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Introduction

In this paper we investigate topological properties of the free topological group
F(X) and the free Abelian topological group A(X) over a Tychonofl space X, which
were first introduced by A. A. Markov [16] in 1941, as follows.

The free topological group F(X) over a space X in the sense of A. A. Markov
is the free algebraic group over the set X equipped with the group topology

T having the following properties:

(1) X is a subspace of F(X),

(2) each continuous mapping from X to an arbitrary topological group G

extends to a continuous homomorphism from F(X) to G.

The free Abelian topological group A(X) over a space X in the sense of A. A.
Markov is the free algebraic Abelian group over the set X equipped with the
group topology 7 having the properties (1) and (2) for an arbitrary Abelian

topological group G.

F(X)

Flag-atr) = flo) - flan)

: continuous homomorphism

f ¢ continuous




He proved the existence and the uniqueness of F'(X) (A(X)) over a Tychonoff space
X . The complete proof was appeared in A. A. Markov [17] in 1945, but his proof was
very complicated. T. Nakayama [19] and S. Kakutani [14] gave the simple proofs.
After a few years, M. [. Graev [9] extended the construction of I(X) (A(X)) in the
sense of A. A. Markov. And also, he gave another proof of the existence and the
uniqueness of F(X) (A(X)) in the sense of M. I. Graev. [lis main method of proving
the existence of F(X) (A(X)) is the construction of invariant “Graev” metric on
F(X) (A(X)) over a metric space X. The Graev metric was useful not only for
the proof of the existence of F(X) (A(X)) but also [or investigations of topological
properties of F(X) (A(X)). On the other hand, it is well known that, in a similar
argument, the Graev pseudometric can be constructed on F(X) (A(X)) in the sense

of A. A. Markov over a Tychonoff space X.

In Chapter 2, we introduce the construction, and discuss infinite dimensional-
ity of the free topological group, as applications of the Graev pseudometric. In

particular, we show that

F(X) (A(X)) cannot contain the Hibert cube I for finile dimensional met-
ric spaces X (for example, the unit n-dimensional cube I™ and Euclidean n-

dimensional space R™), while I'(X) (A(X)) 1s an infinite dimensional yroup.

The structure of F(X) (A(X)) is very simple from the algebraic point of view -
it is exactly the free (Abelian) group over the sel X. On the contrary, the topology
of F(X) (A(X)) is rather complicated even for very simple spaces X. Indeed, if the
space F'(X) (A(X)) is first-countable then X is a discrete space (cf. §1.2). Further-
more, the definition of F'(X) (A(X)) says nothing aboutl any constructive form of
open sets, i.e. an open neighborhood base of the unit element. Therefore, it seems
difficult to investigate the topological properties on '(X) (A(X)). From the early
1980s, the Moscow group, V. G. Pestov [20], O. V. Sipacheva [22], M. G. Tka¢enko
[24],[25], and V. V. Uspenskil [26], gave some open neighborgood bases of the unit
element of F'(X) (A(X)), respectively. Unfortunately, their constructions are very
complicated to study topological properties.

In Chapter 3, we construct an alternative form of an open neighborhood base of
the unit element 0 in A(X). It is sufficiently simple for our investigations. ['urther-
more, we give an open neighborhood base of 0 in A,,(X), where F,(X) (A, (X)) is
a subspace of F(X) (A(X)) formed by reduced words whose lengths are less than

or equal to the natural number n.



In our main part Chapter 4, applying the neighborhood base of 0, we discuss
about the k-property on A(X). Recently, A. V. Arhangel’skii, O. G. Okunev and
V. G. Pestov [4] showed the characterizations of a metrizable space X such that
F(X) and A(X) is a k-space, respectively. In the proof, they used the following
concrete spaces such that the free (Abelian) topological groups over them are not

k-spaces:
the Fréchet-Urysohn fan V(X;) of cardinality Rj,

the hedgehog space J(Rg) of spininess Ry such that each spininess is a sequence

which converges to the center point, and

Y =C®{zs: o <w} where C is a convergent sequence with its limit and

{24 1 @ <wi}is a discrete collection.

In fact, they proved that neither A3(V(R1)), F2(V(R1)), A(J(Ro)), F(J(Ro)), nor
Fy(Y') is a k-space (cf. [23]). Since, by most of their ways, it was shown that £,(X)
(An(X)), as a closed subspace of F(X) (A(X)), is not a k-space for some natural

number n, we naturally raise the following question:

if Fo(X) (An(X)) is a k-space for each natural number n, then is F(X ) (A(X))

a k-space ?
However, we obtain the negative answer for A(X). Namely,

An(J(k)) is a k-space for each n and each cardinality k, but A(J(k)) is not a
k-space if kK > Ng.

Although the subspaces A,(X), n = 1,2,..., play an important role to inves-
tigate the topology of A(X), the above result shows that there is a gap between
the k-property of A(X) and the one of A,(X), n = 1,2,.... In fact, we shall give
characterizations of a metrizable space X such thal every A, (X) is a k-space. As a
consequence, we have a stability theorem of the property of A, (X), n=1,2,..., as

follows.

For a metrizable space X, the following are equivalent,
(a) Ag(X) is a k-space,
(b)  An(X) 1s a k-space, for each n=1,2,....



r

Furthermore, we obtain characterizations of a metrizable space X such that A;(X)

is a k-space and A,(X) is a k-space, respectively. As a result, we have the following.

(1) There is a metrizable space X such that A3(X) is a k-space but A3(X) is not

a k-space.

(2) There is a metrizable space X such that A3(X) is a k-space but A4(X) 1s not

a k-space.

From these results, we shall answer to the questions of T. II. Fay, E. T. Ordman

and B. V. S. Thomas [8] for A(X).

On the other hand, we obtain that
if each Fr(X) (An(X)) s locally compact, then (X)) (A(X)) is a k-space.

In addition, we obtain characterizations of a metrizable space X such that each

F.(X) is locally compact.



Chapter 1

Definitions and preliminaries

All topological spaces are assumed to be Tychonoff and topological groups are
assumed to be Tp. By N we denote the set of all natural numbers. Our terminology
and notations of general topology follow [6], and we refer [11], [21] for elementary
properties of topological groups. Especially, the readers are refered to the survey

papers [3] for the theory of free topological groups.

1.1 Topological groups

A topological group is a set endowed with two structures: that of a group and
that of a topological space. These structures are connected in such a way that
algebraic properties of the group aflect topological properties of the space, and wice

versa. We begin with the definition.

Definition 1.1.1 Let G be a set that is a group and also a topological space.

Suppose that:
(1) the mapping (z,y) — zy of G x G onto G is a continuous mapping,;
(2) the mapping 2 — z™! of G onto G is continuous.

Then G is called a topological group and the topology a group topology on G.

The following elementary properties of a group topology are often used in this
paper without notice. In particular, the description of a group topology by properties

of a neighborhood base of e is important.



Theorem 1.1.2 Let G be a topological group. Then, the following properties hold.

(1) For each g € G, the left and right translations by g are homeomorphisms on

G. The inversation is also a homeomorphism on G.

(2) LetU be a neighborhood base of e. Then the families {gU : g € G and U € U}
and {Ug : g € G and U € U} are open base for G.

(3) G has a neighborhood base of e consisting of neighborhood U such that U = U™}

(sets having this property are called symmetric).

(4) Let A and B be subsets of G. If A is open and B is arbitrary, then AB and
BA are open. If A and B are compact, then AB is compact. If A is closed
and B 1s compact, then AB and BA are closed.

(5) Let A and B be subsets of G, then

(a) ABC AB,
(b) A7 =477, and
(c) Ay = zAy for all x,y € G.

(6) Every open subgroup of G 1s closed.

Theorem 1.1.3 Let G be a topological group, and U a nerghborhood base of e. Then
(i) NU = {e},
(ii) for every U,V €U, there is a W € U such that W Cc U NV,

(ill) for every U € U, there is a V € U such that V* C U,

(iv) for every U € U, there is « V € U such that V™' C U,
(v) for every U € U and z € U, there is « V € U such that 2V C U,

(vi) for every U €U and z € G, there is a V € U such that zVa~' C U.

Conversely, let G be a group, and let U be a family of subsets of G with the finite in-
tersection property for which (i) ~ (vi) hold. Then the family {2U : 2 € G and U €
U} and {Uz: 3z € G and U € U} are open base for a group topology on G.

7



We call the above properties (i) ~ (vi) the azioms of group topology on (. The

axiom (iii) implies the regularity for topological groups.

Corollary 1.1.4 Let G be a topological group. For every neighborhood U of ¢, there
is a neighborhood V of e such that V.C U. Thus, G is regular.

The following result shows in particular that the axiom (vi) can be radically

improved for compact groups. This fact will be uselul in sevral places in the sequel.

Corollary 1.1.5 Let G be a lopological group, let U be any neighborhood of ¢, and
let F' be any compact subset of G. Then there is a neighborhood V' of e such that
Va2 ' CU forallz € F.

The following result is the homomorphism theorem for topological groups.

Theorem 1.1.6 Let G and G be topological groups with unit elements e and €,
respectively, and let f be an open, continuous homomorphism of G onto G. Then

the topological quotient group G/ f=1(8) is topologically isomorphic to G.

We conclude this section with the description of a group topology by means of
a family of left invariant pseudometrics. This implies that every topological group

is Tychonoff.

Definition 1.1.7 A metric or pseudometric d on a group G is said to be left tnvari-
ant if d(az, ay) = d(z,y) lor all a,z,y € G. If d(za,ya) = d(x,y) for all a, 2,y € G,
then d is said to be right invariant. If d is both left and right invariant, it is said to

be two-sided tnvariant.

Theorem 1.1.8 Let {Uy : k € N} be a sequence of symmetric neighborhoods of ¢

in a topological group G such that U2, C U for eachk € N. Let H = (| Ux. Then
k=1
there is a left invariant pseudometric d on G such that:



(1) d is continuous,

(2) d(z,y) =0 1if and only if y~'z € H,
(3) d(z,y) < 275 whenever y~'z € Uy,
(4) 27% < d(z,y) whenever y~'z ¢ U,.

If, in addition, z Uy 27! = Uy for allz € G and k € N, then d is also right invariant

and

(5) d(z7 1,y = d(z,y) for allz,y € G.

Theorem 1.1.9 Let G be a topological group, g an element of G, and F a closed
subset of G not containing g. Then there is « continuous real function ¢ on G such

that ¥(g) = 0 and (z) =1 for each z € F. Thus G is Tychonoff.

1.2 Free topological goups

In this section, we have a definition of the free (Abelian) topological groups and

some preliminaries.

Definifion 1.2.1 The free topological group I'(X) over a space X in the sense of
Markov [17] is the free algebraic group over the set X equipped with the group

topology 7 having the following properties:
(1) X is a subspace of F'(X), and

(2) each continuous mapping from X to an arbitrary topological group (7 extends

to a continuous homomorphism {rom F(X) to G.

The free Abelian topological group A(X) over a space X in the sense of Markov is
the free algebraic Abelian group over the set X equipped with the group topology 7
having the above properties (1) and (2) for an arbitrary Abelian topological group
G.



Remark 1.2.2 M. I. Graev extended the construction of (X)) (A(X)) in the sense

of Markov as follows.

Let X be a space with a distinguished point e. Then, the free topological group
Fg(X) in the sense of Graev [9] is the [ree algebraic group over the set X'\ {¢}
with the unit element e and equipped with the group topology having the following

properties:
(1) X is a subspace of FG(X),land

(2) for each continuous mapping f of X into an arbitrary topological group (7 such
that f(e) is the unit element of &, there is a unique continuous homomorphism

f of Fe(X) into G such that f|x = f.

Similarly, let X be a space with a distinguished point 0. Then, the free Abelian
topological group A(X) over a space X in the sense of Graev is the [ree algebraic
Abelian group over the set X \ {0} with the unit element 0 equipped with the group
topology having the above properties (1) and (2) for an arbitrary Abelian topological

group G.

In this paper, we use the definition of the free (Abelian) topological group F(.X)
(A(X)) given by A. A. Markov.

Notations. We denote the unit element of I'(X) by e. Any ¢ € I'(X') except ¢
€y ,.82

has the unique reduced representation of the form g = &7 23> --- 5", where 2, € X
and g; = £1 for s = 1,...,n. We put

(@) =li<n =1}, () =I{i<nie=—1), and 0(g)=Ls(g)+E (o).
We call the number £(g) the length of g (by definition, £(¢) = 0). For each n € N,
let F,(X) = {g € F(X) : lg) < n} (by definition Fy(X) = {e}) and define the
mapping i, : X — Fo(X) by in((21, 20, .. .,2,)) = 2125+ 2, for each z, € X ",
where X = X @ {e} & X~

Analogously, we denote the unit element of A(X) by 0. Any g € A(X) except

0 has the unique reduced representation of the form g = ejz1 + eg29 + - - + £,2,,
where z; € X and e; = £1fore=1,...,n. We put

o) =i<n:a=1}, L(9)=Hi<n:e=—1}, and £(g) = L(g)+ (- (y).

10



We call the number £(g) the length of g (by definition, ¢(0) = 0). For each n € NV,
let A, (X) = {g € A(X) : £(g) < n} (by definition Ao(X) = {0}) and define the
mapping iy : X" — A (X) by 1,((21, 22, .. -, 2,)) = @1 + 22+ -+ + 2, for each
z;€ X" where X = X @ {0} ® - X.

In this paper, all results which hold for both F'(X) and A(X) will be formulated
for I(X) and the corresponding results for A(X) will be formulated in round brack-
ets. If proofs in both cases are similar to each other, we will give only a prool for
F(X) omitting that for A(X).

The following fundamental properties related to /(X)) (A(X)) are often used in

this paper (see [2] and [9]).

Lemma 1.2.3 (1) Let T, be a group topology for I'(X) (A(X)) which induces
the original topology for X, then T, <7T.

-

(2) The mapping 1, is continuous for each n € N, so that F,,(X) (A.(X)) is

compact for each n € N if X 1s compact.

(3) X and F.(X) (A.(X)), n € N, are closed subspaces of F(X) (A(X)).

Proof. The statements (1) and (2) are easily seen by the definition of F(X)
(A(X)). Therefore, we shall show the statement (3). Let AX be the Stone-Cech
compactification of X. Then, for the inclusion mapping ¢ : X — F(fX), there is
a continuous homomorphism 7 of F(X) into F(SX) such that 7|y = 4. This follows
that

i (Fo(BX)) = Fy(X) for cach n € N,

By the statements (2), each F,,(/X) is compact and hence closed in /(32X ). There-
fore, F,,(X) is closed in F(X) for each n € N. n

Now, we introduce an important subgroup Fy (Aq) of F(X) (A(X)), which is
very useful for investigations of topological properties of F(X) (A(X)). In fact, the

following result for Fy (A4p) has been often used. Here, we give a simple proof.

11



Lemma 1.2.4 Let Fy = {g € F(X) : L+(g) = L_{(g9)} and Ay = {g € A(X) :
2:(g9) =1€_(9)}- Then Fy (Ao) 1s a clopen subgroup of F(X) (A(X)).

Proof. Let f be the constant mapping of X into the additive discrete group Z
of the integers such that f(z) = 1 for each 2 € X. Then, there is a continuous
homomorphism f of F(X) onto Z such that fly = f. Since Fy = T—l(O), this
yields that Fyis a clopen subgroup of I'(X). [

For a compact space X, M. I. Graev [9] showed that the free group topology is
determined by the collection {F,(X) :n € N} ({A.(X):n € N}), as follows.

Theorem 1.2.5 Let X be a compact space. Then a subset U of F(X) (A(X)) s
open in F(X) (A(X)) if and only of U N F,(X) is open in F,(X) (U N AL (X) s
open in A, (X)) for eachn € N.

Using the above theorem, we shall show the following fact, which is also well

known and has been often used.

Corollary 1.2.6 Let X be a space and K a compact subset of F(X) (A(X)). Then,
K 1is contained in F,(X) (A,(X)) for somen € N.

Proof. Let 7 be the continuous homomorphism of F(X) into F(AX) such that
i|x = 1, as in the proof of the statements (3) of Lewiina 1.2.3. Since I is a compact
subset of F'(X), 7(K) is a compact subset of F(SX). Now, we shall show that
i(K) is contained in F,,(8X) for some n € N. Assume the conirary, then there is a

sequence {g, : n € N} in 7(X) such that

In € Fep i (BX)\ Fi, (BX),

where {k, : n € N} is an infinite subsequence of N. By virtue of Theorem 1.2.5,
{gn : n € N} is a discrete closed subset of F(fX). This is a contradiction, and
hence there is an n € N such that

K =1"1(K) i (F.(BX)) = F(X). =

12



We conclude this section with the following result obtained by M. L. Graev [9],
which show that the topology of F(X) (A(X)) is complicated even for simple spaces
X.

Theorem 1.2.7 Let X be a space. If F(X) (A(X)) is first-countable, then the

space X must be a discrete space.

13



Chapter 2

The Graev pseudometric

In this chapter, we introduce the construction of the Graev pseudometric on
F(X) (A(X)). As an application, one of the most important results for investi-
galions of toplogical properties of I'(X') (A(X)) is obtained, which was proved by
A. V. Arhangel’skii [2] and C. Joiner [13]. I'inally, we discuss infinite-dimensionality
of F(X) (A(X)).

2.1 Construction and properties

We shall construct the Graev pseudometric on I'(X), since it can be constructed
for Abelian case, analogously. Before the construction, we introduce some notions.

Let S(X) be the semigroup of all (reduced and unreduced) words in the letter
X. Then F(X) is the set of all reduced words from S(X). The relation y = A for
g,h € S(X) implies that the words g and A consist of the same number of letters
and thier corresponding letters are identical. By ¢ = /v we imply the equality of the
reduced forms of these words. Let g = 2125 - 2z, € S(X), where each 2, € X. The
number n is called the length of g denoted £(g). Notice that for cach ¢ € F(X'), the
definitions of length are coincided.

Let X be a space and d a continuous pseudometric on X. At first, we consider

the following continuous pseudometric d’ on X :

d'(z,e) =d (27 e) =1 for each z € X,
d(z,y) =d(z7" y™") =d(z,y) foreach z,y € X,
d'(z,y ') =d(z7Y y) = d'(z,e) + d'(y,e) for each z,y € X.

Next we extend d’ to all of F(X). Let g, h € F(X). We define

14



k
d(g,h) =inf{ > d'(z;,y:) : ¢ =z122- -2, K = p1y2- - yx € S(X)

=1
such that g = ¢’ and h = h'}
k
For convenience, we put ¢(g’,h') = > d'(z;, ). M. I. Gracv showed the following
i=1

important property of d. Since we use the proof later, we give an outline of the

proof here.

Proposition 2.1.1 For every g,h € F(X), there ure g', h' € S(X) such that

g=g¢ h="~, and d(g,h) = o(g", 1).

Outline of the proof. Let g, h € F(X) and g = 222 2,,, b = 1192+ Y0
reduced forms g and h, respectively, where each z;, y; € X U X7'. Take any
g,k € S(X) such that g = ¢', h = A’ and

(4

where each a;,b; € X, each A;, B; € S(X) such that A; = B, = ¢. In the above
a;
bi

Under this z; is an element u;. If uy is an e or one of the y,, then we stop. Otherwise

A1y - ag = 140'/1:]/11172 ce A7n—1wm/lm
blb2 U bs = BOyl»BlyQ e Bn—lvaBn)

representation (), we call each ) a column. Take an 2, in the top line of (*).
uy is in some B, , so there is a u7" in B;,. Above u7' is an element uy in the top
line. If u, is either e or one of the z;, then we stop. We continue this process until

it stops as it must. There are four possible cases, essentially.

- -1 a1
(1) lz u2 UQ o U‘Q’Il UQ”
~1 —~1
Uy  Ug Us e Ugy_ g €

T Uy uyl ... uzl, e
U1 Ul 'U.S PR ‘U,gn_.l u')
-1
(3) x; Uy UQ cen Unp 'ugn
-1 —1
Y Uy Uz e Ugpg Y

. -1 -1
CL, Ur2 Uq S 7.[»271_2

ul Ul 'L&3 e ’U.gn.__l U2n_~1

15



In the case (1) and (2), let replace all u, by e. And, in the case (3), let replace
all uy;—y by y;, and all uy; by yj”l. Finally, in the last case (4), let replace all )4

! and all uy; by z;;. We carry out the above process for the remaining x and

by 237

next, for the remaining y; (this means that for example, we don’t carry out for z,

if the case of the process for some z; is (4)). If after all these process we are lelt

with a certain number of columns, we replace all letters in these columns by ¢. At
e\ . . . .

last, we remove all columns in the given words. Consequently, we obtain two
e

new words g, and Ay in S(X). And, we can prove that g; and hy have the following
properties:
(1) g1=9, hi=h and {(g) = l(h1),
(2) each letters in the words g; and h is either 27’ yjj, or e, where e, = £1 = ¢,
(3) under each z; there stands either e, z;' (i # i), or y;; on the top of each y,
there stands either e, yj_,] (j # 7', or =,

(241
h'l

(4) the number of columns in ( ) which contribute to ¢(g,, h) is al most

m+ n,

(5) ¢(g1, A1) < B(g", h').
By virtue of the property (4), it is readily scen that for all such words having
the above properties the function ¢ may take only a finite number of values. Lel
g2, ha € S(X) which have the properties such thal ¢(g¢s, hs) takes the minimum

value. Then we can show that these g, and Ay are required words. [ ]

Using Proposition 2.1.1, M. I. Graev proved that d is a psendometric on #(.X)
which induces the group topology on F(X), and which is weaker than the [ree group
topolory 7. Furthermore, A. V. Arhangel’skif [2] and C. Joiner [13] obtained the

following important result.

Theorem 2.1.2 Let X be a space. Then, for each n € N, the mapping

fo = Z'"|i;1(Fn<X)\Fn-.(X))
i (Fu(X)\ Fam1 (X)) — Fo(X)\ Fre (X)

is @ homeomorphism.

16



Proof. It suffices to show that each f, is an open mapping. That is, let
g € Fp(X)\ Frmy(X) and g = 2§'25? -+~ 25" be the reduced form. For each open
neighborhood U of (25',25,...,35") € X", let d be a continuous pseudometric on
X such that

Usi(25') x Usi(25?) x -+ x Ugi(zir) C U

for some §' > 0, where each Ug(z{*) is a é'-ball of 2' in X. Then, for sufficiently

small § > 0, it suffices to show that
Bi(9) N (Fu(X)\ Fas (X)) € fulUs(55) x -+ x Us(azr)),
where Bs(g) is a &-ball of ¢ in (F(X),d). In fact, let § > 0 such that
26 < min({d'(z;,2;) : 2; # 2,},1,6").

Thus, by virtue of the proof of Proposition 2.1.1, for ecach h = f[‘ c/éz eyl e Bylg)N
(Fo(X)\ Foc1 (X)) let g, ' € S(X) such that ¢' = g, h =K', and d(g, k) = $(y', ).

Then it can be proved that under each zf¥ there stands y*'. This implies that
_ n
d(g, h) = ¢(¢', h') Z zf, yf) < 6.

Consequently, each y;* € Us(z;’), that is h € f,,(Us(2§") x -+ x Ug(ar). ]

For A(X), in a similar argument we obtain the following.

Theorem 2.1.3 Let X lbe a space. Then, for ecach n € N, the mapping

fn = inli;‘(An(X)\An—l(X))
i (A (X)) \ Anea (X)) — An(X) \ Apea (X))

n

is an open and closed n! to 1 mapping.

Corollary 2.1.4 Let X be a metrizable space and d a metric on X which is com-
patible with the topology on X. Then each F,(X) (A.(X)) is a closed subsel of

(F(X),d) ((A(X),d)).

Proof. In the above proof, it can be easily seen that Bs(¢) N F,_(X)=0. =
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2.2 Infinite dimensionality

In this section, we discuss infinite dimensionality of F'(X) (A(X)) using the Graev
pseudometric. At first, we introduce the following as a corollary of the results in
§2.1, which was also proved by A. V. Arhangel’skil [2].

Theorem 2.2.1 Let X be a metrizable space. Then I'(X) (A(X)) is a hereditarily

paracompact Fy-metrizable group.

Proof. Let X be a metrizable space and d a metric on X which is compatible
with the topology on X. By Corollary 2.1.4, for each n € N Y,, = F,(X)\ F,-:(X)

is an open subset of the metric space (£,(X), d|r.(x))- Therefore, we have

Y, = U1 Zln)s
where each Z(,; is closed in (F,(X),d|r,(x)), and then in (F(X),d). Since the
topology induced by d on F/(X) is weaker than the free group topology on F({X),
Z(n,i) 1s a closed subset of F'(X) for each n,7 € N. On the other hand, by Theorem
2.1.2, it can be proved that each Z, ;) is metrizable. Thus F(X) is Fy-metrizable.
Next, we shall show that F(X) is paracompact. Let i be an arbitrary open
cover of F(X), and for each n € N,

U, ={UNY,:UelU}.

Then we can take a g-discrete closed refinement M, = | ] Ha ) in (Fu(X), d ko)),
=1

and in (F(X),d). Now, choose a set U(H) € U for each H € H,,n € N such
that H# C U(H). Thus, for each n,i € N, there is a discrete open collection
Wiy ={W(H): H € Hi,n} in (F(X),d) such that

H C W(H) for each H € H(,;) and
W(H)NY, CU(H) for each H € Hn ).

Let
Q(n,i) = {W(f]) N U(ff) H € H(n,,‘)} and G = U _(/’(n,,').

n,=1
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Then, it is easy to see that G is a o-discrete open refinement of i/ in #(X). Therefore,
F(X) is paracompact. Analogously, it can be proved that F'(X) is hereditarily

paracompact. ]

Before the discussion, we introduce some concepts of infinite dimensional spaces.

Definition 2.2.2 ([12]) A space X is (strongly) countable-dimensional ((s.) c.d.)
if X can be represented as the union of a sequence X, Xa, ... of (closed) subpaces

such that dim X; < co for each 1 € V.

Definition 2.2.3 ([1]) A space X is said to be a C-space (to have property C') if for
every sequence { U, : n € N} of open covers of X there is a sequence {V, : n € N}

of open collections in X such that

(1) each V), is pairwise disjoint,
(2) each V in V,, is contained in some U in U,, and

(3) U{Vn:n € N}is acover of X.

~
[

By the product theorems for the above infinite dimensional spaces (cf. [7], [10]))

and the proof of Theorem 2.2.1, the following result is obtained.

Theorem 2.2.4 Let X be a metrizable space. Then the following statements hold.
(1) X is c.d. 1if and only 1f I'(X) (A(X)) s c.d.
(2) X is s.c.d. if and only if F(X) (A(X)) is s.c.d.

(3) X is a compact C-space if and only if F(X) (A(X)) 1is a C-space.

Since every c.d. (s.c.d., C-) space cannot contain the Hilbert cube /™, we have the

following.
Corollary 2.2.5 For the unit n-dimensional cube [ or Fuclidean n-dimensional

space R™, the free (Abelian) topological groups over them cannot contain the Hilber

cube I, while their dimensions are infinite.
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Chapter 3

Neighborhood bases of the unit
element

In this chapter, we shall discuss neighborhood bases of the unit element in F(.X)
(A(X)). In the first section, we introduce the neighborhood bases using pseudo-
metrics on X, which were obtained by M. G. Tkacendo [25] and V. V. Uspenskil
[26]. And also, we introduce some important and useful results which are obtained
applying the neighborhood bases. In the second section, we shall construct a neigh-
horhood base of 0 in A(X). Furthermore, we shall construct a neighborhood base of
0in As,(X), n=1,2,.... These neighborhood bases were constructed in our paper

[28].

3.1 Pseudometrics

Let X be a space and D the family conststing of all continuous psecudometrics on
X. For each d € D, let d be the Graev pseudometric on F(X) (A(X)), and 77 the
group topology on F(X) (A(X)) induced by d. Now we define the group topology
T, as follows,
T,=sup{73:de€ D}
Then, it is clear that 7;|x is equal to the original topology on X. Therefore, by

Lemma 1.2.3 (1),
T7,<T.

Furthermore, M. G. Tkagenko [24] proved the following results.
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Theorem 3.1.1 Let V = { B 3/(0) : d € D}, where B, 7(0) = {y € A(X) :
d(g,0) < 1}. Then V 1is a neighborhood base of 0 in A(X), and therefore, T\ =T
for A(X).

After a few years, V. V. UspenskiY [26] constructed a neighborhood base of e (0)
in (X) (A(X)) using continuous pseudometrics on X, as follows.

Fach g € Iy (c[. Lemma 1.2.4), admits a decomposition of the formn
—&n =1

N . e1,,—&1 ,—1 ey, —ey, —1 D Ern
(*) 9= 01271 91 9223 P Ga  GaZ Yy Y

where z;,y; € X, and ¢; = £1, and ¢; € F(X).

Theorem 3.1.2 Let X be a space and S = {d, : gy € F(X)} € D e u st of

continuous pseudometrics on X with F(X) as the index set. For each g € Fy let
ps(g) = inf{ > dg (2,4},
1=1

where the infimum is over all decompositions of the form (x). Then:

(1) Each ps is a continuous seminorm on Fy.

(2) As S runs through DF(X), the set {g : ps(g) < 1} forms a neighborhood base
of e in Fy (and then in F(X)).

As a result, he proved the following result which will be often used in the next

chapter.

Theorem 3.1.3 Let X be a metrizable space, and Y o closed subspace of X. Then
the free (Abelian) topological group F(Y) (A(Y)) is canonically topological isomor-
phic to the subgroup of F(X) (A(X)) generated by Y.

Remark 3.1.4 Recently, O. V. Sipacheva [22] obtained the following result.

Let X be a space and Y o subspace of X. Then, the free (Abelian) topological
group F(Y) (A(Y)) is canonically topological isomorphic to the subgroup of F(X)
(A(X)) generated by Y if and only if any continuous bounded pseudometric defined

on'Y can be extended to a continuous pseudometric on X.
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3.2 Constructions

In this section, we will construct a neighborhood base W of 0 in A(X). The
idea of our construction is due to M. G. Tkagenko [25]. In order to construct the
neighborhood base * of the unit element of F'(X), he used the universal uniformity
on X " for each n € N. On the other hand, we used only the universal uniformity
Ux on X for A(X). The neighborhood base W of 0 in A(X') can be obtained from
the neighborhood base of e in F/(X) by V. G. Pestov [20]. Nevertheless, since he
gave it withoutl any proof and the construction of W is important in this paper, we
give its construclion and proof here. Furthermore, we will construct a neighborhood
base W, of 0 in A,,(X) for each n € N. The existence of the neighborhood hase
W,, is one of the important facts in this paper.

Constructing the neighborhood bases, we introduce some definitions and nota-
tions. Let (X,U) be a uniform space. The inverse relation of 7' € U will be denoted
be U™Y and the composition of U and V in U will be denoted by U o V; thus we

have

Ut={(z,y) € X x X : (y,2) € U} and
UoV ={(z,z) € X x X : thereis ay € X such that (z,y) € U and (y,z) € V}

The diagonal of X x X is the set Ax = {(z,2) : 2 € X}. A set U € U is called

symmetricif U= U1,

P
Lemma 3.2.1 Letk € N U {0}, p,ki,..., k, € N such that > 27" < 27%,

=1
(1) Let (X,U) be a uniform space and {U, : n € NU{0}} a countable subcollection

of U such that Upyy o Upyy 0 Upyy C U, for each n € NU{0}, then Uy, o Uy, 0
-+ 0 Uk,, C Uk'

(2) Let G be a group with the unit element e and {V,, :n € NU{0}} a countable
collection of subsets of G such that e € V,, and V41 Vig1 - Vg CV,, for each
n € N U{0}, then Vi, - Vi, -+ - Vi, C Vi (cf. [25]).

Proof.  Since the proof is straightforward, we only give an outline of the proof

of (1). We prove by induction with respect to p. Assume that for each n < p, the
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condition (1) is obtained. If thereis a j € {1,2,...,p+ 1} such that &, = k + 1, by

inductive assumption,

Uk oUk 0+ 0Ug,,, CUgy10Ups0Upys CUs.

+

p+1
Thus, let k; < k+1for each j € {1,2,...,p+ 1}. In this case, if 3 275 < 27(+1),
=1

-

we can show that
Up, 0 Up, 0+ 0 Uy, C Upya,

therefore
(]kl o] Ukz 0-:-0 Ukp+1 C Uk-H o] Uk+l c Uy

»
Otherwise, i.e. 271 < %" 27% < 27% {hen there is a j € {2,...,p} such that

1=1
J 7+1
22"“‘ < 27+ and Z 9ki > g=(k+1)
=1 =1

It follows that
UgyoUgo-- ol CUppr0Ux,, 0Upyr CUppyoUpyr0Upyy CU.

Consequently, the condition (1) is obtained. [

Let U x be the universal uniformity on a space X and put P={P ClUyx : P is
countable }. For each P = {U,U,,...} € P, let

W(P) = {z1—pn+z2—y+ - +zp—yy
c(z,y) €U fori=1,2,... k,k € N}, and
W = {W(P):PeP}

Furthermore, fix any n € N. Let

Q.(P) = {QCP:|Q=n},
Wi(lP) = {21—p1+22—p+ -+ 24— yn
(zj,y;) €Uy for j=1,2,...,n{U;, Uyy,..., U, } € Qu(P)}, and
W, = {W,.(P):P &P}
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Remark 3.2.2 In the above definition, for P € P, there may be the same elements
in P. In particular, for each U € l{x, the countable collection {{/,l/,...} is also in
P.

The reader should remark that the representations of elements of W(P) and
W,.(P) need not be a reduced representation.

For the definition of W, (P), let

Since, Ax is contained in each U € U{y, it is easy to see that

Woa(P) = {z1—yi+zo—y+ -+ 2k — 3
(zg,y5) €Uy for j=1,2,.. kU, Uy, ..., Uy } € RW(P)}.

Theorem 3.2.3 W is a neighborhood base of 0 in A(X).

Proof. First, we shall show that W satisfies the axioms for open sets in
an Abelian topological group A(X) (cf. Theorem 1.1.3), i.e. W satisfies the the

following properties:
(i) for every V € W, thereis a W € W such that W + W C V;
(ii) for every V € W, there is a W € W such that —W c V;
(iii) for every V € W and every g € V, there is a W € W such that g + W C V;
(iv) for every U, V € W, thereis a W € W such that W Cc U N V;
(v) {0} =nw.

Let P = {Uy,Usz,...} € Pand g € W(P). Assume that g = 2, — y; + 2, — 5 +
<+ 2, — Yy, such that (z;,y;) € U; for i = 1,2,... n, for some n € N. Take
Pr={Ay,As,...}, P, ={B1,Bs,...} and P = {C1,C5,...} such that

(1) P, B, P;€P,
(2) A; C Uz NU,; for each 1 € N,
(3) B; C U; and B; is symmetric for each i € N,
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(4) C; C U;y, for each 1 € N.

Then it can be shown that W(P)) + W(P) C W(P), —W(F) C W(£P), and
g+ W(P,) € W(P). These imply that the conditions (i), (ii), and (iii) hold. The
conditions (iv) and (v) are easily seen, so that we omit the proof.

Thus, by Theorem 1.1.3, let 71 be a group topology for A(X) generated by W.
Take P = {Uy,U,,...} € Pand z € X, and put W(z) = {y € X : (y,2) € U}
Then, since U x is compatible with the original topology for X, W () is open in .X.
Also, we can show that z € W(z) C (W(P)+ 2) N X, and this means that 7| is
weaker than the original topology for X.

Claim. 7 s stronger than the topology of A(X).

Proof of Claim. Let V be an open neighborhood of 0in A(X). Put 15 =V and
take a sequence {V;, : n € N} of neighborhoods of 0 in A(X) such that V,+V, +V, C
Voy foreachn € N. Let U, = {(z,y) € X x X : 2~y € V,} for each n € N,
and P = {U;,U,,...}. Since U, € Ux for each n € N, P € P. Take any point
g € W(P), then there is an n € N such that

g=z—Hh1+ -+ o= Yn
for some (z;,v;) € U, for t =1,2,...,n. Thus, by Lemma 3.2.1 (2),
geV+WVo+.-- -+ V, CcVy=1V1.

It follows that W(P) C V.

By Claim, 71|y coincides with the original topology for X. Thus, by Lemma
1.1 (1), T is weaker than the topology for A(X). Consequently, 7, coincides with

the topology for A(X), and W is a neighborhood base of 0 in A(X). [
Theorem 3.2.4 W, is a neighborhood base of 0 in Ay, (X) for each n € N.

Proof. TFixanyn € N. By Theorem 3.2.3, W[, ) ={W(P)NAz(X): P € P}
is a neighborhood base of 0 in A;,(X). For each P = {U},Us,...} € P, il is clear
that W,,(P) C W(P) N Az, (X). Thus, it suffices to show the following claim.
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Claim.  For each P € P, there is a Py € P such that W (P )N A, (X) C W, (P).

Proof of Claim. Let P = {U;,U,,...} € P. Put V¥, = U; and inductively take
a collection {V,,, : m € N} C Ux such that

VinoVyoV,, C V1N U,y for each m € M.
For the collection Py = {V,, : m € N}, we shall show that
W(P) N Axn(X) CW,(P).
Take any g € W (P;) N Az, (X), and let
(1) g=z1 =Y+ 22— Yot + T~ Y,
where (z;,y;) € Vi for i =1,2,... k and k£ € N. Now, we pul

A(g) = {z::2;is not reduced in the representation (1) of y,i = 1,2,... k},

B(g) = {yi: y:is not reduced in the representation (1) of g, =1,2,...,k}.

If there are 4,7 € {1,2,...,k} with ¢ # j such that z; = z, (y; = y,), we regard
that these elements z; and z; (y; and y;) are different elements in A(y) (B(g)),
A()] = |Blg)] and [A(9)] +] B(y)] <
2n. Thus, we put A(g) = {a1,as,...,a¢} for some ¢ < n, and take a, € A(y).
Then there is a k(¢,1) € {1,2,...,k} such that a, = z4u 0. If yeeny € B(y),

we put b,y = wyie1). Otherwise, yiu1) is reduced in the representation (1) of

respectively. Since g € Ay, (X), we can see that

g, so that there is a k(7,2) € {1,...,k} such that yy;1y = zxua), and cearly,
k(7,2) # k(7,1). If ypi0) € B(g), we put b,y = yp2)- Otherwise, in the same way,
take a k(4,3) € {1,2,..., k} such that yu2) = zxp3), and &(2,3) € {k(4, 1), k(4,2)}.

We continue this process till an element of B(g) appears, and denote the element
of B(g) by byuy. Cleatly, the element b,,) must be appeared. Furthermore, we
carry out this work for every element of A(g). Thus, we gel a permutation o
on {1,2,...,£} and sequences {k(i,1),k(3,2),...,k(z,5(:))} C {1,2,...,k}, i =
1,2,...,¢, such that

(2) a; = z,1)y and byay = Yrgi ), fori=1,2,...,¢,

(3) Yk(i,5) = Th(i j+1) forj=1,2,... ,](2) —1,0=1,2,...,¢ and
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(4)  {k(i,5):7=1,2,...,5(¢),i=1,2...,£} consists of distinct numbers.
Thus, from (2) and (3), we have for each i1 = 1,2,...,¢,
(@i bp(iy) € Vigin) © Vagizy 0 0 Vagiy(a-

Now, let k(¢) = min{k(7, 1), k(3,2),...,k(s, j(2))}, then by (4), the sequence
{k(1), k(2),...,k(£)} is a subsequence of {1,2,...,n} consisting of distinct elements.
Thus, by Lemma 3.2.1 (1) and the definition of P,

(a, b(p(i)) € Vi(iy-1 C Upyy for each o =1,2,. .. £,
On the other hand, since ¢ is a permutation on {1,2,...,¢},
g = Q) — btp(]) —f— Qg — b(t,(g) + s + Ap — bvu).

Consequently, since {Uxa), Ur(a), ..., Ury} € Rn(P), by Remark 3.2.2, we have
g € W,(P), so that W(Py) N Az, (X) C W,(P). .

For a space X and each n € N, we define a mapping j, from X** (= X" x X")
to As,(X) as follows

jﬂ((a"lyx%"')mn):(yl)y%'--)yn)):ml+$2+"'+mn—(yl+y2+"'+yn)

for each (21, z2,...,2,) and (v1, 2, ..., ¥n) € X™. Theorem 3.2.4 gives the following

important result, which is often used in the next chapter.

Corollary 3.2.5 Let X be a space, n € N and E be o subsel of Ay, (X). Then,
0 € E if and only if 57X (E)YNU™# 0 for each U € Ux,
where U™ = {((z1, 22, .., 2Zn), (Y1, %2, Yn)) € X (z,0) €U, i=1,2,...,n}.

Proof.  Necessity. Let U € Ux and put P = {U;, Us,...} € P such that
U; = U for each i € N. Since W,,(P) is a neighborhood of 0 in As,(X), we can take
ag €W,(P)NE. Then, we have

g=2z1— %+t Tz— Yo+ + T = Yn,
where (z;,y;) € U; for i =1,2,...,n.
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Thus, for @ = ((z1,%2,...,2), (41,¥2,.--,¥a)), it is clear that 2 € 5,71 (£) N
Sufficiency. Let P = {U;,U,,...} € P, and take U € U such that /' C /;Nl/;N

-+ N U,. By the assumption, we can take = = ((z1,23,...,2,), (y1,¥2,- - Un)) €
JTHEYN U™ Since, (z;,y) € U C U; for i = 1,2,...,n, it follows that j,(x) €
W,.(P)N E. Therefore, by Theorem 3.2.4, 0 € E. ®

Corollary 3.2.6 Let X be o paracompact space and E o subset of Ax(X). Then,
0 € E if and only if 57 (E) N Ax # 0.

Proof. Since X is paracompact, every open neighborhood U of Ax in X7 is

contained in U x. Thus, from Corollary 3.2.5 we obtain the result. L
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Chapter 4

The k-property of A,(X)

In this chapter, we shall discuss about the k-property of each A, (X) and the
local compactness of each F,,(X) (A,(X)). In fact, we obtain the characterizations
of a metrizable space X such that every A,(X) is a k-space, A3(X) is a k-space,
and A,(X) is a k-space, respectively. And also, we obtain the characterizations of
a metrizable space X such that every F,(X) is locally compact. The main results

in this chapter were obtained in our papers, [27] and [28].

4.1 Preliminaries

We shall begin this section with some definitions.

Definition 4.1.1 Let K be a cover of a space X, then K is generating if a subset
E of X is closed in X iff for each &' € K, £ N K is closed in &¥. And, if the cover
K ={K C X : K is compact} is generating, we call such a space X a k-space. The
spaces with a countable generating cover consisting of compact subsets are called

k.-spaces.
The following facts concerning generating cover are often used in this chapter.

Lemma 4.1.2 (i) IfK is a generating cover of a space X and E is a closed subset
of X, then {KNE: K €K} is a generating cover of E.

(i) If a cover K of a space X 1is refined by a generating cover of X, then K is

generating.
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(iii) If H 1s a generaling cover of a space X, and K is a cover of X such that
Kyg={KNH:K €K} s agenerating cover of H for each il € H, then K

15 a generating cover of X.

Definition 4.1.3 For each subset F in F'(X) (A(X)), we set
caE=min{B CX:FECF(B, X)(AB, X))},

where #(B, X) (A(B, X)) is the subgroup of I'(X) (A(X)) generated by elements
of B, and it is called the carrier of £ in X.

Recall that a subset I of a space Z is bounded (in Z) i every real-valued

continuous function on Z is bounded on . The following theorem was proved in

[4].

Theorem 4.1.4 If £ is o bounded set in F(X) (A(X)), then carE 1s bounded in
X.

One of the techniques of studying the topological structure of F(X) (A(X)) is
the canonical representation of the space F(X) (4(X)) as the union of its closed
subspaces Fy,(X) (A,(X)). And, the technique is often used. For example, Theorem
1.2.5 is an important fact for our investigation. The theorem implies that if X is a
compact space, then F(X) (A(X)) is a k,-space. Later, the result was generalized:
if X is a k,-space, then F(X) is also a k,-space. In fact, J. Mack, S. A. Morris
and E. T. Ordman [18] showed that if X is a k,-space, then F,(X) (A,(X)) is a
k.,-space for each n € N and also F is a closed subset of F(X) (A(X)) if and only if
ENF,(X)is a closed subset of F,(X) (ENA,(X)is a closed subset of A, (X)) for
each n € N. The class of k,-spaces includes not only compact spaces but all locally
compact Lindelof spaces, and is narrower than the one of o-compact spaces.

However F(X) (A(X)) need not be a k-space even if X is a k-space. That is,
T. H. Fay, E. T. Ordman and B. V. S. Thomas [8] showed that the free topological
group of the space of rationals @ is not a k-space, in fact, they showed F3(Q) is not
a k-space. Recently, A. V. Arhangel’skii, O. G. Okunev and V. G. Pestov [4] showed
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the following characterization of a metrizable space X such that F(X) (A(X))is a

k-space.

Theorem 4.1.5 If X is metrizable and X' is the set of all nonisolated points in X,

then the following conditions are equivalent:
(a) A(X) 1s a k-space,
(b) A(X) is homeomorphic to a product of a k,-space with a discrete space,

(¢) X is locally compact and X' is separable.

Theorem 4.1.6 If X is metrizable, then the following conditions are equivalent:
(a) F(X) is a k-space,
(b) F(X) is a k,-space or discrete,

(¢) X is locally compact separable or discrete.

In the proof of these theorems, they used some concrete spaces such that the free
(Abelian) topological groups over them are not k-spaces; for example, the Fréchet-
Urysohn fan V(R;) of cardinality Ry, the hedgehog space J(Rg) of spininess Ry
such that each spininess is a sequence which converges to the center point, and
Y =C® {2, : @ < w}, where C is a convergent sequence with its limit and {z,
. o < wp} is a discrete collection. In fact, they proved that neither A;(V(R;)),
Fy(V(Ry)), A(J(Ro)), F(J(Ro)), nor Fy(Y) is a k-space (cf. [23]). Since, by most of
their ways, it was shown that F,(X) (A,(X)), as a closed subspace of F(X) (A(X}),

is not a k-space for some n € N, we naturally raise the following question:

if Fo(X) (An(X)) 15 a k-space (locally compact space) for eachn € N, then is
F(X) (A(X)) a k-space ?

It is one of the aims of this chapter to discuss about the above question.
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4.2 Test spaces

In this section, we introduce three spaces M;, My and M3 which have the fol-

lowing properties:
(1) A.(M,;) is a k-space for each n € N,
(2) A;(M>) is not a k-space, and
(3) Aq(M;) is not a k-space.

The construction of these spaces are simple, but they play essential roles in the proof

of the main results in the next section.

Constructions. Let M; be a metrizable space such that M; = Xy U U X, such
1=1

that

1) X; is an infinite discrete open subspace of M; for each + € N, and
p [

2) Xo is a compact subspace of M; and {V}, = XoU X; 1k € N} is a neigh-
| | 8

1=k
borhood base of Xy in X, i.e. for each open set U in X which contains Xy,
thereis a k € N such that Xo Cc V., C U.

In the above definition, if each X; consists of countably many elements and X,
1s a one point set, we denote the space by M;. We put C' = {TlZ :n € N}U{0} with
the subspace topology of I. Let My = @{C; :1 € N} & M{, where C, is a copy of C
for each 7 € N. Let M3 = ®{C, : & < wy}, where C,, is a copy of € for each o < wy.

Remark 4.2.1 The concrete example of M, is the hedgehog space J(x) of spininess
K such that each spininess is a sequence which convreges to the center point. In [27]
we proved that A,(J(x)) is a k-space for each n € N. On the other hand, it was
proved in [4] that A(J(x)) is not a k-space if & > Rg. Furthermore, by [4], we know
that 44(M;) is not a k-space.

Theorem 4.2.2 A,(M,) is a k-space for eachn &€ N.
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Proof. In order to prove the theorem, it suffices to show that

(%) for each n € N and F C A, (M;) such that £ N A is closed in I for each
compact subset K of A,(M;),if 0 € I then 0 € £.

For, if A,(M;) is not a k-space for some n € N, then there is a subset H of A,(A;)
such that I NI is closed in K for each compact subset K of A, (M;) and H\ H # §.
Take a point g € H\ H, and let E = H —g. Then, it can be seen that [ is a subset
of Az,(M7) such that N K is closed in I for each compact subset K of A,, (M)
and 0 € E\ E.

Now, let prove the property (%). Take an arbitrary n € N (we can assume that
n > 2). Let F be a subset of A,(M;) such that /N K is closed in A" for each
compact subset K" of A,(M;), and assume that 0 € L. Since Aq (see Lemma 1.2.4)

is an open neighborhood of 0 in A(M;), 0 € N Ag. Furthermore, note that

EN Ao = (BN (Aam(M)) \ Agmes (M) :m < = m € N},

n
then there is an m € N with m < > such that

4

0 € BN (Aam(M1) \ Ao (A1)

And, we put D = EN (A (M) \ Azm-1(M1)).

On the other hand, by the properties (1) and (2) of the definition of AM;, we can
find a countable uniform base U of the universal uniformity U,y of Ay such that
U={Uy=GyUAyp, : k € N}, where for each k € N, () is an open neighborhood
of Ax, in My x My such that G, C Vi x Vi Now, apply Corollary 3.2.5, then we
have

j'n'—l,l(D) N (Ux)™ # @ for each k € N.

Let take a point @y € 771(D) N (Ug)™ for each & € N. Since gp = jm(wx) €
Agp(M1) \ Agn—1(M1), @ € (Gx)™, and cargy C Vi. It follows that A" = J{cary :
k € N} U X, is a compact subset of M, and by Lemma 1.2.3 (3) and Theorem
3.1.3, A,(K) is a compact subset of A, (M;). Hence we have IvN A, (L) is closed
in A,(K). Since {z; :1 € N} C 5,1 (D),

{g:; :1€ N} C DNAK) C ENA,K).
On the other hand,
{@;:i € N} N(Ux)™ # 0 for each k € N.
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Hence, by Corollary 3.2.5, 0 € {g; : ¢ € N}. Thus we have
0eE FNA,(K)=FENA,(K)C E.

Consequently, A, (M) is a k-space for each n € N. [

Corollary 4.2.3 A, (J(x)) is a k-space for each n € N.

Theorem 4.2.4 Ay(M,) s not a k-space.

Proof. Foreachn € N, weput X,, = {2,,:4 € N}, C,, = {c,, :i € N} U{c,},
and Xy = {z}. For each n,j € N, let

Gnj = Cn— Coy +Tnj, and B ={g,;:n,7 € N}.
We shall prove that
(1) ENK is closed in K for each compact subset A in A43(Ma2), and
(2) z€ E\ E.

Let ' be a compact subset of A3(M-), in fact of A(M3). Then, by Theorem 4.1.4,
car i’ is bounded in M;. Hence, there are finite subsets £, and Fy,) of N, n e N,
such that

carK C U{C,L :n€ F}uU U{:cm D1 € Fymy,n € NYU{a}.
Thus, by the definition of F,
car(K N E) C | J{carg,; : n € Fy and 1 € Fy,y}.

Hence, K N E is finite and thereby it is closed in K.

Next, we shall prove (2). Since z ¢ E, we shall show that 2 € E. Since A3(M,) is
closed in A(M3), it suffices to show that z € T4 Let U7 be an open neighborhood
of z in A(M;). Then we can choose an open neighborhood W of 0 in A(M,) such
that W+ W 4+ ¢ C U. Since W + z is an open neighborhood of & in A(Af,), there
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is an N € N such that {z,,:n> N,i€ N} CW + 2. And, for each n > N, there
1s an i, € N such that ¢, —¢,;, € W. It follows that

{Gni, :n>N}CW4+W4+zCU.

Thus z € E. l

To prove that A4(Ms) is not a k-space, we need the following technical lemma

which was obtained in [15].

Lemma 4.2.5 There is a colleclion £ = {E, : « < w1} of infinite subsets of N

such that
(1) By N Eg is finite for each o, B < wy with o # B,

2) for each o < wy, max(EyNE max (£, N EL) for each v < o with 3 # .
B k]

Theorem 4.2.6 A,(M;) is not a k-space.

Proof. Let A = {A, : @ < wi} and B = {Bs : f < w,} are uncountable
subcollections of £ defined in Lemma 3.5 such that AUB = & and ANB = (. Then
it can be proved that

(3) there are no infinite subsets 4 of N such that A, \ A is finite and B, N A is

finite for each o < wj.

We put Co = {zan : 1 € N}U{z4}, where z, is the limit point of {z,, : n € N},

for each o < wy. Let, for each o, B < wy,

Aa,p‘ = {wc!,n — Lo+ Tgn — TN (S Aa N Bﬁ}) and
E H{Aap: @, 8 <uwi}.

I

We shall show that
(4) ENK is closed in K for each compact subset K of A,(M3;), and
(5) 0e E\ E.
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Let K be an compact subset of A4(M3), then carK is bounded in M3 by Theorem
i3

4.1.4. We can take a finite subset {a, o9,...,a@,} of wy such that cark” C L Ca.,s
1=

so that ENK C U{Aa;q, 11,7 = 1,2,...,n}. On the other hand, by the property
(1) of Lemma 4.2.5, each A, p is finite. 1t follows that £ N A is finile, and (4) is
proved.
Before we show (5), we shall define a uniform base U of the universal uniformity
on Ms, as follows. For each o < wy and k € N, let Vi, = {2qm :m >k} U {24},
and we put
Uy = {Usp = Var X Var)UAy : k €N},

where A, is the diagonal of C, x C,. For each M = {n, E N : v <wi} € N, let
UM)={{Usm, i <wr}, and U ={U(M): M € N“'}.

Then, U is a uniform base of the universal uniformity on Mjs. To show that 0 € I7,
by Corollary 3.2.5, it suffices show that

i H(B)NU? # § for each U € U.
Take an M = {n, : @ < w;} € N*', and for each o < wy, let
Al ={n€A,:n>n,}and B, ={n € B, :n>n,}.
Clearly each Al is an infinite subset of N. Assume that A, N B = # for cach
o, f < w;. Then U Al N U Bg = §. For the infinite set A = U A, in N, we

a<w) B<wy a<w)
can prove that

AN Bg C{n € N :n < ng} for each ff < w;.

Hence A N By is finite for each # < wy, and also
A NACANAL={neN n<n.}

Thereby A, \ A is finite for each o < wy. This contradicts the property (3). Thus,
there are @, 8 < wi such that A, N By # (. Take an n € A, N By, then

(xa,n)ma) € Vana X Van, C U(M), and
(mﬁ,n, l'/g) & Vﬁ,nﬁ X vﬁ,ﬂp C U(M)

It follows that
& = ((Zamn Tan), (Ta,28)) CU(M) x U(M).
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Since J2(®) = 2p4n — Lo+ g, — L5 € E,
@€ j; (B)nU(M)* # 0.

Consequently, A4(Ms) is not a k-space. m

Remark 4.2.7 The essential idea of the proof of (5) is used by Malyhin to prove
that the tightness of the product V(®;) x V(Ry) is w;. The proof was cited with
his permission in [4]. Therefore, V(R;) x V(R,) is not a k-space. Since X is closed
embedded in A3(X) for each space X (cl. [23]), A3(V(Ry))is not a k-space. In fact,

in the next section, we shall show that A;(V (X)) is not a k-space.
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4.3 The k-property of A,(X)

In this section, we shall give characterizations of a metrizable space X such that
every An(X) is a k-space for n > 4, A3(X) is a k-space, and A3(X) Is a k-space,
respectively. First, we introduce the result for the mapping 4,, which was pointed
out in [3]. Recall that a space X is Dieudonné complete if there is a complete
uniformity on the space X ([6]). Every paracompact space is Dieudonné complete,

and the closure of every bounded subset of a Dieudonné complete space is compact.

Proposition 4.3.1 Let X be o Dieudonné complete space. Then, for each n € N,
the mapping i, 1s quotient if A,(X) 1s a k-space.

Its proof can be easily obtained from the following well-known facts, and therefore

we omit the proof.

(1) For each compact subset K of A,(X), there is a compact subset C' of (X @
~X ®{0D)" such that i,(C) = K if X 1s a Diedonné complete space ([4]).

(2) A continuous mapping f : X — Y of a lopological spuce to a k-space Y
is quotient if and only if for every compact subset Z C Y the restriction flf"(Z) :
[~YZ) — Z is quotient ([6], Theorem 3.3.22).

Theorem 4.3.2 If X 1s a metrizable space, then the following statements are equiv-

alent:
(a) An(X) is a k-space for each n € N,
(b) Ag(X) is a k-space,
(c) i 1s a quotient mapping for each n € N,
(d) 44 1s a quotient mapping,

(e) either X is locally compact and the set X' of all nonisolated points of X is

separable, or X' 1s compact.
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Proof.  The implications (a) = (b) and (c) = (d) are clear, and by Proposition
4.3.1, (a) and (c), (b) and (d) are equivalent. Thus, it suffices to show that the
implications (b) = (e) and (e) = (a).

Proof of (b) = (e). Assuming the contrary, we can consider the following two

cases.
Case 1. X s not locally compact and X' 1s not compact.
Case 2. X' 1s nol separable.

In Case 1, we can take an infinite discrete sequence {c, € X' :n € N} in X. For
each n € IV, since ¢, € X', there is a convergent sequence {c,, : ¢ € N} in X which
converges to ¢,. Furthermore, since X is not locally compact, we can find a point
z € X and {B, : n € N} be a countable neighborhood base of z in X such that for
ecachn € N, B, D By and B, \ B,4; contains an infinite discrete (in X' ) sequence
X, = {z,; :€ N}. Without loss of generality, we may assuwne that the collection
{B1} U{C, : n € N} is discrete in X, where C,, = {¢,;: 1 € N}U{c,}. It follows
that Y = U{C, :n € N}UU{X, :n € N} U{z} is a closed subset of X. Thus Y
is homeomorphic to M5, and therefore, by Theorem 4.2.4, A3( M) is not a A-space.
Hence A3(Y) is not a k-space. Since, by Theorem 3.1.3, A3(Y’) is embedded into
A3(X) as a closed subspace, A3(X) is not a A-space. Thus, A4(X) is not a A-space.

In Case 2, since X' has an uncountable discrete collection in X, we can take a
closed subspace Y of X which is homeomorphic to Mj;. Thus, by Theorem 4.2.6 and

the same way as Case 1, we can prove that A,(X) is not a k-space.

Proof of (e) = (a). By Theorem 4.1.5, if X is locally compact and X' is
separable, A(X) is a k-space. Since each A,(X) is closed in A(X), 4, (X) is a
k-space for each n € N. Next, suppose that X’ is compact and X is not compact
because A(Y) of a compact space Y is a k-space. Then the space X is a space of
type M. It follows, by Theorem 4.2.2, that A,(X) is a k-space for each n € N.

Consequently, we have Theorem 4.3.2. =

Corollary 4.3.3 (Stability theorem) For a metrizable space X, every An(X),
n € N, is a k-space if and only if A«(X) 15 a k-space.
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Case 1 of the proof of the implication (b) = (e) in Theorem 4.3.2 yields the
following (cf. [8]).

Corollary 4.3.4 Let Q be the space of rationals and P the space of irrationals.
Then, neither A3(Q) nor Az(P) 1s a k-space.

The following theorem can be proved from the result in [20]. Here, we shall give

another proof.

Theorem 4.3.5 For a paracompact space X, Ay(X) is a k-space if and only if X

s a k-space.

Proof.  Tirst, we show the “only if” part. Since X? is a clopen subset of (X &
—X & {0})? and X2 C 5} (Ax(X) \ A1(X)), by theorem 2.1.3, iy(X?) is a clopen
subset of A5(X) \ A:1(X). In particular, i5(X?) is open in As(X). Since A,(X)
is a k-space, 4,(X?) is a k-space. On the other hand, since i5'(iy(X?)) = X2, by
Theorem 2.1.3, the mapping 12|y, : X? — i2(X?) is a perfect mapping. Thus, X2
is a k-space.

Next, we show the “if” part. Let I be a subset of A5(X) such that F N K is
closed in K for each compact subset K of A5(X), and take a word g € IF We shall

show that g € I/. The proof is in three cases.
Case 1. g € Ay(X)\ 4:(X).

Since A3(X)\ A1(X) is open in Ay(X), there is an open neighborhood U/ of ¢ in
Ay(X) such that U € Ay(X)\ A3 (X). We put H = ENU then we have that g € 7
and H N K is closed in K for each compact subset of . On the other hand, by
Theorem 2.1.3, i2|i2_x(U) 451 (U) — U is an open mapping, and 5 (U) is a closed
subset of the k-space X 2. It follows that U is a k-space. Therefore, H is closed in

U, and hence in A5(X). Consequently, g € H C E.

Case2. geXp-—-X.
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Recall that Ag is a clopen subgroup of A(X), then g+ Ay is a clopen neighborhoad
of g in A(X). Note that (g + Ag) N ((Ag(X) \ A (X)) U {O}) = (. We put # =
(9 + Ag) N E, then it is easy to see that g € H C X @& —X and H NI is closed in
K for each compact subset K of X @ —X. Since X & —X is a k-space, H is closed
in X®—X. Hencege H C E.

Case 3. g¢=0.

Assume that 0 € E\ E. Let H = E N Ay, then we can see that 0 € T \ H
and H C Ay(X)\ A1(X). Moreover j;7'(H) C X2\ Ax and by Corollary 3.2.6,
ST H) N Ax # @ Take a point 2 = (z,2) € 5, (H) N Ax. Let C be an arbitrary
compact subset of X?. Then j,(C) is a compact subset of A5(X). By the assumnption,
H N j1(C) is closed in j;(C), so that in A5(X). Thus, j;'(H N 5,(C)) is closed in
X?2. Since

) XN Ax = T ((A(X) \ A (X)) N 4o)
o (As(X)\ A1 (X)) A Ag

N Ij;' (CAs(XNA(X))N40

is one to one and onto, and H N 71(C) C (A2(X) \ 41(X)) N Ao, we can see that
I H N 5,(C)) = 57 (H)YNC. Thus 57 (H)N C is closed in X2, so that in C. Tt

follows that ;7 '(H) is closed in X? because X? is a k-space. This contradicts that

x € 5,7 (H)\ j;7 ' (H). Consequently, we have 0 € £. |

Remark 4.2.7 and Theorem 4.3.5 yield

Corollary 4.3.6 A,(V(Ry)) is not a k-space.

Corollary 4.3.7 For a metrizable space X, A3(X) 1s a k-space, and the mapping

1y 1S quotient.

Theovem 4.3.8 If X is a metrizable space, then the following statements are equiv-

alent:
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(a) As(X) 1s a k-space,
(b) the mapping i3 is quotient,

(c) X is locally compact or the set X' of all nonisolated points in X is compact.

Proof. By Proposition 4.3.1, (a) and (b) are equivalent. In the proof of the
implication (b) = (e) in Theorem 4.3.2, it was already shown the implication (a)
= (c). Furthermore, by the proof of the implication (e) = (a) in Theoremn 4.3.2,
A3(X) is a k-space if X’ is compact. Thus, to complete the proof, it suffices to show
that A3(X) is a k-space if X is locally compact.

Let X be alocally compact metrizable space. Then X can be represented as the
sum of locally compact separable spaces, i.e. X = @{X, : a € A}, where each X,
is locally compact separable. For each o € A, let U/, be the universal uniformity on

X, and A, the diagonal of X, x X,. Then, U = {@ Uy : Uy € Uy} is the universal
a€A
uniformity on X. To prove that A3(X) is a A-space, take a subset E of A3(X) such

that /N K is closed in K for each compact subset A of A3(X), and an arbitrary point
g € E. We shall show that g € E. If g € (A3(X) \ A2(X))U(A2(X)\ 4,(X)) U {0},
it can be shown that g € IV in the similar way to the proof of Theorem 4.3.5. Thus
we may assume that ¢ € X @ — X, in particular, g € X (if ¢ € =X, we can show
similarly).

We put H = (E—g)N Ag, then H is a subset of A4(X) such that N K is closed
in K for each compact subset & of A,(X)and 0 € 7. 0 € H N Ay(X), then it can
be shown that 0 € H N A3(X) and g € H from the proof of Theorem 4.3.5. Thus,
we may assume that # C (Ag(X)\ A3(X))U{0} because H N(A3(X)\ A5(X)) = 0.
By the definition of H, we put

H={h=zx—yr»+a—-g: €A}

where zy,vy, 2y € X for each A € A. Since g € X, there is an oy € A such that

g€ Xa,- Let
Hy={hy€ H:z), € Xy, or 25 € Xo }.

Hence it is easy to see that 0 ¢ H \ H, because j; '(H \ H,) NU? = § for each
U € 4. Thus we have 0 € H,. Now, we assume that 0 € H,, where

Hy={h)y € Hy:zy,2, € Xy, }
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Then j; '(H,) NU? # @ for each U € . By the definition of U, j; '(Hs) NU? # @
for each U € U, where
Hy = {hy € Hy: yx € Xao }-

It follows that 0 € Hs. On the other hand, Hj is a subsel of A4(X,,) and A4(X,,)
can be considered as a closed subset of A4(X) by Theorem 3.1.3. Since X, is
locally compact separable, by Theorem 4.3.2, A,(X,,) is a k-space. [Furthermore,
Hy C HNAy(Xq,) and HN Ay (X)) N K is closed in K for each compact subset A
of Ay(Xo,). We can easily see that 0 € H N Ay(X,,) C . Therefore it suffices to
show that 0 € H if 0 € m Let

Hy={hy:z\ ¢ X,, and z, € X, },
and we may assume that 0 € H,. Now, we put

A = {NeA:hy € H),
L = {(z),9): 2 €A}, and
M = {(z:u): A€EAY}
Since j, ' (Hy) NU? 5 § for each U € U,
(1) LNU # 0 for each U € U, and
(2) MNU#0foreach U € U.

Since L € X2 , by (1), LN A,, # @ and, in particular, we can see that (g,9) €

L. Therefore g € {z,: » € A'}. Now, let B, = {B, : n € N} be a countable
neighborhood base of g in X,, such that B,4y; C B, and B; = X,,. For each
n € N, let

M, = {(zx,9) : 22 € Bn \ Bny1}-

Then M = U M,,. On the other hand, by (2) M N Ax # 0. We consider the

n=1
following two cases.

Case 1.  There is a subsequence {k,, : m € N} of N such that My, , NAx # @ for
each m € N.
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For each m € N, we can take an o,, € A such that My, N A,, # 0. We put

Ng,, = My, NX2 | then N, NA,, # 0. Thus, j;7'(Hs)N Ay # 0, so that 0 € H,

where

Hy = {h)\ €cH,:z € Bkl and (ZL‘,\,’y,\) € U Na,,,} and

m=1

Y = P Xa,.

Since Y is a locally compact separable metrizable closed subspace of X, A4(Y) is
closed in A4(X) and, by Theorem 4.3.2, A4(Y) is a k-space. Furthermore, Hy C
HNAyY)and HNA(Y)N K is closed in K for each compact subset ' of A4(Y').
It follows that 0 € H N A(Y) C H.

Case 2.  There is an n € N such that M,, N Ax =@ for each m > n.

Let

H6 = {h)\ 12y E Bn} and
M(n) = U M,,.

m2n

Then it is easy to see that 0 € Mg, so that M(n) N Ay # §. Thus, we can take an
o € A such that M(n)NA, # 0. Now, we can assume that N, = M,, N X, # 0 for
each m > n. Hence, it can be seen thal for each U € U,, {m >n: N, NU # 0}

is an infinite set because N,, N A, = @ for each m > n and U N NA, # 0. It

m>n

follows that 0 € H;, where

H7 = {hk € HG . ({Bz\:y/\) € U Nm}-
m>n
On the other hand, H; C Ay( X4 @ Xa), As( KXoy @ Xo) s closed in Ay (X) and
Ay(Xay ® Xo) is a k-space. Therefore, in the same argument as in Case 1, we can
see that 0 € H N Ay (X,, ® Xa) C H.
Consequently, in any case, we can prove that 0 € H, so that ¢ € E. Thus, £ is

a closed subset of A3(X). It follows that A3(X) is a k-space. ]
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Corollary 4.3.9 Let Mj be the space constructed in §4.3, then As(Ms) is a k-space
but Ay(M3) is not a k-space.

Finally, we discuss about the questions which are asked by T. II. Fay, E. Ordman
and B. V. S. Thomas in [8]. Since they discussed about the free topological group
Fe(X) over a space in the sense of Graev, we introduce some notations. For each
n € N, we denote the subspace of Fiz(X') consisting of words of length not exceeding
n by Fg(X),. Since the unit element e of Fiz(X) is a point of X, the mapping ¢,
is defined on X U X~!. Analogously, let Ag(X) be the free Abelian topological
group over a space X in the sense of Graev, and the subspace Ag(X), and the
mapping i, can be defined similarly to these for Fg(X). T. II. Fay, E. Ordman and
B. V. S. Thomas (8] asked the following questions.

Question 4.3.10 Is 1, always a quotient map if X s locally compact ?

Question 4.3.11 Is1;: (QUQ™Y)* — F5(Q)s a quotient map ?

Is 15 always a quotient map ?
V. G. Pestov [20] answered these questions as follows.

Theorem 4.3.12 (1)  The mapping iz : (X & X1 @ {e})" — F.(X) ((X U
X Hm — F(,(X)n> is quotient in either sense if and only if each neighborhood of
Ax n X2 is in Ux. In particular, if X is paracompact, iy ts quotient. Hence, the
first part of Question 4.3.11 1s yes.

rm (2) Let X be a locally compact space which is not paracompact, then iy is

not quotient by 1. Hence, Question 4.3.10 is no.

On the other hand, About the space M3 described in §4.3, we note the following
fact. That implies the negative answer of the abelian version of Question 4.3.10 even

if a space X is locally compact and metrizable.

Theorem 4.3.13 The space My is a locally compuct metrizable space such that
A4(Ms) is not a k-space and A,(Ms) is homeomorphic to Ag(Ms3), for eachn € N.

Thus, the mapping i, is not quotient in either sense.
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Proof. It suffices to show that A,(M;) is homeomorphic to Ag(Ms), for each
n € N. Since Mj; has infinite many isolated points, for each isolated point z in X,
M3 is homeomorphic to M3\ {z} = Mj. On the other hand, from the argnment in
[9], Fa(Ms) (Ag(Ms)) is topologically isomorphic to F(M2) (A(M])), respectively.
In fact, the topological isomorphism is the continuous homomorphic extension of the
identity on Mj, so that we can prove that Fa(Ms), (Ag(Ms),) is homeomorphic to
Fo(Mj;) (An(MJ)) for each n € N. Thus, it follows that A, (Ms) is homeomorphic
to Ag(Ms), for each n € N. ]

4.4 Local compactness of F,(X)

In this section we discuss the property that each F,,(X) (A, (X)) is locally com-
pact. As a consequence we will characterize a metrizable space X having the above
property. Now, we shall prove the following result which is a generalization of The-
orem 1.2.5. The essential idea of the proofis due to M. I. Graev [9].

Theorem 4.4.1 If F,(X) (A.(X)) 1s locally compact for eachn € N, then a subset
V is open in F(X) (A(X)) if and only if V,, = V N F,(X) (VN A4,(X)) is open in
Fo(X) (An(X)) for eachn € N.

Proof. The necessity is obvious and therefore we shall show only the sufficiency.
Let V be an arbitrary open set in F'(X), then, each V,, is open in F,(X). Therefore,
we shall show that the converse is also true.

Let V ={V C F(X) : V,is open in F,(X) for each n € N}. At first, we shall
show that V induces a group topology on F'(X). Indeed, it suffices to show that V

satisfies the following;

for each V € V and a,b € F(X) such that ab~! € V, there are U(a),U(b) € V
such that a € U(a), b € U(b), and U(a)U(b)™ C V.

Let V € ¥V and a,b € F(X) such that ab™! € V, and assume that £(a),£(b) < k for
some k € N. Then, by induction on ¢ > k, we shall construct the sets U;(a) and
U;(b) such that
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(1) a € U;(a) and b € U;(b),
(2) U(a) and U;(b) are open in F;(X),

(3) U,;(a) C Ui(a) and U;(b) C U;(b) for 5 <1,

(4) Ui(a) Ul(b) ' C Vy,

(5) U:(a) and U;(b) are compact.

Since Va; is open in Fyy,(X), there is an open set V' in F(X) such that Vy =
V' N Fy,(X). Thus, we can take open sets U,, Uy in F(X) such that

1
U, Uy, CV' and U, N F(X) and U, N F,(X) are compact,
because Fi(X) is a locally compact closed subset of F(X). Now put
Uk(a) = Ua N Fk(X) and UA((}) = Ub n F]\(X)

Then, it is clear that Uy(a) and Uy(a) satisfy the above propertis for .
Suppose that the sets U;(a) and U,(b) have been constructed fori = &, £+1,..., n,
we shall construct the sets Uy,,;(a) and U,4;(b), as follows. Put

-1

E=Ud(a) (Fansa(X)\ Vanga) Un(b).

Then F is a closed subset of F(X) by the property (5), and also we have ¢ ¢ F.
For, if e = uZ'vw, for some u, € U,(a), v € Fyy2(X)\ Vante, and w, € U, (b), then
it follows that

1
V= Unw,fl € Un(a) Un(b) CVy C V.Zn+27

and this is a contradiction. Therefore we can take a neighborhood U, of ¢ such that

U.U,  CF(X)\E, and U, N Fye1(X) is compact.
Now we define the sets
Un_H(a) = (Un(a) Ue) N Fn+l and U7L+l(b) = (Un(b) Ue) N Fn+1-

Clearly, these sets satisfy the properties (1), (2) and (3). We shall show that they
satisfy the properties (4) and (5). Let v = vw € Fo41(X), where v € U,(a) and

47



w € U.

n+n4+1=2n+ 1. Hence this means t

Since £(v) < n and £(u) < n+ 1, f(w) must be less than or equal to

hat

Ups1(a) C Up(a) (Ue N Fopgn(X)).

Thus we have

Un-i-l(a)

a

J(Ue NV Fon gy (X))
)

Un(
Un(a) (Ue 0 Fapyr (X))

Since Uy(a) (Ue N Fopy1(X)) is compact, we have that U, 41(a) is compact.

ogously, it can be seen that U,41(6) is compact, i.e. the property (

(a) (U N F’rL+1(X))'

Anal-

5) is satisfied.

3]

Furthermore, since U,(a) (U N Fonp1(X)) is closed in F(X),

Unir(a) C Un(a) (U,

Similarly

Uns1(b) C Un(b) (U

Therefore

U, (a) U,.

N Fyupa (X)) C

N Fong1(X)) C Un(b) U..

Un-i—l(a) Un-l-l(b) C
-

On the other hand

U, (a)
Un(a) (

F(X)\ B) Un(t)

U1L+1(a) Un+1(b) - F2n+2(X)J

Now assume that there is a word

z € Upyi(a) Upsa

By the above result, put z = w,yv;
Up € Un(b). Then we have

y = u;'zv, € U,(a)

(6) O (Fan2(X) \ Vansa).

where u, € U,(a), y € F(X)\ E and

n )

(an+2(X) \ V2n+1) Un(b) = I

but it is impossible. Consequently we can show that

-1

Unt1 (a) Un+l (b)

- V2n+2-
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We now define the sets

Uy(a) and U(b) = | ) UL(b).

=k

Ula) =

1C8

.

Thus, by the properties (1) ~ (4

—

, 1t is easily seen that
U(a),U(b) €V, and U(a)U ()™ C V.

From the above argument, V induces a certain group topology 7. Clearly, 7| x
is equal to the original topology on X. This means that 7'} is weaker than the [ree
group topology on F(X). Consequently each V' € V is open in £(X), and the

theorem is proved. m

Corollary 4.4.2 For a space X, if Fo.,(X) (A,.(X)) 1s locally compact for euch n €
N, then F(X) (A(X)) is a k-spuce.

Now, we introduce some characterizations of a metrizable space X such that

each F,(X) is locally compact.

Proposition 4.4.3 Let X be a metrizable space. F,(X) is locally compact for each
n € N if and only of X 1s compact or discrete.

Proof. Assume that there is a metrizable space X such that cach F,(X) is
locally compact, but X is noncompact and nondiscrete. Then we can find a discrete
sequence {z, : n=0,1,...} in X such that z¢ is nonisolated. Let {y, : n € N} be a
sequence in X which converges to zg such that {y, : n € N}n{z, :n=10,1,...} = 0.
Now, we put C' = {y, : n € N}U{zo} and Z = CU{z, : n € N}, then Z is a closed
subset of X. For each n € N, let

Con={2; 2oy 2, : i € N} U {e}.

By Corollary 4.4.2, F(X) is a k-space, and hence it can be proved that F = U C,
neN
is a closed subset of Fy(X). Moreover, it is homeomorphic to the Fréchet-Urysohn

fan of cardinality Ry (see the proof of Proposition 3.2 in [4]). By the asswnption,

Fy(X) is locally compact and, in particular, so is £. But this is a contradiction. m
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Theorem 4.4.4 [or a nondiscrete metrizable space X, the following are equivalent:
(a) F(X) is compact for each n € N,
(b) Fn.(X) s locally compact for each n € N,

(c) X 1s compact.
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