’. Let o
and a” be realizations of tp(a) such that ¢p(abc) = tp(a't'c) = tp(a’bc’). Then
a,a’ and a' are realizations of tp(a/b'c') which are pairwise independent but not
independent. This contradicts that tp(a) is trivial. It follows that a,b € acl(d).
Next we show that {a,b} = acl(d) N (tp(a)€ U tp(b)€). I not, there is ¢ €
acl(d) N (tp(a)C Utp(b)©) — {a,b}. By strict minimality and triviality, {a, b, c}
is independent. So ¢ | ab. Then we have ¢p(d/ab) Ltp(c/ab), which contradicts
that ¢ € acl(d). Hence (i) holds.

(ii) Clearly case 2 satisfies (ii). So we assume that case 1 occurs. Let X be
a pairwise independent subset of #p(a)€ U tp(b)C. Let X, denote X N tp(a)€
and X, denote X Ntp(b)€. By the triviality and the strict minimality, both
X, and X, are independent sets. Since tp(a) and tp(b) are orthogonal, X, is
independent from X;. Hence X (= X, U X;) is independent. O

3.2.3. Lemma. Let (a,b,d, F) be a DOP-quadruple. If case 1 occurs, then
(i) a,b € dcl(dF);
(i) The copies of tp(d/abF) under F-automorphisms are pairwise orthogonal.

Proof. For the simplicity of the notation, we assume that F = @. In this case we
have tp(a/d) # tp(b/d). Hence (i) follows from lemma 3.2.2 (i). To show (ii), it is
enough to see that if ¢p(d’'/a’t’) is a copy pf tp(d/ab), then tp(d/ab) Lip(d’'/a'd’).
If a # o' and b # ¥V, then {a,d’,b,b'} is pairwise independent. By lemma
3.2.2 (ii), we have ab | a''. Hence tp(d/ab)Lip(d'/a't), by lemma 3.2.1 (i).
fa# a and b =¥, by lemma 3.2.2 (ii) again, we have ab |, a’'t’. Hence
tp(d/ab) Ltp(d' /a'b"). If a = a’ and b # ¥/, then we have tp(d/ab) Lip(d'/a'') as
above. [

Let e be a tuple and A a set. Here we call the tuple e strictly coordinatizable
over A if there are tuples eq, ey, ...,e, with RM(e;/4) =1 (i = 1,2,...,n) such
that e and e, eq, ..., e, are interalgebraic over A.

3.2.4. Lemma. Let (a,b,d, F) be a DOP-quadruple. If case 2 occurs then
there is an element e which is strictly coordinatizable over abF' such that

(i) tp(a/eF) is algebraic with multiplicity 2 and tp(ab/eF) = tp(ba/eF);

(if) The copies of tp(e/abF') under F-automorphisms are pairwise orthogonal.

Proof. For the simplicity of the notation, we assume that F' = @. Since a and b
are independent, we have ¢p(ab) = ¢p(ba). So there is an automorphism f such
that f(ab) = ba. For n < w, define D,, = {f*(d)}i<n. Our proof separates into
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two cases:
Case A. D, is independent over ab, for any n < w.

There is n < w such that stp(f"*1(d)/ab) = stp(d/ab) since the multiplicity
of tp(d/ab) is finite. So we have tp(f“D,/ab) = tp(D,/ab) since both d and
f**T1(d) are independent from D, over ab. Let e be an imaginary element for
the finite set D,,. Clearly e is strictly coordinatizable over ab. By lemma 3.2.2
(1), we obtain moreover that ¢p(ab/e) = tp(ba/e), and that tp(a/e) is algebraic
with multiplicity 2, by lemma 3.2.2 (i). Hence (i) holds. On the other hand, by
lemma 3.2.1 (i), we have ¢p(f*(d)/ab)La for any i < w. So we get tp(e/ab) La.
Similarly we have tp(e/ab)Lb. So (ii) holds, by a similar argument as in the
proof of lemma 3 (ii).

Case B. D, Is not independent over ab, for some n < w.

Take maximal n < w such that D, is independent over ab. Then, for every
i, *(d) is algebraic over Dy, (Recall that RM(d/ab) = 1). So the size of |J;,, D:
is finite, by w-categoricity. Let e be an imaginary element for (J; ., Di. Then e
is strictly coordinatizable over ab. On the other hand, by the maximality of D,
d and f"*!(d) are interalgebraic over D,, — {d}. So we have f(eab) = eba. Thus
(1) holds, by using lemma 3.2.2 (i). By the similar argument of case A, (ii) also
holds. O

3.2.5. Lemma. Let {(a,b,d, F) be a DOP-quadruple. If case 3 occurs then
there are a tuple g and a finite set F' such that

(i) tp(g/F') is nontrivial strictly minimal modular, RM(d/gF') = 1 and g €
del(dF");

(ii) The copies of tp(d/gF") under F'-automorphisms are pairwise orthogonal.

Proof. Without loss of generality, we assume that ¢p(a/F) is nontrivial. Then
tp(a/bF) is nontrivial and strongly minimal. In particular ¢p(a/bF) is locally
modular, by fact 3.1.5. By adding a suitable realization of ¢p(a/bF) to the
domain, we can assume that ¢tp(a/bF') is modular. Let F' = Fb. And let g be
the set of realizations of tp(a/F') which are algebraic over aF’. It is clear that
g € dcl(aF') and a € acl(gF'). Hence tp(g/F') is nontrivial, strictly minimal
and modular. Now we have d [,r a, so g € acl(dF'). We obtain therefore that
g € dcl(dF’) (Assume otherwise. Then we can pick ¢’ such that tp(g/dF') =
tp(g'/dF') and g # ¢'. Recall that tp(d/abF)LbF, so tp(d/gF')LF'. Since
g lr g we have tp(d/gF')Ltp(g’'/gF'). This contradicts that ¢’ € acl(dF")).
Also it is clear that RM(d/gF’) = 1. Hence (i) holds. Moreover (ii) holds,
because tp(d/gF') LF' and tp(g/F") is strictly minimal. [

3.2.6. Lemma. Let c be a tuple which Is strictly coordinatizable over 0. Let
pe € S(c) whose realization is strictly coordinatizable over c. Let I be an infinite
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Morley sequence oftp(c). Let Ny be a prime model over I. For each ¢’ € tp(c)™
let 1.+ be an infinite Morley sequence of some stationarization P of per over Nj.
Let N be a prime model over N1 U Uc’th(c)Nl I... Suppose that the copies of p,
are pairwise orthogonal. Then

(i) tp(c)™ = tp(c)™;

(if) If p.: is a copy of p. then |pY| = |I|, for each ¢’ € Ny.

Proof. (i) Assume otherwise. Then there is a € acl(tp(c)V) — Ny with Mor-
ley rank 1 since c is strictly coordinatizable. In particular ¢ | N;. On the
other hand we have ®p?, 18 since the copies of p. are pairwise orthogonal. So
®pr Ltp(a/N1). Hence a & N1(|JI) = N, which is a contradiction.

(ii) We show that |pY| < |I.|. Note that the multiplicity is finite. So it is enough
to show that if ¢ is a stationarization of p. over acl(c'), then |¢V| < |Iu].
Let d be a realization of q. Then there are do,ds, ..., d, such that acl(de') =
acl(dody ...d, ') and RM(d;/acl(c')) =1 (i = 0,1, ...,n) since d is strictly coor-
dinatizable over ¢'. Let ¢; = tp(d;/acl(c’)). Fix an arbitrary i.

Claim 1. ¢/ = q?rl(l").

Proof. Assume otherwise. Then we can pick e € ¢ —N;(I+). Since RM(¢;) = 1,
we have e Yy, 1.y N. So e Yn, (1) Uc”Etp(c)Nl I (because N is prime over
N ul eetp(ey™ L), Note that copies of p. are pairwise orthogonal. Therefore
there is ¢'(# ¢’) such that e [y, I.». Hence we have ¢; Yp.», so por Lper. This
1s a contradiction.

Claim 2. ¢’ € acl(]).

Proof. Assume otherwise. Then we can pick a € acl(¢') — acl(I) with Morley
rank 1 (because c is strictly coordinatizable). So a | I. Then ¢p(a/I) is isolated
over some finite Ip(C I) since N; is atomic over I. On the other hand we can
pick a’ € acl(I) — acl(ly) such that stp(a) = stp(a’). Thus o’ | I5. So we have
tp(a/Io) = tp(a’/Io). But this contradicts that tp(a/I) is isolated over Ip.

Let No(C N;) be a prime model over acl(¢’). Pick a maximal subset X of
N1 such that X l NO.

Claim 3. We can assume that N1(I.) C No(X)(Ix).

Proof. First we obtain I C No(X) (If not, then there is a € acl(I) — No(X)
with Morley rank 1. Then we have a | NoX, so aX | Ng. This contradicts the
maximality of X). Since I/ is a Morley sequence of p},, we have I» |~ Ny. So,
by claim 2, we have I+ |40(7) N1- On the other hand we have I | n, X since pes
is orthogonal to @. So, by claim 2 again, we have Ios |41y No(X) (because I C
No(X)). Thus there is an automorphism f fixing II.: such that Ny C f“No(X)
since Ny is prime over I. Hence we can assume that N;(I.;) C No(X)(I).
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Claim 4. q.Nc’(Ic')(X) = q.NO(Ic').
Proof. Recall that X |n, I». So tp(X/No(I.s)) does not fork over §. Thus
¢ Ltp(X/No(I.+)) (since g; is orthogonal to #). Hence the claim holds.

By claim 1, 3 and 4, we have quvluc')l < |qiN°(X)(Ic’)| = quVO(fc')(X)l _
lg7°U<)| < |I./|. Hence we obtain |¢V| < || x |g| x -+ x |g| < || = | 2o}
This completes the proof of the lemma. O

3.3. Theorem and Proof.

3.3.1. Theorem C. Let a theory T' be w-categorical and w-stable. Then T has
the DOP if and only if S1, Sy or Si (for some q < w) can be fully interpreted in
Ty! for some finite set F.

Proof. (—) Assume that T has the DOP. By lemma 3.2.1 there is a DOP-
quadruple {(a, b, d, F). The proof separates into three cases:

Case 1. tp(a/F) and tp(b/F) are trivial; tp(a/F)Ltp(b/ F).

For the simplicity of the notation we assume that F = §. By lemma 3.2.3
(1), there are @-definable functions f,g such that f(d) = a and g(d) = b. Let
o(z) = tp(d). We define Ei(z,y) by “f(z) = f(y)” Ap(z) A ¢(y) and Eq(z,y)
by “g(z) = g(y)” A ¢(z) A p(y). We prove that for any Sj-model M there is a
T*9-model N such that M = (o™, EN | EY).
Take an arbitrary S;-model M. Let d;/F;(i < 1) be all the Ey-classes appear-
ing in M and e;/E3(i < k3) all the Ey-classes in M. Let A;; = |Ey(2,di)™ N
Eo(z,€;)M| for each i < k1, j < k. Note that A;;’s are infinite. Now we
construct a T*%-model N satisfying our requirement. Let I; be a Morley se-
quence of length &; of tp(a) and I, a Morley sequence of length &y of tp(b).
Let I = I x I. Then I is a Morley sequence of {p(ab). Let N1 be prime over
I. Then [tp(a)™:| = k; and |[tp(b):| = ko (since tp(a)Ltp(b)). Let {a:}icx,
be an enumeration of tp(a)™* and {b;};<x, an enumeration of ¢p(b)N*. Then
{aib; }i<x1,j<n, is also an enumeration of tp(ab)™*. Let pay = tp(d/ab). Let p;;
be a copy of pgp over a;b;. Let I;; be a Morley sequence of length A;; of some
stationarization of p;; over Ny. Let N be a prime model over Ny UU:’<~1,j<ng Ii;.
Remember that ¢p(a), tp(b) and p,; have Morley rank 1. Thus ¢p(ab) and pgs
are strictly coordinatizable. Moreover p,; satisfies the assumption of lemma 6
(by lemma 3.2.3 (ii)). So, by lemma 6, {a;}i<x, and {b; };<x, are enumerations
of tp(a)™ and tp(b)" respectively such that |pf}| = \i; for each i < k1, < k2.
Hence (o™, EN,EN) > M.
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Case 2. tp(a/F) and tp(b/F) are trivial; tp(a/F) = tp(b/ F).

To simplify the notation we assume F' = §§. We can choose such e as in
lemma 3.2.4. Define V() = tp(a), E(z) = tp(e)and ¢(z) = V(z) V E(z). And
define a relation R(z,y, z) by tp(abe). We prove that for any Ss-model M there
is a T®-model N such that M = (N, VN EN RV).

Take an arbitrary Sy-model M. Let {v;};c, be an enumeration of VM. Let
Xij = |R(vi, vj, 2)M| for each i,j < &, i # j. Now we construct a T*?-model N
satisfying our requirement. Let I be a Morley sequence of length x of {p(ab).
Let N; be prime over I. Let {a;}i<, be an enumeration of ¢tp(a)¥*. Then
{aia; }ij<x,iz%; is an enumeration of tp(ab)™. Let ps = tp(d/ab). Let p;; be
a copy of pap over a;b;. Note that p;; = p;;. Let I;; be a Morley sequence of
length A;; of some stationarization of p;; over N;. Let N be a prime model over
N1UU, j ¢p iz Tij- From lemma 3.2.4 it follows that ¢p(ab) and p,p are strictly
coordinatizable, and that the copies of p,; are pairwise orthogonal. Thus the

assumption of lemma 6 is satisfied. So {a; };<,is an enumeration of V¥ such that
|R(ai, a5, 2)N| = Xij for each i, < &,i # j. Hence (™, VN, EN RVN) = M.

Case 3. tp(a/F) ortp(b/F) is nontrivial.

Take d, g and F’ as in lemma 3.2.5. To simplify the notation we assume that
F' = . Define D(z) = tp(d), G(z) = tp(g) and ¢(z) = D UG. Since g € dcl(d)
there is a definable function 7 : D€ — G€* such that =(d) = g. G is
a nontrivial modular strictly minimal set. So GC™ associates the projective
geometry G of infinite dimension over a finite field F,. Then we can prove that

S3 is fully interpreted in Tp:, by the similar argument as in the proof of case 1
and 2.

(<) Suppose that S, S or S is fully interpreted in T¢'. Each of S1, S
and S5 has the DOP (see introduction). So, by fact 3.1.4 we obtain that T5!
has the DOP. Hence T has the DOP. [
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