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Fig. 1.1 Area of greenhouses in Japan from 1965 to 2005 (Japan Greenhouse Horti-
culture Association, 2007).



10

1.2

1.2.1

10.5%

2007)

( 2005)

(Fig. 1.2)

80%

1997)

Table 1.1

1996

2005



Arch pipe
/
Straight pipe

Joint pipe
Ridge height
. Pipe spacing
G.L.
' Width ‘
3.16 m

6m

Fig. 1.2 A standard pipe house researched in this study: pipe house are consisted of
arch pipes and straight pipes of 25.4 mm diameter with 1.2 mm thickness,
and joints of 28.6 mm diameter with 1.2 mm thickness.



Table 1.1 Average snow density (Japan Greenhouse Horticulture Association, 1997).

Snow depth Average snow density

(cm) (kg/m”)
50 100
100 150
200 220
400 350

When the snow depth is more than 50 cm,

the average snow density is interpolated
lineary.
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house Horticulture Association, 1997).
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Fig. 1.4 Transition of Domestic Corporate Goods Price Index (DCGPI) about steel
tube for structural purposes (Bank of Japan, 2007).
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Chap. 1

Introduction of this study and reviews former studies
about pipe houses under snow load and strong wind.

!

Chap. 2

Field studies of pipe houses damaged by heavy snow
and strong wind in order to obtain the cause of

disaster.
!
Chap. 4
Wind tunnel test in order to
obtain wind pressure
coefficient for pipe house and
Chap. 3 the influence of side gable

Analyses about pipe house
structures under snow load in
order to investigate the effect
of adding braces and design
optimization.

openings on wind pressure
coefficient.

|
Chap. 5

Wind tunnel test in order to
elucidate the influence of the
distance between two pipe
houses on wind pressure
coefficient.

!

Chap. 6

Conclusions of this study.

Fig. 1.5 Flowchart of this study.
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Fig. 2.1 Field investigation sites in Fukushima and Miyagi prefectures in 1998.
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Fig. 2.2 Number of precipitation days (1-9, 10-29 and 30 mm/day) in February,
2004 (National Astronomical Observatory, 2004).



2004) (

(
30mm
) 40 50m
( )
0 m
2)
1 15
15 16
Fig. 2.3
)
1998a) 15 16
16
15 16
7m/s
0
Fig. 2.4 (
15 10cm
1 8

23

5:00 6:00

16 0:00 0°C

0°C
0 4m/s
( 1998a)
1998b) 15
9



mmmm Amount of precipitation, Fukushima
C— Amount of precipitation, Sendai

—e— Temperature, Fukushima - 10
—o— Temperature, Sendai

»
1

Amount of precipitation (mm)
Temperature (°C)

Time (h)

Fig. 2.3 Transition of amount of precipitation and temperature at Meteorological
Observatory “Fukushima” and “Sendai” from 15 to 16 Jan., 1998 (Japan
Meteorological Agency, 1998).
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Fig. 2.4 Transition of snow depth at Meteorological Observatory “Fukushima” from
15 to 16 Jan., 1998 (Japan Meteorological Agency, 1998).
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Fig. 2.5 Transition of amount of precipitation and temperature at Meteorological
Observatory “Fukushima” and “Sendai” from 8 to 9 Jan., 1998 (Japan
Meteorological Agency, 1998).
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Fig. 2.6 Transition of snow depth at Meteorological Observatory “Fukushima” from
8 to 9 Jan., 1998 (Japan Meteorological Agency, 1998).
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(b)

Fig. 2.7 Mode of collapse for pipe house: (a) Symmetrical collapse (Hobara), (b)
Asymmetrical collapse (Natori).
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Fig. 2.8 Horizontal displacement of arch pipe at the ground level.
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Brace for supporting
training wires
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Fig. 2.9 Pipe house attached braces for supporting training wires: the end of brace
was fastened at the straight pipes at each eaves of pipe house.
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Fig. 2.10 Path of Typhoon 0221 and field investigation sites in Chiba and Ibaraki
prefectures in 2002 (Tokyo District Meteorological Observatory, 2002).

37



( 440ha

2002)

10 1 21
52.2mls
10 9
2.2.2
( )

11

32 (

11

(Fig. 2.10)

38

25

486ha)

2002b)

10

22



2.2.3

1)
2
40m 2.5m) 2
Fig. 2.11
19.1mm 1.1mm
45¢m
6 6cm
4
3
A B
(Fig. 2.12)

39

(

4.5m 40m 2.5m) 1

5km
5
2
2
C D
E

9Im



Paddy field

teel-framed
greenhouse
Paddy field
\ Paddy field
Wind

Road (irection

Fig. 2.11 Plain view of pipe houses constructed in open and flat ground.
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Fig. 2.12 Mode of collapse for pipe house constructed in open and flat ground: the
pipe house showed was pipe house A.
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Fig. 2.13 Plain view of pipe houses beside windbreak.
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(b)

Fig. 2.14 Pipe house beside windbreak: (a) Arch pipe at the ground level reinforced
by a straight pipe, (b) Mode of collapse for pipe house.
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Fig. 2.15 Plain view of pipe houses beside a factory.
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Fig. 2.16 Mode of collapse for pipe house beside a factory.
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Fig. 2.17 Plain view of pipe houses with side gable openings.
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(b)

Fig. 2.18 Pipe house with side gable openings: (a) Arch pipe at the ground level
reinforced by a straight pipe, (b) Mode of collapse for pipe house.
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(Dimensions: mm)

Fig. 3.1 An analytic model of the pipe house, standard section, for the FEM analysis;
white center dots represent nodes of the model; uniformly distributed load
on the roof of the pipe house over the entire span is represented from black
dot E1 to E2; uniformly distributed load only on one side roof is from black
dot E1 to R.
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No. 1 (left) : __ No. 1 (right)
Al A2
No. 14
G.L.

| \

(a)
No. 10 (left) No. 10 (right)

(b)

Fig. 3.2 (a) All pairs of braces from No.1 to No.14; height of upper end of braces, B1
and B2, was lowered from 310 cm to 180 cm at intervals of 10cm as the
case No. increases; the height of the other end, Al and A2, was constant.
(b) No.10 as an example.
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Fig. 3.3 Numerical models for the FEM analysis; Shaded is the standard section.
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Table 3.1 Five sections of arch pipes considered for pipe houses.

Diameter Thickness Section modulus  Mass per meter

(mm) (mm) (cm®) (kg/m)
19.1 1.1 0.26 0.488
254 1.2 0.53 0.716
31.8 1.6 1.09 1.190
38.1 1.8 1.78 1.610
42.7 2.0 2.49 2.010
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Shade of arch pipe

~

Plain view

Fig. 3.4 A way to estimate the shading rate of insolation of pipe houses; The shading
rate was estimated as a ratio of the perpendicular projected area of the arch
pipes to a ground area inside the pipe house.
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Table 3.2 The allowed snow loads for every bracing patterns.

Allowable snow load Allowable snow load
. 2 . . 2
Bracing by stress analysis (N/m®) by buckling analysis (N/m?)
Load on Load on Load on Load on
entire span  one side roof entire span  one side roof
none 156 246 247 487
No.1 151 243 396 753
No.2 255 358 372 733
No.3 236 423 377 749
No.4 268 463 387 769
No.5 309 494 399 792
No.6 351 538 413 819
No.7 392 633 428 501
No.8 434 612 443 490
No.9 477 601 458 481
No.10 521 537 471 474
No.11 569 485 480 469
No.12 621 443 476 467
No.13 677 408 410 469
No.14 745 378 237 473

The allowed snow loads were obtained by the stress analysis and buckling
analysis for every bracing patterns in the pipe house that with of 6000mm,
the ridge height of 3160mm, and the diameter of arch pipe of 25.4mm; All
results were obtained from the hinged end numerical models; Italic figures
represent the minimum one of four allowable snow loads for each of the
braced models.
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Table 3.3 The maximum allowable snow load with suitable braces installed into the

structures.
Width  Ridge _ _ _ -~ Maximum
(mm) height  Bracing Analysis method  Loading condition allowable
(mm) snow load (N/m?)
4500 No. 11 Buckling analysis Load on entire span 674
6000 3160 No. 10 Buckling analysis Load on entire span 471
8000 No. 10 Buckling analysis Load on one side roof 271
2370 None  Stress analysis  Load on entire span 150
6000 3160 No. 10 Buckling analysis Load on entire span 471
4213 No. 12 Buckling analysis Load on entire span 291

The maximum allowable snow load of numerical models with suitable braces
installed into the structures were obtained; arch pipes with an outside diameter
of 25.4 mm and a thickness of 1.2 mm; support conditions were all hinged end.
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Table 3.4 The allowable snow load when the ridge height was constant at 3160 mm.

Allowable snow

Allowable snow

Width  Analysis Bracing load Bracing load
(mm)  method 9 9
(N/m?) (N/m?)
4500 oo Nome 305 No. 11 1007
6000 > '°°  None 156 No. 10 521
8000 y None 76 No. 10 293
4500 _ None 386 No. 11 674
6000 zlrj];:d;?f None 247 No. 10 471
8000 y None 150 No. 10 336

The allowable snow load when the ridge height was constant at 3160 mm
were obtained; arch pipes with an outside diameter of 25.4 mm and a
thickness of 1.2 mm; support conditions were all hinged end; load was on

the entire span.
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Table 3.5 The allowable snow load when the width was constant at 6000 mm.

Ridge . Allowable snow Allowable snow
. Analysis . .

height Bracing load Bracing load
method 9 9

(mm) (N/m”) (N/m?)

2370 None 150 - -

3160 aitarlezsis None 156 No. 10 521

4213 y None 163 No. 12 610

2370 . None 357 - -
Buckl

3160 - 00 None 247 No. 10 471

4213 Y None 163 No. 12 291

The allowable snow load when the width was constant at 6000 mm were
obtained; arch pipes with an outside diameter of 25.4 mm and a thickness
of 1.2 mm; support conditions were all hinged end; load was on the entire

span.

71



2370mm
219%
190% 4213mm 179%
4213mm
25.4mm
4213mm
3.3.4

163 247 357N/m?

4213mm

3160mm

291N/m? 300N/m?

1.2mm

Table 3.6

72



Table 3.6 The steel mass and shading rate of insolation.

Avrch pipe Wi, Ridge  Pipe Steel  Shading
Diameter Thickness ' height spacing mass rate
mm  mm) ™ mm) om) gmd) (%)
8000 4213 6 14.60 31.8

19.1 1.1 6000 3160 13 6.74 14.7
4500 2370 24 3.65 8.0

8000 4213 13 9.89 19.5

25.4 1.2 6000 3160 26 4,95 9.8
4500 2370 48 2.68 53

8000 4213 29 7.37 11.0

31.8 1.6 6000 3160 55 3.89 5.8
4500 2370 101 2.12 3.1

8000 4213 49 5.90 7.8

38.1 1.8 6000 3160 90 3.21 4.2
4500 2370 163 1.77 2.3

8000 4213 69 5.23 6.2

42.7 2.0 6000 3160 127 2.84 3.4
4500 2370 228 1.58 1.9

The steel mass and shading rate of insolation of standard
section and its similar typical unmodified common pipe
house obtained by the stress analysis; support conditions
were all hinged end; load was on the entire span.
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Table 3.6 19.1mm 1.1mm
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Fig. 4.1 The eiffel-type wind tunnel.
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Fig. 4.2 Testing section of the wind tunnel.
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Fig. 4.3 Mean wind velocity profile at the center of the turntable in the wind tunnel.
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Fig. 4.4 Scale model used in the wind tunnel experiment: black dots represent the
location of the pressure taps: triangles represent the location of the inside

pressure taps.
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Fig. 4.5 Model consists of a sandwich structure for tubes connecting between pres-
sure taps and electronic pressure scanning system.
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Fig. 4.6 All pressure taps were connected to the electronic pressure scanning system
via flexible vinyl tubes.
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Fig. 4.7 Wind directions tested in the wind tunnel experiment.
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Table 4.1 Tested cases for the combinations of the side gable openings.

Case Left (leeward) Right (windward) Measured wind pressure coefficient

1 Closed Closed Chpe

2 Closed Open Cpes Coi
3 Open Open Crer Coi
4 Open Closed Chpe: Chpi
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Fig. 4.8 C, distribution at the center of the enclosed model (Case 1) for a wind
normal to the ridgeline (6 = 0°).
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Fig. 4.9 C; at the center of the enclosed model (Case 1) for a wind normal to the
ridgeline (6 = 0°).
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Fig. 4.10 Cross sections of the pipe house tested in the present study and two types
of greenhouses with circular arc and gable roofs.
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Fig. 4.11 The change of the typical distributions of C, due to the change of the wind
direction.
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Fig. 4.12 Variation of the C, distribution with distance from the gable wall when 6 =
25°.
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Fig. 5.1 Common two or more single-span pipe houses stand in a row in the field.
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Fig. 5.2 The shape of “Dummy model”, this side, was quite the same as that of the
wind tunnel model.
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Fig. 5.3 Distance between two pipe houses are represented as the multiple of
reference height H.
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Fig. 5.4 Distance between two pipe houses tested in the wind tunnel; black symbol
means windward model; white symbol means leeward model; hatched
symbol means middle model: (a) In the case that two models were set in the
wind tunnel, (b) In the case that three models were set in the wind tunnel.
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Table 5.1 Turbulent intensity and roughness length.

(a) In the case that one dummy model was set on windward side of measured model.

Mean wind velocity

Distance between .
at reference height

Turbulence intensity Roughness length

two pipe houses (m/s) at reference height (mm)
none 6.1 0.13 10
0.25H 6.0 0.13 13
0.5H 5.8 0.13 15
0.75H 5.9 0.13 15
1H 5.8 0.12 17
1.5H 5.9 0.13 19
2H 5.9 0.12 17
4H 5.9 0.13 24
6H 5.9 0.12 23

(b) In the case that two dummy model were set on windward side of measured model.

Mean wind velocity

Distance between .
at reference height

Turbulence intensity Roughness length

two pipe houses (m/s) at reference height (mm)
none 6.1 0.13 10
0.25H 5.8 0.12 22
0.5H 5.9 0.12 26
0.75H 5.9 0.13 20
1H 5.9 0.13 22
1.5H 5.9 0.12 18
2H 5.9 0.12 22
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Fig. 5.9 C, distribution at the center of the leeward model in three models case.
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Windward model Leeward model

Fig. 5.10 Sketch of air flow pattern of separation and reattachment on the surface of
two pipe houses from bubble visualization with video camera; dotted line
means temporary air flow pattern; A, B, C and D represent points occurred
first separation, first reattachment, second separation, and second

reattachment respectively.
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Fig. 5.11 Visualization of air flow using laser sheet and micro bubbles.
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Study on Improvement of Greenhouse Design

for Wind Pressure and Snow Load

Hideki Moriyama

Summary

Plastic film clad greenhouses are widely used in the agricultural and
horticultural industries. Such greenhouses are usually designed to a lower level of
structural safety than are conventional building structures, because of the need to
minimize initial costs, the demand for a higher level of light transmission, the
reduced risk of injury and so on.

Pipe-framed greenhouses (pipe houses) are simpler structures than large-scale
greenhouses. A pipe house consists mainly of lightweight arch pipes and straight
pipes covered with plastic film. Farmers can easily construct pipe houses by
themselves. Japan’s labor cost is relatively high, so the construction of pipe houses
by farmers themselves is helpful to decrease greenhouse construction cost. In fact,
pipe houses account for approximately 80 percent of the total area of greenhouses in
Japan. Therefore, pipe houses play an important role in agricultural and horticultural
industries in Japan. However, it is also a fact that most of the wind and snow damage
to greenhouses is to pipe houses. Wind and snow loads are the most important

external forces that determine pipe house design.

Chapter 1 introduces the background of this study and reviews former studies
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about the performance of pipe house under snow load and strong wind.

Chapter 2 summarizes the results of the field study of pipe houses damaged by
heavy snow and strong wind in order to obtain the cause of failure.

Important results were obtained by the field survey of pipe house damaged by
heavy snow in 1998. For pipe houses under heavy snow, the roof was pushed down
and collapsed like the character “M”. Arch pipes commonly used in the pipe house
have a large slenderness ratio, thus these arch pipes have a possibility of failure by
buckling. Therefore it is desirable to reinforce the roof of pipe houses by bracing.

Several arch pipes showed displacement horizontally at the ground level. When
the support condition is assumed to be fixed, the maximum allowable snow load
would be very large. But in practical application the soil is often saturated and
softened, and then an end condition is mechanically equivalent to a hinged end. The
hinged end condition should also be applied as a support condition for safe design
when the pipe house is analyzed.

Investigations of pipe houses damaged by typhoons often show a collapse where
the windward eaves were pushed down by strong winds. However, when there were
side gable openings on pipe house, the behavior of collapse was quite different, the
roof was pushed down and collapsed downward. It showed the internal wind pressure
was greatly changed by the side gable openings. Most pipe houses having side gable
openings and doors that could be open tend to fail by wind pressure. Consequently,

the wind pressure coefficient C, considering side gable openings should be obtained.

In Chapter 3, in order to investigate the effect of adding braces to the pipe

house, two types of pipe house structure were analyzed and compared. One structure
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was the unmodified common pipe house. Another was the same pipe house, but
reinforced by one or two steel wires as braces. Numerical calculations were
introduced to find the optimum design for the pipe house under snow load. To
determine the influence of the width and the ridge height of the pipe house and the
section modulus of arch pipe on the maximum allowable snow load of the pipe house,
seven numerical models were analyzed by both stress analysis and buckling analysis.
Results are as follows:

The width and ridge height of the structure influences the maximum allowable
snow load of pipe houses. In stress analysis, the maximum allowable snow load of
the pipe house decreased as the width increased. For the analytic model without
bracing, the maximum allowable snow load of the model of 4500 mm width was
roughly 300 N/m?, which is the standard snow load in this study. Only pipe houses of
narrow width should be allowed to be constructed on ground softened due to
saturation. Adding braces to the roof of the pipe house increased the maximum
allowable snow load of the pipe house significantly. Similar results were obtained by
buckling analysis. However, the maximum allowable snow load of the analytic model
of 8000 mm width was almost the same as the standard snow load. Therefore, the
maximum width is 8000 mm if arch pipes of 25.4 mm diameter with 1.2 mm
thickness are used.

The influence of the ridge height on the maximum allowable snow load was
different between stress analysis and buckling analysis. In stress analysis, there was
little influence of the ridge height on the maximum allowable snow load. Maximum
allowable snow loads for all analytic models of different ridge heights were roughly
half of the standard snow load 300 N/m?, so the reinforcement by adding braces was

needed. In buckling analysis, the maximum allowable snow load decreased, as the
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ridge height increased and the slenderness ratio of the arch pipe increased. The
maximum allowable snow load in buckling analysis also was increased by adding
braces. The maximum allowable snow load for the analytic model of 4213 mm ridge
height was almost the same as the standard snow load. Consequently the highest
ridge height was 4213 mm for safe design of pipe houses.

The steel mass and the shading rate of pipe houses with larger size pipe on
wider spacing were less than those of pipe house with smaller size pipe on closer
spacing. Moreover, the difference of steel mass and shading rate by the size of pipe
houses was decreased as the section modulus of the arch pipe increased. For the
un-braced standard pipe house design, the arch pipe of at least 31.8 mm diameter
with 1.6 mm thickness should be used.

Most importantly, the addition of the two simple wire braces significantly
increased the maximum allowable snow load for all structural sizes and all shapes.
With braces the arch spacing can be increased thereby reducing the mass of steel

needed and reducing shading.

An essential cause for wind disasters of pipe houses may be a lack of
knowledge of the wind resistance performance and wind loads on such structures. It
is necessary to improve the design wind resistance for pipe houses. In particular, the
wind pressure coefficients C, to be used for the design of pipe houses should be
estimated adequately. In Chapter 4, wind tunnel tests were done in order to obtain
the precise C, distribution of pipe houses. The C, distributions on a pipe house have
been evaluated with a 1:20 scale model in a turbulent boundary layer. The results can
be summarized as follows:

At the central cross-section, the C, value of the pipe house was 0.45 at the
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mid-height of the windward wall. The C, value on the windward roof was negative,
gradually increasing in magnitude from 0 at the windward edge to 0.6 at the ridge.
On the leeward roof and wall, the values of C, were 0.6 and 0.54, respectively.

The wind force coefficient Cs distribution of the pipe house, which is defined as
a difference between external pressure coefficient Cp,. and internal pressure
coefficient C,i, was different from that of the specification for a greenhouse with a
circular arc roof. However, the distribution was similar to that for the gable-roofed
greenhouse, while the C; value on the windward roof for the pipe house was larger in
magnitude than that of the gable-roofed greenhouse.

The C, distributions of the cross-section in the middle part of the pipe house
were independent of the distance from the gable wall. For the part closer to the gable
walls, as the distance of the cross-section from the gable wall decreased, the
difference in the C, distribution for the pipe house became more significant; in
particular, on the leeward roof and wall. This feature was related to a
three-dimensional effect of the flow due to the gable walls. It was found that a wind
tunnel model with L/W > 4 should be used when 6 = 0°.

When 6 = 25°, the maximum negative C, value was  3.46 at a point near the
gable wall. On the other hand, the C, distribution at the central cross-section was not
affected significantly by the gable wall at a range of 0° to 35° in 0.

The C,. distribution was not affected by the existence of openings on the gable
wall.

For the pipe house with openings on one or both gable walls, the C,; values
were approximately 0.9 when 6 = 0°. This value was much larger in magnitude
than the current standard of 0.2 for enclosed greenhouses. With this value, the

resultant C; was as large as 1.35 on the windward wall, and may cause a collapse of
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pipe houses with openings designed for the lower standard.

For the pipe house with openings on windward gable walls, when 0 = 90°, the
Cpi value was 0.46. A large Cp. value of approximately 0.9 occurred in the area
close to the windward gable wall, particularly on the roof. High suction combined
with Cp; and Cye, may cause large uplift forces on the frames near the windward edge.

This feature is important for the design of foundations.

The C, distributions on a pipe house that stands in open and flat ground have
been evaluated in Chapter 4. However, it is common that several single-span pipe
houses are constructed in a row at one site. In this situation, the C, distributions of
the pipe house might be affected by the adjacent pipe houses. In Chapter 5, the C,
distributions of windward and leeward models in a case of two pipe houses
constructed near each other, and the C, distributions of windward, leeward and
middle models between windward and leeward models in a case of three pipe houses
constructed were determined using a wind tunnel. The influence of the distance
between two pipe houses on the C, distributions was discussed.

For the windward model, the C, distributions were roughly independent of the
distance between two pipe houses. The C, distribution of 1.5H, (the leeward house
with the distance between the houses 1.5 times of reference height H), almost agreed
with the C, distribution for a single pipe house in open and flat ground. The C; in
the cases of the distance between two pipe houses of more than 1.5H was smaller
than that of a single pipe house. On the other hand, the C, in the cases where the
distance between two pipe houses of less than 1.5H were large negative values. The
windward pipe house could be designed on the same basis as a single pipe house.

For the model next to an adjacent windward model, especially the case of two
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pipe houses in a row, the large negative C, value occurred at the leeward roof near
the ridge. Separation of the flow from the leeward side of the first house that
reattached on the windward roof induced this large negative C,.

For the middle model in the case of three pipe houses, the C, distribution on the
leeward roof and wall converge at the same value in all cases, except the C, in 6H
that was a large negative value. The influence of the leeward model disappeared
between 4H and 6H.

The C, distributions on the leeward roof and wall of most leeward model were
not affected by the distance between two pipe houses. The most leeward side pipe
house in a group of pipe houses may be designed and reinforced in same way in the

case of two and three pipe houses in a row.

Chapter 6 summarizes the conclusions of Chapters 1 to 5. In this study, the
reinforcement of pipe houses by bracing, the influence of the shape of pipe house on
the allowable snow load of pipe houses, and suitable arch pipe for pipe house were
determined. More over, the wind pressure coefficient C, for pipe houses, which is
the factor needed for the design of pipe houses, was obtained considering the
influence of the side gable openings. These results are indispensable to establish the
safety and economical design for pipe house.

In this study, only the time-averaged C, values were discussed. However, the
dynamic load effects of wind pressures have been recently considered important. The
effects should be researched for the safe design of pipe houses.

Pipe houses covered with two layers with air inflation between are able to
alleviate wind pressure themselves. The effect of the alleviation of wind pressure is

well known empirically by farmers. It is important that the behavior of that type of
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pipe house under wind pressure be tested and discussed.
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