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Abstract 
 

    Rice is a staple crop in eastern and southeastern Asia, the most populous area in the world. 

Rice production may change as a result of global warming through the CO2 increase, temperature 

rise, and change in precipitation. Thus, policymakers require reliable projections of the regional 

impacts on the production in order to consider mitigation and adaptation techniques. In particular, 

paddy rice in Japan is one of the suitable objectives to establish the projection framework 

because of accumulation of the reliable data regarding phenology, production infrastructures, and 

weather. The established framework is expected to be applied to other Asian countries as well to 

Japan.  

    Most of impact projections use a combination of climate model products and crop models. 

However, the reliabilities of the projections are often very low due to the accuracy limitation of 

climate model products. The products generated by climate models e.g., General Circulation 

Models (GCMs) and Regional Climate Models (RCMs), include a climate-model bias, which is 

defined as the difference between simulated and observed climates. Especially, the dynamically 

downscaled products include another RCM biases in addition to GCM biases, although it is 

highly improved in the temporal and spatial resolutions. Since crop models have been tuned to 

simulate crop phenology development and yield based on observed climate datasets, the 

climate-model bias could reduce the accuracy of crop model simulations. Thus, this study 

demonstrates the effect of climate-model bias on rice model simulation and suggests the adjusted 

climate scenario for reliable impact projections, which assumes in 2070s under the Special 

Report on Emission Scenarios (SRES)-A2 scenario.  

    Adjusted climate scenario is applied to develop the impact projections in extreme events 

e.g., cool and hot summers after global warming. A cool summer seriously hurts rice production 

in northern Japan in current climate. Besides, an extremely hot summer after global warming 

may reduce production by the heat stress during the flowering period. Thus, the assessment is 

required regard to the hazards of production variability. The results of rice model simulations 
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show that climate changes will reduce the damage by a cool summer. On the other hand, the 

climate changes will enhance the damage by heat stress in central and southwestern Japan, but 

the heat stress will be disappeared in northern Japan even in the hot summer. As a result of the 

global warming, the damage to yield by a cool summer is mitigated; however, the damage by 

heat stress is enlarged after global warming. 

    The crop insurance for rice contributes to stabilize rice farmer’s income. However, the 

global warming may affect the rice insurance payouts because of changes in production 

variability. Farmers expect the insurance works as an economic mitigation technique against the 

global warming, while policymakers require projecting the changes in the insurance payouts to 

examine the balance of income and payouts. Thus, changes in the insurance payouts in the 2070s 

are projected using a regime of simple rice insurance. The analysis framework is built by 

combining the climate model, crop model, yield damage assessment model, and insurance 

payout model. The simulation shows that the mean insurance payout during ten years in the 

2070s significantly decreases accompanying an increase in the interannual variability, while the 

future yield decreases both in the mean and the interannual variability. In addition, regional 

differences are found in the future changes regarding the yield and the insurance payouts in nine 

agricultural areas of Japan. The change in the insurance payouts is proportion to that in the 

stability of rice production. The regional differences in the stability could cause the shift of main 

source area for rice. Such changes will potentially affect to the agricultural economics.  

 

Key words: crop insurance, dynamic downscaling, economic assessment, global warming, 

impact assessment, Japan, paddy rice, regional climate model, rice model  
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1. Introduction 
 

 

1.1. Global warming impact on paddy rice production 

 

    Agricultural production including paddy rice will be strongly affected by climate change as 

a result of increasing levels of greenhouse gases. To assess the impact on agricultural production, 

many studies have projected the impact of global warming on the production of major crops in 

some countries by combining climate model products and crop models. They have tried to 

project the future production of, for example, maize, winter wheat, rice (Tsvetsinskaya et al., 

2003), cotton (Ruth et al., 2003), and grain crops (Thomson et al., 2005) in the U.S.A., as well as 

paddy rice in Japan (Toritani et al., 1999; Yokozawa et al., 2003; Nakagawa et al., 2003) and 

other major crops in China (Tao et al., 2003). 

    Paddy rice is a staple crop in eastern and southeastern Asia, the most populous areas in the 

world. Projections of regional climate change and impact on rice production are important in 

relation to food security for these areas, as stated by the Intergovernmental Panel on Climate 

Change (IPCC) in its Third Assessment Report (AR3; IPCC, 2001). Reliable projections work as 

an early warning and contribute to the investigation of mitigation and adaptation techniques. In 

particular, Japan is one of the suitable countries for which to establish impact projection methods 

for paddy rice because of the reliable accumulation of data, i.e., phenological data, 

socio-economic data related to production infrastructure and dense observational weather data. 

The established projection methods may be applied to other Asian countries as well to Japan.  

 

 

1.2. Previous studies regarding impact on paddy rice production in Japan 

 

    Most impact projections on paddy rice growth and production in Japan are based on the 

IS92A scenario. The scenario is presented in the IPCC Second Assessment Report (AR2; IPCC, 
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1996). Several early studies use other simple climate projections instead of the IS92A scenario, 

such as Seino (1993) and Yonemura et al. (1998).  

    Projections relating to paddy rice production in Japan are updated accompanying with the 

improvements in climate models, climate downscaling methods, and crop models. Some 

projections are shown according to the climate projections under the IS92A scenario presented in 

the IPCC AR2 (IPCC, 1995). One of them bases on a coupled atmosphere-ocean GCM product 

and shows that the rice growth period is shortened in current major source areas and cultivatable 

area shifts northwards (Toritani et al., 1999). The other shows that the rice yield decreases in 

southwestern Japan whereas it increases in northern Japan by using four GCM products (Horie et 

al., 1995; Nakagawa et al., 2003), and the projection also demonstrates that the interannual 

variability becomes larger in entire Japan in 2090s. Such projected changes are partially 

supported by the projection based on the improved crop model and five current climate 

projections submitted in the upcoming IPCC Fourth Assessment Report: AR4 (Iizumi et al., 

2006). 

    GCMs seem to be the only tools that allow the projection of global warming by greenhouse 

gas emissions. Although the spatial resolution of GCMs has been rapidly improving, it is still 

insufficient to project regional climate changes. Thus, downscaling of climate projection is often 

used to obtain high-resolution regional climate scenario. The four GCM products are downscaled 

by the interpolation technique in Yokozawa et al. (2003). Simply, these downscaled climate 

projections express climate changes by the addition or multiplication of climatological mean 

differences between the CO2 increase run and the control run of the GCMs to the observational 

climate datasets. Thus, the climate projections are limited in analyzing extreme years and 

inter-annual variability. Therefore, impact projections are still under development when subject 

to inter-annual variability and extreme years after global warming; e.g., the hot summer year and 

the cool summer year.  

    On the other hand, the dynamic downscaling technique is often used to further increase the 

resolution of GCM products by using regional climate models (RCMs) as well as statistical 

downscaling and interpolation. The dynamic downscaling technique is one of the key tools for 
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projecting regional climate change, although it has some limitations regarding the physical 

parameterization of RCMs. A current study that includes the achievement of dynamic 

downscaling extends impact assessment to extreme years and displays the impacts on paddy rice 

production in cool and hot summers after global warming (Iizumi et al., 2007).  

 

 

1.3. Purpose of the study 

 

    As mentioned above, it is under development to provide a reliable assessment of global 

warming impact on agricultural production, although a reliable impact assessment is strongly 

required by policymakers to examine countermeasures. No investigation has achieved to clarify 

the disturbance of climate-model bias on impact assessment. Additionally, less cross-disciplinary 

studies have conducted in wide-ranging sectors from the projection of regional climate change, 

estimation of crop production change, and assessment of change in agricultural economy. Thus, 

this study aims to build a reliable framework for projection to assess the impact of global 

warming on crop production and agricultural economic system taking paddy rice in Japan as an 

example.  
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2. Data and Methods 
 

 

2.1. Projection framework 

 

    The analysis framework in this study is designed to project future rice insurance payouts 

after global warming in Japan (Figure 2.1). The framework was composed of the following four 

modules: (1) a climate-projection downscaling module that dynamically downscales global 

reanalysis datasets and GCM products to obtain regional high-resolution climate projections; (2) 

a yield estimation module that estimates the typical potential yield of paddy rice in a unit area by 

using daily weather datasets; (3) a yield damage-assessment module that estimates the yield 

damage caused by natural hazards; (4) a rice insurance payout projection module that simulates 

the insurance payout based on the estimated production and a long-term average production. The 

module details are described in Chapters 2.2, 2.3, and 5.3.  

    The unit of calculation in this framework is the legal unit, i.e., the prefecture. Forty six out 

of the forty seven prefectures in Japan are chosen; a prefecture in the southwestern islands is 

excluded. Simulation results in respective prefectures are aggregated into the nine agricultural 

areas for display (Figure 2.2). The agricultural areas are defined by the Ministry of Agriculture, 

Forestry and Fisheries of Japan (MAFF).  

 

 

2.2. Regional climate model 

 

2.2.1. Dynamically downscaled climate scenario 

    The role of Regional Climate Model (RCM) is to reproduce the present climate and to 

project the regional climate in 2070s based on the GCM products under the SRES (IPCC, 2000) - 

A2 scenario. The Meteorological Research Institute - Coupled GCM ver.2 (MRI-CGCM2; 

Yukimoto et al., 2001) products are adapted in this study. The GCM products are referred as the 
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one of climate projections in the IPCC AR3 (IPCC, 2001). 

We used a RCM (TERC-RAMS) as the module relating to climate projection downscaling; 

the TERC-RAMS is a version of the Regional Atmospheric Modeling System (RAMS) modified 

by the Terrestrial Environmental Research Center (TERC), University of Tsukuba (Yoshikane 

and Kimura, 2003; Sato and Kimura, 2005, Sato et al., 2006). The original version of the RAMS 

is developed at the Colorado State University (Pielke et al., 1992). The RCM includes the 

physical schemes and parameterizations summarized in Table 2.1 and has a two-way nested grid 

system shown in Figure 2.3. The coarse grid system covers entirety eastern Asia with 120 km 

grid interval, while the fine one covers entirety Japan with 30 km grid interval with the exception 

in southeastern islands. Both grid systems include 30 vertical layers in the terrain following 

coordinate system. The lowest layer locates 110 m up from the screen height.  

    We conform to a dynamic downscaling method, namely “pseudo warming method” 

suggested by Kimura (2005). The method is developed to estimate the regional climate change 

with reducing a GCM bias, the most serious issue for projection (Sato et al., 2006; Misra and 

Kanematsu 2004). The downscaling method has limitations in the assumption of same 

interannual variability with current climate, but the method is valid to generate a climate scenario 

for impact projection. The method is applied in Mongolia (Sato et al. 2006), Japan (Iizumi et al., 

2007) and Turkey (Tanaka et al., 2006). 

    When the RCM projects a climate condition in 2070s, the boundary condition of RCM was 

assumed to be a linear composite of reanalysis data at 6-hour intervals and the warming 

component between the 1990s and 2070s in the GCM products. The warming component was 

given by the following process that firstly, the monthly mean climate data was calculated from 

the GCM products at 6-hour intervals. Secondly, the 10-year mean data was obtained by 

averaging the monthly mean data for 1990s and 2070s, respectively. The warming components 

are the difference in the monthly 10-year mean data between above two periods. The warming 

components of the GCM include wind speed and temperature, geopotential height, specific 

humidity, sea surface temperature (SST). The warming components of GCM are loaded on the 

time series of a reanalysis and SST data, time-independently. The reanalysis data is produced by 
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the National Center for Environmental Prediction / National Center for Atmospheric Research 

(NCEP/NCAR). By using the composite including reanalysis data, the synoptic condition of 

simulated future year is very similar to that of specific present year. Thus the simulated future 

year is called “pseudo year”, and it means a year after global warming which has very similar 

synoptic condition to a present year.  

    On the other hand, the RCM uses the reanalysis data and monthly mean SST (Reynolds et 

al., 2002) as the boundary condition when the RCM reproduces the present climate. The 

reanalysis data fed to the RCM is six-hourly NCEP/NCAR reanalysis. The numerical experiment 

corresponds to the “hindcast”. The hindcast and the projection are carried out for 10 years in 

1990s and 2070s (from current and pseudo year 1991 to 2000).  

 

 

2.2.2. Use of regional climate change scenario 

    RCMs have the climate-model bias as well as GCMs. The RCM bias is also serious issue 

when the global warming impact is projected by use of the RCM products. We prepared the 

warming component of RCM as the differences between projection and hindcast. The warming 

component of RCM includes temperature, downward shortwave radiation, and precipitation. The 

warming components of RCM are added to the grid point value of observational datasets, given 

by the Automated Meteorological Data Acquisition System (AMeDAS) provided by the Japan 

Meteorological Agency. The value of AMeDAS is interpolated to the grid points of the second 

coordinate of the Digital Numerical Land Information (DNLI) with temperature adjustment 

reflecting to the altitude. The DNLI is provided by the Ministry of Land, Infrastructure and 

Transportation of Japan. The grid interval of the DNLI is 5.0 minutes in latitude and 7.5 minutes 

in longitude (approximately 10 km ×10 km). We call the processed datasets “adjusted climate 

projection” and assumed as the future regional climate projection.  

 

 

2.3. Rice model 
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2.3.1. Yield formation of the SIMRIW 

    A crop model for rice (SIMRIW) is adapted. The SIMRIW (SImulation Model for RIce and 

Weather-relationship; Horie et al., 1995a, Nakagawa et al., 2003) estimates potential rice growth 

and yield under the idealized condition of an irrigated paddy field and good managements of 

nutrients, pests and diseases. The SIMRIW has adequate capability to reproduce the inter-annual 

variability and the spatial distribution of rice yield in Japan (Horie 1995a, Nakagawa et al., 2003). 

The model simulates potential rice growth using data of daily minimum and maximum 

temperatures and daily total solar radiation. Precipitation is eliminated from the input data in this 

study for the following two reasons. First, since most of rice is produced in irrigated paddy fields, 

precipitation is not a critical factor of rice yield in Japan. Second, since precipitation is predicted 

to increase in the summertime in eastern Asia (IPCC, 2001), water resources are expected to be 

available under the future climate condition in Japan. 

    The SIMRIW detail is described by Horie et al. (1995b). Here, we overview the 

parameterization regarding yield formation suggested by above mentioned work of Horie et al. 

The constituent elements of parameterization will be shown as a result of the rice model 

simulations in Chapter 4 for diagnosing the rice response to climate change.  

The potential yield ( ) means the potential dry weight of brown rice in this study. The 

potential dry weight of brown rice is a function of the total dry weight including roots at maturity 

day ( ) and the harvest index ( ), as follows:  

PY

tW h

        .                                                      (2.3.1.1) thWPY =

The harvest index takes account of two types of spikelet sterility; i.e., that due to a cool 

temperature ( ) and that due to a high temperature ( ) during the flowering period. The more 

influential value is adapted as the  in the model.  

ch hh

h

    The harvest index ( ) is given as the following function when the harvest index 

corresponds to stress from cool temperatures:  

ch

        ( ) ( )[{ 22.1exp11 ]}−−−−= DVIKhh hcmc γ ,                             (2.3.1.2) 

where  is the maximum harvest index of the given cultivar and  is an empirical constant. mh hK
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The maximum harvest index of the given cultivar is obtained under optimum conditions for air 

temperature, solar radiation, nutrients, pests and diseases. The Development Index (DVI) 

represents the alternation of the crop stage in the range of 0 to 2. The DVI means the heading day, 

approximately same as the flowering day, when its value reaches 1. The DVI means the maturity 

day when its value reaches 2. The ratio of sterile spikelets as a result of the damage by a cool 

summer ( cγ ) is approximated as follows:   

        ,                                                 (2.3.1.3) a
tqc QK−= 0γγ

where 0γ ,  and  are empirical constants. The cooling degree-days  is given as a 

function of daily mean temperature ( ) during the period when rice panicles are most sensitive 

to cool stress. The time period is defined by the DVI and ranges from 0.75 to 1.20. Thus  is 

given as follows:  

qK a tQ

iT

tQ

        .    (( )∑ −= it TQ 22 )20.175.0 ≤≤ DVI                             (2.3.1.4) 

    Rice yield is also damaged by high temperature during the flowering period. The harvest 

index ( ) is given by the following function when the harvest index corresponds to heat stress. 

The parameterization is suggested by Nakagawa et al. (2003).  

hh

        ( hmh hh )γ95.000.1 −= ,                                            (2.3.1.5) 
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where hγ  is the ratio of sterile spikelets as a result of heat damage to unity. maxT  is the daily 

maximum temperature averaged over the flowering period.  is the lower critical temperature 

for rice growth.  is the optimum daily maximum temperature during the flowering period. 

 is the upper critical temperature. 

bT

oT

cT α  is the curvature factor. We conform to Nakagawa et al. 

(2003), and we adapted the same values for the above parameters; i.e., 10 and 43 oC for  and 

. 

bT

cT α  is also fixed at 4.77 and 12.78 for CO2 concentrations below and above 550 ppm, 

respectively.  

    We also conformed to Nakagawa et al. (2003) with respect to the cultivars setting in each 
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prefecture. Additionally, the initial values of leaf area index, DVI, initial dry weight and 

technical coefficient were regulated to fit the actual yield record, provided by the MAFF. The 

rice model simulates at each grid point of DNLI, respectively, based on the given climate 

datasets. The climate datasets include the daily maximum/minimum temperatures and the daily 

total solar radiation. Precipitation is eliminated from the input elements because the accuracy of 

precipitation in the RCM products is quite low.  However, a slight change in precipitation is not 

the critical factor in the irrigated paddy rice. Thus, not using precipitation does not spoil the 

reliability of our simulation results.  

    The rice model hindcasts the present yield when the model is based on a 330 ppm CO2 

concentration and observational climate datasets. The numerical experiment is named the 

“Yield-present-run”. The rice model projects the future yield when the model is based on a 550 

ppm CO2 concentration and the adjusted climate projection and this experiment is named the 

“Yield-warming-run”.  

    Despite its good capability, the SIMRIW has limited capability in climate acclimatization. 

The partial effect of acclimatization is included in the parameters regarding the phenology 

sub-model of the current model through the parameter optimization process. The current model 

implicitly considers the effect of climate acclimatization rather than explicitly. Thus, our 

simulation results have an uncertainty regarding the effect of climate acclimatization.  

 

 

2.3.2. Modification of the SIMRIW to Regional-Scale Rice Model 

    A modified version of SIMRIW (SImulation Model for RIce-Weather relationships) was 

developed as a Regional-scale Rice Model (RRM) and included into the analysis framework as 

the rice yield estimation module. The RRM is used in Chapter 5. The original version of 

SIMRIW is a simplified process model to simulate the relation between rice growth in irrigated 

paddy and surrounding weather condition i.e. daily maximum/minimum temperatures and daily 

total solar radiation (Horie et al., 1995; Nakagawa et al., 2003). The SIMRIW is validated that it 

has enough capability to reproduce yield and heading day in their interannual variability and 
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spatial distribution. Heading day is quite important as well as yield. The time period which at and 

before heading day is most sensitive to heat and cooling stresses respectively, a correct 

estimation of heading day is strongly responsible to the accuracy of yield estimation.  

    The RRM detail will be addressed by Yokozawa et al. (submitting), we briefly note the 

resultant improvement by modifications. The RRM was improved in its subjective scale with 

taking over basic parameterizations regarding phenology and yield formation. Crop models used 

in previous studies have a large disagreement in spatial scale with climate model products. Most 

crop models assume a field scale, whereas climate models used for climate projection cover the 

global to regional scale. A regional-scale crop model is required to couple with downscaled 

climate products. Reduction of disagreement in spatial scale contributes to decrease errors in 

yield estimation.  

    The RRM was improved not only in the scale-up but also in the response of spikelet sterility. 

The model includes the spikelet sterility response to the combination of high temperature and 

high CO2 concentration during flowering period (roughly corresponds to heading day) suggested 

by the work of Nakagawa et al. (2003).  

    The modification regarding scale-up was carried out through the new parameter setting. The 

parameters regarding phenology and yield formation are optimized to describe the typical growth 

and yield in each prefecture for the past 25 years based on the daily time series of area mean 

weather data on paddy fields. Observed heading day and yield are obtained from “Crop 

statistics” provided by the MAFF. The gridded AMeDAS provided by the National Institute for 

Agro-Environmental Sciences (NIAES) is adapted as the observed weather dataset. The 

parameters were estimated based on the dataset in the odd years, and the estimated heading day 

and yield were cross-validated with the actual records in the even years. 

As the result of cross-validation, the RRM simulates very well the interannual variability 

and mean of yield and heading day under the present climate condition. The correlation 

coefficient in yield averaged over 46 prefectures is 0.576 with Root Mean Square Error (RMSE) 

of 0.609 t/ha, while the heading day is also well simulated with mean correlation coefficient of 

0.731 with RMSE of 6.907 days. In spite of such good capability, the model has some limitations 
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such as a larger RMSE in yield over northern area, and the lack of damage assessments from 

irregular events (i.e. typhoon and heavy rain). The partial improvement can be seen regarding 

assessment of irregular events by coupling with the yield damage assessment model. The detail 

of damage assessment model is described in Chapter 5.  
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Figure 2.1:    Schematic diagram of the analysis framework. The rhombic boxes show the 

models. RCM: regional climate model, RRM: regional-scale rice model, RSDM: regional 

stochastic damage model, Insu: insurance payout model. Tmax, Tmin, SR, P, and W are daily 

values of maximum and minimum air surface temperatures, daily total solar radiation, hourly 

maximum precipitation, and hourly maximum wind speed, respectively. LAT: latitude, Dp, Dh, 

and Dm: planting day, heading day, and maturity day, PY: potential yield, NDheat and NDcool: 

net yield damages caused by heat stress and cool summers, NDstorm, NDdiseases, and NDpests: 

net yield damage caused by storms, disease, and pests, NDtotal: total yield damage, Y: yield, Y : 

long-term mean yield, : insurance-covered yield damage, A: planted acreage, Y∆ φ : insurance 

coverage, Price: mean price of rice in the 1990s, and L: rice insurance payment. 
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Figure 2.2:    Names of agricultural areas in Japan 
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Coarse domain 

Fine domain 

Figure 2.3:    Domains of the regional climate model (TERC-RAMS); the shading shows the 

topography of the RCM, and the contour interval is 100 meters. 
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Table 2.1:    The calculation condition of the RCM 

 

Horizontal grid system: 

    Coarse grid system: 50 x 50, 120 km grid interval, centered on 137.0oE, 38.5oN 

    Fine grid system: 62 x 62, 30 km grid interval, centered on same with above 

Vertical layer: 30 layers, 110 m thickness in lowest layer 

Soil layer: 11 layers 

Vegetation type: Short grass 

Sea surface temperature: Monthly mean SST (Reynolds et al., 2002) 

Start time: 24 hour before the 1st day each month for every integrations 

Dynamical process:  

    Nonhydrostatic equations 

    Terrian following coordinate system 

Physical process: 

    Radiation: (Nakajima et al., 2000) 

    Cumulus convection: (Arakawa and Schubert, 1974) 

    Cloud microphysics: (Walko et al., 1995) 

    Surface process: (Louis, 1979) 

    Soil model: (Tremback and Kessler, 1985) 
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3. Disturbance of climate-model bias 
 

 

3.1. Climate-model bias 

 

Climate-model bias, the difference between the simulated climate and the actual observation, 

reduces the accuracy of climate-model products. Each GCM and RCM has its own model bias, 

so downscaled climate data include both RCM bias and GCM bias. Mearns et al. (2003) stated 

that the reproduction of the present climate by climate models remains a challenging issue. 

    Crop models are designed to simulate crop growth and yield based on an observed climate 

dataset, and the model parameters have been tuned using observed data. Climate-model bias 

sometimes seriously reduces the accuracy of crop model simulations. Careless application of 

climate-model products to crop simulation often destroys the reliability of the impact projection. 

The conventional projection method for the impact of global warming, a simple combination of 

climate models and crop models, is not sufficient to obtain the accurate simulation results. The 

reliability of the impact projection must be considered in order to obtain an accurate projection 

of crop production.  

    This chapter focuses on the effects of model bias in climate data on yield estimation by a 

crop model. Three sensitivity tests of rice yields were used. The first test is the sensitivity of the 

present rice yields to errors in climate data, which can be estimated as the difference between the 

rice yield based on observed climate data and that based on the present climate data reproduced 

by RCMs. This difference is the estimation error of the current yield in the impact projection. 

The second test is the sensitivity of the yield to climate change, which can be estimated by 

calculating the difference between the estimated yield based on the reproduced present climate 

data and that based on future climate data projections by RCMs. We propose new, corrected 

future climate data, a composite of observed climate data and the difference between future and 

present climates estimated by RCMs. The third type of sensitivity can be estimated by finding 

the difference between the projected yield based on future climate data directly estimated by 
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RCMs and the yield based on the future OCD.  

 

 

3.2. Data and Methods 

 

3.2.1. Use of climate data 

Two climate datasets are provided: Model output Climate Datasets (MCDs) and Observed 

Climate Datasets (OCDs). Each dataset includes present and future climate data. The MCDs 

were obtained by the downscaling technique based on reanalysis data and GCM products using 

RCMs (see in Chapter 2.2.1 and 2.2.2).  

     The RCM estimates the present MCDs in 1991 and 1994 as Run-1, as shown in Figure 1. 

This run is almost the same as a hindcast, the prediction of past weather through the use of the 

RCM, and it indicates the reproductive capability of the RCM by a comparison with the present 

OCD. The RCM also estimates future MCD, Run 2 in Figure 3.1.  

     Observational climate data are employed as the present OCD, most of which were given 

by the AMeDAS (the distance to each station is approximately 25 km) and provided by the Japan 

Meteorological Agency. The solar radiation of the present OCD is estimated from the sunshine 

duration of AMeDAS. The climate data are also interpolated to the second grid coordinate of 

DNLI. The future OCD is assumed to be a composition of observational and differential 

components. The differential component is defined as the difference between the future MCD 

and the present MCD estimated by the RCM in a fine grid system, which indicates a regional 

climate change as the result of global warming. The differential components are common to the 

future MCD and OCD, so these two are only different in the basic climate data hindcast by the 

RCM and observed data, respectively. The difference between the present MCD and OCD is 

expected to be the RCM bias. 

 

 

3.2.2. Rice model simulations 

 17



Four rice yield estimations are carried out using a crop model for rice. The crop model 

calculates the rice yield using MCDs and OCDs. Since each includes the present and future 

climate datasets, the crop model runs four times in Run-A to Run-D, as shown in Figure 3.1. The 

crop model adopted here is SIMRIW (Horie, 1990; Toritani et al., 1999; Nakagawa et al., 2003).  

The CO2 concentration is fixed at 330 ppm in both the present and future climates since the 

simulation focuses on the effects of climate-model bias on yield estimations in this chapter. The 

outline of the crop-model setting is given in Table 3.1. These setting parameters are common in 

the four runs. 

     The crop model hindcasts the present rice yield based on the present MCD in Run-A. The 

present MCD is obtained by Run-1. This run corresponds to the estimation of the baseline yield 

in the conventional method of impact projection. Then the crop model projects the yield as 

Run-B, assuming the climate condition in the 2070s based on the future MCD. The future MCD 

is projected by Run-2, which corresponds to the future yield estimation by the conventional 

method. Next, the crop model again hindcasts the present yield, but it is based on the present 

OCD as Run-C, where the present OCD is obtained from the grid interpolation of observational 

climate data. The phenological parameters and initial conditions of the crop model have been 

adjusted using the present OCD and actual yield, so this run demonstrates the reproductive 

capability of the crop model. Finally, the crop model again projects the future yield, but it is 

based on the future OCD as Run-D. The future OCD is obtained by the process mentioned above 

using the present OCD and the results of Run-1 and Run-2. 

     The difference in estimated yield between Run-A and Run-C is caused by the difference 

between the present MCD and present OCD, i.e., the model bias. Therefore, the difference 

between these two runs indicates the effects of the climate-model bias on the present yield 

reproduction. The difference in the estimated future yields between Run-B and Run-D is caused 

by the difference between the future OCD and MCD, which is the same as the difference 

between the present MCD and OCD, as mentioned above. The difference in estimated yield 

between Run-B and Run-D indicates the effect of climate-model bias on future yield projections. 
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3.3. Results 

 

3.3.1. Climate-model bias in the reproduced present climate 

The result of Run-1 is compared with the present OCD to assess the accuracy of the RCM 

products. The differences in climate values over a 6-month period are shown in Figure 3.2 as the 

2-year mean and area mean values of MCD - OCD. Area mean differences for all of Japan except 

for the southwestern islands are shown in Figure 3.3. The monthly mean temperature shows a 

cold bias of about 2 K in average. The monthly mean daily maximum temperature has a 

significant cold bias of about -5 to 0 K, which tends to be enhanced during summer. On the other 

hand, the monthly mean daily minimum temperature has a warm bias, prominent in September 

and October, of about 1 to 3 K. As a result, the diurnal range of the present MCD is smaller than 

that of the present OCD.  

     The monthly mean daily total solar radiation of the MCD agrees well with that of the OCD 

from May to July, although it is significantly smaller than that of the OCD from August to 

October. The monthly total precipitation also is in good agreement; however, the precipitation 

totals of the MCD are significantly underestimated in July, August, and September and 

overestimated in June and October.  

     Table 3.2 represents spatial correlation coefficients of five climate variables between the 

2-year mean present MCD and OCD from May to October, the entire period of rice crop growth. 

The RCM shows high accuracy for the spatial distribution of temperature. The correlation 

coefficients are 0.369 - 0.669 for the monthly mean temperature, 0.252 - 0.378 for the monthly 

mean daily maximum temperature, and 0.401 - 0.620 for the monthly mean daily minimum 

temperature. The correlation coefficients of the maximum and minimum temperatures are quite 

poor in August.  

     The monthly mean daily maximum temperature has a warm bias in northern Japan and a -5 

to 0 K cold bias in southwestern Japan in all months for which estimates were made. The cold 

bias in the daily maximum temperature is enhanced and extended in the area in summer. The 
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daily minimum temperature shows a higher accuracy in the spatial pattern than at the maximum 

temperature. The daily minimum temperature has a slightly warm bias in most of the Japanese 

mainland, although a slight cold bias appears in the central part in all months as well as in the 

Sea of Japan side from May to July. The warm bias of the daily minimum temperature is 

enhanced in September and October. As a result, the monthly mean temperature of the present 

MCD has a cold bias of 2 K, while the diurnal range of the MCD is smaller than that of the 

OCD. 

     The spatial correlation coefficients of the monthly mean daily total solar radiation are 

0.211 - 0.451. The spatial pattern of the present MCD agrees fairly well with that of the OCD. 

However, daily total solar radiation of the present MCD tends to be overestimated in northern 

Japan, while it is underestimated in the southwestern part from August to October. The spatial 

correlation coefficients of the monthly total precipitation are quite poor, only 0.003 - 0.198. 

Although the spatial pattern of the present MCD agrees fairly well with the OCD in May and 

June, the spatial pattern of the present MCD disagrees with the observed data from July to 

October (The spatial correlation coefficients during 10 years can be seen in Appendix A). 

 

 

3.3.2. Regional climate change in Japan 

Figure 3.4 shows the 2-year mean regional projection of the different components obtained 

by Run-1 and Run-2. The monthly mean daily maximum and minimum temperatures increase by 

about 2 K until the 2070s. The monthly mean temperature increases more in October than in the 

other months. Total solar radiation slightly increases from June to October, while precipitation 

decreases from May to June but increases from July to October.  

     The spatial pattern of the differential components of the RCM is shown in Figure 3.4. The 

monthly mean daily maximum and minimum temperatures increase in all of Japan (Figures 3.4a 

and 3.4b). The temperature increases less in May and June than in the other months.  

     The monthly mean temperature increase of 0 to 2 K is associated with the same levels of 

increase in the minimum and maximum temperatures. The monthly mean daily total solar 
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radiation decreases in the northern islands and on the Pacific side of northern Japan during all 

months for which estimates were made (Figure 3.4c). It also decreases on the Sea of Japan side 

of the southwestern mainland in May and June.  

     Changes in monthly total precipitation depend on the area and the month. Precipitation 

slightly decreases in most of Japan from May to June, but it increases in southwestern Japan 

from September to October and from July to August, although the increments are quite small. 

Solar radiation slightly increases in August and October, while precipitation increases. The 

assumed reason is that the area of cloud cover shrinks while the frequency of heavy rainfall 

events increases due to the effects of global warming. By a numerical simulation using 

MRI-CGCM2, Yukimoto et al. (2001) suggested that heavy precipitation would increase due to 

global warming. Downscaling of the projection should take over the feature of MRI-CGCM2 (in 

addition, time series of projected regional climate change can be seen in Appendix B).  

 

 

3.3.3. Effect of model bias on yield and impact of global warming 

The results of Run-A and Run-C are validated by the actual yield record, "Crop Statistics," 

provided by Ministry of Agriculture, Forestry, and Fisheries of Japan. The estimated present 

yield agrees well with the record when it is estimated based on the present OCD (Figure 3.5c) 

but not on the present MCD. The estimated yield based on the MCD is significantly 

underestimated in southwestern Japan.  

     The projection of yield change is shown in Figure 3.6. The spatial distributions of yield 

change show a large difference between the two results obtained based on the OCD and MCD. 

The projected yield change based on the OCD shows a decrease in yield in most of southwestern 

Japan, but based on the MCD, it increases in all of Japan.  

 

 

3.4. Discussion 
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    To reproduce the present climate accurately using climate models is still challenging issue 

even in current days. The accuracy of climate models is not always high, and the reliability is 

sometimes insufficient. The accuracy of climate model products depends on climatic variables, 

area, seasons, and parameter setting in models. For example, Mearns et al. (2003) stated that the 

accuracy for extreme values, such as the maximum temperature in summer, is worse than that for 

the mean temperature in NCAR RegCM.  

    The model bias of the RCM products is summarized as follows. The daily minimum and 

maximum temperatures show a slight warm bias and a significant cold bias, respectively. The 

daily mean temperature indicates a cold bias of about 2 K as a result of a significant cold bias in 

the daily maximum temperature, as mentioned above. Thus, the diurnal range of temperature in 

MCDs is smaller than that in OCDs. The RCM gives a fair value for the area mean monthly total 

precipitation, while the accuracy of the spatial pattern depends on the season. Although the RCM 

tends to underestimate the monthly mean daily total solar radiation, it simulates the spatial 

pattern better than it simulates precipitation. 

    Climate-model bias, sometimes, seriously reduces the accuracy of the crop model. The cold 

bias in the daily maximum temperature causes the underestimation of yield damage due to heat 

stress. The warm bias in the daily minimum and mean temperatures leads to an underestimation 

of the yield damage by cold stress. The bias in the daily mean temperature reduces the accuracy 

of the flowering day period in the simulation. During the flowering period, crops are most 

sensitive to the heat, while cold stress is directly related to yield. Underestimating the daily total 

solar radiation leads to an underestimation of the total dry weight and yield at harvest time.  

    The spatial distribution of yield change until the 2070s shows a large difference between 

OCDs and MCDs. The projection based on MCDs indicates that the rice yield increases in most 

of Japan. On the other hand, the projection based on the OCDs shows that the yield decreases in 

most of southern Japan due to heat stress. The difference in the yield change is caused only by 

the climate-model bias since the crop-model runs assume the same condition except for the 

climate dataset. Appearance of the differences between the present and future climate data are 

common among MCDs and OCDs. The source of the difference derives only from the difference 
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in the baseline climate which exists between the present MCD and OCD.  

The above-mentioned fact means that the projection of yield change is strongly affected by 

climate-model bias. Consequently, the careless use of climate-model products leads to capricious 

errors in impact projection due to non-linear effects of climate-model bias. Most of crop models 

use daily climate variables and their time-integrated value in each crop stage. Thus, 

climate-model bias sometimes expands its effects so much in crop models that the error in the 

estimated crop growth and yield becomes quite large.  

    Moreover, crop models respond non-linearly to changes in climate variables near the 

assumed thresholds. For example, the yield of a cultivar of rice is reported to decrease drastically 

due to heat stress when the daily mean temperature is above 26 oC (Kim et al., 1996). Rice yield 

also decreases when the daily mean temperature decreases below 20 oC during the microspore 

stage (Satake and Yoshida, 1978). Furthermore, water stress affects dominantly crop growth and 

yield in semi-arid and non-irrigated areas.  

    The accuracy of the spatial pattern in the estimated precipitation is often lower than that of 

temperature and solar radiation even though the monthly total or area mean precipitation agrees 

fairly well with the observation. Although changes in available water resources and the impact 

on crop production are of concern, the accuracy of the estimated precipitation by the model is 

often insufficient to input data to the crop models. The careless use of model-estimated 

precipitation reduces the reliability of impact projections. In order to maintain reliability, MCDs 

should be replaced by OCDs, which mitigate better the negative effects of climate-model bias for 

impact projection. 

    Generally, phenological parameters in the crop model have been adjusted to optimize the 

estimations of crop growth and yield formation. The phenological parameters include the 

development index and leaf area index as well as the threshold values mentioned above. The 

best-fit parameters are obtained from observational weather data and crop growth records in 

experimental fields, so the crop models can perform within the variation range of these weather 

data. On the other hand, it does not seem reasonable to fit phenological parameters to adjust to 

the relation between MCDs and the actual crop growth record in order to avoid a mismatch 
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between them because doing so may unacceptably modify the phenological meanings of the 

parameters because of climate-model bias. The present method allows the mismatch to be 

reduced without modifying the phenological parameters. 

 

 

3.5. Summary 

 

A simulated rice yield by the crop model agreed well with the actual yield record when 

OCDs were assumed for the input climate data. The accuracy of the estimated yield, however, 

was quite poor when it was simulated based on present MCDs. The latter significantly 

underestimated the yield and failed to reproduce the spatial distribution of the yield. These 

results indicate that climate-model bias sometimes seriously reduces the accuracy of the crop 

model simulations.  

     The estimated change in yield until the 2070s was estimated using present and future 

OCDs, and another estimation of the yield change was obtained using present and future MCDs. 

These two estimations differ considerably, although the components of climate change until the 

2070s are common in OCDs and MCDs. The difference in the yield change is caused by the 

difference in the baseline climate, i.e., the present climate, in OCDs and MCDs, which means 

that the crop model responds non-linearly to changes in climate variables. The yield estimation 

tends to be quite sensitive when one climate variable is near the threshold value assumed in the 

model. The present method not only reduces the model bias induced by the climate models but 

also suppresses error enhancement by the non-linearity of the crop model. As a result, this 

method allows the reliability of the estimation of future yield to be maintained more easily.  
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Figure 3.1:    Relationship of two climate estimations by the RCM and four rice yield 

estimations by a crop model. OCD is the Observed Climate Dataset, while MCD is the Model 

output Climate Dataset (see Chapter 3.2.1). A solid arrow shows the climate data input to the 

crop model; a dotted arrow shows processing climate data for obtaining the future OCD.  

 

 25



 

 

 

 

 

 

Projection (Run-2) 
Reproduction (Run-1) 
Observation 

Figure 3.2:    Two-year mean area means of five climate variables in observations, 

reproduction, and projection by the RCM. a) Monthly mean temperature. b) Monthly mean daily 

maximum temperature. c) Monthly mean daily minimum temperature. d) Monthly total 

precipitation. e) Monthly mean daily total solar radiation. The white bars correspond to the 

2-year mean present OCD. The dark-gray bars and light-gray bars correspond to the reproduced 

present and future MCDs, respectively.  
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 Climate-model bias 

 

minT∆

maxT∆

SR∆

ecPr∆  

Figure 3.3:    Differences in climate variables calculated by subtracting the present MCD from 

the present OCD. a) Monthly mean daily minimum temperature. b) Monthly mean daily 

maximum temperature. c) Monthly mean daily total solar radiation. d) Monthly total 

precipitation. 
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Figure 3.4:    Changes in climate variables calculated by subtracting the present MCD from 

the future MCD. a) Monthly mean daily minimum temperature. b) Monthly mean daily 

maximum temperature. c) Monthly mean daily total solar radiation. d) Monthly total 

precipitation. 
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a) Actual yield 

b) Run-C 

c) Run-A 

Figure 3.5:    Comparison of two reproduced present yields versus the actual yield. Actual 

yield recorded in the crop statistics of each prefecture (top); estimated yield based on present 

OCD, which is the result of Run-C (middle); estimated yield based on present MCD, which is 

the result of Run-A (bottom). Gray area represents a non-paddy field. Solid line shows a 

prefectural border in Japan.  
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Run-C Run-D 

Run-B 

D - C 

B - A Run-A 

Yield change Yield in 2070s Yield in 1990s 

Figure 3.6:    Simulated rice yield based on four climate data and their differences as yield 

changes due to global warming. Run-A, Run-B, Run-C, and Run-D correspond to the respective 

run names in Figure 1. The upper row shows the estimated present yields based on the present 

OCD (left), the future yield based on the future OCD (middle), and the projected yield change 

calculated from Run-C minus Run-D (right). The lower row shows the estimated present yields 

based on the present MCD (left), the future yield based on the future MCD (middle), and the 

projected yield change calculated from Run-B minus Run-A (right).  
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Table 3.1:    Calculation conditions of the crop model 

Breed type 1: Ishikari        

2: Sasanishiki     

3: Koshihikari    

4: Nipponbare    

5: Mizuho       

CO2 concentration    330 ppm 

Technical coefficient   1.00 

Transplanting date 6 May - 10 Jul. 

Initial development index 0.05 - 0.25 

Initial leaf area index 0.01 - 0.1 

Initial dry weight  10 - 20 g/m2
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Table 3.2:    Spatial correlation coefficients of present OCD and present MCD 

  Precipitation Solar radiation
Mean 

temperature 

Maximum 

temperature 

Minimum 

temperature 

May 0.152  0.233  0.547  0.351  0.596  

Jun 0.198  0.451  0.511  0.330  0.620  

Jul 0.047  0.234  0.446  0.378  0.426  

Aug 0.003  0.211  0.369  0.252  0.401  

Sep 0.062  0.292  0.669  0.373  0.511  

Oct 0.052  0.248  0.632  0.361  0.406  

 

 

 

 

 

 

 

 

 

 

 

 32



4. Rice production in extreme weathers after global warming 
 

 

4.1. Cool and hot summers 

 

    Antecedent impact projection studies only use the climatological mean condition in the 

future and present due to reliability limitations of GCMs. However, new dynamic downscaling 

methods are suggested to increase the reliability of GCM products, such as in Sato et al. (2006) 

and Misra and Kanamitsu (2004). They also use the GCM anomalies between the future and the 

present to reduce the GCM bias. Additionally, they estimate the regional-scale climate change by 

using a Regional Climate Model (RCM). In particular, the method suggested by Sato et al. 

(2006) allows us to estimate the regional-scale climate change in respective years. A new 

dynamic downscaling method has several limitations according to the use of climatological 

anomalies in the GCM and the capability of RCMs. For example, the method does not account 

for changes in inter-annual variability of future climates. Nevertheless, the method provides 

useful information for impact projection studies, such as changes in the spatial pattern of climate 

elements.  

This chapter aims to show (1) the difference in the regional-scale climate change and (2) the 

influence on rice production between the cool summer year and the hot summer year after global 

warming. 

 

 

4.2. Data and Methods 

 

4.2.1 Use of climate data 

    We used the data of adjusted climate projection in current and pseudo years of 1993 and 

1994, as the extreme years (relating to “adjusted climate projection”, see Chapter 2.2.2). The two 

years represent a typical cool summer year and a typical hot summer year in eastern Asia (Suh 
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and Lee, 2004) in the 1990s. Using the pseudo warming method, the synoptic condition of the 

simulated future year is very similar to that of the specific present year. Therefore, the simulated 

future year is called “pseudo-year”, and means a year after global warming that has very similar 

synoptic conditions to the present year.  

 

 

4.2.2 Rice model simulations 

    The original version of SIMRIW was adapted. The rice model hindcasts the present yield 

when the model is based on a 330 ppm CO2 concentration and observational climate datasets. 

The numerical experiment is named the “Yield-present-run”. The rice model projects the future 

yield when the model is based on a 550 ppm CO2 concentration and the adjusted climate 

projection and this experiment is named the “Yield-warming-run”.  

    Despite its good capability, the SIMRIW has limited capability in climate acclimatization. 

The partial effect of climate acclimatization is included in the parameters regarding the 

phenology sub-model of the current model through the parameter optimization process. The 

current model implicitly considers the effect of climate acclimatization rather than explicitly. 

Thus, our simulation results have an uncertainty regarding the effect of climate acclimatization.  

 

 

4.3. Results 

 

4.3.1. Region-scale climate change over Japan as a result of global warming 

    Figure 4.1 shows the change in climate variables between the future and the present in the 

hot summer year, while Figure 4.2 shows the same changes but for the cool summer year. These 

changes are derived from the adjusted climate projection in Chapter 2.2.2. The following four 

changes in climate variables are shown as the warming components of the RCM: (a) the monthly 

mean daily minimum temperature ( minT∆ ); (b) the monthly mean daily maximum temperature 

( ); (c) the monthly mean daily total solar radiation (maxT∆ SR∆ ); and, (d) the monthly total 
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precipitation ( ).In the cool summer year after global warming (pseudo-year 1993), the 

monthly mean daily minimum temperature increases by 0.0 to 4.5 K throughout Japan from May 

to October. The increase is remarkable in northern Japan. The spatial patterns of the maximum 

temperature increase practically agree with those of the minimum temperature. And, the increase 

in the maximum temperature is smaller than that of the minimum temperature. The change in the 

monthly mean daily total solar radiation varies depending on month and area. Radiation 

decreases in northern Japan and increases in southwestern Japan from June to July. However, 

radiation increases in all of Japan in August and decreases in May. For September and October, 

the changes in radiation depend on area.  

ecPr∆

    The change in monthly total precipitation also varies depending on the month and the area. 

Precipitation increases slightly in part of northern Japan in June and July. Precipitation tends to 

decrease in western Japan in September and October and increases in most of Japan in May. In 

the hot summer year after global warming (pseudo-year 1994), the monthly mean daily 

minimum temperature increases by 0.0 to 3.5 K throughout Japan in May. The minimum 

temperature increases 1.5 to 3.0 K from June to September, except for a greater increase in 

northern Japan. The minimum temperature increases by 2.0 to 4.0 K in October. The monthly 

mean daily maximum temperature shows the same spatial pattern as that of the minimum 

temperature. However, the increase in the maximum temperature is less than that of the 

minimum temperature from May through October. The monthly mean daily total solar radiation 

increases slightly in southwestern Japan and decreases in northern Japan from May to June. The 

radiation increases slightly over all of Japan from July to October, whereas the increase is less 

than 400 kJ/m2. The change in monthly total precipitation varies depending on the month. 

Precipitation increases by 0 to 150 mm/month throughout most of Japan in May, July, August 

and October. Precipitation decreases slightly throughout Japan in June except for the area of 

facing Sea-of-Japan. Precipitation tends to decrease in northern Japan and increases in 

southwestern Japan in September.  

    The temperature increase in the hot summer year is slightly greater than that for the cool 

summer year. However, the increase in temperature in the cool summer year is greater that that 
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for the hot summer year in most target months in northern Japan. The minimum temperature 

increases are greater than the maximum temperature increases in both years. The changes in 

radiation are similar each year; i.e., radiation decreases in northern Japan from May to June but 

increases throughout Japan from July to October. Precipitation changes are different each year. 

Precipitation increases in southwestern Japan in May in the hot summer year and decreases in the 

cool summer year. Precipitation increases in most of Japan in May for both years. Precipitation 

changes show different spatial patterns from June to October. Precipitation tends to increase in 

southwestern Japan in the hot summer year, and decreases in this area in the cool summer year.  

 

 

4.3.2. Global warming impact on rice growth and yield 

    Figure 4.3 shows the percentage of simulated change in yield formation elements, such as 

(a) the potential yield ( ); (b) the averaged daily maximum temperature during the flowering 

period (

PY

maxT ); (c) the spikelet sterility ( cγ  in the cool summer year and hγ  in the hot summer 

year); (d) the harvest index ( ); and, (e) the total dry weight at maturity ( ). These yield 

formation elements are shown for the two years, respectively.  

h tW

    In the cool summer year after global warming (pseudo-year 1993), the potential rice yield 

increases 5 to 50 percent throughout Japan as a result of global warming. However, the potential 

yield remains the same as that under the present climate condition in northern Japan. The area 

mean average daily maximum temperature during the flowering period increases by 1.82 K, 

caused by an increase in the maximum temperature shown in Figure 4.2. Spikelet sterility 

decreases by 50 percent in northern Japan and in the high altitude area of southwestern Japan as 

a result of a reduction in the damage from a cool summer. The change in the harvest index 

corresponds to the change in spikelet sterility. The harvest index increases in accordance with the 

decrease in spikelet sterility. The total dry weight of rice including roots increases throughout all 

of Japan.  

    In the hot summer year (pseudo-year 1994), the potential yield decreases by 5 to 20 percent 

in southwestern Japan. However, yield under the future climate condition continues to increase 5 
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to 50 percent in northern Japan, compared to the increase under the present climate condition. 

The area mean average daily maximum temperature during the flowering period increases by 

2.89 K, as a result of the increase in the daily maximum temperature from July to August. 

Spikelet sterility increases by 40 percent throughout Japan except for northern Japan and in the 

high altitude area of southwestern Japan, as a result of heat stress. The harvest index decreases 

by 5 to 20 percent, caused by an increase in spikelet sterility and an increase in the average 

maximum temperature during the flowering period. However, the harvest index shows either an 

increase in the northern Japan. The total dry weight of rice including roots remains the same 

under the present climate condition in most of Japan. However, the total dry weight continues to 

increase in northern Japan.  

    Figures 4.4a and 4.4b show changes in total rice production in each agricultural area in the 

cool summer year and in the hot summer year. Figures 4.4c and 4.4d are the same as Figures 4.4a 

and 4.4b, but show mean rice yield. Total production is calculated assuming the same paddy 

acreage distribution as today. The land-use information is given by the DNLI. 

In the cool summer year, the mean yield averaged over agricultural areas increases from 

3.809 t/ha to 5.343 t/ha. The tendency for a yield increase is consistent across all areas, but the 

yield increase is significant in Hokkaido and Tohoku. Thus, the total production increases from 

7.1 10× 6 t to 12.3×106 t. On the other hand, in the hot summer year, the mean yield averaged 

over agricultural areas decreases from 4.990 t/ha in the present to 4.451 t/ha in a post-warming. 

Yield increases in Hokkaido, Tohoku, Kanto/Tozan, and Kyushu and decreases in Tokai, Kinki, 

Chugoku, and Shikoku. The yield in Kyushu, as well as the other areas in southwestern Japan 

(Figure 4.4), is affected by the increase in spikelet sterility caused by heat stress. However, the 

summation of a slight yield increase in the mountainous area is greater than the summation of the 

decrease in the lowland area. As the result of the change in yield, total production decreases from 

11.9×106 t in the present to 10.5×106 t in a post-warming. 

 

 

4.4. Discussion 
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    The regional-scale climate change is projected by the dynamic downscaling method. This 

method allows us to obtain climate data under global warming conditions in respective years; i.e., 

the hot summer year and the cool summer year.  

    The projected regional-scale climate condition shows that the daily maximum and minimum 

temperatures increase by 0.0 to 4.5 K throughout Japan. In our simulations, the temperature 

increase in the hot summer year is slightly greater than the increase in the cool summer year. The 

cool summer year and the hot summer year changes to one with a moderate or slightly hot 

summer under present climate conditions and to one with an extremely hot summer under future 

climate conditions, respectively. Additionally, the climate change projection is also obtained for 

solar radiation and precipitation. The projected climate variables maintain their inter-variable 

relationships under physical laws within the limits of the climate model. Thus, our climate data 

progresses in the above point compared with the climate data obtained by variable-independent 

interpolation.  

    In the cool summer year, the monthly mean daily total solar radiation tends to increase 

slightly in most of Japan from July to August. These changes in climate conditions positively 

affect rice yield. The temperature increase obediently leads to an increase in the average 

maximum temperature during the flowering period. However, the daily maximum temperature 

increase remains moderate throughout Japan. Thus, the temperature increase causes a significant 

decrease in spikelet sterility in northern Japan, which has been suffering from damage caused by 

a cool summer in the present climate. Spikelet sterility decreases cause a direct increase in the 

harvest index. The total dry weight of rice including roots increases throughout Japan. As the 

result, the rice yield increases significantly in most of northern Japan as a result of a decrease in 

spikelet sterility. However, the yield increase is quite small in northern Tohoku and Hokkaido 

despite the decrease in spikelet sterility. In such areas, the damage due to a cool summer is found 

even in the year after global warming.  

    In the hot summer year after global warming, changes in climate conditions affect the rice 

yield both positively and negatively depending on the area. The average maximum temperature 
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increase obediently causes an increase in the maximum temperature during the flowering period. 

The daily maximum temperature increase causes a significant increase in spikelet sterility in 

central to southwestern Japan, as a result of heat stress. The increase in spikelet sterility causes a 

direct decrease in the harvest index. The total dry weight of rice including roots remains the 

same as under the present climate. As the result, the rice yield decreases in central to 

southwestern Japan because of the increase in spikelet sterility due to heat stress. However, the 

maximum temperature increase does not reach a critical level. The temperature increase and a 

slight solar radiation increase lead to a yield increase in northern Japan even in the hot summer 

year after global warming.  

    Damage from a cool summer is the most serious negative factor for rice production in 

northern Japan. The hazard is expected to lighten as a result of the temperature increase due to 

global warming. However, we notice the possibility of cool summer damage even after global 

warming by considering the inter-annual climate variability with paddy rice acclimatized to high 

temperatures. Additionally, the yield damage from heat stress is not found in southwestern Japan 

during the cool summer year after global warming. Yield damage by heat stress during the 

flowering period is expected to swell during the hot summer year after global warming. However, 

yield damage from heat stress is not found in northern Japan even in the hot summer year after 

global warming. These changes indicated that the hazard related to yield variability by climate 

condition shifts southward as a result of global warming.  

 

 

4.5. Summary 

 

    This study updates the impact projection on rice production in Japan based on the dynamic 

downscaled MRI-CGCM2 products under the SRES-A2 scenario. The newly suggested dynamic 

downscaling method makes it possible to project the regional-scale climate change over Japan, 

and also allows us to extend the discussion to rice production hazards in the cool summer year 

and in the hot summer year after global warming.  
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    The projected regional-scale climate changes are summarized as follows:  

(1) The different changes in climate are found between the cool summer year and the hot 

summer year, although the boundary condition of the RCM in both years includes a common 

warming component of the GCM;  

(2) In the cool summer year after global warming, the monthly mean daily maximum/minimum 

temperatures increase by 1.0 to 4.5 K throughout Japan. Additionally, the monthly mean daily 

total solar radiation slightly increases in the summertime over Japan, whereas radiation decreases 

in northern Japan in June and July;  

(3) In the hot summer year after global warming, the monthly mean daily maximum/minimum 

temperatures increase by 0.0 to 4.0 K. The monthly mean daily total solar radiation shows an 

increase from July to October throughout Japan and a decrease in northern Japan from May to 

June.  

    The impact of region-scale climate changes on rice production is summarized as follows:  

(4) The impact of global warming on rice production is different between the hot summer year 

and the cool summer year, and also varies by area.  

(5) In the cool summer year after global warming, the temperature increase during the flowering 

period causes a spikelet sterility reduction derived from the damaged caused by a cool summer in 

northern Japan. Spikelet sterility reduction reflects the increase in the harvest index and leads to 

an increase in yield. The yield damage caused by heat stress is not found because the temperature 

increase remains at a moderate level in southwestern Japan;  

(6) In the hot summer year after global warming, the temperature increase directly reflects the 

increase in the averaged daily maximum temperature over the flowering period. The temperature 

increase leads to a significant increase in spikelet sterility as well as a decrease in the harvest 

index. As the result, yield decreases in central and southwestern Japan while yield continues to 

increase in northern Japan;  

(7) The hazard for yield variability by climate condition shifts southward as a result of global 

warming. The major hazard in the present climate, i.e. damage caused by a cool summer, is 

reduced in northern Japan. On the other hand, heat stress is enhanced, and becomes a new 
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serious hazard in central to southwestern Japan in the hot summer year.  

    Further study is required regarding estimating changes in frequency of the cool summer 

year and of the hot summer year after global warming based on GCM simulations. Another study 

is needed for impact projections based on the inter-annual variability of summer temperature 

simulated by the GCMs, as this study considers only the change in the mean climate and assumes 

that the inter-annual variability in the future climate is same as that in the present climate. Since 

our impact projection is based on one GCM, an ensemble of GCM products is required to 

improve the reliability of impact projection in future studies.  
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Figure 4.1:    The warming components of the RCM (see in the Chapter 3.3.2) in the year with 

a hot summer. 
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Figure 4.2:    Same as Figure 4.1 but the year with a cool summer.  
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Year with a cool summer Year with a hot summer 

 

Potential yield Potential yield 

Figure 4.3:    The percentage of change in the yield formation factors (see in the Chapter 2.3.1) 

in the year with a cool summer (left) and that with a hot summer (right).  
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a) Production in the year with a cool summer 

b) Production on the year with a hot summer 

c) Mean yield in the year with a cool summer 

d) Mean yield in the year with a hot summer 

Figure 4.4:    The simulated changes in the total rice production in the year with a cool 

summer (a) and that with a hot summer (b). Figure 4.4c and 4.4d are same with 4.4a and 4.4b but 

area mean of potential rice yield in agricultural area.  
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5. Economic assessment of global warming impact on rice 
production 
 

 

5.1. Economic assessment 

 

    Rice production is frequently damaged by natural hazards, such as meteorological disasters, 

disease, and pests. Climate directly affects disease, pests, and other threats to rice production. 

Thus, climate is the most serious risk to agriculture. Crop insurance for rice, i.e. rice insurance, 

contributes to income stability in Japan and elsewhere (Ray, 1981; Hazell et al., 1986). Namely, 

rice insurance protects against climate risk even in the current climate. Farmers expect rice 

insurance to protect them even against global warming. However, global warming may influence 

rice insurance payouts through changes in production damage caused by natural hazards. Rice 

insurance payouts and premiums must be fairly balanced for robust management. Rice insurance 

is provided by the Japanese government, and, therefore, policymakers insist on having 

projections of potential payouts in the face of the threats from global warming. An objective of 

this study is to develop projections of the impacts of global warming on rice insurance payouts in 

Japan.  

    The crop model for rice used in this study has enough capability to assess the yield damage 

caused by cool summer and heat stress, which are the most serious threats in the current climate 

and after the global warming in Japan, respectively. However, although the rice insurance in 

Japan covers all damages caused by natural hazards, current crop models lack the capability to 

assess damage from disease, pests, and storms. Steady development is shown in the projection 

regarding disease and pests for rice that are caused by global warming (Yamamura et al., 2006); 

however, the accumulation is still insufficient for including such contributions to crop models as 

phenological parameterizations. Considering such limitations, a stochastic parameterization was 

developed as a yield damage assessment model. In spite of the limitation in our analysis 

framework relating to the lack of phenological parameterization in damage assessment, the 
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framework contributes to the presentation of a primary projection of global warming impact on 

the rice insurance payout.  

 

 

5.2. Method 

 

    The analysis framework in this study was designed to project future rice insurance payouts 

after global warming in Japan (Figure 2.1). The framework was composed of the following four 

modules: (1) a climate-projection downscaling module that dynamically downscales global 

reanalysis datasets and GCM products to obtain regional high-resolution climate projections; (2) 

a yield estimation module that estimates the typical potential yield of paddy rice in a unit area by 

using daily weather datasets; (3) a yield damage-assessment module that estimates the yield 

damage caused by natural hazards; (4) a rice insurance payout projection module that simulates 

the insurance payout based on the estimated production and a long-term average production. The 

module details are described in Chapter 5.3.  

 

 

5.3. Data and Models 

 

5.3.1. Climate projection downscaling module 

    The adjusted climate projection was used for 10 years in 1990s and 2070s (from current and 

pseudo year 1991 to 2000). The detail can be seen in Chapter 2.2.  

 

5.3.2. Rice yield estimation module 

    A modified version of SIMRIW was used as a Regional-scale Rice Model (RRM) and 

included into the analysis framework as the rice yield estimation module. The RRM simulates 

the rice yield in 10 years during 1990s and 2070s, respectively. The detail can be seen in Chapter 

2.3.2.  
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5.3.3. Yield damage assessment module 

 

Use of data regarding yield damage 

The Regional Stochastic Damage Model (RSDM) was newly developed to supplement the 

RRM and included into the analysis framework as the yield damage assessment module. By 

coupling the RSDM with the RRM, it becomes possible to assess yield damages caused by not 

only cool summers and heat stress but also storms, disease, and pests. 

The RSDM describes two kinds of relationships, one between weather conditions and yield 

damage caused by meteorological disasters, and the other between yield damage caused by 

meteorological disasters and that caused by disease and pests. The data regarding yield damage 

for the past 25 years, from 1979 to 2003, were obtained from the Crop Statistics. The 

governmental records include gross damaged acreage and gross damage due to 11 factors in each 

prefecture. The damage component includes four meteorological disasters, three diseases, three 

types of insects, and others, as shown in Table 5.1. 

    Both the net and gross yield damage is calculable from the record; however, there is a large 

disagreement between the net yield damage and the sum of the 11 types of gross damage. To 

correct the gross damage to the net one, the following process was conducted, in which the total 

yield damage in the i area and j year ( jiY ,∆ ) is defined by subtracting the 25-year mean yield 

( iY ) from the yield ( ) by jiY ,

ijiji YYY −=∆ ,, .                                                     (5.3.3.1) 

Since the  roughly corresponds to the net yield damage in the records, the relation 

 can be found, where  and  are the correction parameters in the i area; 

secondly, although the gross yield damage in the record tallies 

jiY ,∆

jiiiji NDbaY ,, +≅∆ ia ib,

redundantly among damaging 

factors, the sum of the 11 types of yield damage should corresponds to the net yield damage after 

correction using the damaging factor weight ( ). The was estimated simply as the parameter 

of the multiple regression model given by

kw kw
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kjikji GDwwND                                              (5.3.3.2), 

where  and  are the net and gross yield damage of i area in j year caused by factor 

k and . The estimated 

jiND , kjiGD ,,

113 =n kw  is summarized in Table 5.1; then, the corrected yield damage 

for 25 years was obtained for each factor k in each prefecture. 

 

Damage components regarding cool summer and heat stress 

    A cool summer is the most influential factor on rice yield, especially in northern Japan in 

the present climate, while heat stress is potentially the most influential factor in the central and 

southwestern areas after global warming. Even in current days, heat stress is observed in 

Chugoku, Shikoku, and Kyushu. Considering the importance and accumulation of studies 

relating to them, we adapted the phenological parameterization for cool summers and heat stress 

instead of the stochastic one. Details of the phenological parameterization can be found in Horie 

et al. (1995), Nakagawa et al. (2003), and Iizumi et al. (2007).  

 

Damage component regarding storm 
    The corrected gross yield damage caused by storms ( ) is estimated by use of the 

multiple regression model given by Eq. 5.3.3.3.  

1,, jiGD

    jiijiiiji WIPIGD ,2,101,, βββ ++= ,                                        (5.3.3.3) 

where i0β , i1β , and i2β  are the parameters in the i area. The model uses two climate indices, 

 and , defined by Eqs. 5.3.3.4 and 5.3.3.6, respectively.  jiPI , jiWI ,

    ,                                                       (5.3.3.4) ∑
=

=
h

b

DOI

DOIm
ji PPI ,

     ,  , jmji PPP 0,,max −= )max( ,0,, imji PP >

                ,  0=P )max( ,0,, imji PP ≤ ,                                (5.3.3.5) 

    ,                                                      (5.3.3.6) ∑
=

=
h

b

DOI

DOIm
ji WWI ,
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    W  ,  , jmji WW 0,,max −= )max( ,0,, imji WW >

                 ,  0=W )max( ,0,, imji WW ≤ .                             (5.3.3.7) 

These indices are given as follows: first, the values of daily maximum precipitation and wind 

speed ( and ) above the thresholds (  and ) are calculated at each 

calendar day; secondly, the values are accumulated throughout the influential period, yielding 

 and . The period of influence includes from the first day of the influence period 

( ) to harvest ( ). The  is given by the phenological development sub-model 

in the RRM (Horie et al., 1995), whereas the is fixed in each area. The  was 

optimized through the best-subset selection procedure on the basis of the corrected gross yield 

damage caused by storms and the observed climate dataset. The  and  were also 

optimized, as was the .  

jiP ,max jiW ,max iP ,0 iW ,0

jiPI , jiWI ,

bDOY hDOY hDOY

bDOY bDOY

iP ,0 iW ,0

bDOY

    The above parameters were estimated on the basis of the dataset in the odd years, and the 

estimated  was cross-validated with the corrected values in the even years. As a result of 

cross-validation, the mean value of the freedom-adjusted coefficient of determination (adj-R

1,, jiGD

2) 

among 46 prefectures was 0.527, with the RMSE of 0.143 t/ha. 

 

Damage components regarding diseases and pests 

    Relating to disease and pests, yield damage is described by the linear regression model 

given by 

mjikikikji GDGD ,,,,,, βα += , { }11,...,4=k , { }3,2,1=m ,                       (5.3.3.8) 

where  is the most influential meteorological damaging factor against gross yield 

damage caused by damaging factor k ( ). The suffix m in Eq. 5.3.3.8 is given as follows:  

mjiGD ,,

kjiGD ,,

( )3,2,1,, ,,max kkkmk RRRR = ,                                            (5.3.3.9) 

where is the adj.RmkR ,
2 calculated by the gross yield damage of damaging factor  and that of 

meteorological disaster . To fix the explanatory variable ( ) in the model, the matrix of 

adj.R

k

m mjiGD ,,

2 is prepared on the basis of the actual records of and . One damaging factor is 

chosen among storms, heat stress, and cool summers as the most influential damaging factor . 

kjiGD ,, mjiGD ,,

m
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5.3.4. Rice insurance payout projection module 

    We adapted the concept of a simple insurance to project the rice insurance payout. The 

adapted model is frequently used and referred to in many studies, such as those by Ray (1967), 

Hazell et al. (1986), and Abbaspour (1994). The insurance payout in the i area in j year is given 

by two step procedure; firstly, the insurance-covered yield damage is given by Eq. 5.3.4.1, the 

modified Eq. 5.3.3.1, 

    ijiji YYY φ−=∆ ,, ,                                                    (5.3.4.1) 

where φ  is the insurance coverage. The actual value of φ  ranges from 0.7 to 1.0 in the rice 

insurance of Japan (Tsujii, 1986), while it takes unity in this study. Secondly, the insurance 

payout is given as follows,  

    jijiji YiceAL ,,, Pr ∆××= ,                                              (5.3.4.2) 

where  is the rice insurance payout,  is the planted acreage of paddy rice, and  

is the mean price of rice in the 1990s. The value of  corresponds to 257,000 yen/t and was 

obtained by the actual crop insurance of Japan, which is called “mutual relief” (Tsujii, 1986; 

Iizumi, 2005).  

jiL , jiA , icePr

icePr

    Since the economic value of rice in a country varies depending on the changes in economic 

factors, i.e., demand, supply, exports, and imports, any future economic value of rice may be 

unequal to the present one. From such difficulty in future economic projection, simulated future 

insurance payouts are expressed by the economic value of rice in the 1990s.  

 

 

5.4. Results 

 

5.4.1. Changes in phenology and yield caused by global warming 

    Figure 5.1 shows the average of simulated rice phenological response to changes in regional 

climate over nine years. Figure 5.1a shows the Cooling Degree Days (CDD), i.e. an index of 

cooling stress, for the most sensitive period for the rice panicle to cool temperature (Horie et al., 

1995), and the value decreases throughout Japan. On the other hand, Figure 5.1b shows the daily 
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maximum temperature averaged over the flowering period (Nakagawa et al., 2003), which also 

heavily affects the spikelet sterility in rice, and the value is shown to increase by 0.5 oC to 2.5 oC 

throughout Japan. Changes in both the CDD and the daily maximum temperature averaged over 

the flowering period are directly caused by the increase of temperature.  

    Figure 5.1c displays the dry weight, including roots at maturity, which can be used as the 

index of change in solar radiation during the growth period. The dry weight decreases in northern 

Japan, whereas it shows mixed responses depending on the area in the southwest. A different 

response in the dry weight between the north and southwest is derived from the change in the 

growth period and from that in solar radiation. The growth period, which is the time from 

planting to harvest, is shortened by more than 14 days in northern Japan and by 3 to 9 days in the 

southwest (Figure 5.1d and 5.1e), while the solar radiation increases in July to August in most of 

Japan (no figure). The shortening of the growth period is caused by the acceleration in the 

phenology development derived from the increase of the daily mean temperature.  

Figure 5.2 shows the changes in yield damage caused by meteorological disasters, disease, 

and pests. The yield damage caused by storms, shown in Figure 5.2a, slightly increases in parts 

of Tohoku, Kanto, Kinki, Chugoku, and Kyushu. The yield damage caused by heat stress (Figure 

5.2b) significantly increases in most areas, with some exceptions, such as the Pacific side of 

Tohoku and Hokuriku, while that caused by cool summers decreases remarkably in Hokkaido 

and Tohoku (Figure 5.2c). The yield damage caused by disease and pests (Figure 5.2d and 5.2e) 

changes mainly in parallel with the change in damage caused by storms and cool summers.  

    Figure 5.3 shows the 10-year-averaged changes in the mean yield and the Coefficient of 

Variance (CV) from the 1990s and 2070s, meanwhile the CV is defined by µσ /=CV  where 

σ  is the standard deviation of yield during nine years and µ  is the 10-year mean yield; these 

changes are summarized in Table 5.2 for each agricultural area. The mean yield shows mixed 

responses, and the yield increases in Hokkaido and Tokai. Furthermore, it shows a reduction in 

Tohoku, Hokuriku, and Kinki. The CV in yield decreases in Hokkaido, Tohoku, Hokuriku, 

Shikoku, and Kyushu but increases in Kanto, Tokai, and Kinki.  
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5.4.2. Projected change in rice insurance payout 

    The changes in the yield are recalculated as the insurance payouts (Table 5.3). In the 

estimation of insurance payouts, the distribution of paddy acreage in the 2070s was assumed to 

be same as that in the 1990s. The data regarding paddy acreage was given from the DNLI for 

each prefecture.  

    The mean insurance payout averaged over nine year decreases in most agricultural areas, 

with the exceptions of the increase observed in Kanto/Tozan and Kinki. However, the increase is 

considerably smaller than the decrease in the other areas. The increases in the mean insurance 

payout in Kanto/Tozan and Kinki are 474 and 30 million yen, respectively, while the decrease in 

the other areas ranges from 28 million yen in Tokai to 8,596 million yen in Hokkaido. The 

simulated total insurance payout decreases as a result of global warming from 3.18 billion yen in 

the 1990s to 2.24 billion yen in the 2070s.  

The CV of the insurance payout for nine years increases in the four areas, i.e., Hokkaido, 

Hokuriku, Kinki, and Shikoku, while it decreases in five other areas. The increase in the CV 

ranges from 0.065 in Shikoku to 0.381 in Hokkaido, while the decrease ranges from 0.007 in 

Chugoku to 0.176 in Kyushu. The mean change in the CV averaged over all areas increases from 

1.617 in the 1990s to 1.667 in the 2070s.  

 

 

5.5. Discussion 

 

5.5.1. Comparison with previous projections (mean yield) 

    Previous studies have simulated a significant increase in yield in Tohoku (Toritani et al., 

1999; Nakagawa et al., 2003), whereas our results show a slight decrease. A significant increase 

is found in the simulated yield in years with cool summers, such as 1991 and 1993, in our 

simulation (Iizumi et al., 2007); however, the yield decreases in years without cool summers 

because of the shorter growth periods. Such differences between the previous projections and our 
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results are due to the assumption of adaptation and the climate data described in the next 

subsection.  

    Rice yields are sensitive to heat and cold during heading, which occurs from middle July to 

early August in Japan. Especially, rice yield drastically decreases when the panicle rice is 

exposed to the conditions of both high temperature and high CO2 concentration (Kim et al., 

1996; Nakagawa et al., 2003). Regarding such responses in rice, consistent results with previous 

projections were found in the decrease of yield damage caused by cool summers and the increase 

of damage due to heat stress.  

    Rice yields also decrease because of a reduction in the total biomass, and the response is 

evident in the model. A rapid development in rice is induced by an increase in the daily mean 

temperature, which results in a shorter growth period. The shorter growth period results in a 

reduction in the accumulation of solar radiation during the period, and such a response decreases 

the volume of the biomass. Although the change in solar radiation due to global warming is 

responsible for the biomass, the change in the growth period is more critical than that in solar 

radiation. Such rice responses can be found from the simulation results regarding the dry weight 

and maturity day.  

    Toritani et al. (1999) assumed an adaptation technique in which the planting day was moved 

ahead approximately two weeks from that currently applied. Our projection assumes no 

adaptations; thus, the shortened growth period causes the decrease of the yield in northern Japan. 

In addition, the difference in projection is due to the emission scenarios and GCMs. Nakagawa et 

al. (2003) shows four projections of mean yield change in the 2090s under IS92a scenario. Those 

projections use on the four GCM products i.e., CCSR/NIES (Emori et al., 1999), CGCM1 (Flato 

et al., 2000), CSIRO-Mk2 (Watterson et al., 1997), and ECHAM/OPY3 (Roeckner et al., 1992; 

Oberhuber et al., 1998). While three of the four projections in Nakagawa et al. (2003) show 

similar changes in yield as the projection of Toritani et al. (1999), the one of the four projections, 

ECHAM/OPY3, is relatively consistent with our simulation result.  
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5.5.2. Comparison with previous projections (interannual variability) 

    Nakagawa et al. (2003) present the CV of the yield in the 2090s in Japan based on the 

climate projection of the CCSR/NIES (Emori et al., 1999). There are considerable differences 

between the findings of Nakagawa et al. (2003) and our own. Especially, large differences were 

found in Tohoku, Hokuriku, Kinki, and Kyushu. Nakagawa et al. (2003) project a large increase 

of the CV in the above areas, while our result simulates a slight decrease.  

    The difference in the projected CV is mainly due to the climate data. The data used in the 

work of Nakagawa et al. (2003) is the composition of the sum of monthly mean anomalies and 

the climatological mean observed dataset, and the data assumes no change in the interannual 

variability in climate elements. In addition, these anomalies were obtained as a result of an 

interpolation technique (Yokozawa et al., 2003). On the other hand, the climate data in this study 

were obtained by the dynamic downscaling method. The results of dynamic downscaling show 

that the resultant increase of temperature in summer caused by global warming differs from year 

to year.  

    In our simulation, the interannual variability of the yield is smaller in northern Japan. Since 

the damage caused by cool summers seriously affects the yield in this area, the yield reduction 

under warming conditions is mitigated in comparisons with that in the present. The yields in the 

years without cool summers increase slightly as a result of increases in temperature and solar 

radiation or decrease slightly as a result of the shorter growth period. Such changes in the yield 

were found as a reduction in the interannual variability. On the other hand, in southwestern Japan, 

the interannual variability of the yield becomes smaller, as it does in northern Japan. Since there 

is no serious damage due to cool summers in the area, the yields in the years with cool summers 

or normal years decrease as a result of the shorter growth period, while the yields in the years 

with hot summers decrease as a result of heat stress. Both decreases in yield were found as a 

reduction in interannual variability. As a result of such yield responses to global warming, the 

interannual variability of the yield is reduced in six of the nine agricultural area in Japan, i.e., 

Hokkaido, Tohoku, Tokai, Chugoku, Shikoku, and Kyushu. In contrast, the interannual 

variability of the yield is enhanced in three of nine agricultural area, i.e., Hokuriku, Kanto/Tozan, 
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and Kinki.  

 

 

5.5.3. Inconsistency of changes between yield and insurance payout 

    There is an inconsistency between the change in the yield and that in the insurance payout. 

The mean yield decreases in all areas except Hokkaido and Tokai, whereas the mean insurance 

payout increases only in Kanto/Tozan and Kinki. In addition, the CV of the yield increases in 

Hokuriku, Kanto/Tozan, and Kinki, whereas that of the insurance payout increases in Hokkaido 

and Shikoku as well as in Hokuriku and Kinki.  

Such inconsistency is derived from the calculation method of rice insurance used to 

estimate the insurance payout. The insurance payout in this study is calculated by using Y∆ , φ , 

and , and only  varies throughout the years. Since icePr Y∆ Y  changes according to the 

year-to-year changes in the yield, Y  in the present is different from that in the warming 

condition. If Hokkaido is taken as an example, the decrease in yield caused by a cool summer is 

reduced by warming. However, the degree of the decrease from the Y  in the warming condition 

is still large by the symmetric decrease of Y . Since yield anomalies are small in a year without a 

cool summer, the CV of an insurance payout increases, whereas that of the yield decreases in 

Hokkaido.  

    On the other hand, a different response can be found in Shikoku. The mean and the CV of 

the yield both decrease in the area, while the mean insurance payout decreases, and the CV 

increases. The inconsistency is due to the relatively heavy decrease caused by heat stress from 

the Y  in the warming condition. In other areas, the increase/decrease of the mean and the CV in 

yield are consistent with those in the insurance payout.  

 

 

5.6. Summary 

The analysis framework, namely, the combination of various models, is prepared to project 

the rice insurance payout in Japan caused by global warming under the SRES-A2 scenario. The 
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simulation results show slight decreases of the mean and interannual variability in yield in most 

areas of Japan under the no adaptation condition. On the other hand, the simulations show results 

according to which the projected insurance payout decreases in mean but increases in the 

interannual variability in most areas. Again, the insurance payout significantly decreases 

accompanying an increase in interannual variability, although the yield decreases in both mean 

and interannual variability. Their inconsistency is derived from the calculation method of rice 

insurance payout. The results suggest that the global warming impact in crop production is not 

necessarily parallel to that in the economic institution.  

    The simulation results also show that there is a difference in the change caused by global 

warming among areas even in a country. The result suggests that the change in the economic role 

of each agricultural area may emerge accompanying a shift of the main source area and a change 

in the stability of rice production after global warming. Agricultural production is also affected 

by such indirect impact of global warming as well as direct change in climatic resources.  

To apply our analysis framework to other Asian countries, further improvements are 

required relating to the following issues: the inclusion of water resource models for application 

to non-irrigated areas and arid/semi-arid areas; and the inclusion of anthropologic effects in farm 

management into the yield damage assessment model, which is quite important, especially in 

developing countries.  

    Our results are based on only one climate scenario projected by the MRI-CGCM2 under the 

SRES-A2 scenario. Other SRES scenarios, such as A1b, possibly give another impact to the rice 

production and insurance payout in Japan. The projected change in climate strongly depends on 

GCMs as well as emission scenarios; thus, the adoption of other GCM products is expected to 

improve the reliability of our projection.  
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Figure 5.1:    Spatial changes in regional climate found through the RRM and phenological 

responses i.e., (a) cooling degree days during the most sensitive period for the rice panicle, (b) 

daily maximum temperature averaged over the flowering period, (c) dry weight, including roots, 

at maturity day, (d) heading day, and (e) maturity day.  
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Stress 

Figure 5.2:    Spatial changes in yield damages caused by storms (a), heat stress (b), cool 

summers (c), disease (d), and pests (e). 
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Figure 5.3:    Spatial changes in the mean (a) and CV (b) of the yield.  
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Table 5.1:    Estimated parameters in the multiple regression model given by Eq. 5.3.3.2. The 

two-tailed significance levels are denoted by asterisks, e.g., 0.1%, ***; 1%, **; and 5%, *. 

 

Parameter Damaging factor Estimate SE P-value 

W0 - - -0.023 0.010 0.022 * 

W1 Meteological Storm 0.319 0.021 0.000 *** 

W2 disasters Heat stress 0.012 0.008 0.145   

W3   Cool summer 0.318 0.010 0.000 *** 

W4   
Other meteorological 

disaster 
0.010 0.009 0.282   

W5 Diseases Rice blast 0.264 0.025 0.000 *** 

W6   Sheath blight 0.108 0.051 0.034 * 

W7   Other diseases 0.028 0.032 0.375   

W8 Pests Small brown planthopper 0.086 0.024 0.000 *** 

W9   Rice stem border 0.071 0.051 0.165   

W10   Other pests 0.258 0.058 0.000 *** 

W11   Other 0.023 0.016 0.150   
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Table 5.2:    Changes in the mean and CV of the yield over nine years caused by global 

warming 

 

  Yield 

  Mean [t/ha] CV 

  Present Warming Present Warming 

Hokkaido 3.891 4.270 0.255 0.100 

Tohoku 4.530 4.405 0.162 0.150 

Hokuriku 4.675 4.312 0.105 0.110 

Kanto/Tozan 4.470 4.330 0.094 0.112 

Tokai 4.320 4.377 0.087 0.087 

Kinki 4.171 3.966 0.080 0.093 

Chugoku 4.623 4.497 0.106 0.098 

Shikoku 4.176 3.907 0.119 0.116 

Kyushu 4.366 4.243 0.145 0.131 

Ave. 4.358 4.256 0.128 0.111 
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Table 5.3:    Changes in the mean and CV of rice insurance payouts over 10 years caused by 

global warming 

 

  Rice insurance payout 

  Mean [million yen] CV 

  Present Warming Present Warming 

Hokkaido 13313 4717 2.005 2.386 

Tohoku 6105 5614 1.900 1.836 

Hokuriku 2282 2184 1.363 1.480 

Kanto/Tozan 2254 2728 1.591 1.542 

Tokai 1406 1378 1.666 1.628 

Kinki 958 988 1.579 1.796 

Chugoku 1862 1672 1.362 1.355 

Shikoku 1056 964 1.426 1.491 

Kyushu 2517 2202 1.666 1.490 

Total 31755 22447 - - 

Ave.  3528 2494 1.617 1.667 
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6. Conclusions 
 

In Chapter 3, a rice yield simulated by the crop model agrees well with the actual yield 

record when OCDs were assumed for the input climate data. The accuracy of the estimated yield, 

however, was quite poor when it was simulated based on present MCDs. The latter significantly 

underestimated the yield and failed to reproduce the spatial distribution of the yield. These 

results indicate that climate-model bias sometimes seriously reduces the accuracy of the crop 

model simulations.  

     The estimated change in yield until the 2070s was estimated using present and future 

OCDs, and another estimation of the yield change was obtained using present and future MCDs. 

These two estimations differ considerably, although the components of climate change until the 

2070s are common in OCDs and MCDs. The difference in the yield change is caused by the 

difference in the baseline climate, i.e., the present climate, in OCDs and MCDs, which means 

that the crop model responds non-linearly to changes in climate variables. The yield estimation 

tends to be quite sensitive when one climate variable is near the threshold value assumed in the 

model. The present method not only reduces the model bias induced by the climate models but 

also suppresses error enhancement by the non-linearity of the crop model. As a result, this 

method allows the reliability of the estimation of future yield to be maintained more easily.  

    In Chapter 4, this study updates the impact projection on rice production in Japan based on 

the dynamic downscaled MRI-CGCM2 products under the SRES-A2 scenario. The newly 

suggested dynamic downscaling method makes it possible to project the regional-scale climate 

change over Japan, and also allows us to extend the discussion to rice production hazards in the 

cool summer year and in the hot summer year after global warming.  

    The projected regional-scale climate changes are summarized as follows:  

(1) The different changes in climate are found between the cool summer year and the hot 

summer year, although the boundary condition of the RCM in both years includes a common 

warming component of the GCM;  

(2) In the cool summer year after global warming, the monthly mean daily maximum/minimum 
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temperatures increase by 1.0 to 4.5 K throughout Japan. Additionally, the monthly mean daily 

total solar radiation slightly increases in the summertime over Japan, whereas radiation decreases 

in northern Japan in June and July;  

(3) In the hot summer year after global warming, the monthly mean daily maximum/minimum 

temperatures increase by 0.0 to 4.0 K. The monthly mean daily total solar radiation shows an 

increase from July to October throughout Japan and a decrease in northern Japan from May to 

June.  

    The impact of region-scale climate changes on rice production is summarized as follows:  

(4) The impact of global warming on rice production is different between the hot summer year 

and the cool summer year, and also varies by area.  

(5) In the cool summer year after global warming, the temperature increase during the flowering 

period causes a spikelet sterility reduction derived from the damaged caused by a cool summer in 

northern Japan. Spikelet sterility reduction reflects the increase in the harvest index and leads to 

an increase in yield. The yield damage caused by heat stress is not found because the temperature 

increase remains at a moderate level in southwestern Japan;  

(6) In the hot summer year after global warming, the temperature increase directly reflects the 

increase in the averaged daily maximum temperature over the flowering period. The temperature 

increase leads to a significant increase in spikelet sterility as well as a decrease in the harvest 

index. As the result, yield decreases in central and southwestern Japan while yield continues to 

increase in northern Japan;  

(7) The hazard for yield variability by climate condition shifts southward as a result of global 

warming. The major hazard in the present climate, i.e. damage caused by a cool summer, is 

reduced in northern Japan. On the other hand, heat stress is enhanced, and becomes a new 

serious hazard in central to southwestern Japan in the hot summer year.  

In Chapter 5, the analysis framework, namely, the combination of various model, is 

prepared to project the rice insurance payout in Japan caused by global warming under the 

SRES-A2 scenario. The simulation results show slight decreases of the mean and interannual 

variability in yield in most areas of Japan under the no adaptation condition. On the other hand, 
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the simulations show results according to which the projected insurance payout decreases in 

mean but increases in the interannual variability in most areas. Again, the insurance payout 

significantly decreases accompanying an increase in interannual variability, although the yield 

decreases in both mean and interannual variability. Their inconsistency is derived from the 

calculation method of rice insurance payout. The results suggest that the global warming impact 

in crop production is not always proportion to that in the economic institution.  

    The simulation results also show some differences in the change by global warming among 

areas even in a country. The result suggests that the change in the economic role of each 

agricultural area may emerge accompanying a shift of the main source area and a change in the 

stability of rice production after global warming. Agricultural production is also affected by such 

indirect impact of global warming as well as direct change in climatic resources.  

From the multidisciplinary standpoints, this study concludes that (1) assessment of global 

warming impact requires the reduction of climate-model bias to achieve reliable projection for 

policymakers; (2) disturbance of climate-model bias on impact assessment indicates that no 

meaningful projections can result from the simple coupling of response models with climate 

models; (3) the global warming causes the change in the rice insurance payout as well as the rice 

production. However change in the insurance payment is caused not only by production change 

due to climate change but also institutional design itself. Thus, simple parameterization relating 

to economic damage and climate change has no meaning. Increase of temperature causes 

increase of economic loss in some area. However it also causes decrease of economic loss in 

another area; (4) change in crop productivity and production stability results from global 

warming in Japan. It suggests a shift of main agricultural source area due to the economic factors 

as well as climatic resources.   

    Further study is required regarding estimating the change in frequency in the cool summer 

year and in the hot summer year after global warming based on GCM simulations. Another study 

is needed for impact projections based on the inter-annual variability simulated by the GCMs, as 

this study considers only the change in the mean climate and assumes that the inter-annual 

variability in the future climate is same as that in the present climate. Since our impact projection 
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is based on one GCM, an ensemble of GCM products is required to improve the reliability of 

impact projection in future studies. To apply our analysis framework to other Asian countries, 

further improvements are required relating to the following issues; the inclusion of water 

resource models for what the application to non-irrigated area and arid/semi-arid areas; the 

inclusion of anthropologic effects in farm management into the yield damage assessment model, 

which is quite important especially in developing countries.  

    Our results base on the only one climate scenario projected by the MRI-CGCM under 

SRES-A2 scenario. Other SRES scenario, such as A1b, possibly gives more moderate impact to 

the rice production and insurance payment in Japan. And the projected change in climate 

strongly depends on GCMs as well as emission scenarios, thus the adoption of other GCM 

products is expected to improve the reliability of our projection.  
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Appendices 
 

 

Appendix A: Accuracy of the climate model 

 

    To diagnose the reproductive capability of the RCM (see in Chapter 2.2), the Spatial 

Correlation Coefficients (SCCs) between observations and dynamically downscaled products 

were calculated for monthly value during May to October in 1990s. The Standard Errors (SEs) 

between them are also calculated as well as the SCCs. The nearest grid values to observation 

points were searched and adapted as the datasets to calculate above statistics.  

    Relating to the monthly mean temperature, the SCCs show relatively high values from 

0.490 to 0.915 (Figure A1a), and they mostly concentrate the range from approximately 0.7 to 

0.9 (mean=0.799, max=0.273, and min=-3.518). However, the SCCs in August are consistently 

low for the target period. On the other hand, those in May and June show an opposite tendency 

and are consistently high for the period. The cold bias significantly appears in the monthly mean 

temperatures in the downscaled products through the period, and the bias averaged over all 

period is -1.48 K (max=0.27 and min=-3.52).  

    Relating to the monthly mean daily total solar radiation, the SCCs vary depending on years 

and months. If we take years 1994 and 1999 as the examples, the SCCs relatively concentrate in 

the range of 0.4 to 0.8 in 1994, while they distribute in the range of 0.1 to 0.8 in 1997 (Figure 

A2). The SCCs of October tend to show relatively high value; on the other hand, those of June 

are low (mean=3.30, max=0.83, and min=-0.32). The SEs show significant underestimations 

through the all period. The SEs show tendencies that the downscaled products in October have 

serious underestimations, whereas those in summer season i.e., June, July, and August, have 

slight underestimations (mean=-139.9, max=-58.0, and min=-239.3).  

    In the monthly total precipitation, the SCCs remarkably vary depending on years and 

months as well as those of solar radiation. For examples, the SCCs in 1991 concentrate in the 

range of 0.3 to 0.7, while those in 1996 also concentrate in the range of 0.1 to 0.3. On the other 
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hand, the SCCs in 1993, 1997, and so on, vary depending on months in the range of 0.0 to 0.8 

(mean=0.305, max=0.745, and min=-0.247). The SEs tend to vary depending on months, and 

those in July and August show significant underestimation, while those in October show 

overestimates through the period (mean=-27.2, max=78.0, and min=-151.0).  

    From the viewpoint of spatial pattern in the climate elements, the reproductive capabilities 

of the RCM are comparatively high in temperature, and those in solar radiation and precipitation 

significantly vary depending on years and months. In addition, there are estimation errors i.e., 

climate-model bias, such as cold bias in the temperature, underestimation in solar radiation, and 

underestimation/overestimation in precipitation. Such climate-model biases derive from the 

spatial resolution, physical parameterizations, approximation in the dynamic process, and so on.  

    Above mentioned climate-model bias in spatial patterns could cause non-realistic spatial 

changes in impact projection regarding crop productions. In addition, the cold bias in 

temperature affects estimations of crop phenology development and causes underestimations of 

damage due to heat stress. Such underestimations are a serious problem for policymakers, 

researchers, and farmers. Especially in Japan, temperature works as a limiting factor of 

cultivation, and it also work a main factor of yield variability in northern area. The 

underestimations in solar radiation cause reductions of estimated biomass, and finally lead 

estimations of decrease in yield. Especially, the underestimations/overestimations in precipitation 

are quite serious problem when the elements are used as an input data to crop models. Since soil 

moisture is a strongly related with precipitation, and soil moisture is the essential factor to crop 

yield in arid and semi-arid areas. Thus, reliable projection of precipitation is a essential to assess 

a change in cultivable area and yield variability,  

    Climate models are the only tool to project climate changes as a result of global warming. 

Simulated changes in climate certainly cause changes in crop phenology responses. However, 

climate-model bias also causes changes in crop phenology responses. The distinction between 

simulated climate change and climate model bias is essential to conduct a reliable impact 

assessment of global warming. However, climate-model bias is inconsistent regarding models, 

objective climatic variables, and simulated seasons. Thus, the methods should be examined to 
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cancel the climate-model bias from climate model products. This study suggests a simple method 

i.e., the use of differential components in climate model products between future and current, 

namely the “adjusted climate projection”. The Model Output Statistics (MOS) has been 

contributing to reduce climate-model bias in the scene of weather forecasts. The MOS can be 

possible to be replaced above method. Development of the MOS for climate change scenario is 

an area where should be address in future studies to secure reliable impact projection of global 

warming.  
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SCCs of monthly mean temperature a) 

 

SEs of monthly mean temperature b) 

 

Figure A1:    Spatial Correlation Coefficients (SCC; a) and Standard Errors (SE; b) between 

observations and dynamically downscaled products in monthly mean temperature for the 1990s.  
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SCCs of monthly mean daily total solar radiation a) 

 

SEs of monthly mean daily total solar radiation b) 

 

Figure A2:    Same with Figure A1 but monthly mean daily total solar radiation for the 1990s.  
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SCCs of monthly total precipitation a) 

 

SEs of monthly total precipitation b) 

 

Figure A3:    Same with Figure A1 but monthly total precipitation for the 1990s.  
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Appendix B: Projected regional climate change in 2070s under SRES-A2 scenario 

 

    Regional climate changes are projected by using a combination of the GCM products and 

the RCM, and summarized in Chapter 3.3.2. However, presented climate changes are only the 

2-year mean climate change, thus the 10-year mean climate changes are newly shown here for 

every prefectures in Japan with the exception Okinawa, the southwestern islands. The climate 

changes data were used as the input data for the RRM and the DSRM, and the detail of data 

processes are described in Chapter 2.2.2, 2.3.2, and 5.3.3.  
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Hokkaido area 

 

 

 

 

Figure B1:    Time series of observational climate in 1990s and projected climate in 2070s 

regarding daily maximum/minimum temperatures (left), daily total solar radiation (middle), and 

daily total precipitation (right) in Hokkaido area. The bottom figures show each anomalies 

caused by global warming.  
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Figure B1:    (continued) 
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Figure B1:    (continued) 
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Tohoku area 

 

 

 

 

 

Figure B2:    Same with Figure B1 but in Tohoku area.  
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Figure B2:    (continued) 
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Kanto/Tozan area 

 

 

 

 

 

Figure B3:    Same with Figure B1 but in Kanto/Tozan area.  
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Figure B3:    (continued) 
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Hokuriku area 

 

 

 

 

Figure B4:    Same with Figure B1 but in Hokuriku area.  
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Tokai area 

 

 

 

 

Figure B5:    Same with Figure B1 but in Tokai area.  
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Kinki area 

 

 

 

 

 

Figure B6:    Same with Figure B1 but in Kinki area.  
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Figure B6:    (continued)  
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Chugoku area 

 

 

 

 

 

Figure B7:    Same with Figure B1 but in Chugoku area.  
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Shikoku area 

 

 

 

 

Figure B8:    Same with Figure B1 but in Shikoku area.  
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Kyushu area 

 

 

 

 

 

Figure B9:    Same with Figure B1 but in Kyushu area.  
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Figure B9:    (continued)  

 

 

 

 

 

 

 

 

 96



Appendix C: List of abbreviation 

 

AMeDAS: Automated Meteorological Data Acquisition System 

AR: Assessment Report 

CCSR/NIES: Center for Climate System Research, the University of Tokyo / National Institute 

for Environmental Studies 

CDD: Cooling Degree Days 

CGCM1: Canadian Global Coupled Model ver.1 

CSIRO-Mk2: Australia’s Commonwealth Scientific and Industrial Research Organization global 

coupled ocean-atmosphere-sea-ice model Mark 2 

CV: Coefficient of Variance 

DNLI: Digital Numerical Land Information 

DVI: DVelopment Index 

ECHAM/OPY3: ECMWF model and a comprehensive parametrisation package developed at 

HAMburg / Ocean and isoPYCnal coordinates ver.3 

GCM: General Circulation Model 

IPCC: Intergovernmental Panel on Climate Change 

LAI: Leaf Area Index 

MAFF: Ministry of Agriculture, Forestry and Fisheries of Japan 

MCD: Model-output Climate Dataset 

MOS: Model Output Statistics 

MRI-CGCM2: Meteorological Research Institute - Coupled GCM ver.2 

NCEP/NCAR: National Center for Environmental Prediction / National Center for Atmospheric 

Research 

NIAES: National Institute for Agro-Environmental Sciences 

OCD: Observed Climate Dataset 

RCM: Regional Climate Model 

RMSE: Root Mean Square Error 
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RRM: Regional-scale Rice Model 

SCC: Spatial Correlation Coefficient 

SE: Standard Error 

SIMRIW: SImulation Model for RIce and Weather-relationship 

SRES: Special Report on Emission Scenario 

SST: Sea Surface Temperature 

TERC-RAMS: Regional Atmospheric Modeling System modified by the Terrestrial 

Environmental Research Center, University of Tsukuba 
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