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Abstract

Concept of “optimum” collective submanifold for large-amplitude collective
motion is clarified within the framework of the time—dependent{ Hartree-Fock
(TDHF') theory. It is shown that the optimum collective submanifold is
extracted out of the TDHF phase space (symplectic manifold) in such a way that
the Hamiltonian on the submanifold is stationary with respect to variations
perpendicular to it. The submanifold can be shown to be classified into three
regions by means of both stability and separability condifions. It is
displayed that these three regiqps can characterize collective, dissipative and

stochastic motions in the TDHF theory.
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§ 1. Introduction

The nuclear dynamics is considered to be governed by interplay between two
essentially different types of modesvof motion, i.e., the single-particle modes
of motion and the collective behavior of the nucleus as a whole. In a finite
quantal system such as the nucleus, characteristic difficulties in exploring
the dynamics involving such two modes of motion on the basis of the nuclear
many-body problem come from the following facts;

(1) The nuclear collective motion is of large amplitude and highly
non-linear so that there may be large quantum fluctuations about the Hartree-
Fock (-Bogoliubov) "stable” mean field.

(i1) The single-particle states have to alter their features self-
consistently in accordance with the evolution of the collective coordinates
associated with the time-variations of the mean field.

The first step to explore such highly non-linear dynamics, requiring the
self-consistency strongly, was to employ the time-dependent Hartree-Fock (TDHF)
theory.D+? It is well known that, from the TDHF equation, we can derive the
RPA-eigenvalue equation under the small-amplitude harmonic approximation,3)
and the eigenvalue equation gives us the normal collective mode of motion. By
definition, the normal collective mode of motion is specified by the dynamical
condition that the Hamiltonian provides no coupling between the collective and
non-collective modes of motion within the small-amplitude harmonic approxima-
tion. It is also well known that the TDHF equation is simply expressed as a
set of canonical equations of motion in classical mechanics in the TDHF phase
space (symplectic manifold).®~® Namely, the TDHF equation determines a TDHF

trajectory in the TDHF phase space under a given initial condition.



We may thus suppose that the TDHF trajectory representing well~organized'v'
large-amplitude collective motion may be realized on a small-dimensional
integral surface embedded in the TDHF phase space (manifold). The approximate
integral surface, called the collective surface (submanifold), has to satisfy a
dynamical condition that the Hamiltonian in the collective surface has no
serious coupling with the other irrelevant motion. |

With the aim to specify such a global collective submanifold, the self-
consistent collective coordinate (SCC) method was proposed by Marumori, et al.,
in 1980.9:19  The method provides us the collective surface (submanifold) in
such a way that the total energy of the system is stationary at each point on
the surface with respect to the variations perpendicular to the surface. In
order to clarify that the surface obtained by the SCC method is really an
approximate integral surface, as the next task, it is decisive to investigate
the dynamical conditions, which are obtained by calculating the second-order
derivatives of the total energy at each point on the surface with respect to
the variations perpendicular to the surface.

The first objective of this thesis is to clarify the dynamical conditions.
The second objective is to display some specific features of the TDHF trajec-
tories derived by <the dynamical conditions and is to elucidate new concepts
associated with the specific features.

" Generally speaking, the TDHF trajectory is known to be rather sensitive to
small changes of the initial conditions at an instant may develop very diffe-
rently, having lost their initial focussing for a large enough time.® Then,
one has to ask oneself following important question. How can one define the
very concept of "collectivity” for large-amplitude collective motion?

According to our theory, the collectivity of large-amplitude motion is not



subject to properties of a single trajectory but is inevitably related to a
characteristic feature displayed by a group of trajectories. If a group of
many trajectories gathering together around the surface (submanifold) at an
instant can always be confined in a small region around the surface fqr a large
enough time, we may naturally say that the system under'consideration displays
"large-amplitude collective motion” along a trajectory on the surface, which is
a representative of the group of trajectories. Therefore, the large-amplitude
collective motion has to be discussed in the connection with not only a
characteristic property of the surface but also with an amount of trajectories
accumulating in the group.

Thus, our task is to investigate an amount of trajectories accumulating
around the surface (submanifold) obtained by SCC method. In order to know the
amount of trajectories, we have to calculate a lot of trajectories travelling
around the optimum surface, i.e., we have to study various properties of the
TDHF phase space (manifold) in the neighborhood of 1it. Without directly
calculating the huge-dimensional coupled differential equations of motion for
getting the various trajectories, our theory enables us to investigate the
above problem by using both the stability condition of the surface and the
separability condition between collective and nbn—collective degrees of
freedom. 'V

In § 2, we formulate the theory of dynamical collective submanifold within
the framework of the TDHF theory. In the theory the collective mode of motion
is described by the SCC method and the non-collective modes of motion are
treated within the RPA-type procedure.'? In § 3, we investigate the geometri-
cal structure of the theory of dynamical collective submanifold by formulating

the TDHF equation in the form of the canonical equations of motion in classical



mechanics in the TDHF phase space.!®

In § 4, we discuss the physical meaning
of both the stability condition of the collective submanifold and the separabi-
lity condition between the collective and non-collective modes of motion
introduced in our theory. In order to justify the statement in the previous
section, in § 5, we apply our theory to a modification of the SU(3) model useq

11),14)

by Li, Klein and Dreizler. Section 6 will be devoted to conclusiqn.



§ 2. Theory of Dynamical Collective Submanifold

In this section we formulate the theory of dynamical collective submani-
fold within the framework of the TDHF theory.'? In the theory the collective
and non-collective modes of motion are treated independently. The former 1is
described within the SCC method and the latter is treated within the RPA—typé

procedure in the neighborhood of the collective surface.

2.1. Taylor Expansion of TDHF Equation and Canonical-Variable Representation

As is well known, the TDHF theory with the basic equation

5<d ()1 (ig‘a—t—ﬁ)lqb (ty> =0, @.1)

is an approximation theory to a many-body system obeying the Schrodinger
equation

(i%—mw(t» -0, @.2)

under the Hartree-Fock approximation
(¥ (t)> — 1o (t)> , A (2.3)

where | ¢ (t)> is a single Slater determinant,
Lo (8)> = ef1go> 3 F = (fu (Dalbl+ ff (DHbia} @.4)
ui

Here, | ¢¢> denotes a Hartree-Fock stationary state, and a:,' and bf mean the
particle- and hole-creation operators with respect to | ¢o>

ap|¢0>:0 ; IJ.=1,2," '71“1,

*) Throughout this thesis, we adopt the convention of using k=1 .



bil¢o>=0;1=1,2,---,N,¥ (2.5)
M and N being numbers of the single-particle and single-hole states, respec-
tively. Instead of 2MN variables (fui(t)hﬂj(t)) in Eq. (2.4), we introduce a

~ set of nevw variables

neemi 5 T = 1,2, - - KN,

€85 5 = 1,2, - - MN-K, 2.8)
which is related to the original variables through a general variable trans-
formation,

fui = fui e 075800 €0) ful = £E 7580 €5 2.7
Here, (n,,n%;r=1,2,- - :,K) are supposed to describe the collective motion
under  consideration and are called collective variables, and
(¢q,¢5;0=1,2, - - - ,MN-K) represent the rest degrees of freedom and are called

non-collective variables. Such a supposition may be possible if there exists
an approximate invariant subspace of the Hamiltonian, which is characterized by
the variables (n,n*) within the TDHF theory. For simplicity of discussion,
hereafter we restrict ourselves to a single pair of collective variables
(m,n*), which corresponds to the simplest case with K=1. An extension of the
theory to any finite number of pairs of parameters is, of course, straightfor-
wvard. The local infinitesimal generators with respect to the new variables are

defined by one-body operators

~

Oeelt = e—iﬁaineiﬁ ’ _e-iﬁiei?

Oc:oll = an*

1

* We use the convention of denoting occupied single-particle states by

indices t,j, - - - , and unoccupied states by u,v, - - - .



ot = e"ipaa(f ef , 0, eif 2 gif 2.8)
a

¢

I

If the non-collective modes of motion described by (&,,¢%) are of small
amplitude, we may introduce a Taylor expansion of 2MN variables (f,li,f,jf) with
respect to the non-collective variables (£4,¢%) around a collective surface

<n777*;€a=$2:=0 )

Yty e (Quyyp

fui = [fw] ""Z fd[ afu afﬁ ’

2.9)

where the symbol (f) for any function f(n,n*;¢€..£%) denotes the value at the
collective surface (n,7%;€,=€5=0),

(£) = f(n,n"1€.=¢5=0), (2.10)
and is a function of the collective variables (»,n*) alone. In the same way,
the Taylor expansions of the 2MN one-body operators (2.8) with respect to the

non-collective variables are written as

- it aécoﬁ a@colfl .
Ouotll = [0eatl) +2, (€ (T2 +E0 (S50 } + :

a0t
¢k

ol = [om-Z “J+€*[ Jh+ee @10

For later convenience, we ﬁse the following notations for the =zeroth-order

quantities with respect to (&,,¢&%),

@ = [F] = Z { [fui] Cllb;r-l- [fpt] biau} »

ui

Rotl = (Oeol]) =e“1"3‘~‘9—neiC , %= 0h

Reoll = (Ocoll]) —e'ic—%;eic, %= (00 . @.12)



Using the above notations, we obtain an expansion form of the time-

dependent Slater determinant,
ef1go> = e (14, EXh-ei%0+ - - ) 190> . @.13)
. =
By substituting Eq. (2.13) for Eq. (2.1) and by using the relation

i ; o eif
<¢ole” at [ @o>

<¢O! {iﬁocolﬁ_iﬁ*ocoll+iZ(éa@Z"é§Oa)} '¢0>
: a

30c01} GC%MJ
E)f“] aga])

]

<pol {infeolt— 17 Kool +i7)_ (£a (
o

—mZ(fa[aOC"“J+fa(ag°$°”l LGSO ) 1> @)

we obtain an expansion form of the TDHF equation with respect to (£,,&%). The
zeroth-order equation, which 1is called the invariance principle of the time-

H.9.10  jg wyritten as

depenclent Schrodinger equation,
§<do! {inReoll—i7 Koot~ CHC} 1 40> = 0, (2.15)

and the first-order equation is given by

i 30c011 aO«.oll 30:011 aocoll
6<Bol {4, (6a (52 +E0 (S5 28 =10 L (G (52 h) + €0 (55500
iy (X80 - [e7CeC,Y (e X801 ) 180> =0 . (2.18)

In getting Eq. (2.15), we have assumed that the order of (£.,€5) is the same as
that of (&.,¢%) 1in accordance with the small-amplitude assumption on the

non-collective modes of motion.



Except for the small-amplitude assumption on the non-collective modes of
motion, we have not yet imposed any condition on the variable transformation in
Eq.(2.7). Here we require that the new variables (n,n";¢..¢% ) should satisfy
the canonical equations of ﬁotion within the first-order of (&,,¢% )-expansion.
Then, we obtain the canonical equations of motion for the collective mode of
motion

« - O%H

_ 4 (H)
0= Sk +) 0 {&al *aga

R sa[ayagq e (52 af*l} , 2.17)

and that for the non-collective modes of motion

igg = ‘3”J+Z (£ (=023 gx (OH_y)

¢} 88,98} SRR
n _8%H .. O%H

where the classical Hamiltonian H is defined by
= <¢oleFReif | po>—<do! Bl ¢o> . (2.19)

We further demand that the classical Hamiltonian satisfies the maximal-

decoupling condition,®:.9).10)

"

[ BII]

Se) = —<9ol [Rh.e he1 160> =0,

[;’g] = <pol [K.e CBei®) 19> =0 , (2.20)

where we have used the definition of the operators (%,.X% ) in Eq.(2.12). Then.

Egs. (2.17) and (2.18) are reduced to
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in _9_5[7%1_ ,
i = —-‘l%L , 2.21)
and
it = (0 =2y ppr (O yy
T YU ag9¢h C°oagiag;
i85 = <3 (g (=l pen(OH 5y @.22)
B0 T Y8888 TN T adtag '

The expanded TDHF equations (2.15), (2.16) and the canonical equations of
motion (2.21), (2.22) with the maximal-decoupling condition (2.20) play essen-
tial roles in our theory. Comparing the expanded TDHF equations {(2.15) and
(2.18) with the canonical equations of motion (2.21) and (2.22) with (2.20), ve
can find some consistency conditions under which the expanded TDHF equations
are equivalent to the canonical equations of motion with the maximal-decoupling
condition. We may thus expect that these consistency conditions and the
expanded TDHF equations properly specify the large-amplitude collective motion

as well as the non-collective modes of motion under consideration.

2.2. Zeroth-order TDHF Equation and the Self-consistent Collective Coordinate
Method
First, we discuss Egs.(2.15), (2.21) and the maximal-decoupling condition
(2.20), which are of the zeroth-order with respect to (£,,¢%). Equation (2.15)
can be reduced to Eq. (2.21) under the following condition, |
<¢o!l [Reoll Keatl] 180> =1 . (2.23)

By taking 81 ¢o>oc:fol: 1 d0> and :Xo11: ! 69> . and then by using Eq. (2.23), we
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can easily see that the zeroth-order TDHF equation directly results in the
canonical equations of motion (2.21) for the large-amplitude collective motion.
Equation (2.15) can be reduced to the maximal-decoupling condition (2.20)
under the following condition,
<ol [Xafol1 100> =0,  <dol [X.%olf] 160> =0 . @.24)
By taking &1¢o>oc:Xh:1¢o> and :X,:1¢0>, and then by using Eq. (2.24), the
zeroth-order TDHF equation (2.15) leads to the maximal-decoupling condition
(2.20).
The SCC method® 919 jis formulated just within the zeroth-order approxi-
mation in our expansion method. With the aid of the theorem of
Frobenius-Darboux,'®  in the SCC method, the condition (2.23) can be specified

in a more convenient form

1
2

1

<bol Xl 1 60> = 50* »  <bol Rt 160> = 50, (2.25)

because the necessary condition (2.23) still allows us to have the freedom of
choice of (n.n*) within the canonical transformation satisfying
Eq. (2.21).9.10.18)  From Eq. (2.25), we can easily obtain the condition (2.23)

through the relation

B8 1y, 8 14y _ 3 3 i
= <¢ol [Neotl Kol T 100> =1 . (2.28)

In the SCC method, furthermore, the maximal-decoupling condition (2.20) is

expressed in the form,
5<pol (e Rt~ LRt~ LI %0} 160> = 0, (2.27)

which is derived from Eq. (2.195) with Eq. (2.21). The advantage of the use of
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Eq. (2.27) instead of the maximal-decoupling condition (2.20) is that we can
evaluate the condition (2.20) without having to know the explicit forms of the
operators (X;,YE), which can be obtained only after having determined the
collective mode of motion (Xeoll Xeoll ).

Equations (2.25) and (2.27), which consist of the basic equations of vthe
SCC  method, enable us &o uniquely determine the functional form of
((fui) » (fuf) ) in Eq.(2.9) as well as the collective Hamiltonian (H) with
respect to (n,n*), provided that a specific boundary condition appropriate for
the collective motion under consideration is set up.‘”'m Namely, we can
obtain a mapping

M (mt) = TP () s (£) ) 2.28)
which defines a two-dimensional collective submanifold ©?, i.e. an approximate
integral surface embedded in the 2MN-dimensional TDHF manifold (phase space)
MMN  (See Fig. 1.) In the general case, we employ a perturbative treatment
for determining functional forms of ((fu), (fuf) ) with respect to (n,n*).
The perturbative treatment with respect to (»,n*) is given in Appendix. The
trajectory determined by Eq. (2.21) is thus mapped on the collective submanifold
2 by the mapping (2.28), and it is called the SCC trajectory hereafter.

The maximal-decoupling condition (2.20) demonstrates that the classical
Hamiltonian H is stationary at each point on the collective submanifold I? with
respect to the variations toward non-collective directions characterized by
OQ,XL), which have to be orthogonal to the variations toward collective
directions characterized by <Xgm1,ﬁgoﬂ ), i.e., the tangential directions of the
collective submanifold £%. |

In detérmining the collective submanifold within the zeroth-order of our

expansion, the condition (2.24) has not been explicitly used. As is shown in
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the next subsection, however, the condition (2.24) plays a crucial role in
specifying the functional form of the operators X,,X%), together with the

first-order TDHF equation of our expansion method.

2.3, First-order TDHF Equation and Non-collective Modes of Motion

As the next step, we discuss Egs. (2.16) and (2.22), which are of first-
order of (fa,fl). For the purpose of obtaining the self-consistency conditions
under which the first-order TDHF equation (2.16) is equivalent to the canonical
equations of non-collective motion (2.22), it is convenient to start with the

following relations,

3011 80% A+ A
Sy = G0l
[+3
aOLon a0, _ [0y,001t] ' (2.29)
afa 677 a»™~co ’ .

which are derived from the definition (2.8) provided that (f,,f.!) are analytic
functions of (,n";¢.,€5 ). By applying the expansion (2.11) to Eq.(2.29), we

obtain the relations among the zeroth-order terms,

30011 J - axt

_ SV A ¢
( B¢, an = [Xeoll )Xa] y
[aao‘;o” ]+ aaj,(; = [/Yav/?colfl] . ‘ (2.30)

With the aid of Egs. (2.21) and (2.30), the first-order TDHF equation (2.16) can

be reduced to

6<dol {1y (Eafh— &%)~ [e e,y (£, 8- £1%)]
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+1 2N K- )} 160> = 0, @.31)
an " an* g
where ¥ is defined by

e~ ilfeil = e"icﬂeic——i—l-aagk X’col?l——‘i—l‘aag Leoll ' (2.32)

Since [ satisfies the Hartree-Fock equation (2.27), it defines a set of
single-particle states in the generalized moving frame and we call it hereafter
the Hamiltonian in the generalized moving frame. !0

In' order to obtain an explicit expression for the first-order canonical

equations of motion (2.22) for the non-collective variables, we use the rela-

tions such as

a°H - ¢ -ilpy,i0 ot
[agaagzj <¢ol [X5, [e He®, XE1 7 1 60>

<o [[g—gﬁj ety | ¢ > . ©.33)

The second term on the right-hand side of Eq. (2.33) is rewritten, with the aid

of the zeroth-order TDHF equation (2.15), as

<01 [ 2%y -t 10> = <ol [(2%) iRl =R )] 160> , (2.34)
EE 3¢,

because the operator [86%/%)50] is a one-body operator. With the aid of the

relation,
a0

a0t
[afa]

d¢h

= [%.801- (=) , (2.35)

similar to Eq.(2.30), the first term on the right-hand side of Eq. (2.34) can be

expressed as
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in<tol [ (SE) Kolll | 60>

= in {<do!l [ LR, K51 Kol 1 60>—<do! [[ag*] KXol | 0>}
= in (<do| tctag‘;ﬁj N "5>,f{1 | po>—<dol [, [Reoll K517 1 0>

_ 807, "
<@gl EEaﬁ}J WXeol1d 1 0>}

H (<dol [—XL,X] | po>—<bo! [% [Reotl X011 60>

+ ( <ol [Ooh.0k1 160>) ) (2.38)

as*
where we have used the Jacobi identity,

L0880 Rall = [0%. Rt 01 - [ IR Keal®D  X6D (2.87)
and then used Eq.(2.30). In such a way, we finally obtain the following

expression for Eq. (2.22),

igp = <dol [N, ([e WY (6. Xh-e18)1
gt i L ekl €280 1 1 80>
+Z§-a <¢0| [(1770co|l“‘177*ocoll ) Oa] | ¢O>]

—Zfa <¢ol L (i00c011~ 17000110, 021 | 60> and c;c. ,  (2.38)

wvhere the Hamiltonian in the generalized moving frame B/ also explicitly

manifests itself.
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With the purpose to find out the conditions under which the first-order
TDHF equation (2.31) is equivalent to the canonical equations of motion (2.22),
we take the variations of Eq.(2.31) toward the non-collective directions

& 8 e=1,2,- - - ,MN-1 ). We then obtain

iép = <dol [Xp, { [e‘icﬂ/eiC,Z(«Eaﬁ’E—ﬁYa}]

—i<h5‘?-ﬁ+ﬁ*5@;;>2<sm—szf<a>}] 60>  and cc. , (2.39)

provided that the weak boson-like commutation relations among the non-
collective modes of motion ’ '
<po! [X, K51 100> = 8ug » <@o! [X, Kl 1 d0> =0, (2.40)
are satisfied.
By comparing Eq. (2.38) with Eq. (2.33), it becomes clear that the first-

order TDHF equation (2.16) can be reduced to the canonical equations of motion

(2.22) under Eq. (2.40) and a set of additional equations,

(35;<?0! [0 011 186>) =0,
(=2-<do1 [0l 081 160>) =0 ete (2.41)
agﬂ co a y . . -

Similar to the role of condition (2.24) in the case of the zeroth-order equa-
tions discussed in § 2.2, the condition (2.41) is not necessary for specifying
the operator (%,,X% ), but plays an important role in specifying the higher-
order operators ([aEL/aeBJ, [6@2/663] ) in our expansion method, after having
determined (X,,%%).

In order to uniquely define the non-collective variables, we further

suppose that the non-collective variables (¢,,¢5) are of the normal modes
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satisfying
_9M . (9™ 0% . . 0% . _ »
ta(t) = €a(0)e™™F ,  £1(t) = £2(0)e’™" . (2.42b)

The assumption of small-amplitude oscillation denoted by Eq. (2.42b) 1is con-
sistent with that used in deriving Eq. (2.16) and is the same as those usually
employed in getting the RPA equation from the TDHF equation.

By substituting Eq. (2.42b) for Eq.(2.39), we obtain

<pol [%, [e /e, 2131 160> = wbes

<pol [Rs, [e~ e, X171 160> =0, (2.43)
under the condition

s O ok O (Gt -
<@gl [f(g,wng?m*an* Wl 1¢e> =0,

<oy [Xg,i@a—anm*é@n—;)m 10> =0 . 2.44)

This implies that, under the condition (2.44), the one-body operator X0
may be described by the RPA-type normal modes of the Hamiltonian in the genera-
lized moving frame eCl/ei® with intrinsic excitation energies wy .

Since the Hamiltonian in the generalized moving frame e-{F¥eil satisfies
the Hartree-Fock equation (2.27), it does not contain any particle-hole (p-h)
components (aib!,bia,). Without any loss of generality, therefore, the solu-
tions of Eq.(@2.43) which.- call hereafter intrinsic excitation modes can be

written in the form
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Xho= 2 (i (0ot daf bl - gk . nbiay) (2.45)
ut

This is in sharp contrast to the fact that the collective mode of motion
Xeol1,%01 ) has been uniquely determined in the form (2.12), which has the
particle-particle (p-p) and hole-hole (h-h) parts as well as the p-h part.

We call the condition (2.44) a separability condition between the collec-
tive and non-collective modes of motion hereafter.'?  The physical meaning of

the condition (2.44) will be discussed in § 4.

2.4. Intrinsic Hamiltonian for Intrinsic Excitation Modes

Equation (2.43) shows that the Hamiltonian in the generalized moving frame
B plays a decisive role to specify the intrinsic excitation modes (X;,XL) and
the intrinsic excitation energies w,. However, the operator B  generally
cannot be the proper intrinsic Hamiltonian associated with the collective
motion under consideration, because it contains a collective component within

the RPA boson approximation, i.e.,

<po! [Reott> [e™CHeC R0 117 160> = 0 . 2.46)
py contrast, the proper intrinsic Hamiltonian H;,, should satisfy

<o ! [Reotl> L™ Winere’®, Zeatl1 T 160> = 0 (2.47)

In this subsection, we derive the intrinsic Hamiltonian Hj..,. within the RPA
boson approximation.

Corresponding to the fermion pair operators (azb?,biau) in the RPA boson
approximation, we introduce the boson operators

agbg - B;‘L ’ biau - Bp.i ’ (248) .
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which satisfy the boson commutation relation
[Bui Bli1 = 8ubij » [Bui»Byjl =0 . (2.49)
For later convenience, we express the p-h part of collective mode of motion as
Koot = 23 i (0,0 )l bl =@ (0,7 M0icy) | (2.50)
pi :
With the use of the boson operators (2.48), the intrinsic excitation modes
&, %) as well as (X.o11,X01l ) are represented as

Xo—xt o= Z {(Y&Bli—fiBui}
ui

Xeoll = Xbot1 = 2 (VuiBfi-9uiBui} . @.51)
ui
The Hamiltonian in the generalized moving frame f¥ within the RPA boson approx-

imation is then givén by

e CHe® — B = Y (QyiiBliBo— S »BliBL- 56 BB} . (@.52)
uvij
where @G, ,; and B,;,,; are defined by
Guiv; = <ol [biay, [e”CHeC,alb]11 160> ,
Guivj = <ol [biay, [e~CHeC,bja,17 1 do> . (2.53)

In order to obtain the intrinsic Hamiltonian, we introduce the following

projection operator expressed by a 2MVx2MN matrix,

PEI-—[g][\Iﬁ @*1[ : _01}{3:][@** xp**][ 5 _01] . (@.54)

Here I is the 2MNx2MN unit matrix, and 1 and O are the MNxMN unit and null

matrices, respectively. ¥, & and V¥',8" are MVx1 column- and 1xMV row-



matrices defined with the amplitudes of (¥,;,®,;) (in Eq.(2.51)) in the follow-

ing way,
Pui (@i
v = ; , @ = : ,
(Bui My @ui My
W= L @iy - @hiow 1, of = [ @ - @iwl . (2.55)

Since the collective mode of motion (Xuo11,%.01l ) is determined in the SCC method
so as to satisfy the orthonormality relation (2.33), we can easily prove the
relation

PP=P . (2.58)
With the aid of the condition (2.24), it is clear that the projection operator

P satisfies

v 7
P[‘DJ—O, P[\I,*:I -0, (2.57)
where
Wi i ' (o N
Yy = . B = . (2.58)
(Wi v (@R v

Equation (2.57) shows that the projection operator P plays a role to project
out the collective mode of motion within the RPA boson approximation.
Now, we express the intrinsic Hamiltonian Hi,, within the RPA boson

approximation in the form



21—

Hintr = Z {aﬁi,vaItij_%(B;/li,vaZiB:rj”"%[Bﬁ,vapinj} . | (2.59)

uij

With the use of the projection operator P, then, we obtain Gf; ,; and & ,; as

follows,
@ & @ ® | ,
[ _(B//* __a/*] = P|: _(B* __a* }P ’ (2-60)
where the matrix elements of the MVxMV matrices G, ®, @ and ®& are given by
(G»)ui,vj = Gui,vj y (Q)pi,vj E(B;.zi,vj y
(G/)ui,vj = Gg/xi,uj H (8/);11',:))' = (Bﬁi,uj s (261)

and @*,8*,@* and @ are complex conjugate matrices of G, &, @/ and ® ,
respectively.
From Eq. (2.60), the intrinsic Hamiltonian H;,, within the RPA boson
approximation is given by
Hinee = B/~ [ TH X507} Xeot1+ X001 { [H Xeo117 )
+ ([ [Xeot L BT X507 1 - X1 Xeold

(CCH X000 X501 ) - Xeon Xeol

NIH

{[[H Xeol 1] s Xeot1] } - collXcoll . (2.62)

[\Jl'—*

The intrinsic excitation modes (X,,X!) as well as the intrinsic excitation
energies w, are obtained by solving the following RPA equation with the intrin-
sic Hamiltonian,

[Hintr X$1 = @uX{ 2.63)
vith the orthonormalized condition |

[XeX}] = 8 v [XaoXgl =0 . @.64)

We also obtain



[Hintr X111 =0, 2.65)
which corresponds to Eq. (2.47) and demonstrates (Xeo11,Xl|1) to be an eigenmode
of Hintr With zero energy, implying that the condition (2.24) between the
collective and non-collective modes of motion is automatically satisfied.
Namely, the effects of the projection operator P in Eq. (2.60) is effectively
expressed by the terms (Hhur—kﬂ ) in the boson representation.

In such a way, Egs.(2.63) and (2.64) enable us to determine the intrinsic
excitation modes (X,,X!) and the intrinsic excitation energies w, under the

separability condition (2.44).



§ 3. Geometrical Structure of Dynamical Collective Submanifold

Within the framework of the TDHF theory, in the previous section, we
formulated the theory of dynamical collective submanifold. The essential
concept introduced in the theory is the approximate integral surface embedded
in the TDHF manifold. In this section, we investigate the geometrical proper-
ties of the approximate integral surface embedded in the TDHF manifold, by
formulating the TDHF equation in the form of the cancnical equations of motion

in classical mechanics in the TDHF manifold.'®

3.1. Cuanonical-Variable Representation of the TDH Theory
As was stated in § 2.1, the TDHF equation is given by Eq.(2.1). We first
introduce a new set of time-dependent variables (C,; (t),.Cl(t)) through a
variable transformation
Fu = Fui GG Bd =R Cuo G (3.1)
The symplectic structure of the TDHF theory always enables us to choose the
variables (C,,C,i) to be of the canonical-variable representation,®~® in which
the TDHF equation (2.1) can be expressed as the canonical equations of motion

in classical mechanics,

.+ _ _OH .~y _ __OH

1C,“, - acut ? 1 “1 acl“ ’ (8»2&)
l.e.y

b = S 5, = —9H .

QLLI - apui ’ . ppl aq;_ti ’

Qui E)/"%(QJT"'CM) ’ Pui E/\T%—(QJ’E_CM) ) (32b)



vhere the classical Hamiltonian H is given by Eq. (2.19).

The procedure of a choice of the canonical variables (Cu,Cyul

following.® We adopt the new variables so as to satisfy

EZ{<¢ole"F O _oif | ¢ o>dC, +<do | e F=2—cif | ¢ >dc,i}

= %Tr (ct-de-dct-¢y

is

(3.3)

where C and C' denote an MxN matrix and its Hermitian conjugate, respec-

tively, defined by
(C>,u1 = Cpi ’ (CT )il.l = C“T s
and the matrix notation on the right-hand side represents
Tr {Ct-dc—dC" - C} = Y {CdCL~CLidC,S)
i

After direct calculations, we have

SiF_D  _if _ tsin’s/FFY  aF  3F'! sin®s/FRV
<tole 3Ci° 190> = Tr (F oFF* dCu 9Cu 2FF" il

’

where the matrices F and F' are defined by
<F>;.u' =fui ’ (Ff)iuzfur .

By substituting Eq. (3.8) into Eq. (3.3) and by using

aF =Y (-2 dc, +2E geyy
i

aCJJI acp_l
we obtain
@ = lTr Ffsm /_\ZFF 1Tr{cLF* sin®A/FFY F)

2 FF* FFt

I
"?n
-t

SlnﬁZFF . ,Sins/FF?
) dETEEF)

NFFT

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)



dCF'f‘ SiﬂFMFFF? ) i (SlnFFgé FFT F)}
1

= 5Tr (¢t de-act -y . (8.9)

This implies that the new variables (C,;,C,f) given by

oo SIWFE o o prsing/FFT

Y NEET ©.10)
satisfy the following canonical-variable condition,
<pol Ol 160> = 2Ck ,  <olOuldo> = LCu @.11)

-

where the operators Qﬁ and Qu are the local infinitesimal generators with

respect to Cy; and C,f respectively, defined by

é’ﬁ = —1P d

i A, = _ —tF a
36 O =

=Zeif | aC,R:eiP : 3.12)

In order to see that the variables (CL“C;T) obtained by Eq. (3.10) really

satisfy the canonical equations of motion (3.1), we first notice the following
relations,

<Bol [0,,051 160> = 8wbi; » <ol [04,0,] 16> =0,  (3.13)

which 1s obtained from Eq. (3.11) provided that the TDHF manifold is a complex

analytic manifold satisfying the integrability condition® 910

Rk 32 if
16> =0 ,
(ac“?acu, acy,acu*>e Po

8% ; ) . |
(3c.90,~ acwac )ef 166> =0 (3.14)

Now, the TDHF equation (2.1) can be written in terms of the variables

(Cui (£),Cu¥(t)) in the form



8<dol (i), (G0t~ 0 )—e FReif} 100> =0 .  (3.15)
ni

By taking |&¢o>cc:0f: 160> and :0,:1¢¢> and by using the canonical-variable
qondition (3.13), Eq. (3.15) is simply reduced to the canonical equations of

motion (3.2a).

3.2. Geometrical Properties of the Self-consistent Collective Coordinate Method

The solution of Eq.(3.2a) generally give trajectories in the 2MN-
dimensional TDHF manifold denoted by M*V: {C,;,Cf} . If a group of many TDHF
trajectories gathering together around the collective submanifold EZ:{n,n*} at.
an instant can be always confined in a small domain of the submanifold for a
long enough time, we may naturally say that the system under consideration
displays large-amplitude collective motion along an optimized trajectory, i.e.,
the SCC trajectory on the surface I?, which is a representative of the group of
TDHF trajectories.

Under such an assumption, we consider a general variable transformation

from the canonical variables Cui C¥) to a set of variables
", €a,€5;0=1,2, - - - ,MN-1) including the collective variables (n,n*),

Cui = Cut 00" 360, €8) » G = G Omn*i8a.60) (3.16)
where (Sa, %;0=1,2, - + - ,MN-1) are the non-collective variables introduced in

§ 2. If the transformation were an exact canonical transformation satisfying

.- QH -« _ _OH

n = a')’)* L] 1 = an I

¢ _ OH - L. _ _ OH

TR T @.17)

the transformation would have to satisfy the Lagrangian bracket'”



Z (C,18C;_ 9CACy
an* 9n  8n an*

=1, (3.18a)

9CAAC,  ACHAC,; ac” 8Cs_8Ci8Ck, _ g
- = =0, 3.18b
255 3¢, 0ta a1 Z{ 30 0t DEe On @.18b)

Z { ag[,n aC[,u aCyT acui

Z{ac,,*;acgi 3C5 8C,;
Y 0%y O¢p o¢

3¢, Oty 0t 08,0 0 G182

}=5a5’

Our theory does not require such an exact canonical transformation, but
demand that the non-collective variables (§,,¢h) describe small-amplitude
motion in a small domain of the neighborhood of the collective surface IZ.
Similar to the expansion introduced in § 2.1, we may then introduce a Taylor

expansion of (C,;,C,f) with respect to (&,¢5) around a surface (n,n*;&,=¢%=0),

Cur = (G +X (o U2 +e2 TS 5o - (3.19)

il

where the symbol (f) for any function f(n,n*;&.,.£4) is defined by Eq.(2.9).

In the same way, the Taylor expansions of H and 8H/8C,! are expressed as

H= (H) ) (6 (55 +e (55 —Z faf,@[afaf]
« - O%H wok o O%H o
2888 [afd f,.‘]+$ o8 [afiafﬁj} + , (3.20a)
8 _ ._9H «._ O°H
aci = Gagy +; £ ( afaacu“:] & (gmac) | ¥ . (3.20b)

By applying the Taylor expansion for Eq.(3.1a), we obtain an expansion form of
the canonical equations of motion with respect to (&.,¢%). The zeroth-order

equation is written as

ldt [CLIIJ [aCMT] ’ 'Ldt [CI.H] - [aCUIJ ] (3.21)



and the first-order equation is given by

. . 2
D (e (5 +e8 1 5) = Din gl v 55 )

9¢a a¢h asqacu 8¢, 0C,!
acg* aCik ) _ 8% a%H
gk (G (G2 +e1 (55 = - (e (gdaey G T e 0 @2

where the order of (&,,€5) is assumed to be the same as that of (&,,£%) in
accordance with the small-amplitude assumption on the non-collective motion.

The time-dependence of the variables M,n*;¢4,6% ) must be determined in
terms of the canonical equations of motion (2.21) and (2.22) under the maximal-
decoupling condition (2.20). Thus, the consistency conditions under = which
Egs. (3.21) and (3.22) reduce to Egs.(2.21), (2.22) and (2.20) play a role to
specify the collective submanifold as well as the non-collective modes under
consideration, similar to the discussion in § 2.

First, we discuss the consistency conditions under which Eq. (3.21) reduce
to Egqs. (2.20) and (2.21). The consistency conditions are obtained in the

following way. Eq. (3.21) can be expressed as

oH

E—C_',_E] s and c.c. . (323)

" Ci
in ( a‘]ﬂ [%77%] = [

With the aid of Eq. (3.23), the right-hand side of Eq.(2.21) can be rewritten as

8 [Hl _ aC,; acu*:
3 g{fagf D5 (2]
= wZ ac,“ BC;IJ—EBBC;;‘J [%%j:]} , and c.c. . (3.24)

Equation (3.24) can be reduced to Eq. (2.21) under the following condition,

* * .
Doege o - oG (53 ) -

5y (G : (3.25)



which corresponds to the gzeroth-order term of Eq.(3.18a). With the aid of

Eq. (3.23), the left-hand side of Eq. (2.20) can also be expressed as

v, 9 iy oH
- DG (g5, J+[as ) (o))

= “72 [%_C&'_%] [.Qg#_] _ [aCm] [Q_CE_] }

*
+1n2{[a—q‘— a—c”—]—(ac’“][ Gy, 3.26)

O¢a

It is thus clear from the expression (3.28) that Eq. (3.22) can be reduced to

the maximal-decoupling condition (2.20) under the following condition,l

{
o

*
2 GE - G (o

Ed .
MG G- G (o) -0, 3.27)

which corresponds to the zeroth-order term of Eq.(3.18b).
In the SCC method, the collective variables (n,n*) which satisfy the

condition (3.25) have been chosen through

Yol aC,} e
LLIGH (G = (50 (G} =
*
D05 (G- e (5 ) =0, (3.28)

which is equivalent to Eq.(2.25). With the use of the canonical equations of

collective motion (2.21), on the other hand, Eq. (3.23) is rewritten as

ol ;8 (H). 9Cu) D) ac“ i



ad (H) [ac,n

_ 3 (H) -9Gi, _
[ac‘“] an [ B] "0-

an*

]+ (3.29)

Both Egs. (3.28) and (3.29), which are the basic equations of the SCC method,
play a role to define the collective submanifold 2 in the TDHF manifold MEN
vhile Eq.(2.21) describes a time-evolution of the collective motion on the

two-dimensional symplectic manifold M?: {n,n*} .98 (See Fig. 1.)

3.3. Local Canonical-Variable Approximation for Non-Collective Modes of Motion
Next, we make clear the consistency conditions -under which Eq. (3.22)
reduces to Eq. (2.22). The consistency conditions are obtained in the following

way. Eq.(3.22) can be rewritten as

i (ke a—C‘—] L& [%%J }+1<77—+n*aa* (¢4 t%1+5at%c&1}

* 3%H
= Ll asaac,,t] +eilgpgar) b - (3.30)

Multiplying Eq.(3.80) by (3Ct/0¢k) and its complex conjugate by

(8C,i/0€¢5) » we obtain a relation

Ry ac“*: 8Cui, - 0CH 9Cu
6 1150 (G - [5g) (580

HZsaZ %C;‘J E%(;’;‘J*EGCL] [%%;‘1}

3C,! a%H 3Cyui
= Lta 2 [ aea C#TJ S5 * g (aa))

8Ck 3%H ACy;
J EGEE]+[6$§6CM] [55 1}

+Z$a Z

agaaqﬁ;
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.4

* .
+1Z€*Z{E%%"; - cagJ—taai};J-a‘-”;[%%%—‘n @.31)

In order to obtain an explicit expression for Eq. (2.22), on the other

hand, we use the relations such as

a%H | _ 3°H aC 3%H 3Cui

20 * 2/
(8H y (9% y, (OH ) ( Oy,

TlocE ‘Bt.0eh | “0Cu” 0,08

(3.32)

The third and fourth terms on the right-hand side of Eq. (3.32) are rewrittén,

with the aid of Eq. (3.23),as

oH  _9°Ct aH , ._8%Cu
2 llger) Grag) 36 Grag)

2/ * L
-mZ acﬂ, acw]_[ac,”][ Cut_y |

T7 6&,66 9¢.0¢f
20 % * a2
DGR (2 - (58 (5L 3.39)

The first term on the right-hand side of Eq. (3.33) can be expressed as

ac,n %ck . 9 acm
mZ (55 o) ™ Can? Groe)

~

_ aCu]_ _@_ aCuT - aCuT ___a_ GC'
= LU 5 (58 on) an Lae)

3 (ac;fac;i 3C,t 8Cu

+ —
5% ey an on o

o (3.34)

In such a way, we finally obtain the following expression for Eq.(2.22),



i = Lt a&agﬁj f*[afaaf*]}
~ 3Gyt 3% 3Gy
—gfaz{[agqacp*] e Frac (Ga)!

C Y[ (B _y (8Gy (0% y (8Cu
LR ey (550 Grecs) Con )]

. AC,; d  8Cs aC: aCui
+idta L UIGE) g () — (G5 S5

Ra 8Cu, d .0CkH.  aCk. d  8Cu
Fidien L (058 - g (581 - (58 gy (58

a 8C18C1 aC,tacCy
+‘177Z Z fd[ IJF a;; a;; ag;; >]

*
"t l5e Cags on on oy

)1}

. 5 8CkAC: ACEAC,
+ o -

+ &8 . :
&5 Gaan an ae

RIS B (3.35)

By comparing Eq.(3.31) with Eq.(3.35), it can be shown that the first-
order canonical equations of motion (83.22) can be reduced to the canonical

equations of non-collective motion (2.22) under the following conditions,

x ¥
Z{ (G, [a—CE—J ~ QG (QGiy,

a¢s agg) Uger) ! =0
*
Z( QG [~a—C“—J (%) (8Giy, _ g, (3.36)

3 a¢h a¢k a¢a

and



(0 <acurac“i~acp*:ac,ﬁ
9¢y 3¢ An  On A¢h

) =0,

8 ,8C 3C, BCkACu

= te. , 3.37
35 G am g ) "0 et (3.37)

where Eg.(8.38) just corresponds to the zeroth-order term of Eq. (3.18c) and
Eq. (3.37) to the first-order term of Eg.(3.18b) in our expansion. Under the
conditions (3.38) and (83.37), both Egs.(3.22) and (2.22) are reduced to the

equation given by

- aCut 8%H 3 Cyi
igg ZsaZ{[a&acp,: Salt (Frac) (o))

agﬁ: °H ACyui
+ ZsaZ afaaqﬁz (580 (Gracy) (oe)!
AC,: C,} aC,t d . 9Cu
s LUIGHE) G IGE) - (58 - (58
aC( 1 L
IDICONIC ES -it%(j;_‘;—]—fac“J H5Ey (3.8)

Equation (3.37), which just corresponds to Eq.(2.41), is not necessary for our
expansion, but may be necessary in treating the higher-order derivative terms:
like (8%C.i/8£.0¢H)

Here we further assume the normal-mode condition (2.42) for the non-
collective variables (¢4,¢5). By substituting Eq.(2.42) for Eq.(3.38), we

obtain

]

: ¥ 2 .
Yt OH y (B h (5 28y (S5 = wasy

0¢,0C,; ¢k £a0Cyi ¢}

d%H 3Gt 3%H Cyi _
§{ [as’;acﬁ] [agﬁl [ag:ac,ﬁ] (af 1} =0, (3.39)



under the condition

8Cui ack 3Ck,  d .8Cu., _
DUGE) GG - (58 G 5E) =0,
ac“ d ac“ _ack. - d Cuyy .

With the aid of Eq. (3.38), Eq. (3.39) can be rewritten as the RPA-type equation

Z[ (8%H/8C58C,;)  (8%H/3C aC,h) M [ac»j/asaj]
- (8%H/8C,;8C,;) — (8%H/8Cui0Cyt) (8Ct/0¢,)

[ (8Cu:/8¢,) ] (3.41)

(8C,i/0¢d)

Needless to say, Eq. (3.41) guarantees Eq.(2.42a) under the condition (3.40).
By solving Eq. (3.41) with the conditions (8.27) and (3.38) under the condition
(3.40), thus, we can obtain the intrinsic excitation energies w, and the
vectors ([8Cyui/0¢a) , (8C,i/0€%) ) of the TDHF manifold MM , which specify
directions of the non-collective modes of motion described by (&4,¢% ).

The condition (3.40) is supposed to be an important condition for charact-
erizing the local non-collective normal modes (&,,¢% ) with the small-amplitude
assumption (2.42b), in a consistent manner with the large-amplitude collective
motion described by (n,n*). Also the condition (3.27) demands that the non-
collective directions should be orthogonal to the collective direction
((0Cui/0n] [ac;,/an] ), which is defined by a tangential vector at each
point on the submanifold IZ. Since the non-collective directions
((8Cui/0¢€q) » (8C,I/0€s) ) are determined by the local RPA equation (3.41), the
condition (3.27) should be regarded as a local condition on I°. This fact
implies that the concept of non-collective modes of motion can be considered as

a local concept valid only in the neighborhood of the respective point on ¥2.



It is now clear that a set of basic equations, which specifies the global

collective mode (1,n*) and the local canonical-variable approximation for the

non-collective modes (¢4,€% ), consists of Egs. (3.29) and (3.41) and the condi-
tions (3.28), (3.38), (3.39) and (3.40).13



§ 4. Validity of Concept of Dynamical Collective Submanifold

In the previous two sections, we have treated the collective variables
n,n*) as th¢~ global canonical-variables and the non-collective variables
(¢4,¢%) as the local canonical-variables. It has been clarified that the
collective mode of motion (X.o11,Xwil ) and the RPA-type non-collective modes of |
motion (%.X.) are determined by Egs.(@.27) and (2.63) with the conditions
(2.24), (2.25) and (2.40), and the separability condition (2.44) between the
collective and non-collective modes of motion plays an important role for
validity of such a treatment. In this section, we discuss the physical meaning
of both the separability condition (2.44) (or (3.40)) between the collective
and non-collective modes of motion and the stability condition of the collec-
tive submanifold, which depends on whether the intrinsic excitation energies w,

are real or imaginary.!D:13)

4.1. Stability of Collective Submanifold and Approximate Integral Surface
It is well known that the stability of a Hartree-Fock state is determined

by whether RPA eigenvalues are real or imaginary.!9.20).4) In the same way, we

determine the stability of the collective submanifold ¥? according as whether
the intrinsic excitation energies «, are real or imaginary. In order to

explicitly obtain the intrinsic excitation energies w, and the non-collective

modes of motion, one has to solve the RPA equation (2.63) (or the RPA equation

(3.41) under the constrained condition (3.27)). The condition (2.40) (or

(3.36)) thus serves to orthonormalize the non-collective modes of motion.

Equation (2.63) shows that the intrinsic excitation energies w, depend on the

local point (n,n*) of the submanifold 2. Consequently, the orthonormalized



condition (2.40) should also be considered as a local condition like the
condition @.24) (or (8.27)). We may therefore say that the collective subma-
nifold ©? which satisfies the maximal-decoupling condition is stable provided
that all of the RPA equation (2.63) have real eigenvalues at each point on it,
i.e.,

(@a Mm* )% > 0, for "o . 4.1)

If the condition (4.1) is satisfied and the intrinsic excitation energies
w, take relatively large values, the restoring forces toward the non-collective
directions perpendicular to the collective submanifold 2 becomev large.
Consequently, the group of TDHF trajectories in the small domain of the neigh-
borhood of 2 is always confined in the small domain due to the large restoring
forces. In this case, a large amount of TDHF trajectories are expected to
accumulate around ¥? and the collectivity of I? increases to a fairly large
extent. It is thus reasonable to intréduce the concept of an approximate
integral surface for 2.

If the condition (4.1) is satisfied but the intrinsic excitation energies
wy are relatively small, the TDHF trajectories starting from the small domain
at an initial instant can travel toward the non-collective directions with a
fairly large ‘amount of deviations from I° because of the small restoring
forces. In this case, we cannot expect a large accumulation of the TDHF trajec-
tories around ©?. Furthermore, the small-amplitude assumption in Eq. (2.42) for
the non-collective degrees of freedom is no more valid, and the extraction of
the collective submanifold by the SCC method does not have a definite sense in
comparison with ﬁhé case of large «w(n,n™). However, it has a sense that
time-averaged property or phase-space averaged property of the group of TDHF

trajectories is represented on the submanifold 2.



If the condition (4.1) is not fulfilled, there does not exist any restor-
ing forces toward the non-collective directions, and the TDHF trajectories
starting from the small domain in the neighborhood of 2 at an initial instant
prefer to escape the small domain, having lost their initial focussing for a
long enough time. In this case, the SCC trajectory is running on an unstable
ridge-line and we cannot expect any other trajectories accumulating to thé

submanifold ¥2.

4.2. Separability Condition betuween Collective and Non-collective Modes of
Motion
Next we discuss the physical meaning of the condition (2.44) (or (3.40)).
In the SCC method, we have determined the diffeomorphic mapping M — &2  and
the collective Hamiltonian by freezing the non-collective degrees of freedom.
Except for the ideal case where ¥2 is identified with the exact invariant
surface, the collective and non-collective modes of motion are not independent
of each other and the concept of the intrinsic motion decoupled from the
collective one does not strictly hold.

The quantities (3Xﬁ/%9n,831/67f ), which appeared in the condition
(2.44), express non-locality of the non-collective modes of motion (¥,,%%) on
the submanifold £Z2. In the strict sense, the condition (2.44) requires that
non-local dependence of the non-collective modes of motion, e.g. aXl/an,
should be =zero. This non-locality is a manifestation of the coupling between
the collective and non-collective degrees of freedom. The large non-local
effect does not allow us to derive the RPA equation (2.43) (or (3.41)). If
there holds the condition (2.44) which is essential to introduce the local

concept for non-collective degrees of freedom, we can get the local RPA equa-
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tion (2.43) which determines the local intrinsic excitation modes compatible
with the global collective motion governed by Eq. (2.21). Namely, we can regard
the non-collective modes of motion as the local intrinsic excitation modes
under the condition (2.44).

From the above discussion, it is clear that the local intrinsic excitation
modes are definable as long as the condition (2.44) is satisfied. In actual
case, however, the condition (2.44) is too stringent to hold. If the non-local
effects are of less importance than the local effects, the concept of the local
intrinsic excitation modes may still be justified. It is thus reasonable to

apply the following condition in place of (2.44) or (3.40),

)f(j 60> < o]

N .. a
| <¢ol [X,g,l(nﬁﬂlﬂ‘)

| <dol [Xﬁ,i(fy-%w*ai* Wl 160>] € |@a] 4.2)

or

3¢k, _  8Ck 3Gy
IRy g (e - 58 g (G ] < Jal

/,(1 _i acg? _ aCuT _QZ_ uz
|Z af* Ay SRl ok 42 SEN | < Ja] - 4.3)

The condition (4.2) or (4.3) can then be regarded as -an approximate
separability condition for dividing the collective and non-collective modes of
motion.!9~2  If the condition (4.2) is not satisfied, one can no longer
freeze the corresponding non-collective degrees of freedom, and cannot describe
the trajectory under-consideration solely by a single pair of collective

variables (n,7").
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4.3. Collective, Dissipative and Stochastic Behaviors of TDHF Trajectories

In the previous two subsections, we have discussed various properties of
the TDHF manifold M in proximity to the collective submanifold I? defined by
the SCC method with the aid of the stability and separability conditions. By
means of these conditions, the optimum collective submanifold 2 may be

characterized by the following three regions,

Region I ; «2(m.n*) > O and 0= Ifmn*) <1,
Region I ; «2(n,n*) > O and 1 = IE(n,n*)
Region I ; «i(n,n*) =0, , 4.4)

where the non-local effect If(n,n*) is defined by

Hmn') = | <bol [8,iGrS+it 0% 1 #0>/m] 4.5)

According to the discussion in the previous two subsections, the distinc-
tive feature of the TDHF manifold M@ in proximity to I may be represented by
three different characteristic trajectories illustrated in Fig. 2.0 In
Region I , the trajectory starting from a neighborhood of the submanifold )3
may be bound in close proximity to it. We may thus expect that the small
domain in the neighborhood of I? consists of only approximate invariant tori
like the KAM tori.? In Region I , the trajectory found near I? at a certain
instant may oscillate toward the non-collective directions perpendicular to the
submanifold ¥? with a fairly large amount of deviation from I2. This implies
that the collectivity of the system .is still expected to survive even there are
significant dissipative effects. In Region I , the trajectory occasionally
travelling near 2 does not come back in its neighborhood. This implies that
the collective motion under consideration has dissappeared and the system shows

a stochastic behavior.
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8§ D, Application to Three-Level SU(3) Model

5.1. Model Hamiltonian and the TDHF Theory

In the preceding section, we have seen that the submanifold ¥2 extracted
by the SCC method is classified into three different physical regions by means
of the stability and separability conditions, and the TDHF trajectories in
three regions show collective, dissipative and stochastic behaviors, respec-
tively. 1In order to justify the statement in § 5, in this section, we apply
our theory to a modification of the SU(E) model used by Li, Klein and
Dreizler. !D.1® |

The Hamiltonian is given by
i > > V1 VZ i >
A= eolxoo+51f\11+52fng+~2—(1?101?10+h.c.)+E(1\20Rgo+h.c.) . (5.1)

There are three levels with energies gp<g<egz and each level has N-fold

degeneracy. The fermion pair operators EQg are defined by
N
Rg = 2.CLCsm 5 B =0,1,2, (5.2)
m=1

which satisfy the following commutation relations,
[Kug K51 = 8pyKus—8usRyp . (5.3)
We will hereafter consider a system with N particles and the lowest-energy

state | o> without interaction i.e., V|=V>=0 is given by

N
o> = [[ednl 0>, (5.4)
m=1

where | 0> denotes the vacuum of the fermion operators cl, and cu . In this

case we have two types of particle-hole creation operators GEOJEO). (See

Fig. 3.)



Now, we apply the TDHF theory to the present system. The TDHF single

Slater determinant in this case is
1o (t)> =eif1go> 3 F= (Fi(1)Ro+F2(t)Rep) +h.c. , 5.5)

where parameters F; and F» are complex and time-dependent. Instead of the
parameters F|; and F2, we will use the canonical variables (C{,C{;C2,C5 ) which

are related to the original parameters throughza

—1C C | K
F e CC ‘ y .
k TORR T J<_1 1+C5C2 )/N (5.6a)
1.e.,
Cic “/_F’\ n W/ FiF +F5F> k=1,2. (5.6b)

A/F“F|+FBF

Expression (5.6) guarantees that the local infinitesimal generators, defined by

—emif 0 _gif 5.7)

A -if 8 1P A
0L = e R
k O acm

BCk

i

satisfy the canonical-variable condition

1 1

<bol0k1do> = 3Ct,  <dolBildo> = 5Ck . 5.8)
The weak boson-like commutation relation
<dol [O,077 190> = &1 <ol [0:,0] 10> =0 (5.9)

is obtained from the canonical-variable condition (5.8). With the aid of

Eq. (5.9), the TDHF equation (2.1), i.e.
‘ 2
5<dol (i), (GOL-CtO)—e FRei) 190> =0 (5.10)
_ =1 g

is simply reduced to the classical canonical equations of motion



it = 2 i@=—§—é’; , G.11)

where

.
i

< (YIRS (E)>-<dol Al ¢0>
(e1— €0 )CIC1+ (£2— €0 )CAC2

L (N= 1) @ICE+CIC (1= (e GO

+22 (N-1) (CBC+CaCr) (1= (CICI+CAC ) 5.12)

Consequently, the TDHF equation (5.10), i.e. Eq.(5.11) determines a trajectory

in a four-dimensional TDHF manifold (phase space) M' given by

(P, Q1 P2 a2} Pk EA%2-<C£~CK-> . Gk EA/—%<C§+C;<> . (5.13)

5.2. Application of the Theory

According to our theory, we should be firstly interested in a certain
trajectory which is approximately bound on a two-dimensional submanifold I? in
the four-dimensional TDHF manifold M*. Namely, we pay attention to thé trajec-
tory which is describable by a single pair of collective variables (n,n*).

Aiming at extracting the submanifold £%, we consider a general variable
transformation

Ce = Cemn*s€.€%) , Ck = Ctn.n™:€.¢%) k=1,2. (5.14)

As was discussed in § 2 and § 3, the SCC method enables us to determine the
functional forms of ((Ck), (Cf) ;k=1,2), and a set of basic equations of it are

given by Egs. (2.25) and (2.27), i.e.



s<pol (o™ Che®~ T LE Rl LA R} 1 90> = 0 (5.15)
and
<pol Kol 1 80> = %n* , <ol Kolt B> = %n , (5.18)

where the one-body operator @ is given by
G= (F) = {(F1) Ko+ (F2) Ko} +h.c. . 5.17)
Solving Egs. (5.18) and (5.17), namely, it can define a diffeomorphic mapping
M {nn*t — I { (G, (O ik=1,2} - (5.18)
vhich specifies the submanifold £? in the TDHF manifold M!.

In the general case, we are forced to employ a perturbative treatment for
determining functional forms of ([Ck) , (Cf) ) with respect to n,n*). (See
Appendix.) But our objective is to discuss the collectivity of the submanifold
r? extracted by the SCC method, so it is preferable to deal with an exact
solution of the SCC method. Namely, we will consider a special submanifold ©Z
whose exact mapping functions are easily obtained analytically.

To this end, we will concentrate ourselves to a trajectory which starts
initially from the {p;,qi} —-submanifold of the four-dimensional manifold in
Eq.(5.13). That is the trajectory whose small-amplitude limit can be described
by only p; and q; degrees of freedom. In order to characterize the correspond-
ing submanifold 72, we choose the following initial boundary condition for & in
Eq. 5.17),

iG(m,n*) WA'/I—N(WI\(IO*W*ROI) . ' (5.19)

which adjusts the submanifold 2 in such a way that the trajectory lies on it

in its small-amplitude limit. With the boundary condition (5.19), the SCC



method leads us to the following result,

) =n, (€Y =70, [(C) = (C) =0, (5.20a)
l.e.,
(ptl] =p, (@) =q, [(p2) = (q) =0
p 57%(77*—77) . q E'J—%(n*+n) ,  (5.20b)

which demonstrates that the collective variables (n,n*) describing the submani-
fold ¥2 are simply related with the variables (p,q ).

The canonical equations of collective motion are given by Eq. (2.21) with
] vV ; ,
(H) = (e1~eo)m'n+5 ON-1)A=n"a/N) (5.21)

which is obtained from Egs.(5.12) and (5.20). The SCC trajectories are
embedded into the four-dimensional TDHF manifold M‘: {Ck,Ck;k=1,2} through the
mapping in Eq. (5.18).

With the aid of Egs.(5.6a) and (5.20), the analytic expression of Gmn.n")

is given by

iGm,n*) = (mRio—0*Kor ysin~ "/ n*n/N (5.22)

g*l"
.

whose lowest-order term with respect to (n,n*) just coincides with the initial

boundary condition (5.19).
By using an explicit expression of G,n") in Eq. (5.22), we can get an

analytic expression of the collective mode of motion as follows;

*Xcol! = _——<’V 1-n n/N+A/—;—‘>RIO

A/l —n*n/N ,/—r——ﬂ?—km—ldm—ﬁom, (5.23)



which obviously satisfies Eq. (5.16).

In such a way, we have obtained the collective submanifold £2 analytically
in the case of the Hamiltonian given by Eq. (5.1). Next, we must discuss the
intrinsic excitation ~energy and the intrinsic excitation mode within the RPA
boson approximation.

In order to obtain the intrinsic Hamiltonian Hj,., within the RPA boson
approximation defined by Eq. (2.53), we introduce the boson operators

Ko — B . Rn — By ; k=12, (5.24)

which satisfy the boson commutation relation
. [B:.BI1 = Now [B.,Bi] =0 . (5.25)
With the use of the boson operators (5.24), the p-h part of collective mode of

motion is represented as

1 ; 1 ¥
xt o= 2/ 1=1*n/N+———=-o—)B
ol ZWﬁ e/ Ml—ﬁmw)l

A N1\

and the Hamiltonian in the generalized moving frame Y within the RPA boson

approximation (2.52) is given by

v V
1 = L {ei—eo—5 G=1)(0"n*+m) (4=n"n/N)) BB,
1 Lea—eo- gk (V- 1) (*n"+m0)) BIB:
NPETETN ¢

+%(N~1){ {(¥—n*n/N)2+1IE’V§ﬁ} B{Bf+h.c.}

+%%(N—l)(l—n*n/N) (BIBS+h.c.} . 5.27)
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From Egs.(®.26) and (5.27), we obtain the intrinsic Hamiltonian Hiner as fol-

lows;

14
Hiner = 3 {€2— 50— (N—1) (" +1m) } BB,

+22 (N=1) (1—n*n/N) (BIBS +h.c) . . ®.28)

We are now in a position to obtain explicit forms of the intrinsic excita-
tion energy w(n,n*) and the intrinsic excitation mode Cﬁnu,XﬂWr). For this
aim, the intrinsic excitation_mode Kintr>XTotr ) is expressed as

Xfoee = ¥0.0" B =@ (0" )B2 . (5.29)
Solving the RPA equation

[Hinte - XTner] = @Xoer (5.30)
with the normalization condition

[Xintr Xherd = V@ 0* W@ 0")—0* 00 demn®) = 1, (5.31)
then, we get the intrinsic excitation energy w(n,n*) and the correlation
amplitudes y(n,n*) and ¢#,n*) locally at each point of the submanifold I2? as

follows;

F ) = (e2meo— g =1 "4} 2= (V2 (=1 (1=m"n/W)} 2, (5.52a)

b3

wy _ [e2-s—=F N=-D)@ 7T +m)+e®m.n)
’f/(nﬂ’) ) [ 21\/0)(77:77*>

- (N=DV2 (1=n*n/N) :
; , 5.32b
NeNo (n,1") {e2—g0— 55 N=1) (0™ +m)+w (,10") ( :

o)

Equation (5.32) shows that the microscopic structure of the intrinsic excita-
tion mode varies depending on the position (n,n*) in the extracted submanifold

T2, and the submanifold T2 is divided between the stable region and the unsta-



ble region by Eq.(5.32a).
At the end of this subsection, we will get the explicit form of the
non-local éffect I(m,n*) defined by Eq.(4.5). From Fgs. (5.21) and (5.32) vwe

can obtain the explicit form of the non-local effect I(n,n*) easily as

In*) = [<80l [RinteriZSimd] 1 66>/a(n,1)]

-1 Vive

(N=17 {e1+ e2~2e0— 4 (V= 1) (0 +7m)

e ntnt-m| A=n*/N) . - (5.83)

Equations (5.32a) and (5.33) classify the submanifold £2 into the three diffe-

rent regions, Region I,I and I .

5.3. Numerical Results

In the previous subsection, we have obtained the explicit forms of the
stability and separability conditions in the case of the three-level SU(3)
model. Now, we show a division of the submanifold Y2 into the three regions,
Region I,I and I concretely, and next we clarify a justification of the
discussion in § 4.3, i.e., the collective, dissipative énd stochastic behaviors
of the TDHF trajectories starting from the ﬁeighborhood of 2 in Region 1,1
and I , respectively.

By solving the canonical equations of motion (2.21) with the collective
Hamiltonian (5.21), in Fig. 4, we show various SCC trajectories with different
total-energy value E. In this thesis, all the numerical calculations are
carried out by using the following parameters; N=10,eg9=—1,€1=0,g2=1,V;=—1/15

and Vo=—1/3 . Also a large unstable region with w?<0 is indicated in Fig. 4.
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The result is explained as follows; It is easily seen from the functional form
of the intrinsic Hamiltonian (5.28) that the effects of the ground-state
correlation for the intrinsic excitation mode become important in the small-
amplitude region (n*n<N ) of the SCC trajectory and beqome of less importance
in the large-amplitude region (n*n~N ) due to the Pauli-blocking effecﬁ. Since
we are adopting fairly large value for Vp=—1/3 in the case, we can get rather
large unstable region in the center (,i.e. the small-amplitude region) of
{p,q} space.

In Fig. 5, we present a contour map of the non-local effect I(n,n*). As
is easily seen from Eg.(.33), the non-local effect I becomes zero at
1/2(p2+q2)=n*an. The expression of [H) in Eq.(5.21) shows that the curve in
the {p,q} space with I=0 due to n*5n=N just coincides with the SCC trajectory
vith E=(g;~gg)N=10 . It is also from Egq.(5.33) that the non-local effect I
takes zero value at another situation where n*n*—mm=—2ipg=0, i.e. at straight
lines with p=0 and with q=0. Since I contains w(n,n*) in the denominator, it
takes infinity at the boundary curve with w=0 of the unstable region.

It is easily seen from Figs. 4 and 5 that the SCC trajectory with E=8,5
and 1 lie in Region [ ,I and [ , respectively. Now, we will Jjustify the
discussion in § 4.3 by calculating varioustDHF trajectory starting from the
neighborhood of 2. For this aim, we calculated each trajectories governed by
Eq. (5.11) with the following initial condition,

9 =q=0, pp=p=po, @=p=01<Lp, att=0, (.34)
vhere py is chosen in such a way that the system has a given total energy E.
As is seen from Eq. (5.20b), the calculated TDHF trajectory starts from the
point which 1is in close proximity to a point (q=q=0,p;=p=py,q2=0,p2=0) on the

submanifold ¥2. In order to visualize properties of the trajectory, in Fig. 6,



we illustrate the Poincaré-section maps by plotting intersection points of the
trajectory on the (0y,q; )- and (p2,q2 )-planes with conditions (p2>0,q:=0 ) and

23).24)  For the same purpose, in Fig. 7, we illus-

(©1>0,q:=0 ), respectively.
trate the trajectory in a three-dimensional coordinate space {X,Y,Z} by using
double-circles defined as

X = (R{+R2cos02)cosh ,

Y = (Ri+Rz2cos62)sinb; ,

Z = Rosinbs , (5.35)

where coordinates of two circles (R;,0, ) and (R2,02 ) are chosen as®)

= ] 2 = —q—1 1 = _Q'_
R p%+QT ; cosB R’ sind; R
Ry = pd+¢3 ,  cosBy = 22 ,  sind = B2 (5.36)
Rz R

(See Fig. 8). As is seen from Egs. (5.35) and (5.38), in the three-dimensional
coordinate space, the SCC trajectory lies on the (X,Y)-plane and shows the same
strﬁcture as that in the {p,q} space in Fig. 4.

In Figs. 6() and 7(a), the case with E=8 where the corresponding SCC
trajectory lies on Region I is studied. By comparing Fig. 4 with »Fig. 6(a),
the trajectory starting from pz=q2=0.1 at t=0 with E=8 shows alﬁost the same
geometrical structure as that of the SCC trajectory in the {p,q} space. The
Poincaré-section map on the (ps,qr )-plane indicates that the non-collective
mode of motion in the {p2,q2} space can be successfully described by the
smaliﬁamplitude oscillation, i.e. the RPA-type equation in Eq. (5.30) around thé
‘submanifold Z?:{p1=p,q|=q;pg=0,q2:0} . In Fig. 7(a), the trajectory with FE=8
is illustrated in the {X,Y,Z} space. In the case of Region I , the trajec-

tory is essentially expressed by a thin torus because the non-collective
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degrees of freedom pp and q2 are always taking small values. The effect of the
non-collective degrees of freedom plays a role to enlarge the thickness of the
torus. According to the numerical results in Figs. 6(a) and 7(a), in Region I

the TDHF trajectories travelling near 12 may be expected to remain around 2,
not strongly dependent on small changes of the initial condition. Thérefore,
it is natural to call the Region I a collective region.

In Fig. 6(b), we investigate the trajectory with E=5 where the correspond-
ing SCC trajectory is running in Region I . In this case, the Poincaré-section
map of the trajectory on the (p;,q| )-plane with po=g>=0.1 at t=0 is very
similar to the SCC trajectory in Fig. 4. However, the Poincaré—section‘map on
the (p2,q2 )-plane shows that the trajectory under consideration intrudes into
the {p2,q2} space cosiderably and the motion in {p2,q2} space cannot be
described by the RPA-type equation around ps=g>=0. This situation is also well
visualized in Fig. 7(b). In this case, the collectivity of the system in
Region I is still expected to survive even there are significant dissipative
effects. Therefore, we may call Region [ a dissipative region.

In Fig. 6(c), the Poincaré-section map of the trajectory with E=1 is
indicated. The corresponding SCC trajectory with E=1 belongs to the _case, of
Region. I and travels on the unstable ridge-line of the Hamiltonian. The
Poincare-section map in Fig. 6(c) shows that the trajectory starting from the
point, i.e. p2=q2=0.1 at t=0 in close proximity to I? is not confined in the
small-amplitude region of {p2,q2} space but extends to a large-amplitude
region (q=2.7 ) with stochaétic behavior. In Fig. 7(c), the trajectory is
represented in the {X,Y,Z} space. As is seen in Fig. 7(c), the trajectory
shows a chaotic behavior without confined near the (X,Y)-plane corresponding to

the submanifold 2. In the case of Region I , therefore, we can expect neither



accumulation of the trajectories nor collectivity. Consequently, Region I is

naturally called a stochastic region or a complete dissipative region.



§ 6. Conclusion

We have clarified the concept of optimum dynamical collective submanifold
within the. framework of the TDHF theory. It has been shown that the submani-
fold has to satisfy the stability condition and the separabilit& condition so
as to be really an approximate integral surface. With the aid of the two
dynamical conditions, we have also clarified that transition mechanism among
collective, dissipative and stochastic motions in large-amplitude motion can be
well understood.

Since the theory has shown such an ability in clarifying the microscopic
mechanism in nuclear collective dynamics, it will give an interesting subject
to apply the theory to the realistic problems,® such as large-amplitude
collective motion of soft nuclei, high-spin states, heavy-ion reactions,

fissions, etc..
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Appendix

Here we give a perturbative treatment of solving the basic equations
(2.25) and (2.27) of the SCC method self-consistently with a specific boundary
condition appropriate for the collective motion under consideration.!®

The basic equations of the SCC method are the invariance principle of the

time-dependent Schrodinger equation

5<do] {e“iCHef‘f—aa[ﬁJ &oﬂ-ag’f Seoll} (60> = 0 @A.1)

and the condition

1

'én* g <Bol Kol | B0> = !

SN (A.2)

<pol Kol | 40> =

where the one-body operator G(n,n*) and the collective Hamiltonian [H) are
given by

Gmn*y = 200 Ufui) albl+ (A5 biay) (A.3)

ui
(H) = <¢ole CReiC| ¢o>—<dpl Al do> . (A.4)

In order to choose a solution @(h,n*) appropriate for the collective motion
under consideration, it is rather convenient to use the complete set of the RPA

eigenmodes (@1,Q% ) instead of the set of the particle-hole pairs (afb!,bia,),

Q% = Y. (v (uidal bl -y (uidbiay)

n
<pol [, QI 160> =8 »  <dol [&.Q] 160> =0,
<po!l [&, [A.QI1] 100> =wbay 5 @ > 0. (A.5)

In this case, Eq.(A.1) is written as



<do! [id%, {e-icﬁeic—%%&m—%%l&omj 160> = 0

and h.c. , (A.6)

which can be decomposed into

<pol [idh, (o™ %het®~ ML g 1051} 3 190> = 0

and h.c. , Qh = ﬁ, . (A.7a)

<@o! [ikeorl, {e"'cf{eic——@b‘[%]—x’c 1*1—13—6[—;&&011}] o> =0

and h.c. , (A.7b)
where Q{g is the conventional RPA-phonon creation operator with the lowest
eigenvalue w), . Since Eg.(A.7b) with Eq. (A.2) leads to the canonical equations
of collective motion (2.21), Eq.(A.1) is finally reduced to Eq.(A.7a).

With the use of the notations

Gm,n*) = ; oW o ) +g™* (i, Q%) (A.8)
/colfl = e—lc’é%eié
= 8G. 1 3G a1 180G A p
=1 77+2, [t 77,'LGjI 3y L1 n,zG] 1G] +
n-i
=1 77+ng2n! r [1877,1G] ’ 1.,i1G] (A.9)
e he® = [A,i8] +4; [[R,i6] .G+~ - -

n

2 DI A 1 A.10)

nz1
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Eq. (A.7a) is written as

dgWaH) a8g®a (H) ,
an an* an* an

{arg® +

-y <ol rilh, (0 - AB1 L 21,8111 1 bo>

nzz
8(! (H
+mz1 (2m+l)'<¢°’ Ci@h, {([-- - [ @ B o
2
r:—"‘&‘ﬁ
gﬁ—i—l 8T, - 1,81 T 160> =0, ARy, ((A11)
where we have used the fact
PALES
- 8Go (Hl .83 [Hj /ﬁ
n;(em),<¢ol [iQL, (L OGS iy 2,181, -+ - 1,161) 1 190>
=0 . (A.12)
In the same way, Eq.(A.2) is written as
. W 3aP* 3g® 3y
7= g a7 an 9 }
Zm~|
R B e ¢ m 1 $0> = 0 (A.13)
mzj(a )’ an’ 3 y - .
Thus, Eas. (A.11) and (A.13), with
(H) = <¢ole Ceil| ¢o>—<dol Bl ¢ o>
n
: "
= L L<éol [-- - [RS8, - 1,46 140> (A.14)

nz|
become the basic equations to specify the coefficients gU)(n,n*) of @(n,n*) in

Eq. (A.8).

We are now in a position to determine the coefficients g“)(n,n*) as’ well



as the collective Hamiltonian (H) , which are appropriate for our specified
collective motion. To do this, we make the following expansion of g“)(n,n*)

with respect to (n,n"),

gD @) = g® W)+rgP @) - - = Zlg(-l) m),
n=
gPmy= Y aPwyrmr . (A.15)
rs
(r+s=n)

Since the basic equations (A.11) and (A.13) with the (n,n* )-expansion (A.15)
are supposed to be valid for continuous ranges of 7 and n*, we can equate the
coefficients of each power of (n,n*) in these equations to zero. Thus, by
starting with the coefficients with the lowest power of (n,n*) and by proceed-
ing to the higher (n,7")-coefficients step by step, we can determine the
unknown quantities g{¥ of ¢® (n,n*) in Eq. (A.15) as well as the collective
‘Hamiltonian [H) self-consistently.

The important task 1in this expansion method is the choice of the lowest
order term g (1) to satisfy our specified condition on the collective motion.

Since the term with the lowest power of (,n*) in Egq.(A.13) leads us to

O &)

and the term with the lowest power of (n,n*) in the collective Hamiltonian

(A.14) is

() © = 1<¢ol [[R,G(1)],i6(1)T 1 é0>

= Y og@* (1™ (1) (A.17)
2

with
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Gy = ;{gw DOQ+g@* (1R} (A.18)
we can choose
gD ) = in*én, »  gP*) = —indun, (A.19)

so that Eq. (A.16) is satisfied and (H) @  becomes the RPA-phonon Hamiltonian
(H) @ = wn*n . (A.20)
With the use of (A.19) and (A.20), Egs.(A.11) and (A.13) can be written in

the following forms, respectively,;

: @) (int) 0y (int)
(e, r—nt-25)) o = (2LO UL T 09— 9 (A,

on " an* an* an an an*
S
+§2—<¢olma,{[-~-[H,T<“:],~-J,ic’31}3z¢o>
- aG_i,L
§,<2m1>v<¢°' LiQh, (- - LG5 50
2m
—_—
- S KICIERRR R PR RET N R (Y

(30) jl (o) *
-1y (4919) 5 14940}
_ (Ro)*) g o)y _ (o)} B8 (X0) *
i{ {49 an{dg J} — {4g °}an{dg° )

: 3g™ yx_ (DQ&@E
+1i
l;h{ 50 et
2=

b T
—2i) poisr<pol [+ - [ig0,i00 -+ 1,i01 1#g> =, A.22)

ne2

with
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The quantity (H) (™) in Eq.(A.21) is defined by

(1) O = (H) - (H) ©

0

n
/A—'—’A\ﬁ
+ZS—~<¢0| [-- - [R481, - -1.i81 | do>
n=
= h@)+hM@+ - - = Y. h(n) ,
n=3
hn) = 3, hee (P () . (A.24)
(rlzin)

Comparing the coefficients of (n,7*) of both the sides of Eq. (A.22), we
have
(s—1>g<*o)+<s+1)g<103 "l = —Us r+s = 2, (A.25)
vhere the right-hand side of Eq.(A.22) is symbolically written as
u=Jum =Y, 2 @M . (A.28)
n n

(r+s=n)

From Eq. (A.25) and its complex conjugate equation, we have

o) = 1 (o * .
TS 2(r+s—1) { @—r)ups+ (S+1)us+l,r—l} y r+s = 2 , (A.27a)

which 1s formally expressed as

(20) sy _ _1, 0 1y _ * 0
g () 2(77354-77 677* e an *>U+n 31 u'} . (A.27b)

In the same sense, Eq.(A.21) can be formally expressed as



-61-

+ 9 _y) -

g (n, %) = {wx+wzo<n—— e

{ag(l*lo) 3 (H) (int)_ag(l#ko) 3 (H) (int)}
an* an an an*
n

T
+§2—nl—!<¢ol [ty (- - [HGT, - - - 1,360 1 1 60>

R S A aG__L_J_
22m
r:‘—"'—'/\—w
gé—u> W61, 1,4G11] 160>} . (A.28)

The expressions (A.27b) and (A.28) of the basic equations are convenient for
the (n,n* )-expansion method. With these equations with the (n,n")-expansion,
we can easily determine the higher order terms g“)(n) (i.e., g(” with r+s=n)
successively, starting with the lowest-order term g™ (1) given by Eq.(A.19).

Thus, for instance, we obtain

g @) =0, (A.29a)

(2%20) - 4 ¥ 8 |-l
gittrl (2) = {wx+mxo(nan Bn*)}
-%<¢0| [iQ%, [LH,iG(1)1,iG)1T 1 do> (A.29b)

h(3) = 31—!<¢0| [CCA,iG(1)],iG1)T,iG)T 1 o> (A.30)
and

g 3) = ~Loren-S- 1) (-t

*
an" " 3y a*>u<3>+n 7)u @ (A.31a)
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0 a -
g(mo) 3) = {@ﬁ“@lo(ng‘*?’)*-g?—?:)} t

- {69“) @)3h3) ag®W (2)anE3)
ant an an an*

+5<ol [18%, ([ [R,iG@ 181+ [ [A,i8(1)1,16@)T1 7 | do>

+§17<¢>ol [i@%, {(CL LA, iG)1,i61)T ,iG)11 1 1 >

1 A .86 a 1 ©
~gr<¢ol ridh, (r2GL0HL

LGB (HY @ A
e Ay eI LGN 1de>) (A.31b)

ha) = ani (999 @)n*=g™ @)} + 2, wag®* @)9 P @)
*4o

+-A%<¢ol [CCOAEM)T,AG()T 38T i8] | do>

+§%*<¢o| {([LCA,iG@)],i6(1)] ,161)]

C+[LCAR,iG1)1,i16@)1,1G(1)]
+[[[R,1G(1)1,16)T,iGE@)T} 1 do> (A.32)

where

G(n) = ?{g“) MG+g@* )ty . (A.33)
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Figure Captions

Diffeomorphic mapping M—IZ .

Schematic illustration of TDHF trajectory starting near to ¥? in three
different cases. SCC trajectory is indicated by solid line on I?.
TDHF trajectory is indicated by dashed line (behind %) and
dotted-solid line (in front of I?).

Three-Level SU(3) Model.

SCC trajectories with total-energy values E=8, 5 and 1. Shadow region
indicates unstable region with «?<0 .

Contour map of non-local effects I.

Poincaré-section map of TDHF trajectories with total energy (a) E=8,
(b) E=5 and (c) E=1.

TDHF trajectory represented by double-circles in three-dimensional
coordinate space. (a) E=8, (b) E=b and (¢) E=1.

Definition of double-circle coordinates.
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