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Introduction

It is a well-known fact due to the celebrated theorem of Gauss-Bonnet that
the total curvature of a compact Riemannian 2-manifold is actually a topological
invariant. That is, on a compact surface the integration of the Gaussian cur-
vature, which is primarily an invariant in Riemannian geometry, is completely
determined by the Euler characteristic of the surface, which is an invariant in
topology.

Contrary to this, for a complete noncompact Riemannian 2-manifold, the
total curvature is no longer a topological invariant and reflects considerably the
metric structure of the surface. In fact, it gives rise to a quantity measuring the
sum of the expanding growth rate of each end of the surface.

In higher dimensional cases, we can define the so-called Tits metric for a
Hadamard manifold, i.e. a complete connected simply connected Riemannian
n-manifold of nonpositive sectional curvature, which gives rise to a quantity of
the same kind.

In this thesis, we shall study the geometry of total curvature and Tits metric
of complete noncompact Riemannian manifolds. Our object is to give some
characterizations of these manifolds from a point of view of the geometry of
total curvature and Tits metric.

Let M be a connected, complete, noncompact and oriented Riemannian 2-
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manifold. M is said to be finitely connected if it is homeomorphic to a compact 2-
manifold with finitely many points removed, and infinitely connected if otherwise.

The total curvature C(M) of M is defined to be the improper integral

C(M) = /M Gyt

of the Gaussian curvature G of M over M, where djs denotes the volume element
of M. It has been investigated by many authors to what extent the metric
structure of M has an influence on the total curvature of M. Amongst them,
a pioneering work due to Cohn-Vossen [Col] proved in 1935 that if a finitely
connected M admits total curvature C(M), then it is dominated by 27 times
the Euler characteristic x(M) of M, that is C(M) £ 27x(M). On the other
hand, when M is infinitely connected and admits total curvature, we know by
Huber’s theorem [Hu] in 1957 that C(M) = —oo.

Under some restrictions on the global geometry of M, there have been ob-
tained several estimates for C(M). For instance, Cohn-Vossen [Co2] also proved
in 1936 that if a Riemannian plane M admits total curvature and if there exists
a straight line on M, then C(M) £ 0. Here by a Riemannian plane we mean a
complete Riemannian manifold homeomorphic to R?, and by a straight line a
distance preserving maximal geodesic. It is known that this is generalized to the
case that M is a connected, complete, noncompact, oriented and finitely con-
nected Riemannian 2-manifold with only one end. In fact, if such an M admits
total curvature and contains a straight line, then C(M) < 27 (x(M) —1).
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It is then natural to ask the converse of this theorem. In Section 1 of Chapter

3, we shall study the existence of a straight line from this point of view and prove

the following

THEOREM A. Let M be a connected, complete, non-compact, oriented and
finitely connected Riemannian 2-manifold having one end. If the total curvature

of M is smaller than 2w (x(M) — 1), then M contains a straight line.

In the case where C(M) = 27(x(M)—1), Theorem A does not remain true.
In fact, we can construct a C*-plane M whose total curvature is equal to 0 and
on which there are no straight lines. ( See §1, 1.2 of Chapter 3. ) Note that if
M is the standard Euclidean plane, then C(M) = 0 and M contains a straight
line. Furthermore it should be noted that if M has more than one end, then it is

easy to see that there is a straight line in M which combines two distinct ends.

To prove Theorem A, we need the estimate for the measure of rays via total
curvature. Here a ray is a distance preserving geodesic defined on [0, 00). This
estimate is originally due to Maeda [Ma2], [Ma3] who studied in 1984 the mea-
sure of rays on a noncompact Riemannian 2-manifold of nonnegative curvature.
Subsequently, through his idea, the geometric significance of total curvature has
been clarified in a more precise form. There are several results for the measure
of rays in more general situation ( cf. [Og], [Sg2] and [Sy2] ) as well as that for
the isoperimetric problem ( cf. [Sh3], [Sh4], [Sh5] and [SST] ).

As other investigations to give a geometric significance of the total curvature,
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Shiohama [Sh1], [Sh2] proved the conditions for a Busemann function to be an
exhaustion or to be a nonexhaustion, and Shioya [Sy5] then studied the self-
intersection number of a maximal geodesic.

From a point of view of analytic methods, there are also many results for the
estimate of total curvature. For example, we know the inequality of Osserman
[Os] for a complete minimal surface in the Euclidean 3-space and the result of
White [Wh] for a complete surface whose second fundamental form has finite L?
norm.

In 1973, Eberlein and O’Neill [EO] introduced the concept of the ideal
boundary M (oo) for a Hadamard manifold M, which marked a milestone in the
study of the geometry of arbitrary dimensional noncompact manifolds. They
define the ideal boundary M (co) of a given Hadamard manifold M by the set
of points at infinily of M, which are defined to be the equivalence classes of
the geodesics under the asymptotic relation, originally due to Busemann [Bu].
In general the asymptotic relation is not an equivalence relation. However, if
the sectional curvature of M is nonpositive, then it is not hard to see that the
asymptotic relation becomes an equivalence relation and we can define the ideal
boundary.

Note that since M is simply connected and nonpositively curved, if p is a
point in M and z is a point in M(oo), then there is a unique ray < such that
¥(0) = p,v € 2. Hence for an arbitrary fixed point p € M, there is defined a
natural bijection v : B,(M) — M = M U M(co), where B, (M) denotes a closed
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disk on the tangent space of M at p. Eberlein and O’Neill induced the so-called
cone topology on M via this bijection 9 so that M with the cone topology gives
rise to a compactification of M. This fact played a crucial role in their study.
For instance,this enabled them to classify visibility manifolds into three types:

parabolic, axial and fuchsian.

Subsequently, in 1985 Gromov [BGS] defined the Tits metric on the ideal
boundary M (oo) of a Hadamard manifold M and obtained further information
on M(oco). The Tits metric on M (co) is closely related to the flatness or more
precisely the asymptotic flatness of a Hadamard manifold. To illustrate this,
we only remark here typical examples. For the explicit definition, see Section 2
of Chapter 2. If M is Euclidean, then (M (co),Td ) is isometric to a standard
sphere and if M is a hyperbolic space, that is, a complete connected and simply
connected Riemannian manifold of constant negative sectional curvature, then

Td (21, 29) = oo for any two distinct points z;, zo € M(00).

In 2-dimensional Hadamard manifolds, the total curvature and the Tits
metric both measure the expanding growth rates at infinity. In fact, studying
a relation between the total curvature and the Tits metric on a 2-dimensional

Hadamard manifold, we obtain the following

THEOREM 1. Let M be a 2-dimensional Hadamard manifold and o a diam-
eter of M(oo) with respect 1o the Tits metric. Then the total curvature C(M) of
M equals 10 2(w — o). In particular, if o = co then C(M) = —oo.
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This theorem will be proved in Section 3 of Chapter 2. We will also prove
the following theorem concerning relationship among the total curvature, the
Tits topology induced from the Tits metric, and the sphere topology which is

the restriction of the cone topology on the ideal boundary.

THEOREM 2. Let M be a Hadamard manifold. Then the following three
conditions are equivalent :

(1) M(oco) is compact in the Tits topology.

(2) The Tits topology is equivalent to the sphere topology on M(co).

(3) For given z € M and € > 0, there exists a positive number 6(z,€) such

that the total curvature C(F) of F = F(vy,yy) salisfies that
C(F) > —e  for every u,v € S; M with Z(u,v) <6,

where F(7vy,vy) denotes a component consisting of minimizing geodesic segments

joining v, (1) 1o v, (t) for allt 2 0 and Sz M is the unit tangent sphere at x.

The ideal boundary can be also defined for other classes of Riemannian
manifolds and their geometry has been investigated. For instance, according to
Gromov’s suggestion, Kasue [Ks] constructed a metric space M(oo0) for a Rie-
mannian manifold M with asymptotically nonnegative curvature and defined a
counterpart of the Tits metric. For a Riemann surface, Shioya [Sy1],[Sy3],[Sy4]
defined an equivalence relation on rays on the surface and, using the total curva-
ture of the domain bounded by two rays, defined a distance on the equivalence

classes of rays.



For arbitrary dimensional Hadamard manifolds we shall also study the re-
lation between the global geometry of them and the information related to the
Tits metric on their ideal boundaries.

It is an interesting problem to study to what extent the structure of
(M(00), Td ) determines the structure of M. In fact, for given two Hadamard
manifolds M and M*, even if (M (c0), Td ) is isometric to (M*(c0),Td ), M is
not necessarily isometric to M*. However, it is known that if M is a symmetric
space of rank = 2 and if the isometry g : (M(c0),Td ) — (M*(c0),Td ) is a
homeomorphism in the sphere topology, then M is isometric to M™ up to a nor-
malizing constant ( Appendix 4 of [BGS] ). In particular, for symmetric spaces
of rank 2 2, the Tits metric is closely related to their Tits building and has been
utilized by many authors to characterize symmetric spaces (e.g., [BGS], [BS2],
[EH] and [Th]).

As one of other rigidity properties, we shall prove the following theorem in

Section 2 of Chapter 3.

THEOREM B. Let M be a nontrivial product Hadamard manifold, i.e., M =
My x My and M* o Hadamard manifold with dim M = dim M* such that
there exists a continuous, bijective and projective map ® : M — M*. Then the

map ® : M — M* is an isomelry up 1o a normalizing constant if and only if

& : (M(c0), Td ) = (M*(c0), Td ) induced by ® is an isomeiry.

Here a projective map is meant a geodesic preserving map.
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On the other hand, by the structure of (M (c0), Td ) we can also characterize
the structure of M itself. We shall here remark that, as a result from this point
of view, we obtained in [AO] that the Euclidean factor of M is characterized by
certain class of points of M.

As another characterization, recently, Kubo [Ku] proved that given two con-
nected complete oriented and noncompact Riemannian 2-manifolds with finite
total curvature, if there is a Hausdorff approximation between them, then their
ideal boundaries are isometric. ( For a definition of a Hausdorff approximation,
see Section 3 in Chapter 3. ) This means that if ideal boundaries are not iso-
metric, then there is no Hausdorff approximation between their underlying open

surfaces.

The same rigidity property on ideal boundaries for Hadamard manifolds is

valid and we prove the following theorem.

THEOREM C. Let M and N be Hadamard manifolds with ideal boundaries
M(o0) and N(oo) respectively, which are assumed to be compact with respect 1o

the Tits-topology. If there exists a Hausdorff approzimation from M to N, then

(M(oc0), Td ) is isometric 1o (N(o0),Td ).

In this thesis we study on Hadamard manifolds, but this property is valid
also for manifolds of asymptotically nonnegative curvature and is able to prove

in a similar fashion. So we refer to this case. Namely the following theorem

holds:



THEOREM D. Let M and N be manifolds of asymplotically nonnegative
curvature with ideal boundaries M(co) and N(oo) respectively. If there exists
o Hausdorff approzimation from M to N, then (M(co),Td ) is isometric to

(N(o0), Td ).

Finally we summarize the content of this thesis. This thesis is organized as
follows.

Chapter 1 is devoted to fundamental definitions and properties of Rieman-
nian manifolds. In Chapter 2, we first recall the definitions and some fundamen-
tal properties of total curvature of a noncompact Riemannian 2-manifold and
Tits metric on a Hadamard manifold in Sections 1 and 2. In Section 3 of this
chapter, we shall investigate some relations between total curvature and Tits
metric and prove Theorems 1 and 2 stated above. Chapter 3 is the main content
of this thesis, where the three characterization theorems on Riemann surfaces
and Hadamard manifolds from a point of view of total curvature and Tits metric
will be proved. In Section 1, we study the existence of a straight line and prove
Theorem A. Section 2 is concerned with the rigidity of products and Theorem
B is proved there. Last in Section 3, we study the rigidity of ideal boundaries in
a term of a Hausdorff approximation and prove Theorem C. Then continuously,

we refer to Theorem D.
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Chapter 1. Preliminaries

§1. Fundamental properties of Riemannian manifolds

We shall start with reviewing relevant fundamental definitions and prop-
erties of Riemannian manifolds. For background materials we refer mainly to
[BGS].

Throughout this thesis, unless otherwise stated, Riemannian manifolds are
always assumed to be connected and complete, and geodesics are understood to
be parametrized by arc length.

A geodesic v of M 1is said to be a mazimal geodesic, a geodesic ray or a
geodesic segment according as its domain is R, [0,00) or a compact interval,
respectively. If v is a unit vector, then v, denotes a unique geodesic such that
7. (0) = v. A geodesic segment v : I — M is said to be mintmizing if for any

s,t € I, 1t holds that

() d((s),7(1)) = s - t|.

We often call a geodesic ray simply a ray. Also a maximal geodesic is called a
straight line if (*) holds for all s, € R.

The ezponential map exp, : T,M — M of M at p is defined by exp,(v) =
v»(1) for all v € T, M, where T, M is the tangent space of M at p. In general, exp,
is defined on a neighborhood of the origin in T, M. However, it follows from the
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following Hopf-Rinow theorem that exp, is defined on the entire tangent space

provided M is complete.

TaeE Hoprr-RiNow THEOREM. The following statements are equivalent:

(a) M is a complete metric space, where the distance from p 1o q in M,
denoted by d(p,q), is defined to be the infimum of the length of all piecewise
smooth curves from p 1o q.

(b) For some p € M, exp, is defined on the whole T, M.

(c) For allp € M, exp, is defined on the whole T, M.

Furthermore, each of these conditions implies that any two poinis p,q of M can

be joined by a geodesic whose length is the distance from p to q.

The last statement is most important in the study of complete Riemannian
manifolds. In particular, if M has nonpositive curvature, then the exponential

map exp,, is nonsingular everywhere and hence we obtain the following

THE HADAMARD-CARTAN THEOREM. Lel M be an n-dimensional complete
Riemannian manifold of nonpositive curvature. Then for any p € M, exp, :

T,M — M 1is a covering map. Hence the universal covering space of M 1is

diffeomorphic 10 R™.

A complete, connected and simply connected Riemannian manifold of non-
positive curvature is called a Hadamard manifold. Note that by the Hadamard-
Cartan theorem, a Hadamard manifold is diffeomorphic to R™. Other simple
examples of Riemannian manifolds are provided by the spaces of constant sec-
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tional curvature. We call a connected, simply connected and complete Rieman-
nian manifold of constant sectional curvature a standard sphere, a hyperbolic
space or a Fuclidean space according as the sectional curvature is positive, nega-
tive or 0. In this thesis, we shall only deal with the spaces of constant sectional
curvature 1, —1 or 0, which we denote by S™, H™ or R", respectively.

Now, we shall review the “convexity” which is an important tool in the
study of manifolds of nonpositive curvature. We recall here some elementary
facts concerning the convexity of sets and functions.

A subset W of a Riemannian manifold M is said to be convez if for any
P, q € W there is, up to parametrization, a unique minimizing geodesic segment
of M contained in W, which joins p to ¢q. Let W C M be a convex set. For a
subset A C W we define the convez hull of A as the smallest convex subset of
W which contains A.

A function g : R — R is said to be convez if we have the inequality

g(a+s(b—a)) £ g(a) + s(g(b) — g(a))

for @ < b and s € (0,1). If the inequality is strict, then g is said to be strictly
conves.

A function f on a Riemannian manifold M is said to be (siricily) convez
if for every nontrivial geodesic segment ¢ the function f o ¢ is (strictly) convex.
Note that this definition is independent of the parametrization of geodesics. If
f is a convex function on a convex set W, then for any a € R the sublevel set
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{p € W| f(p) £ a} is convex.

Let f be a differentiable convex function on a convex set W. If there exist
critical points of f in the interior Int(W) of W, then they attain the absolute
minimum of f. In fact, let p € Int(W) be a critical point of f with f(p) = a.
Suppose that there is a point ¢ € W with f(gq) < a and let ¢ : [0,1] — W be
the geodesic segment ( which is not necessarily unit speed ) from ¢ to p. By the
convexity we have f(c(t)) < afort € [0,1) and (foc)'(1) =< gradf(p),c'(1) >>
0, contradicting to gradf(p) = 0. An analogous argument shows that for any
convex function f on W, if p is a local extremum of f in the interior of W, then

p is an absolute minimum.

The convexity of the distance function on a Riemannian manifold of non-

positive curvature will be used frequently in the later discussion.

LEMMA 1.1.1 ( Theorem 1.3 in [BGS] ). Let M be a Riemannian manifold
of nonpositive curvature. Then the distance function d: W x W — R 15 convez

for every convex subset W C M.

Proor. It suffices to prove that for any geodesic segments ¢; : [0,1] —
W(i = 1,2) the function t — d(c1(t), ca(t)) is convex. Let o; be a unique
geodesic segment from c;(¢) to cz(t) and L(t) := length(oy) = d(cy(t), ca(t)).
If c1(t) # c3(t) for all t € [0,1], then L is differentiable and it follows from
nonpositive curvedness and the second variation formula that L"(t) 2 0. If
¢1(to) = ca(to), then L(%o) = 0 is an absolute minimum, and L is also convex in
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this case. |

Let W be a convex subset in a Riemannian manifold M of nonpositive
curvature and Wy C W a closed convex subset. Lemma 1.1.1 implies that for
each p € W there is a unique point p in Wy of the minimal distance to p. We

define the projection ww, : W — Wy by mw,(p) = p. Then we get the following

LEMMA 1.1.2 ( cf. Section 1.6 in [BGS] ). The distance function d(Wo,")

is convexr on W.

REMARK. The term cf. in the brackets means that the following statement

can be seen there without proof.

ProoF. For any geodesic segment c: [0,1] — W, let p; = ¢(0), ps = ¢(1),
@1 = Two(p1), 92 = Tw,(p2). If ¢o : [0,1] — W is the geodesic segment from ¢;

to ¢g, then

d(c(t), Wo) £ d(c(t), co(t))
= (1 —)d(¢(0), co(0)) + 2 - d(c(1), co(1))
= (1 —t)d(c(0), Wo) + ¢ - d(c(1), Wh),

which means that d(Wp, -) is convex on W. §

We continue to prepare some definitions and properties concerning noncom-

pact Riemannian manifolds.

DEFINITION 1.1.1. An end of a Hausdorff space X is a function ¢ that
assigns to each compact subset K of X a connected component &(K) of X\K
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subject to the requirement that ¢(K) 2 ¢(L) whenever K C L.

A subset N & X is a neighborhood of an end ¢ if N 2 ¢(K) for some
compact set K of X. A curve c: [0,00) — X is divergent if ¢ ultimately leaves
any compact subset of X. For each divergent curve c, we say that c converges to
an end ¢ if for any compact set K there is a constant ¢(K) such that c(t) € ¢(K)
for any t 2 t(K).

Let M be a connected, complete and noncompact Riemannian manifold. By
the completeness of M, for any end € of M there is a ray emanating from any

point p € M and converging to .

DEFINITION 1.1.2. A noncompact surface M is said to be finitely connected
if M is homeomorphic to a compact 2-manifold with finitely many points re-

moved. M is said to be infinitely connected if otherwise.

When a noncompact surface M is finitely connected, the ends of M corre-
spond precisely to the points removed.

The Busemann function for a geodesic ¢, which is very useful to the study
of noncompact manifolds, is defined as follows.

Let c be a ray on M. For « € M we consider the function ¢t — d(z, c(t)) —1.
This function is bounded from below and monotone decreasing. In fact, by the

triangle inequality we have

t £ d(=,c(0)) + d(z,c(t)) fort >0
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and

d(z,c(t)) S d(z,c(s)) +t—s for s < 1.

Hence the function is bounded from below by —d(z, ¢(0)) and monotone decreas-

ing. Thus the function
fule) = Jim (d(z, (1)) ~1)

1s well defined on M.

DEFINITION 1.1.3. The function f, is called the Busemann function for a

ray c.

A Busemann function f. is Lipschitz continuous with Lipschitz constant
1, that is, |f.(p) — fe(@)| £ d(p,q). In general, Busemann functions are not
necessarily differentiable, but it is known by Eberlein that Busemann functions

are C? on a Hadamard manifold. ( For the proof, see Prop. 3.1 in [HI] )
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§2. Toponogov’s theorem and local rigidity

We recall here the Toponogov’s comparison theorem in the case of nonpos-
itive curvature and, applying the rigidity part of this theorem, we shall prove

some rigidity results for later use.

THE TorPoNoGOV’S THEOREM. Lel M be a Riemannian manifold of non-
positive curvature and W a convex subset of M. Let c;(i = 1,2,3) be geodesic
segments forming a iriangle in W and ¢; a comparison iriangle in R? with length
L(¢;) = L(ci)and o;, &; corresponding angles. Then o; < &; and the equality for
one 1 € {1,2,3} implies that the ¢; span a totally geodesic iriangle isometric to
the Euclidean one. In particular, a; + g + a3 S 7 and the equality holds if and

only if the triangle is Euclidean.

For a triangle spanned by ¢; with a; = L(c;) , it follows from this theorem
together with the lows of cosine in the Euclidean plane that the following two

inequalities hold :

(1) first low of cosine

al 2 a? + a2 — 24,0, cos ag,

(2) second low of cosine

asz S aycos oy + @y Cos g,
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In this section, applying the rigidity part of the Toponogov’s comparison

theorem, we prepare some results concerning local rigidity.

LEMMA 1.2.1 ( cf. Section 1.4 in [BGS] ). If there are geodesic segments c; :
[0,;] = M(i =1,2,3,4) with ¢;(I;) = c;4+1(0) which determine a quadrilateral
with angles a; at c;(0), then ﬁ:la,- < 27 and the equalily holds if and only if the
¢; span a tolally geodesic ﬂat_Euch'dean quadrilateral.

PrOOF. Let v be a geodesic segment from ¢1(0) to ¢3(0). Then we get two
triangles 71 and T, where 7} is spanned by ¢, ¢y and v and T is spanned by
c3,c4 and v. Applying the rigidity part of the Toponogov’s comparison theorem
to Ty and Th, we see the sum of three angles for 7} (resp. T3 ) is less than or equal
to m, and hence the sum of the angles of quadrilateral is less than or equal to 2.

If the equality holds, then T} and T are Euclidean. Since Z(c|(0), —c(l4)) =

£(c5(0),4'(0))+ £(+'(0), —c4(14)), Ty and T3 form the Euclidean quadrilateral. i

LeMMA 1.2.2 ( f Section 1.5 in [BGS] ). Let ¢; : [0,a] — M be
a geodesic segment and co,c3 : [0,00) — M geodesic rays emanaling from
¢2(0) = ¢1(0), e3(0) = c1(a) such that d(ca(t),cs(t)) is bounded from above for
allt 2 0. Let ag = £(ch(0),c;(0)) and ag = £(c5(0), —ci(a)). Then ag+az S

and equality implies that the geodesics span a totally geodesic flat Euclidean sirip.

ProoF. Let 4 : [0,l;] — M be a geodesic segment from c3(0) to ca(t)
and 0; := Z(—c}(a),vi(0)), wt = Z(—v{(l;), —c4(t)). Then by the Toponogov’s
comparison theorem, as + 8; + wy < 7. Since f; converges to az as t — co, we
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have oy + a3 S .
To show the rigidity part, let o; be a geodesic segment joining ¢, (t) and c3(¢)

and let F be a component spanned by geodesic segments ¢y, cs and o¢(¢ 2 0).
d(ez(?), c3(?))

dt t=0
d(c2(t),c3(t)) is bounded, it holds that d(cz(t), cs(t)) = L(c1) = a for all ¢ 2 0.

If g + a3 = 7 then = 0 by the first variation formula. Since

Hence also by the first variation formula, we have Z(cy(t),o}(0)) = a5 and
£(cy(t),—0o4(a)) = 3. By Lemma 1.2.1, the domain bounded by ¢, ¢z, c3 and
o¢ in F is a Euclidean rectangle for any f. Therefore ¢1,cy and ¢ span a totally

geodesic flat Euclidean strip. H

For two subsets X,Y C M we define the Hausdorff distance Hd(X,Y) by
Hd(X,Y) :=inf{r > 0|X C B.(Y),Y C B,(X)},

where B, (X) := {z € M|d(z, X) < r} is the r-neighborhood of X.

DEFINITION 1.2.1. Two totally geodesic submanifolds Y; and Yy of M are

said to be parallelif the Hausdorfl distance between them is finite.
Then the following is valid for a Hadamard manifold 3.

LEMMA 1.2.3 ( Lemma 2.3 in [BGS] ). Let Y1,Y; be parallel complete {otally
geodesic submanifolds and a := Hd(Yy,Ys). Then there is an isometric and
lotally geodesic embedding ¢ : Yy x [0,a] — M with o(Yy x {0}) = V1 and

e(Y1 x {a}) =Y;.

PROOF. If ¢ : R — 13 is a geodesic, then d(c(t), Y1) < a. Hence d(c(t), Y1)
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is constant, for it is a bounded convex function. In consequence, it follows that
d(-,Y1) is constant on Y3, and by the same argument d(-,Y3) is constant on Y;.
Clearly, the constant equals to a in both cases. Let 7y, : M — Yy, 7y, : M — Y,
be projections. Then d(p, ny,(p)) = a for p € Y}, and hence 7y, o 7y, is the
identity on Y;. Since the projections are distance decreasing, my, and 7y, are
isometries on Y7 or Y5.

Now define ¢ : Y7 x [0,a] — M, o(p,t) = c,(t), where ¢, : [0,a] — M
is the geodesic segment from p to wy,(p). For (p1,t1),(p2,t2) € Y1 x [0,d]
we consider the geodesic segments ¢,,,cp,,¢1 @ [0,1] — Y7 from p; to p; and
¢z @ [0,1] — Y, from my,(p1) to 7wy,(p2). By Lemma 1.2.1 the geodesics
bounds a totally geodesic rectangle since each angle is equal to g Therefore
d(p(p1,11), p(pa, t2)) = d((p1,t1), (p2,12)), where d is distance with respect to
the product metric of ¥; x [0,a]. Note that the geodesic segment on M from
w(p1,t1) to p(ps,ts) is contained in the image of ¢. This completes the proof of

the lemma. §

Let Y be a complete totally geodesic submanifold of M. We define the
subset Py C M to be the union of all totally geodesic submanifolds parallel to

Y.

LEMMA 1.2.4 ( Lemma 2.4 in [BGS] ). Py is isometric to Y x N, where N

18 a closed conver subset of M.

ProoF. Let Y,,s € S be the set of all parallels to Y. Here S denotes an
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index set. Lemma 1.2.3 implies that for 51,55 € S the convex hull of ¥,, UY,,
consists of a family of parallels to Y. Hence Py is a convex subset, which is
clearly closed. The interior of Py is a manifold which possesses a parallel foliation
given by the parallels to Y. This parallel foliation defines canonically a parallel
distribution ». Let v be the orthogonal distribution. Because v is parallel, v+
is integrable. Let H be a maximal integral manifold for the distribution v+. Let
p € H. Then by Lemma 1.2.3, 7y, (p) € H for all projections wy,. Furthermore
it holds that

WYG‘I ° WY’Q(:D) = 71"}’”(21)

for arbitrary z and Y;,,Y,, in Py. Now fix 2 € Y and let N := {ny, ()]s € S}.
Define

®:Y XN — Py : (y,7y,(z)) — 7y, (y)-

Then for any y1,y; € Y

d*(my, (n1), Ty, (y2))
=d*(ry,, (1), 7v,, o Ty, (1)) + d(ny,, o7, (1), 7., (32))
=d2(7rysl(m), 7y,,(z)) + d?(y1, y2)

~_—¢§2((y1, TY,, (2)), (2, TY,, (z))),

where d is distance with respect to the product metric on ¥ x N. Hence & is an

1sometry. Because Py is convex, N is convex. J§
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Chapter 2. Total curvature and Tits metric

§1. Total curvature of a noncompact Riemannian manifold

In this section we will briefly review basic matters on total curvature and
show some examples to illustrate the geometric meaning of it.
Let M be a connected, complete, noncompact and oriented Riemannian

2-manifold and G the Gaussian curvature of M. Define nonnegative functions

G4 (p) and G_(p) by
G4 (p) .= maz{G(p),0} and  G_(p):= maz{—G(p),0}

for p € M, respectively. Then the total positive curvature C; (M) ( resp. the

total negative curvature C_ (M) ) of M is defined to be
Cy (M) :=/ Gidy,
M

the improper integral of G4 ( resp. G_ ) over M with respect to the volume

element dps of M.

DEFINITION 2.1.1. When either C; (M) or C_(M) is finite, the improper
integral of G over M with respect to djs is defined and is denoted by C(M),

that 1s,
C(M) = / Gdu.
M
In this case, we call C(M) the total curvature of M.
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We say that M admits total curvature if C(M) is defined. Note that the
total curvature C(M) may attain the infinity values, namely, —co £ C(M) £ oo.
It also holds that

C(M) = C4 (M) — C_(M).

To be more precise, C'(M) is obtained as follows. Let {K;}2, be a mono-

o0
tone increasing sequence of compact subsets of M such that |J K; = M. Let

i=1
C(K;) = fK,- Gdas be the total curvature of each K;. If M admits total curva-
ture, then the limit of C(K;) as i tends to oo exists independently of the choice
of {K;}, and we have
C(M) = ,l-lfglo C(K;).

On the other hand, when M does not admit total curvature, i.e., C4 (M) =

00, then the following is known.

LEMMA 2.1.1. If M does not admit total curvalure, then for any number o

such that —oo £ o £ oo, there exisis a sequence {K;} as above satisfying

lim C(K;) = a.

11—+ 00

Proor. We can construct such {K;} as follows. Let
M* = {p e M|G(p) 2 0},
M~ = {p € M|G(p) £ 0}.
Then M* are closed sets of M and M = M+ UM~. Fix a point p € M and set

B*(a) = B(a) N M*,
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where B(a) denotes a closed ball with center p and radius a. Then the total
curvature C(B*(a)) ( resp. C(B~(a)) ) is a monotone increasing ( resp. de-
creasing ) divergent function on [0,c0). Hence for co > a > 0 given, we may
choose two divergent sequences {a;} and {b;} such that C(B*(a;)) =¢- o and
C(B~(a;)) = —i- c.

Now set

K,' = B+(a,’+1) U B“(a,:).

Then {K;} is a monotone increasing sequence of compact sets, and C(K;) = o
In the case o £ 0 or o = 00, we can construct {K;} in a similar fashion.

Hence we obtain the lemma. §

Note that when the total curvature of an open manifold exists, it is obtained
as the limit of C(K;) as above. The following Gauss-Bonnet theorem for a
compact domain with piecewise smooth boundary then plays an essential role in
investigations of total curvature in noncompact case. We recall it here for later

use.

THE GAUSS-BONNET THEOREM. Let D be a compact domain of an ori-
ented surface M, whose boundary consists of closed, simple and piecewise smooth
curves Cq,- -+ ,Cn. Suppose that each C; is positively oriented, parametrized by

arc length s and let 63, -- - ,Hini be the external angles of C;. Then

n

Z/C. ol5)ds fD G+ 305 = 2mx(D),

i=1 =1
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where k4(s) 13 the geodesic curvature of C; and x(D) is the Euler characteristic
of D.
A pioneering work due to Cohn-Vossen [Col] on the total curvature of an

open surface states that if a finitely connected M admits total curvature, then

C(M) £ 2mx(M).

On the other hand, by Huber’s theorem [Hu], if an infinitely connected M admits

total curvature, then

C(M) = —c0.
Hence if M admits total curvature, then C'(M) is bounded from above, which
yields that the total positive curvature Cy(M) of M is finite. Therefore M
admits total curvature if and only if C; (M) is finite.

Next we will show some examples to illustrate the geometric meaning of

total curvature.

ExXAMPLE 2.1.1. The total curvature of a Euclidean plane is 0, while that

of a hyperbolic plane is —c0.
To explain the next example we give the following definition.

DEFINITION 2.1.2. We say that M is conical if M is a Riemannian surface

which is flat outside some compact set.

It is easy to see that each conical M is finitely connected and admits finite
total curvature. If M has k-ends, then outside some compact set there are k flat
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tubes Uy, -+ -, Uy. Each flat tube U; is 1sometrically embedded in a flat cylinder
or in an object obtained by identifying edges of a sector with vertex angle ;,

0 < 6; < co. Since this object is a cone if 0 < §; < 27, we call this also a cone.

EXAMPLE 2.1.2. Let M be conical with k-ends and 6;(1 = 1,--- , k) the
vertex angle of a cone containing a flat tube U; which is a neighborhood of each
end, where §; is understood to be 0 if U; 1s isometrically embedded in a flat

cylinder. Then the total curvature C(M) of M is given by
k
C(M) = 2mx(M) = 6;.
=1

In fact, if U; is embedded in a flat cylinder, there is a closed geodesic ; in U;.
If U; is in a cone, there is a broken geodesic ¥; homotopic to U; with n; broken
points, such that the angle at each broken point is = — %, n; being a positive
integer satisfying (n; — 1) < 6; < n;n. Let K be a compact domain on M
whose boundary consists of ( broken ) geodesics v;,---,v;. Since the Gaussian

curvature of M is 0 outside K, it follows by applying the Gauss-Bonnet theorem

on the compact set K that

k
C(M) = C(K) = 2mx(M) - _4;.

i=1

ExAMPLE 2.1.3. Let S C R2? be a surface of revolution around z-axis
parametrized by
S(s,t) = (a(t) cos s, a(t) sins, b(t)),
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where a(t) is a nonnegative function. Assume that the generating curve c(t) =
(a(?),b(t)) is parametrized by arc length. Then S admits total curvature if and
only if the right and left limits of a'(t) exist. Furthermore if S is homeomorphic

to a plane, then

C(S) = 27(1 — d'(00)).

While if it is homeomorphic to a cylinder, then

C(5) = 2r(a'(—00) — a'(0)).

In fact, from a simple calculation, we see that the Gaussian curvature G(s, t)

a(t)

When S is homeomorphic to a plane, the generating curve c is defined on

at S(s,t) equals to — , and the volume form of S is a(t)dsdt.
[0, 00) and a'(0) = 1,b’(0) = 0. Then the total curvature C(S) of S exists if and
only if there exists the limit of a’(t) as t — oo, denoted by a’(c0). Therefore we

have

o= [ [T-Z8 aan

27 o]
- / ds / _a" () d
0 0

= 27(1 — a'(00)).

Similarly, when S is homeomorphic to a cylinder, if a’(co) and a'(—o0) exist,

then
C(S) = 2n(a'(—00) — a'(00)).
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A typical example of the former case is given by a connected component of
the hyperboloid of two sheets S = {(z,y, z) € R3|(zsind)? — (y? + 2?)cos?d = 1}.
Then C(S) = 2n(1 — sinf). A typical example of the latter case is given by a
hyperboloid of one sheet S = {(z,y, z) € R®|(zsinf)? — (y* + 2%)cos?§ = —1}.

Then C(S) = —4nsinf.

These examples show that the total curvature of an open surface is no
longer a topological invariant and depends deeply on its metric. More precisely
speaking, the total curvature of the surface depends on the sum of the expanding

growth rate of each end.
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§2. Tits metric on a Hadamard manifold

In this section we will recall definitions and some properties about Tits
metric. We will also give some examples to illustrate the geometric meaning of
it.

DEFINITION 2.2.1. For two rays ¢; and ¢y on a Riemannian manifold M,
we say c; is asymptotic to cq if there exist a convergent sequence {p, } of points,
pn — ¢1(0), and a divergent sequence {t,}, t, — 0o, such that -}, (0) converges
to the vector ¢} (0), where v, is the minimizing geodesic segment on M joining

pn and ca(tn).

Note that being asymptotic is not an equivalence relation in general.

Now we define the ideal boundary of a Hadamard manifold using the asymp-
totic relation. Throughout the rest of this section, we assume that M is a
Hadamard manifold. On a Hadamard manifold, the asymptotic relation has the

following more tractable and explicit expression.

LeEMMA 2.2.1 ( Proposition 1.2 in [EO] ). In a Hadamard manifold, a ray

¢y is asympiotic to a ray co if and only if there is a constant a € R such that

d(c1(t),c2(t)) S a for all t20.

PROOF. Let ¢; be asymptotic to c. Then there exist, by the definition,
a convergent sequence {p,} of points and a divergent sequence {¢,} such that
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7,(0) converges to the vector c;(0), where v, is the geodesic from p,, to cy(t,).
Let a be a constant such that d(p,, c2(0)) £ a for all n. Let s,, be the number

such that v, (s,) = c2(%,). By the triangle inequality it holds that

|5n - tn' = d(PmC2(0)) < a.

Now fix s 2 0. For a large n such that s < s5,,, we have

d(7n(s), €2(s)) = max{d(yn(0),c2(0)), d(n(5n), c2(sn))}

from the convexity of the function ¢ — d(v,(?), ca(¢)). But

d(n(sn), c2(sn)) = d(ca(tn), c2(sn)) = [sn —ta| S a

and
d(7(0), c2(0)) = d(pn, c2(0)) < a.
Then

d(1n(8),c2(s)) S a for all s 2 0.

Hence, by continuity of the exponential map, we have

d(c1(s),c2(s)) S a for all s 2 0.

Conversely, we suppose that two rays c; (¢) and cy(t) satisfying d(c1 (2), c2(¢))
< a for all ¢ 2 0 are given. For a divergent sequence {tn}, let v, be a geodesic
segments from c¢;(0) to cy(t,). Then 7, (0) converges to ¢;(0), that is, ¢; is
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asymptotic to ¢y, because of the uniqueness of a ray c emanating from some
fixed point such that d(c(t),cq(t)) < @' for all ¢ 2 0 and for some constant a'.
The uniqueness of such a ray is obtained from the convexity of the function
t — d(01(t), o5(t)) for any two geodesics o1, 03. In fact, if there are two rays
¢, emanating from same point = such that d(c(t), c2(t)) and d(e(t), c2(t)) are
bounded from above, then there is a constant @ such that d(c(t),¢(t)) < a for all 2.
From the convexity of the distance function between two rays and d(c(0), ¢(0)) =

0, we have c(t) =<¢(t). i

This lemma means that the asymptotic relation is an equivalence relation

on a Hadamard manifold. Then the ideal boundary of M is defined as follows.

DEFINITION 2.2.2. The equivalence classes of all rays on a Hadamard man-
ifold M with respect to the asymptotic relation are called points at infinity of M

and the set of these classes is called the ideal boundary of M, denoted by M (co).

For a geodesic ¢ : R — M, let c(oc) € M(o0) be the corresponding class of
the ray c| [0, o), @nd ¢(—00) the class of the reversed geodesic t — c¢(—t). We
will note that for a point z € M and a point z € M(o0) given, there is a unique
ray c: [0,00) — M with ¢(0) = z and c(oo0) = 2. In fact, take a ray v such that
¥(00) = z. Then we can obtain such a ray c as a limit of the sequence {} of
geodesic segments from z to y(t;) for a divergent sequence {t;}. Therefore, for
any point p € M, there is a bijective map between the ideal boundary M (co) of
M and the unit tangent sphere S, M at p of M. This map is explicitly expressed
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U : Sy M — M(c0) : ¥(u) := yy,(00),

where 7, is a ray with initial vector u. The topology on M (co) induced from
S,M by ¥ is called the sphere topology. The sphere topology is independent of

the choice of a point p € M.

For z1, 23 € M = M U M(oc0) and 2 € M we define

Lo(z1, 29) = £(€1(0), €5(0)),

where ¢; is a unique ray from z to z; (i = 1,2). Forz € M, z € M(c0), e > 0
let Cy(z,¢€) be the cone {y € M|y # z and Z,(z,y) < }. The cone topology on
M is the topology generated by the open sets in M and these cones. In other
words, this is the topology induced from B, M by % : B,M — M such that
v
b(o) = { exp, (W) for ||v]| < 1,
Y»(00) for [[o]| = 1,
where B, M is the unit closed disk of 7, M and hence the relative topology on
M(o0) coincides with the sphere topology.
Next, we will define a metric on M(oco). Note that we allow that points

have the infinite distance. The angle Z on M(o0) is defined as follows.

DEFINITION 2.2.3. The angle Z(zy, 2z3) between z; and z3 in M(00) is de-

fined by
L(z1, 29) 1= sup Zy(21, 22).
TEM
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Clearly Z is a distance function on M(co). Furthermore (M(oc0),Z) is a
complete metric space. In fact, let z; be a Cauchy sequence in (M (), £). Then
for all z € M, z; is a Cauchy sequence in the metric Z,(-,-). Hence z; converges
to a point z € M(oco) with respect to the metric Z;(-,-). For z,y € M, Z,(-,-)
and Z,(-,) define the same topology in M(oc). Hence z does not depend on z.
To prove that z; — z in Z, let € > 0 be arbitrary. Then there exists ip € N such

that

Z(Z,',Zj)( % for i,7 2 io.

For a fixed k 2 iy there is a point z € M such that

L(z,21) = La(z,21) <

B[

Now zi — z in Zz(+,-) and Zz(zi, 2z8) £ L(zi, ) < % for all i 2 ip. This implies
Lo(z,2) < —;— Thus £(z,2) < € for all k 2 .
We will here introduce the interior metric of a metric space. Let (X, d) be

a metric space. For a continuous curve c¢: [0,1] — X, we denote the length of ¢

with respect to the metric d by L(c). Then we define a new metric d; on X by

inf L(c) if there is a continuous curve ¢ from z to y,
di (za y) =

otherwise ,
where inf is attained over all continuous curves from z to y. This metric d; is
called the interior meiric of (X, d). A metric space (X, d) is called a length space
if d=d;.
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DEFINITION 2.2.4. The Tits metric Td on M(0o) is defined as the interior

metric of the angle Z, that is,

Td(z,w) := Zi(z, w).

By the definition, it holds that for any z,w € M(co)
Td(z,w) 2 £(z,w).

Furthermore the following is known.

LEMMA 2.2.2 ( Lemma 4.7 in [BGS] ). For z,w € M(oo) if there is no

geodesic ¢c: R — M with ¢(—o0) = z and ¢(o0) = w, then
Td(z,w) = £(z,w).

ProoF. To estimate the Tits distance from above, we have to construct a
curve in M(oo) from z to w with length Z(z, w).

First we prove that there is a point m € M(co) with £(z,m) = £(m,w) =
%Z(z, w). Fix a point z arbitrary and let c¢,,c, be rays from z to z,w. For
j € N let p; be the unique point on the geodesic segment from ¢,(j) to ¢, (J)
which has the minimal distance to z. Since there are no geodesics in M joining z
and w, the geodesic segment from c, (j) to ¢, (j) have no accumulation geodesics
and hence the sequence {p;} has no accumulation points in M. Therefore there
is an accumulation point m € M (co) of {p;} with respect to the cone topology

on M. By a careful estimation we can see that Z(z, m) = Z(m, w) = %/_’(z, w).
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Thus we can construct the point m. Clearly Z(z,m) = £(m,w) < % and
hence m and z ( resp. w ) cannot be joined by a geodesic on M. There-
fore we can use this construction inductively and construct a map h from
{-2-’“; n ke NU{0}k < 2n} C [0,1] into M(co) with Z (h (2—";-) h (’“;1))

1
= EFZ(Z’ w). By the completeness of (M(c0),Z) this map extends to a

continuous map h : [0,1] — M(oco) with length L(h) = Z(z,w). Hence

Td(z,w) £ £(z,w).

This lemma implies that if Td(z, w) > 7, then there is a geodesicc: R — M
with ¢(—o0) = z and ¢(oc0) = w. If there exists a ray joining z and w,
then Td(z,w) 2 Z(z,w) = w. Therefore this also implies that Z(z,w) =
min(Td(z,w), ) and hence Td induces the same topology on M (o) as Z. It
should be noted that Tits metric Td inherits the completeness of angle Z.

To illustrate the geometric meaning of Tits metric and to use later, we show

the following lemmas.

LEMMA 2.2.3 ( Lemma 4.2 in [BGS] ). For z,w € M(o0), let c: [0,00) —

M be a ray with c(co) = z. Set p(t) := L.1)(2,w). Then
tlingo o(t) = £(z,w).

ProoF. By Lemma 1.2.2 it holds that ¢(¢) + (r — ¢(s)) < = for s > t.
Hence ¢(t) is monotone increasing and therefore the limit exists. Clearly ¢(t) <
L(z,w).
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To prove the opposite inequality let 2 € M be arbitrary and let oo =
Z£y(z,w). We have to show that tlim e(t) 2 a.
— 00
For t 2 0 let ¢; : R — M be the geodesic with ¢;(0) = z,¢;(1) = c(t). Let

oy 1= Ly(ci(00), w),

IBt = éc(t) (Ct(OO), 'I.U),
T = lc(t)(z;ct(oo))~

Because c;(o0) converges to z as t — oo, o converges to a. The argument
of monotonicity of ¢(t) applied for the geodesic ¢; implies B; 2 «;. Applying
Toponogov’s theorem for the triangle z,c(0), ¢(t), we see that 4, converges to 0.

Thus ¢(t) + ¢ 2 Bt = a; — o and 1, — 0 implies tlim e(t) 2 a. i
—00

LEMMA 2.2.4 (Lemma 4.3 in [BGS]). Let z,w € M(c0), z € M and let
ci i [0,00) = M (i =1,2) be rays with c;(0) = =, c;(c0) = z and c3(c0) = w.

Set ap == L, (1y(2,¢2(t)), B := Ley) (2, ¢1(1)). Then
L(z,w) = tlim (7 — o — B).

PROOF. For s > t we consider the quadrilateral with vertices ¢;(t), ¢;(s),
c3(t),ca(s) and angles m — oy, — B, .y, Bs. Because the sum of the angles is
not greater than 2w, we have o, + 8, < o; + ;. It follows that 7 — a; — ; is
monotone increasing and the limit exists.

Let o(t) := Zc,(1)(2, w). Then p(t) converges to Z(z,w) ast — oo by Lemma
2.2.3. Consider the triangle ¢ (), c2(t), w. Since Z.,()(c1(t), w) = 71— f;, we have
Zeyy(ea(t), w) S Bs. Furthermore as ¢(t) 4+ Z,,(1)(ca(t), w) + ¢ 2 7, we have
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o(t) 2 m — a;s — fB;. Therefore
lim (7 — a¢ — fBi) S £(z,w).
t—00

On the other hand, let ¢y € [0,00) and € > 0 be arbitrary. Fort > {p large

enough, we have

£
| e, (t0) (2, c2(t)) — ¢(to)] < 5

and
|£eyry(e1(t0), e1(?)) — Be] < g
Because of
Leyto) (25 €2(2)) + Legy(er(to), 1 () + e S
we have

€
(P(to) < éc1(tu)(z: Cz(t)) + 5

Sw—a;— Leywylei(to), ea(t)) +

N ™

<T—ay— P +e.
Because ¢y and € are arbitrary,

L(z,w) £ lim (r — o — Bt). |
t— 00

Now we introduce other approaches to define Tits metric here.
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For z,w € M(oc0) and = € M let ¢y, co be rays from 2 to z, w. The function

IR CIORE10),
,

define the metric ! on M (o0) by

i1s monotone increasing and bounded by 2. Therefore we can

L d(e(t), ea(t))
l(z,w) := tl_lglo ———————t——z———-—

It is easy to check that the definition of [ is independent of the choice of z and
that [ is indeed a metric on M(00). Then we have the following relation between

[ and Z.

LEMMA 2.2.5 ( Lemma 4.4 in [BGS] ). For z,w € M(o0) it holds that

(o) = 26 (42

ProOF. For ¢ € M let ¢, ¢y be the rays from z to z,w and let f(¢) :=
d(cq (2 t . . . .
L)t,c_z_(_)l Because the differential of exp, : T, M — M is an isometry at
. . . [ Ls(z,w) . .
the origin in T, M, we have thnr(l) f(t) = 2sin — )" Now f(t) is increasing

Ly(z,w)

5 ) and since z 1s

with tlim f(t) = l(z,w). Therefore l(z,w) 2 2sin(

arbitrary

(o002 2 (452

On the other hand, let o; = Z,,(1)(,¢c2(t)) and B; := Zeyy(w, c1(t)). By

the second law of cosine we have d(¢1(t), c2(t)) £ tcos oy +t cos B; which implies

f(t) < cos a; + cos f;.

40



Since a¢,B: 2 0 and oy + B; < 7, we have

cos oy + cos By = 2cos (M) cos (at “ﬂt) < 92 cos (a't ;‘ﬁt) ‘

2 2

Thus
f(t) £ 2cos (ﬁ—}—ﬂ—t> = 2sin (E:%’:..@i) :

Because 7 — a; — f; converges to Z(z,w) by Lemma 2.2.4 we have

(o) S 260 (45 g

REMARK. Similarly to the proof of this lemma the following formula holds.
For z,w € M(o0) and z € M let c1, ¢y be as above. Then for positive constants
a,b

lim dler(at), ea(¥1)) = (a® + b% — 2ab cos £(z, w))%.

t—00 14

This lemma implies that I(z,w) £ Z(z,w) for all z,w € M(co) and hence
for the interior metric I; of | we also have [;(z,w) £ Z;(z,w) = Td(z,w). Fur-
thermore the opposite inequality also holds. In fact, For any point 2 € M and
any curve c¢: [0,1] — (M(o0), Td), ¢ induces a curve in the unit sphere in T, M.
It is easy to see that the l-length of ¢ is greater than the length of the induced
curve in the tangent sphere, thus the I-length of ¢ is greater than Z;(c(0), ¢(1))
and hence Z(c(0),c(1)). Therefore I;(z,w) 2 4i(z,w) = Td(z,w). Hence we
have [; = Td
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The metrics £ and [ lead to the same length space (M(co), Td). There is

a third definition of Tits metric. For # € M, we consider the spherical distance

d{ on the distance sphere Si(z) := {y € M|d(z,y) = t}, which is defined as

the infimum of the lengths of the curves in S;(z) joining given two points. For

points z,w € M(00), let c1,cs be the rays from z to z,w. Then the function
di (1 (%), e2(2))

d(z,w) == tlim y is well-defined and coincides with Td.

We will note that the topology of (M (c0), Td) does not necessarily coincide
with the sphere topology on M(co0) as shown in the following examples. To
distinguish these topologies we call the topology on M(oo) defined by the Tits
metric the Tils topology. But there are some relations between these topologies.
It is clear that if a sequence {z;} C M (o0) converges to z in the Tits topology,
then it also converges to z in the sphere topology. Conversely for z € M(00), the
function Td(z,-) on M(o0) is not necessarily continuous in the sphere topology.
However this is semicontinuous in this topology. In fact using the third definition

of the Tits metric, it holds that for {w;} converging to w in the sphere topology

d (zw)  di(z,
liminf Td(z, wy) 2 limint el ) _ dio(# v)

i—00 i—o0 o 11 ’

where g is arbitrary. Thus liminf Td(z,w;) 2 Td(z, w).
2+ 00
In the next section we will give the condition for these topologies to coincide

each other.

Finally, we will give some examples.

ExaMPLE 2.2.1. If M is an n-dimensional Euclidean space, then (M (co),
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Td) is isometric to an (n — 1)-dimensional standard sphere.

ExAMPLE 2.2.2. If M is an n-dimensional hyperbolic space, then

oo, for zy # zo € M(c0),

Td(zl, 2'2) = {

0, for z; = z3 € M(00).

Therefore the Tits topology on a hyperbolic space is a discrete topology.

EXAMPLE 2.2.3. Let M? be conical. Hence there is a compact domain K
such that M\ K is isometrically embedded in a cone of vertex angle 4, 27 < 6.

Then (M (oc0), Td) is isometric to a circle of girth 4.

EXAMPLE 2.2.4. Let M be a product of the hyperbolic plane H? and the
real line R, ie., M = H? x R. We denote by R(co) a pair of two asymptotic
classes {N, S}, where N is the asymptotic class of a ray vy defined by v(t) =
(p,t) € H2 x R for p € H? and S is that of a ray v with y(t) = (p, —t). We also
denote by H?(0o) the set of asymptotic classes of rays on H?-factor. Then we
consider M (co) as the unit sphere, where the north pole is N and the south pole
is S and the equator is H?(co).

Now we consider the Tits length from N to S. For a ray v in H?, let H be
the flat half plane {7} x R of M. Then the set of asymptotic classes of rays on

H, denoted by H(c0), is a half circle from N to S. Hence
Td(N,S) = .

Next we consider two points z,w on the equator. There is a geodesic « in
H? joining these points and F' = {a} x R is a flat plane in M. Then F(c0) is a

43



circle in M (o) containing z,w, N and S. We can choose a curve in F'(co) from
zto N (or S) and from this pole back to w as a minimal curve in M (co) joining

z and w. Therefore we have

Td(z, w) = .

For any points 21, z3 € M(c0), a minimal curve in M(co) joining 2z; and zy

is also a curve from 2z; to N ( or S ) and from this pole back to z; and it holds
Td(zl, 22) é .

In this example, we should note that a closed distance ball B,(N) at the
north pole is not compact, and hence Tits topology is not necessarily locally

compact.

As understood from Lemma 2.2.3, the second definition or these examples,

Tits metric expresses the expanding growth rate of the equivalence class of rays.
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§3. Relations between total curvature and Tits metric

In the previous sections we saw that both quantities of total curvature and
Tits metric are concerned with the growth rate of ends. Motivated this fact,

we investigate some relations between total curvature and Tits metric and prove

two theorems.

Let M be a Hadamard manifold. First we will prove the following theorem.

THEOREM 1. Let M be a 2-dimensional Hadamard manifold and o the di-
ameter of M(oo) with respect 1o the Tits metric. Then the {otal curvature C(M)

of M equals to 2(w — o), where in the case that o = oo this means C(M) = —oo.

First applying Lemma 2.2.4 we shall show a relation between total curvature

and Tits metric.

LEMMA 2.3.1. Let M be an n-dimensional Hadamard manifold and o,
rays emanating from p € M satisfying Td(a(co0), B(c0)) < . Let F be a com-

ponent consisting of geodesic segments joining o(t) and B(t) for allt 2 0. Then
C(F) = £('(0), A'(0)) — Td(ex(c0), B(o0)),

where C(F) denotes the total curvature of F.

PrRoOOF. From Lemma 2.2.4, we have

£(o(o0), floo)) = Jim (m — a4 ~ i),
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where a; = Zy)(p, B(t)) and B = Zguy(a(t), p). Now from the assump-
tion that Td(a(co), B(00)) < 7, we have Td(a(c0), B(c0)) = Z(a(0), B(0))-
Hence we have

Jim (v = o = 1) = Td(a(o0), B(co))

Then, applying the Gauss-Bonnet theorem to the triangle p, a(t), B(¢), we have

C(F) = tl_iglo{é(a’(ﬂ), B'(0) + s + fi — 7}

= /((0), B'(0)) — Td(a(co), A(c0)),

as required. }

In a 2-dimensional Hadamard manifold, this lemma implies the following

proposition.

ProPoOSITION 2.3.2. Let M be a 2-dimensional Hadamard manifold and «,
B be rays emanating from a same point p € M. If Td(a(c0),B(0)) < oo, then,
for the component F bounded by two rays o and B which contains the ray v such

that Td(e(o0), 7(00)) = Td(x(c0), B(00)) = 5 Td(a(e0), A(c0)), we get
C(F) = £(o'(0), 8'(0)) — Td(a(c0), B(c0)),
where £ ts measured with respect to F. If Td(a(00), f(o0)) = o0, then C(F) =

—0o0 for each component F bounded by o and B.

PrOOF. In the case that Td(a(c0), f(00)) < 00, there exists a continuous
curve c¢: [0,1] — M(co) from a(co) to (o) such that the length of ¢ is equal

46



to Td(a(o0), f(c0)) on M(co), since M(co) is homeomorphic to S*. Choose
the subdivision tg =0<?; <ty <-+- <t, =1 of the interval [0,1] satisfying
that the length of ¢[[¢;_,, ¢,] is smaller than = for any i € {1,2,--- ,m} . Let
F; be the component bounded by two rays c;_; and ¢; which are emanating

from p to c(¢;—1) and c(¢;), respectively. Then from the above lemma, we have

C(F:) = £(ci_1(0), ¢(0)) = Llcl [t;_4, t,])»

where L(c| [ti_1, t ]) is the length of ¢[[¢;_, ¢;] - Hence

i

C(F) = E C(F,)
= £(/(0), '(0)) — L(c)
= £(a/(0), B'(0)) — Td(a(o0), B(c0)).

Next we shall consider the case that Td(a (o), f(c0)) = co. Let r > 0 be an
arbitrary large number. Fix a positive integer 7 > {r + Z(c'(0), 8'(0))}/7 and

choose rays v;(i = 0,1,--- ,7) on F satisfying the following conditions:

Yo = a, ¥ =P,
Td(v;-1(c0), 7i(c0)) > for1Si=7,

T 2020, 2(0)) = e (0), 50))

Let F; C F be a component bounded by ~+;_; and < and .ﬁ,- C F; be a
component bounded by the straight line o such that o(co) = ;-1(c0) and
o(—00) = 7¥i(c0). Note that C(F;) < 0, because the sectional curvature is
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nonpositive. Then, applying the Gauss-Bonnet theorem, we have

C(F) = £(7/_1(0), 7(0)) — 7 + C(E)

S £(%-1(0), %(0)) — .

Hence we obtain

CF) = ZC(Fi)
S £(a'(0), B(0) —F -

< —r.

Because r is arbitrary, C(F) = —co . 1
This proposition means Theorem 1 as follows.

Proor or THEOREM 1. In the case that a = oo, the above proposition
implies that the total negative curvature of M is infinity, hence C(M) = —oco.

For a finite diameter o of M(00), we can choose a pair {z, w} of points of
M(o0) such that Td(z,w) = « because M(co) is homeomorphic to S*. Then
there exists a geodesic ¢ such that o(co) = z and g(—00) = w. Let Fy, Fy be
two components of M bounded by o. Applying the above proposition to F; and

F respectively, we have
C(F)=C(FR)=r-a

Therefore
C(M)=C(F)+C(F;)=2(r—«a). I
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Next, as announced in the previous section, we show the equivalent condi-
tions for the Tits topology to coincide with the sphere topology on M (co). We

recall the map ¥ : S, M — M (o) defined by
U(u) = yu(00),

where v, is a ray with an initial vector u. For two rays v and o emanating
from the same point, let F'(v, o) be a component consisting of geodesic segments

joining ¥(¢) to o(¢) for all ¢ 2 0. Then we have the following

THEOREM 2. Following three conditions are equivalent:

(1) M(o0) is compact in the Tils topology.

(2) ¥ is homeomorphic, that is, the Tits topology is equivalent to the sphere
topology.

(3) For given x € M and ¢ > 0, there ezisis a positive number §(z, €) such
that for every w,v € Su M with Z(u,v) < &, the total curvature C(F(vu,vv)) i$

greater than —e¢.

Proor.
(1) = (2) : It is clear that ¥ is bijective. And ¥~! is continuous since it

holds always that for every z,w € M(o0),
Td(z, w) 2 £(5,0) 2 Lo(z,0).

Furthermore supposing (1), from the property that (S:M, Z) is Hausdorff, we
can conclude that ¥ is homeomorphic.
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(2) = (1) : The compactness of M(co) is induced from the compactness of
Sz M by V.

(1),(2) = (38) : Fix 2 € M and € > 0 arbitrarilyy. We may sup-
pose € < 7 without loss of generality. From the compactness of M(co) we
can choose a sequence {z|i = 1,2,--- ,m} of finitely many points such that
{Ui := Be(zi)|i = 1,2,---,m} is an open covering of M(co), where Be(z)
denotes an open ball centered at z with radius g Then {¥~}(U;)} is also
an open covering of a compact set S, M. Now let § be a Lebesgue number of
{¥-1(U;)}. Then for u,v € Sy M with Z(u,v) < §, there is at least one number
io € {1,-+,m} such that {u,v} C ¥"}(U;,). Hence a := Td(y.(o0), ys(0c0)) is

smaller than €. Therefore we have
OF (0 70) = Zlo0) a2 0> .

where the equality follows from Lemma 2.3.1.
(3) = (2) : In order to show this assertion, it is sufficient to prove that ¥
is continuous. Fix ¢ € M and ¢ > 0 arbitrarily. We may suppose € < er_ without

loss of generality. Then we choose é(z,¢) < ¢ in the condition (3). Now for

u, v € Se M with Z(u,v) < § we have
L(u,v) — C(F(Yu,Ww)) <6+e <2 < m.
Therefore by Lemma 2.3.1 it holds that

Td(74 (OO),")ID(OO)) = £L(u,v) = C(F(7yu,w)) < 26,
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which means that ¥ is continuous. [

REMARK. Note that M(c0) is not necessarily compact in the Tits topology
even if the diameter of M(oco) determined by the Tits metric is bounded, as

understood from Example 2.2.4.
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Chapter 3. Geometry of total curvature and Tits metric

§1. Existence of a straight line

In this section, let M be a connected complete noncompact and oriented
Riemannian 2-manifold. The aim of this section is to investigate an existence of a
straight line via total curvature. As stated in the introduction, it is known that if
a connected, complete, non-compact, oriented and finitely connected Riemannian
2-manifold M having one end admits total curvature and if M contains a straight
line, then the total curvature of M is not greater than 27 (x(M)—1). We consider
the opposite of this and prove the following theorem as the first characterization

of noncompact manifolds.

THEOREM A. Let M be a connecled, complete, noncompact, oriented and
finitely connected Riemannian 2-manifold having one end. If M admils total

curvature which is smaller than 2 (x(M) — 1), then M contains a straight line.

We will also comment on a straight line in M whose total curvature is greater

than or equal to 27(x(M) — 1) or which has more than one end.
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1.1 Measure of rays

First we study about a measure of rays for the proof of Theorem A.

For any point p € M, let 4, be the set of all initial vectors of rays emanating
from p, that is,

Ap={veS,M|~, isaray },
where -, denotes the geodesic with initial vector ». Since M is complete and
noncompact it holds that A, # @ for all p € M.

To measure A,, we consider the Lebesgue measure 90t on S, M, which is
induced from the Riemannian metric on M and hence satisfies 2t(S, M) = 2.
Since rays converge to also a ray, A, is a closed subset of S, M and for a sequence
{p;} of points on M converging to p, it holds in the unit circle bundle over M
that

limsup 4,; C 4,.
j—oo
Therefore the function p — 9m(A,) is upper semicontinuous and hence locally

integrable in the sense of Lebesgue.
DEFINITION 3.1.1. We call 9t(A,) the measure of rays at p.
Through the following examples we consider the measure of rays.

ExAMPLE 3.1.1. If M be a Hadamard 2-manifold, then for each point p,
Ap = SpM and hence
om(4,) = 2.
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ExAMPLE 3.1.2. Let M be a conical Riemannian plane. Then a flat tube
U = M\K is isometrically embedded in a cone with vertex angle ,0 < 6 < oo,
for some compact set K, where # = 0 means that U is in a flat cylinder. If

0 < 0 < 2, then for p € U far enough from U

Mm(A4,) =10

and if # 2 27, then

sup M(A4,) = 2.
pEM

In fact, if U 1s in a flat cylinder, then A,,p € U, consists of only one vector
and hence 9t(4,) = 0.

If U is in a cone with vertex angle 0 < # < 2w, then we can choose a
pair of rays « and f in U such that f is contained in a cut locus of any point
on o. Roughly speaking, o and f correspond to the meridians, one of which
is antipodal to another, on the corresponding flat cone. Reparametrizing «, if
necessary, we may assume that any minimizing geodesic segment joining «(0)
and A(t) does not intersect the boundary of U for allt 2 0. Since there are exactly
two minimizing geodesic segments joining «(0) and S(¢) in U, we can obtain two
distinct rays B; and B, emanating from «(0) such that they are asymptotic to

B. Let D be the component in U bounded by #; U f; and containing . Then

Aa(O) ={ve Sle")’u C D}.
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Since the inner angle of D at «(0) is 8, we have
M(Aa(oy) = 0.
Last we consider the case that § 2 27. Let
K, ={veS, M|y, NIntK # 0},

where Int K denotes the interior of K. For any ¢ > 0, we can choose a constant R
such that 9m(K,) < ¢ for a point p € U with d(p, K) > R. Since A, D S,M\K,,

we have for such a point p

m(Ay) 2 (S, M\K,) > 27 —e.

ExAMPLE 3.1.3. Let M be a paraboloid of revolution and p the vertex of
M. Then A, = S5, M, while for any point ¢ # p in M, A, consists of only one

vector tangent to the meridian. Therefore

{ M(Ap) = 2,
M(A;) =0 for ¢ # p.

Example 3.1.3 implies that the measure t(4,) of rays at p of a surface
depends on the choice of p. Nevertheless some estimations for the measure of
rays were given. The first one, which is due to Maeda [Ma2] [Ma3], states that

if M is a Riemannian plane with nonnegative Gaussian curvature, then

inf 9n(4,) = 27 — G().
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The extended version given by Shiga [Sg2], where the sign of the Gaussian cur-
vature changes, is the following. If M is a Riemannian plane admitting total

curvature, then
2 — C4 (M) £ piél.{l om(Ap) < 27 - C(M).

Essentially these results come from the fact that we can estimate the measure
of the complement of A, in S, M by the total curvature of the subset in a
Riemannian plane M which does not intersect the rays emanating from p. Maeda
and Shiga treated only the case of Riemannian planes. However the proof of the
estimation of the complement of rays is essentially independent of the topology of

M. The following Lemma is the estimation of it and used to prove our theorem.

LemMa 3.1.1 ( cf. [Sh5] ). Assume that M admils total curvature. Let
p € M have the property that M\{y,(t)]v € A4,,t 2 0} # 0 and let D be a

component of this set. If M\ D is homeomorphic to a closed half plane, then
C(D) = 2n(x(M) — 1) + £(u,v),

where u,v € A, are tangent to the rays consisting the boundary of D and Z(u,v)

15 the angle measured with respect to D.

ProOF. We divide the whole proof into a number of small steps. In the
first two steps we shall show the existence of points and minimizing geodesic
segments emanating from these points satisfying some angle estimation and in

the last step prove this lemma using these points and geodesics.
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Step 1: Let c be a ray and z a point in M. Then for any £ > 0 there exists

a divergent sequence {¢;} such that

2(d(t;), % () <e
for any minimizing geodesic segment 1 : [0,1;] — M from z to c(t;).

In fact, the function f(t) := d(=, c(t)) is Lipschitz continuous with Lipschitz
constant 1 and hence it is differentiable almost everywhere. In particular, f
1s differentiable at ¢ if and only if every minimizing geodesic from 2 to c(t)
makes a constant angle f(¢) with c and then f'(f) = cosf(t). Hence t — f(t) =
fot [1—cos f(u)]du— f(0). By the triangle inequality we have t — f(t) < £(0) < oo
for any ¢t 2 0. Therefore 1 — cos 6(u) converges to 0 as u — co. This implies that

there exists a divergent sequence {t;} as required.

Step 2 : From the assumption of the lemma, it follows that M has only one
end. Then for any ¢ > 0 there exists a curve b; : [0,1] — D from 7, (t) to 7, (2)
such that d(p, b:(s)) = ¢ for all s € [0,1], where D denotes the closure of D.
Then for any € > 0, there exists ¢, > 0 such that for any ¢ > ¢, there are a point
z; € b;((0,1)) and minimizing geodesic segments o, B : [0,1] — D from p to z;
satisfying

La(0)u) <5 and  LB0),0)<3,
where [ is the distance between p and z;.

In fact, since there are no rays emanating from p on D, there is a constant ¢,
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such that it holds that either Z(u,7'(0)) < g or Z(v, 7'(0)) < —;— for any t > t.,
any s € (0,1) and any minimizing geodesic segment 7 : [0,]] — D from p to
bi(s).

Fix ¢ > t, arbitrary. We may suppose ¢ < Z(u,v). Let Iy = {s € [0,1]|

g e e .
Z(u, 7'(0)) < ) for any minimizing geodesic segment 7 from p to b:(s)} and I;
¢
2

bi(s)}. Then Iy and I; are nonempty subsets containing 0 and 1, respectively.

= {s € [0,1]|£(v, 7'(0)) < = for any minimizing geodesic segment T from p to

If there is an sq € [0,1]\(Zo U I1), then the point z; = b;(so) has the desired

property. In the case that [0,1)]\(Ip UI;) = 0, let so = sups. Then we can see
Io

that the point z; = b;(s0) also has the desired property. Therefore [0, 1]\ (IoUI7)

1s not empty.

Step 3 : Let {¢;} be a monotone decreasing sequence converging to 0 and
{t;} a divergent sequence satisfying #; > t.;. By Step 2, for any j there exist
a point z; = bs;(s0) and two minimizing geodesic segments ;,B; : [0,1;] — D
from p to z; such that Z(a}(0),u) < 52]— and Z(4;(0),v) < %’— Let D; be a
bounded domain whose boundary consists of «; and f;. Taking a subsequence,
if necessary, we may suppose that {D;} is a monotone increasing sequence such

that | J D; = D. Then we have
j

C(D) 2 lim C(D;) = 2n(x(M) - 1) + £(u, v).

In fact, let 6; be Z(c}(l;), 8;(l;)) measured with respect to Dj. Then,
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applying the Gauss-Bonnet theorem, we have
C(D;) = 2m(x(D;) — 1) + £(;(0), 5;(0)) + 6;.
Note that from the assumption of this lemma it holds that

lim x(D;) = x(M).

j—oo

Since C(D) exists, the sequence {f;} has its limit and hence

C(D) =2n(x(M) — 1) + £(u,v) +jllm 8;

o0

2 2m(x (M) — 1) + £(u,v).

To prove the inverse inequality, we construct another monotone increasing
sequence covering over D. For any j, according to Step 1, we choose numbers

mj,nj,m; and n; large enough such that it holds that
A €j R €;
L (m), v (ig)) < o and Z(gi(ng), 1 (Ry)) < 5

for two minimizing geodesic segments A; : [0,m;] — D from A;(0) = z; to
i (m;) = yu(;) and p; : [0,n;] — D from p;(0) = z; to p;(n;) = %(h;).

Let E; C D be a bounded domain whose boundary consists of 7, ([0, 7;]),
2; ([0, m;]), 15 ([0, m;]) and 7,([0,A;]). It is clear that D; C E;. Taking a sub-
sequence, if necessary, we may suppose that {E;} is a monotone increasing se-

quence such that |J E; = D. Let w; = Z(X;(0), ¢ (0)) € [0, 2m) measured with
j
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respect to E;. Then applying the Gauss-Bonnet theorem we have

C(E;) < 2nx(Ej) — 4m + £(u,v) + wj +¢;

S 2n(x(E;) — 1) + Z(u,v) +¢j.

Hence

C(D) = lim C(F;) < 2x(x(M) = 1) + £(u,v). N
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1.2 Proof of Theorem A
Now we are in the situation to prove Theorem A.

ProOF OF THEOREM A. First we consider the case that fM G_dpy < o0.
We put ¢ = %{27!’()((M) — 1) — C(M)} > 0. Then there exists a compact set
K C M such that

M\K is homeomorphic to S* x [0, 00),

where S! denotes a unit circle. For an arbitrary point p on M\ K, we shall show
that there exists a ray emanating from p which intersects with the interior of K.

Now, we suppose that such a ray does not exist. Let {2 denote the set of all
elements (u,v) € 4, x A,. Note that  is nonempty and closed on S, M x S, M
since A, is nonempty and closed. Then there exists the element (u,v) in
satisfying

L(u,v) £ L(u',v") for all (u',v") € Q,

where the angle is measured with respect to the domain containing K. It should
be noted that if v = v, then the angle is understood as Z(u,v) = 2. Let E

be a component containing K and bounded by v,([0, 00)) and 7,([0, c0)). From

Lemma 3.1.1, we have

C(F) = 2x(x(M) — 1) + L(u,v) > 2x(}(M) - 1).
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On the other hand, we have

G+dM§/ G+dM§/ Godar
K E M

and
/G_dM; G_dM>/ G_dy — ¢,
E K M

where the last inequality holds under the construction of K. Hence
C(E)<C(M)+e<2m(x(M)-1).

This is a contradiction. Therefore there exists a ray emanating from p which
intersects with the interior of K.

Let {p; } be the sequence of points on M\ K such that {d(p;, K)} is a mono-
tone divergent sequence. As is shown above, for each j there exists a ray v;
emanating from p; which intersects with the interior of K. Since K is compact
there exists a subsequence {7} of {;} such that v; converges to a straight line
as k tends to infinity.

Next we consider the case that f y G-dy = oo. Since M admits total
curvature, it holds that [, Gidy < co. We can choose the positive number ¢

satisfying € > [, G1dar. Then there exists a compact set K C M such that

S G-dar > —27(x(M) —1) +¢
M\K is homeomorphic to St x [0, c0).

Similarly to the previous case we can prove the existence of a straight line passing
through K. Thus the proof of Theorem A is complete. i
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In the sequel we will give some comments on straight lines in the different
situations from the above.

First we note the case where C(M) > 2m(x(M)—1). Then M has no straight
lines. This is understood from the generalized Cohn-Vossen theorem stated that
if a connected, complete, non-compact, oriented and finitely connected Rieman-
nian 2-manifold M with only one end admits total curvature and if M contains
a straight line, then C(M) £ 2n(x(M) — 1). ( Confer Section 4 in [Sh5]. )

The 1dea of the proof of this generalized theorem is summarized as follows.
Construct a monotone increasing sequence {Kj;} of compact suitable domains
such that |JK; = M, x(K;) = x(M) and each component of 0K; is a simply
closed curve consisting of a broken geodesic. Then, by applying the Gauss-
Bonnet theorem to K; and by estimating the angles of edges of 0 K, the estimate
of C(M) = limj_, o, C(Kj;) is obtained.

Similarly as above, it holds that for two components M;, M5 bounded by a
straight line, C(M;) £ 27(x(M;) — 1) for 1 = 1,2. Note that x(M) = x(M;) +
x(M;) — 1.

When C(M) = 2n(x(M) — 1), there are both cases that M contains a
straight line or not.

The typical example of a surface M whose total curvature equals to
2n(x(M) — 1) and on which straight lines exist is a Euclidean plane.

As the counter example, we construct a C?-surface M homeomorphic to R?
in R3® whose total curvature is equal to 0 and on which there are no straight
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lines. The construction is carried out as follows. Consider the C?-function

f:(—o0,1] — [0, 00) defined by

s 2

*——+1 forzZ0

f(=) = 2 —
(1—z2)3 for0Sz < 1.

Then M is defined as a surface of revolution around the z-axis whose generating
line is the graph of f in the (xz)-plane.

In fact, applying Example 2.1.3, it is easy to see that C(M) = 0. Next we
will see that there are no straight lines on M. Let K = {(z,y,2) € M|z 2 —%}
Since the boundary of K is a closed geodesic, it is obviously that there are
no straight lines passing through any point on K. Furthermore there are no
straight lines on M\K as follows. Suppose that there exists a straight line o
on M\K. Then « divides M into two components M; DO K and M,. Now
from the comment stated above it follows that C(M;) £ 0 and C(M3) £ 0. In
particular, C(M;) < 0 because the Gaussian curvature is negative on M\K.
Hence C(M) = C(M;) + C(M,) < 0. This is a contradiction.

Now we note that if M has more than one ends, then there is a straight line
in M combining two distinct ends. In fact, let £ and €, be distinct ends. Then
there is a compact set K such that ¢1(K) Nez(K) =0. Let {z}} ( resp. {z?})
be a divergent sequence in €1 (K) ( resp. e2(K) ) and ¢; a minimizing geodesic
segment from z} to z?. Since ¢; intersects K, there is an accumulation geodesic
which is a straight line joining €, and ;.

Finally we will note the following fact. As pointed out in Section 2 of
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Chapter 2, for a Hadamard manifold M, if Td(z,w) > = for z,w € M(co) then

there is a geodesic ¢ joining z and w.
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§2. Rigidity of products

As the second characterization of noncompact manifolds, we will give a
sufficient condition for a projective map to be isometric in terms concerning Tits
metric.

Let M, M* be Hadamard manifolds with dim M = dim M* such that
there exists a continuous, bijective and projective map ® : M — M*. By
definition, a geodesic preserving map ® is called a projective map. We will show
that ® preserves the asymptotic relation on rays and hence induces the map ®
between their ideal boundaries, namely, ® : M (c0) = M™(00). Then we have

the following rigidity theorem.

THEOREM B. Let M be a nontrivial product manifold, i.e., M = My x Ms.
Then a continuous, bijective and projective map ® : M — M* is an isomelry
up to a normalizing constant if and only if ® : (M(o0), Td) — (M*(c0),Td)

induced by P is an isometry.

66



2.1 Isometry between ideal boundaries

Tits metric determines the whole structure of products. That is, the isome-
try on the ideal boundary of a nontrivial product induces the product structure
on the Hadamard manifold whose ideal boundary is the target of this isometry.
Here we shall see this fact which is the result of Schroeder in [BGS].

First we will investigate how structure exists on the ideal boundary of a
nontrivial product M = M; x Ms.

Let A; = M;(c0). Then M;(o0) is canonically embedded in M(oco) and the

following holds similarly to Example 2.2.4 :

(i) If z € A;,i = 1,2, then Td(z1, z2) = g
(i) If z € M(o0), then there are z; € A;,1 = 1,2 such that z is contained in

the minimal geodesic in (M (c0), Td) from z; to z,.

In fact, for any z; € A;;i = 1,2 and ¢ € M, let 4 be maximal geodesics
emanating from x with v;(c0) = z;, respectively. Then v; and 7, span a totally
geodesic Euclidean plane on M and 7{(0) and v5(0) are orthogonal at =. Hence
Td(z, 22) = g— For z € M(o0), fix a ray vy with y(co) = 2. Let 4 be the
projection of v on M;-factor. Then we can choose the asymptotic class of the
ray v; as z; € A; satisfying the condition (ii).

Conversely these conditions characterize the product of a manifold.

LEMMA 3.2.1 ( Lemma C in Appendix 4 in [BGS] ). Let M be a Hadamard
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manifold and let A1, Ay C M(0o) be subsets which satisfy (1),(it). Then M 1s a

product My x My with M;(o0) = A;.
Before the proof of this lemma, we prepare the following lemmas.

LEMMA 3.2.2 ( cf. Section 4.2 in [BGS] ). If there is a point & € M such
that £(z,w) = Ly(z,w) < 7 for some z,w € M(c0), then the geodesics c;,cCy

from z to z,w bound a totally geodesic Euclidean sector.

ProOOF. Let F' be a component consisting of the rays v asymptotic to c,
emanating from c,,(¢) for all ¢ 2 0. By Lemma 1.2.2, ¢,, ¢y, y: bound a totally
geodesic Euclidean strip F; for all ¢ > 0. Since F; is totally geodesic, F; is in F'

and hence this lemma is obtained. |

LEMMA 3.2.3. Let ¢ be a ray and f. the Busemann funciion for c. Then

—gradf, is the initial veclor of the ray asymptotic to c.

PrOOF. First we see the fact in [Eb2] that if o is asymptotic to ¢, then it
holds that
fe— fa = fe((0)).
We put p = ¢(0),g = a(0) € M and z = ¢(c0) = a(c0) € M(c0). Let {z,}
be a sequence on M converging to ¢ with respect to the cone topology of M.
Then for any point r € M, it holds that f.(r) = nlin(}o{d(r, z,) — d(p,z,)} and

fo(r) = lim {d(r,z,) — d(g,2,)}. Hence

n— oo

fe(r) = fulr) = lim {d(g,2n) — d(p, 2n)} = fe(p)-
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For any p € M there is the unique ray o emanating from p and asymptotic
to c. Since fo(a(t)) = —t, we have f.(a(t)) = —t+ fc((0)). Hence (feox)'(0) =
< (gradf.)p,'(0) >= —1. Because Busemann functions are Lipschitz continu-

ous with constant 1, ||gradf.|| £ 1. Therefore —gradf. = o/(0). B

REMARK. Let V be the vector field consisting of the initial vectors of rays
asymptotic to a ray c. We proved this lemma simplicity assuming the differen-
tiability of f., but the method of the proof of differentiability of the Busemann
function f. in [EO]( to be C* ) and [HI], is to show that (f.0v) (0) =< V,¥'(0) >

for any geodesic v by careful estimation.

ProoF oF LEMMA 3.2.1. We define A;(z) := {v € Sz(M)]|c,(c0) € A;},
where c, is the geodesic with initial vector v. We note that the set A;(z) are
invariant under reflection. In fact, if ¢,(c0) € A; then Td(c,(—00), ¢y(o0)) 2 .
Now the conditions (i),(ii) imply that the points z in M (oo) with Td(z, ¢y(o0)) 2
7 are points in A;. Therefore c¢,(—00) = c_,(c0) € A; and hence —v € A;(x).

First we show that if v; € A;(z),7 = 1,2, then Z(v1,v2) = —g and the
geodesics c,,, cy, span a totally geodesic Euclidean plane. Because Z(vq,v7) <
Td(cy, (00), ey, (00)) = g and £(—vi,v3) £ er— we conclude Z(vy,vz) = g and
Lemma 3.2.2 implies that ¢,, ([0, 00)) and ¢,,([0, o)) span a flat sector. By the

same argument we see that three other sectors spanned by ¢,,,c,, are flat and

together span a flat plane.

Using the condition (ii) one easily sees that A;(z) and A;(z) are orthogonal
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great spheres in S, M with dimA, (z)+ dimA,(z) = n—2. Let Di(z) and Ds(z)
be the subspaces of T;; M spanned by A;(z) and Ay(z), respectively. Then Dy (z)
and Dy(z) are orthogonal subspaces which together span T, M.

Next we show that D, and D2 define integrable distributions and the integral
manifolds are totally geodesic. For z € M let vy, -+, v, be an orthonormal basis
of Di(z) and w3, -+ ,u) an orthonormal basis of Dy(z). Let z; := ¢,,(00), wy =
Cu,(00) and b; = f,,,ga = fu, be the corresponding Busemann functions. Then
by Lemma 3.2.3, v; = —gradb;(z) and u, = —gradga(z). Let V; = —gradd;
and W, = —gradg,. Then V; and W, are differentiable and V;(y) € Di(y),
Wal(y) € Ds(y) for any y € M. Furthermore V4, .-+, V, span Dy and Wy, --- , W,
span D, for any point in M. Note that V; LW, by the former assertion and hence
<V, V;, Wy >= — < V;, Vy,W, >. Because at every point y, Vi(y), W,(y) are
tangent to a totally geodesic plane P by the former assertion and in this plane
Vi and W, are parallel vector fields, we have Vy,W, = 0. Therefore Vv, V; is
normal to D, and hence in D;. By the same argument Vyy, Wg € Djy. This
implies that D; and D, are integrable and the integral manifolds are totally
geodesic.

Therefore for x € M, the sets M;(z) = expy(D;(z)) are complete totally
geodesic submanifolds of M, where exp is the exponential map of M.

Because M;(z) and M;(y) are convex subsets of M, f = d(M;(z),-) is a
convex function on M;(y). One easily seen that f is constant on M;(y), because
M;(z)(o0) = Mi(y)(oc). Similarly d(M;(y),-) is constant on M;(z). Hence the
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Hausdorff distance is finite.
Using the argument in the proof of Lemma 1.2.4, it is easy to see that M is

the product M; x M, where M; is isometric to M;(z) for any z € M. }

Note that if A; consists only two points, then this lemma implies that A
splits into R x M'. Here M’ may have the nontrivial Euclidean factor. Then we

have the following.

COROLLARY 3.2.4 ( cf. Appendix 4 in [BGS] ). If(M(o0), Td) ts isomelric

to the standard sphere S™1, then M is isomeiric 1o R™.

PROOF. Let A; = {N,S} be the set of points in M (o) corresponding to
the north pole and the south pole in the standard sphere and A, the points
corresponding to the equator. Then, applying Lemma 3.2.1, M splits into R. x
M'. Note here that M’(co) is isometric to $”~2. Hence we can use this splitting

inductively and obtain the result. §
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2.2 Proof of Theorem B

Before the proof of Theorem B we see that & : M — M* induces d :

M(o0) — M*(c0)
LEMMA 3.2.5. The function ® preserves the asympiotic relation.

Proor. If y; is asymptotic to s, then for a divergent sequence {¢;}(i € N)
the sequence of geodesic segments {y; : [0,a;] — M} joining ;(0) = ¥1(0) and
pi(a;) = y2(t;), where a; = d(1(0), v2(¢;)), converges to ;. By continuity of
®, the sequence of geodesic segments {®(y;)} joining ®(71(0)) and ®(y2(t:))

converges to the ray ®(v1), that is, ®(y1) is asymptotic to (7y2).

Therefore ® induces ® : M(oco0) — M*(co) defined by ®(ar) = ®(y)(c0) for
every o € M(co), where v is a ray contained in o.
Now we prove Theorem B which states that if B is an isometry, then ® is

an isometry up to a normalizing constant.

PROOF OF THEOREM B. Since & is an isometry, applying Lemma 3.2.1 we
can obtain that M* is also a product manifold, precisely M* can be denoted
M* = M} x M; such that M*(co) = ®(M;(c0)) for i = 1,2. For z € M and
o; € Mi(0) (i = 1,2), let E = E(z,01,2) (resp. E* = E*(z*,07,03) ) be
the totally geodesic Euclidean plane spanned by two unit speed geodesics v; on
M ( resp. v} on M* ) such that (0) = z,7:(c0) = o ( resp. ¥ (0) = &(z) =
2*, 7} (00) = B(e) = of ).
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Now we divide the whole proof into a number of small steps.

Step 1: If y € E, then ®(y) € E*.

For any y € E, let v be a geodesic asymptotic to v; through y. The
intersection of ¥ and 7, is denoted by y’. Then ®() is a geodesic asymptotic to
v¥ = ®(~,) through ®(y') € E*. Hence ®(7) lies on E*, namely, ®(y) € E*.

From Step 1, ®|g : E — E* is well-defined and it is clear that ®|g is
bijective.

Step 2 : ®|g is an isometry up to a normalizing constant.

We denote a point y = (71(t1), y2(t2)) € My x My on E by (t1,13) in brief.
For example, z € E is denoted by (0,0). We also denote y* = (71 (%1), 73 (t2)) €
M} x M3 on E* by (t1,13). Note that for any two points y = (81, $2), 2z = (t1,2)
on E (or B*), d(y,7) = {(s1 — t1)2 + (55 — t3)?} 3.

Now, since ®(y,) = 77, there is a positive number r such that ®(1,0) =
(r,0). Then we have ®(¢,0) = (rt,0) and ®(0,t) = (0,rt) for every t € R.
In fact, let o7 be a geodesic on E defined by o1(t) = (¢,t) and for any t € R
given, let o4, 03,04 and o5 be geodesics asymptotic to a1,71,v2 and v, through
z; = (¢,0),z3 = (0,¢),2, and z5 = (2t,0), respectively. Furthermore y; and
yo denote the intersections oy N o3 N os and o3 N o3 N o5 respectively, namely,

y1 = (¢,t) and y, = (2¢,¢). Then it is immediately seen that

d(®(z), (1)) = d(®(31), B(32)) = d(D(21), B(2)),

since ® preserves the asymptotic relation. Therefore we have ®(z5) = 2®(z1).
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By the repetition of the same argument we see

(1) ®(nt,0) = nd(¢,0) for every integer n .

In particular, we have for ¢t =1

(i1) ®(n,0) = n®(1,0) = (nr,0) for every integer n .
Hence for any rational number a = % ( p,q : integers ), we have

B(a,0) = (% 0) = %@(q, 0)

= L0 = (2r0) = (o),

where the second equality is obtained from (i) in case that n = p and t = 2
and the third equality from (ii). Thus the first equation of our claim is clear
by continuity. On the other hand, o} := ®(0y) is a geodesic on E* which can
be parametrized by o¥(t) = (¢,1) € E*, since ® is isometry. Furthermore o% :=
®(04) is a geodesic asymptotic to 73 through (r,0). Therefore the intersection
®(y1) of oF and o} is (r,r). Hence the intersection ®(23) of ¥4 and o3 is (0, r),
where o3 := ®(o3) is a geodesic asymptotic to ¥} through ®(y;). Then similarly
as we obtained the first equation, we have the second equation.

Using these two equations, we ultimately obtain ®(y) = (t,7,1,r) for every
point y = (t1,t3) € E. In fact, let o7 and o5 be geodesics asymptotic to 7; and
42 through (0,%;) and (¢1,0), respectively. Then y is the intersection of o; and
02. Hence ®(y) is the intersection of ¢} and o3, where o7 := &(o;) (i = 1,2).
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Since o} and o} are asymptotic to ¥} and 5 through (0,%,7) and (¢,7,0), we
have ®(y) = (t1r,ta7). After all, for any two points y,z € E, it holds that
d(®(y), ®(2)) = rd(y, 2).

Since this normalizing constant r may depend on the choice of a flat plane
E, we denote this constant on E by r(E).

Step 3 : r(E) does not depend on the choice of a flat plane E.

Fix a flat E' = F(2', ), o) arbitrarily. Let v be a ray on M emanating
from z through z’. Then there are two points o € M;(oc0) (i = 1,2) such

We now consider the sequence of

that Td(af, v(c0)) + Td(y(0), o) =

v 2

flats ; E, := E(z,01,03) = E, Ey := E(z,01,04), F3 := E(z,af,04) =
E(z',of,aY), By = E(2',0},04), Es := E(z',0},04) = E'. Since dim(E; N
Fiy1) 2 1 for i = 1,2,3,4, we have 7(E;) = r(Ei41) for i = 1,2,3,4. Hence it
holds that r = r(E) = r(£").

Finally we can conclude the proof as follows. For any two points 2,z € M,
let ¥ be a ray emanating from z; through z;. Then there are two points oy €
M;(0) (i = 1,2) such that Td(ay,y(c0)) +Td(y(00), ag) = % Since 7 lies on a
flat E(z1, o1, a2), the argument in the above three steps shows d(®(x1), ®(z2)) =

rd(z1,zs), that is, ® is an isometry up to a normalizing constant r. |

REMARK. It is essential for M to be a product manifold in our proof, but
the author does not know any example that a projective map ® on a Hadamard

manifold which induces an isometry on the ideal boundary is not isometric.
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§3. Rigidity of compact ideal boundaries

The concept of ideal boundary is defined not only for Hadamard manifolds,
but also for manifolds of asymptotically nonnegatively curvature or for open
2-manifolds admitting total curvature, as stated in the Introduction.

Recently, Kubo [Ku] proved that given two connected complete oriented
and noncompact Riemannian 2-manifolds with finite total curvature, if there
is 2 Hausdorff approximation between them, then their ideal boundaries are
isometric. This means that if ideal boundaries are not isometric, then there is
no Hausdorff approximation between their underlying open surfaces.

In this section, as the third characterization, we shall study the same rigidity
problem on ideal boundaries for Hadamard manifolds using Hausdorfl conver-
gence, and prove the following theorem. We refer to the precise definition of
a Hausdorff approximation and to the concept of Hausdorfl convergence in the

next small section.

THEOREM C. Let M and N be Hadamard manifolds with ideal boundaries
M(o0) and N(co) respectively, which are assumed to be compact with respect to

the Tits-topology. If there exists a Hausdorff approzimation from M to N, then

(M(00), Td) is isometric to (N(oo), Td).

In this thesis we study on Hadamard manifolds, but this property is valid
also for manifolds of asymptotically nonnegative curvature and is able to prove
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in a similar fashion. So we refer to this case. Namely the following theorem

holds:

THEOREM D. Let M and N be manifolds of asymptotically nonnegative
curvature with ideal boundaries M(oco) and N(oo) respectively. If there exists
a Hausdorff approzimation from M 1o N, then (M(oco), Td) ts isomeiric to

(N(oc0), Td).

It should be noted that the ideal boundaries treated in both Kubo’s theorem
and our Theorems C,D are compact with respect to the Tits-topology. The result
seems to remain true even in the case when ideal boundaries are noncompact,

but we shall need another approach to prove it.
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3.1 Hausdorff convergence

First we shall introduce Hausdorff convergence following [Fu]. The definition
in [Fu] is slightly different from the original one introduced by Gromov in [GLP].
However it is more tractable in our discussion.

Let mex denote the set of all isometry classes of metric spaces. For any
isometry class X € 9meT, we denote a representative metric space of X also
by the same symbol X. For X,Y € 9eX, a ( not necessary continuous ) map
¢ : X —Y issaid to be a A-Hausdorff approzimation if ¢ satisfies the following
conditions:

(1) The A-neighborhood Ba(¢(X)) = {z € Y| d(z, (X)) < A} of ¢(X) in
Y isequal to Y.

(2) For any points z,y € X, we have

|dx (2, ) — dv (4(2), $(¥))| < A.

The Hausdorff distance dg(X,Y) between X and Y is defined to be the
infinimum of the positive numbers A such that there exist A-Hausdorff approx-
imations from X to Y and from Y to X.

We should note that it is neither a metric nor a pseudometric. To be more
precise, it holds that dg(X, X) = 0, but dg(X,Y) = 0 does not imply in general
that X is isometric to Y. For example, let X =[0,1] and Y = QN [0,1]. Then
dg(X,Y) = 0, but X is not isometric to Y. Furthermore, though dy satisfies a

78



symmetric law, it does not satisfy the triangle inequality. Nevertheless it holds

that

dH(X: Z) g 2{dH(X)Y) +dH(Y: Z)}

for X,Y,Z € 9mex, and hence dg defines a metrizable uniform structure on
omex . Infact, if ¢ : X — Y is a A;-Hausdorff approximation and if ¢ : Y — 2

1s a Ay-Hausdorff approximation, then we have

|dz(620 $1(2), 2 0 $1(2)) —dx(z,2")| <A1+ A, forany 3,2’ € X,

Z = Ba,($2(Y)) = Ba,(¢2(Ba,(¢1(X)))) = B2as+a,(¢2 0 61(X)),
and hence ¢20¢; : X — Z is a (A; + 2A;)-Hausdorff approximation. Therefore
dg(X, Z) € max{dg(X,Y)+2dg (Y, Z),2dg(X,Y)+dg(Y, 2)} £ 2{dn(X,Y)+
dg(Y, Z)}.
Now, let eamex denote the set of all isometric classes of “compact” metric

spaces. Then the following theorem holds.

TaEOREM 3.3.1. ( Theorem 1.5 in [Fu] or Proposition 3.6 in [GLP] )

emex 18 Hausdorff and complete.

This means that if dg(X,Y) = 0 for X,V € eomex, then X is isomet-
ric to Y. Hence, noting the metrizable uniform structure on oMe%, we may
treat dg as if it is a distance function. Also, Theorem 3.3.1 implies that for a
Cauchy sequence {X, } in egnex, there exists the limit X € eommex such that
lim, 00 dgr(Xn, X) = 0, which is denoted by lim,,_, o X,,.
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Finally we shall consider the noncompact case. In this case, we need to
study in the category of pointed and locally compact metric spaces.

We denote by e, the set of all isometry classes of pointed metric spaces
(X,p) with a base point p such that the closure Br(p, X) of R-neighborhood
of p in X is compact for every R > 0. Let (X,p),(Y,q) € smex, and ¢ :
X — Y be a pointed map, namely ¢(p) = q. We say that ¢ is a A-pointed
Hausdorff approzimation if ¢(—§7§(p, X)) C E?k (¢,Y) and if the restriction of ¢
on F% (p, X) into _B__k(q,Y) is a A-Hausdorff approximation. Then the pointed
Hausdorff distance d, g((X,p), (Y,q)) is also defined to be the infimum of the
numbers A such that there exist A-pointed Hausdorff approximations from (X, p)
to (Y, q) and from (Y, q) to (X, p).

The counterpart of Theorem 3.3.1 also holds and we write (X,p) =
limy, o0 (Xn, pn) if it satisfies that lim,—co dp, g ((Xn,Pn), (X,p)) = 0. We re-

mark that the limit space depends on the choice of base points.
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3.2 Proof of Theorem C

On a Hadamard manifold M, if its ideal boundary (M (c0), Td) is compact ,
then there exists the tangent cone of M at infinity, that is, the pointed Hausdorff
limit of pointed spaces ((M, tdar), p) for t — oo, and it is isometric to the cone
of M(00). We shall prove this and make use of it in the proof of Theorem C.

We here recall the definition of the cone (¢(M(c0)),0) of M(oco) with vertex

o. For a pair of points (s, w), ({,z) € [0, c0) x M(c0), we set

6((s,w), (1, 2)) = 1/s2 + 12 — 25t cos(Td(w, 2)),

where ’fa(w, z) := min{r, Td(w, #z)}. Using this function, we define an equiva-

lence relation as follows :
(,0) ~ (t, 2) <= (s, 0), (1, 2)) = 0.

Then it is clear that § is a distance function on the quotient space {[0,00) x
M(o0)}/ ~. This metric space ({[0,00) x M(c0)}/ ~, &) is called the cone
of M(oo) and denoted by &(M(o0)), We call the equivalence class [(0, 2)](z €
M(00)) the vertex of e(M(c0)).

Then the following holds:

PROPOSITION 3.3.2. If the ideal boundary is compact ( with respect to the
Tits-topology ), then the sequence of the pointed metric spaces (M, dM),p) for
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any fized point p on M, converges to the cone (¢(M(c0)), 0) of M(oco) with vertez

1
o in the sense of pointed Hausdorff distance, where dM = —t—dM ;
lim (M, &), p) = (e(M(c)), o).

PrOOF. Let R be an arbitrary large number. In a natural way, we can
identify the closed geodesic ball —B_lt%( p) around p with radius R in M, := (M, d}M),
with the closed disk Br = {v € T, M| ||v|| £ R} and also the closed ball Bg(o)

in ¢€(M(o0)) with it ;
T,M D Br 3> v — v(t) € B5(p) C M,

TpM D Br > v« [(|Jv]l, vz (c0))] € Br(0) C &(M(o0)).

The induced metric on Bp from (F;(p), dM) or (Br(0),6) through this identi-
fication is denoted by the same symbol d} or §, respectively.

Now we prove that a sequence {dM} of functions on Br x Br converges
uniformly to the function § on Br x Bgr, where By is equipped a standard
metric. Note that it is known in [BGS] that a sequence {d}M} converges to the
function 6.

Since Bg is homeomorphic to (F;(p), dM), dM is a continuous function
on B x Bgr. On the other hand, it is proved in Theorem 2 in the previous
Chapter that (M(co), Td) is compact if and only if the unit tangent sphere
is homeomorphic to (M(oco0),Td). Therefore By is homeomorphic to Bg(o).
Hence 6 is also continuous on Bg x Bg. Since the sequence {d™} of monotone
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non-decreasing continuous functions converges to a continuous function é on the
compact set Br X Bpg, the convergence is uniform.

This means that

er(t) == max _ |6(u, v) — dM (u, v)l
(u,v)EBrxBR

converges to 0 as t tends to oo.
1 .
Now for any € > 0, let R = —. Then there is a number ¢, such that eg(t) < ¢

€

for all ¢ > .. Since the map
&, : (M, d}") — (e(M(c0)), 8) : ®:(z) = [(d (p, 2), pa(00))],

where v,, denotes the geodesic emanating from p through x, is an e-Hausdorff

approximation for ¢ > t,, this completes the proof. §

REMARK. We can also see from the proof that if (M (c0), Td) is noncom-
pact, then a sequence {((M,dM),p)} of pointed metric spaces does not converge
in the sense of pointed Hausdorff distance.

In fact, if the sequence converges in this sense, then the sequence {dM} of
the continuous functions on B x B g converges uniformly to §. Hence § is also
continuous on Br x Bgr. This means that (M (co), Td) is homeomorphic to a

standard sphere, and hence compact.

Proor oF THEOREM C. Now we shall recall the assumption of Theorem
C. We assume that a A-Hausdorff approximation ¢ : M — N is given. Let p be
any fixed point of M and ¢ := ¢(p) € N.
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From the above proposition, there is a sequence of &()-pointed Hausdorft
approximation ®; : ((N,dY), q) — (¢(N(00)),0) such that (t) — 0 as t — oo.
If we regard ¢ as a map from (M,dM) to (N,d)), then ¢ is a -L-;——Hausdorff
approximation and the composite ¥, := &; 0 ¢ : ((M,dM), p) — (¢(N(00)),0)
s a (% + 2e(t))—pointed Hausdorff approximation. Since (—?— + 2€(t)) — 0 as

t — o0, it holds that
Jlim (M, ), p) = (€(N(0)), 0)-

On the other hand, the left side of this equality coincides with (e(M(00)), 0), and
hence (¢(M(c0),0) is isometric to (€(N(o0)), 0). Since (M (oo0), Td) is isometric
to the metric sphere in €(M(o0)) around a vertex o of radius 1 with the interior

distance induced from the restriction of §, we can conclude that (M (o), Td) is

isometric to (N(o0), Td). R

To conclude this section, we shall give an example of Hadamard manifolds
such that their ideal boundaries are isometric but there is no Hausdorff approx-

imation between them.

ExXAMPLE. Let M be a Hadamard 2-manifold equipped with a metric given
as ds? = dr? + f(r)2d8?, where (r,6) is a polar coordinate of M with origin oy
and f:[0,00) — [0,00) is a smooth function satisfying

f0)=0, f(0)=1, f*(0)=0
F'(0)20 (foranyt=20)
ffity=2 (fort=2).
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Let N be a Hadamard 2-manifold with a metric ds? = dr? + g(r)?df?, where g
satisfies

g(0)=0, ¢'(0)=1, ¢"(0)=0

g"(0) 20 (foranyt¢=0)

J)=2-7 (fort22).
Then the difference of the girths of the geodesic spheres of M and N with

center opr,on, respectively, and radius ¢, equals to 27 (f(¢) — g(¢t)). This is
1
log(g) + f(2) — g(2) for t 2 2, and goes to infinity as ¢ — co. Hence there is no

Hausdorff approximation between them.
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3.3 The case of manifolds of asymptotically nonnegative curva-

ture

Now we shall introduce the definitions and basic properties concerning the
manifolds we shall study, that is, manifolds of asymptotically nonnegative cur-
vature. For details, we refer to [Ks].

We call M a manifold of asymptotically nonnegative curvature, if the sec-

tional curvature Kjs of M satisfies
Kpar 2 —kor,,

where r, is the distance function from a fixed point 0 € M, called the base point
of M, and k(t) is a nonnegative monotone nonincreasing function on [0, c0) such
that the integral [ ¢ - k(t)dt is finite.

Let p be an arbitrarily fixed point of M. For sufficiently large ¢, the metric
sphere S;(p) around p of radius ¢ is a Lipschitz hypersurface of M consisting of
k connected components, where k is the number of the ends of M. On S;(p), we
introduce the interior distance, denoted by d, ;, induced from the distance dps
restricted on S;(p).

Now, similarly to the case of Hadamard manifolds, we can define an equiv-
alence relation ~ on the set 9ps of all rays of M and the ideal boundary as the
set of equivalence classes. Furthermore we can define the Tits metric Td on the
ideal boundary.
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In fact, two rays o,y € PR are called equivalent and denoted by o ~ v if

du (o (t), 7(t))
t

M (o0) for the quotient space 9&pr/ ~. We call M(co) the ideal boundary of M.

limy_, o0 = 0. We write o(oco) for the equivalence class of o and

Moreover we define the Tits metric Td on M (c0) by

() Td(o(00), 7(00)) i= lim 227 05@),7 0 5:(2))

t—co t !

where p is any fixed point of M. Then Td is well-defined on M (o). Actually, the
following properties are valid for any fixed point p € M and any pair o,y € Rys

( cf. Proposition 2.1 in [Ks] );
dp (0 N Si(p), v N Si(p))

(1) 0'~7<=)tlim p =0,
d
(2) there exists the limit : tl_lglo (005, (I;)’ 70 5:(p)) , which is indepen-

dent of the choice of p.

REMARK. Here we make some comments on the relation between the def-
initions made for these two classes of Riemannian manifolds, that is, the class
of Hadamard manifolds and that of manifolds of asymptotically nonnegatively
curvature.

In general, the asymptotic relation due to Busemann [Bu] is not an equiv-
alence relation. But on Hadamard manifolds, this relation coincides with the
boundedness of the distance between two points on rays stated previously, and
hence it is an equivalence relation. Hence this can be used for defining points
at infinity. On the other hand, on asymptotically nonnegatively curved mani-
folds, though the asymptotic relation is not an equivalence relation, this gives
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rise to the equivalence relation ~ defined above. That is, if ¢ is asymptotic to
v, then o ~ 7. As inferred from the definition of the metric /; the equivalence
relation ~ is a natural extension of the asymptotic relation. We can also see that
the equivalence relation ~ coincides with the asymptotic relation on Hadamard
manifolds.

The equation (x) defining the metric Td for asymptotically nennegatively

curved manifolds is similar to the third definition of Td for Hadamard manifolds.

For an asymptotically nonnegatively curved manifold, its ideal boundary is
always compact and there is a counterpart of Proposition 3.3.2, which is seen in

the proof of Proposition 2.4 of [Ks] due to Kasue.

ProPOSITION 3.3.3. Let M be a manifold of asymptotically nonnegative

curvature and p be a base point of M. Then the sequence of the pointed metric
spaces ((M,dM),p) converges to the cone (e(M(00)),0) of M(co) with vertez o

: 1
in the sense of pointed Hausdorff distance, where dM = —t—dM ;

Jim (M, d), p) = (€(M(0)), 0).

It should be noted that the Hausdorff limit in the proposition is independent
of the choice of base points p € M.

Theorem D can be proved in a quite similar fashion to the case of Hadamard
manifolds by applying the above proposition.

Finally we note that for two asymptotically nonnegatively curved manifolds,
there exists no Hausdorff approximation between them in general, even if their
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ideal boundaries are isometric. Indeed, the example of the previous section also

gives a counter example in this case.
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