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Abstract:

Renormalization of gauge theories is performed in a manifestly
covariant manner using the technique of the background-field
method. A one-loop counter-term formula for bose systems with
gravitational couplings is obtained and then applied to a system
of gravity interacting with a scalar field. The formula contains
'tHooft and Veltman's as a special case and is more powerful
than theirs in two respects: 1) It gives counter-terms without
recourse to the doubling trick; 2) the generalization to higher-
loop calculations is straightforward. Further, a two-loop counter-—
term formula for bose systems with (non gravitational) derivative

couplings is obtained.
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1. Introduction
In this century physics experienced two revolutions:

quantum theory and relativistic theory. Both theories have
provided mankind with deep understanding of nature covering a
wide range of energy scale. The special theory of relativity
has naturally been combined with quantum theory as a relativistic
field theory. Today we thus have the well-established relativistic
field theory as exemplified by quantum electrodynamics. It
describes the dynamics of electrons and photons. For the general
theory of relativity, the status is not very satisfactory yet
from the viewpoint of quantum theory.

h However the recent progress in field theories, especially
in gauge theories, seems to indicate a new approach to the above-
mentioned problem. ILet us thus begin by briefly surveying the
history of gauge thories. By the end of 1940's the renormali-
zability of guantum electrodynamics was proved by S. Tomonaga
[{1], J. Schwinger [2], R. P. Feynman [3] and F. J. Dyson [4].
In 1950 the general Hamiltonian formalism for gauge theories was
presented by P. A. M. Dirac [5]. 1In 1953 C. N. Yang and R. L. Mills
generalized for the fifst time the principle of local gauge
invariance to non-Abelian gauge theories. In so doing they had
to introduce a vector field, which later became known as the
Yang-Mills field. R. Utiyama [7] further generalized their
argument and dealt with gravity frbm the view?oint of gauge
theories (1955). In 1963 an explicit perturbative calculation
of quantum gravity was given by R. P. Feynman [8]. He discovered

that if one introduced a standard gauge and calculated diagrams



with one closed loop in a way analogoﬁs to quantum electro-
dynamics, one would arrive at amplitudes violating unitarity.
To avoid such a phenomenon, he introduced a fictitious wvector
field satisfying Fermi statistics. Later these peculiar
features of non-Abelian gauge theories were intensively studied
by B. S. DeWitt (1967)[9], L. D. Faddeev and V. N. Popov (1967)
[10], S. Mandelstam (1968) [11] and E. S. Fradkin and I. V. Tyntin
(1970) [12]. Non-Abelian gauge theories gradually became a
central problem in physics. The unificatioh of weak and electro-
magnetic interactions was achieved by S. Weiﬁberg (1967) [13] and
by A. Salam (1968) [14] using SU(2)xU(l) non-Abelian gauge theory
wiﬁh the Higgs mechanism. In 1971 G.''tHooft [15] proved
renormalizability of a massless Yang-Mills theory. He also
" proved renromalizability for the massive case but with spontaneous
symmetry breakdown (1971) [16]. On the other hand, the discovery
of asymptotic freedom of gquantum chromodynamics in 1973 (H. D.
Politzer [17], G. 'tHooft [18], D. Gross and F. Wilczek [19])
has given a great expectatién such that this may be the right
theory of the strong interaction.

When compared with the development of gauge theories in
the flat space, the quantum theory of gravity still has a number
of unsolved problems with regard to its renormalizability. The
main reason for this is that quantum gravity has a coupling
constant with dimension of length. Thus, it is not renormalizable
in the usual sense [20]. However there still remains a possibility
such that no infinity appears in on-shell quantities which are

not contained in the original Lagrangian. It is known from the



invariance argument that Einstein gravity is renormalizable up
to one-loop level [21, 22, 23], and that supergravity is
renormalizable up to two-loop level [24,25]. . In both cases it
should be possible to know by carrying out explicit calculations
whether the theory is renormalizable or not at higher orders.
For Einstein gravity one-loop counter-terms were explicitly
obtained by G. 'tHooft and M. Veltman [21], but no one has ever
calculated counter-terms for higher orders. A possible way to
understand the mechanism of ultraviolet divergences of gravity
is clearly to calculate them explicitly.

In this paper we present a way toward such a direction.
First we will obtain a one-loop counter-term formula for bose
systems. It is vélid both for usual renormalizable theories
and for theories with gravitational .interactions. The formula
is so powerful as to enable us to obtain one-loop counter-terms
for Einstein gravity in a way simpler than the case of G. 'tHooft
and M. Veltman. The generalization to two-loop calculations is
straightforward. All types of two-loop counter-terms which will
appear in the corresponding formula are obtained. For bose
systems with non-gravitational interactions we will obtain a
two-loop counter-term formula expiicitly.

In sect.2 we will explain the background-field method on
which our argument will be based. 1In sect.3 we will discuss
some interesting transformation properties of one-loop Lagrangian,
thereby finding a one-loop counter-term formula. The correspond-
ing formula will be discussed further for the case of gravity in

sect.4. In sect.5 the formula will be applied to the case of



gravity interacting with a scalar field. A two-loop counter-
term formula will be obtained in sect.6. Conclusion and
discussion are given in sect.7. In Appendix A a method to
calculate the divergent parts of two-loop integrals is described.
The results for various two-loop integrals are given in Appendix
B, and Feynman rules are given in Appendix C. For a system

with derivative couplings up to second order, all types of two-
loop counter-terms are listed in Appendix D. A proof of an
relation (6.28) which will be used in the text is given in
Appendix E. Renormalization of the ¢4—theory is performed up

to two-loop order in Appendix F.

2. The background-field method

In*analysing ultraviolet divergences of local gauge theories,
the background-field method is very convenient [9,22,26:30,40].
Compared with the usual method of calculating indivisual Feynman
graphs, the advantage of this method is the following. Firstly,
the method manifestly maintains the symmetries even after a
special gauge is fixed. This is due to the fact that a background-
field functional is invariant under a certain transformation of
background fields. Secondly, this method enables one to perform
the renormalization procedure in a way more economical than with
the usual method. |

To begin with let us consider a field theory with real Bose
fieldS'jb ir where i. denotes any kind of indices, including a

Lorentz index. The background-field functional is defined by
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~ The first term of (2.2) gives one-loop diagrams such as

2

Fig.l.
where the external double lines represent 'vertices' containing

&
? lines. The second and third terms give two-loop diagrams

such as
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When the S-matrix contains infinities, we have to introduce

Fig.2.

a counter Lagrangian A[_[j’] in the Lagrangian in order to
2
subtract them. The counter Lagrangian AL[ ?’ + ¢] may also be

expanded as follows:

AL [ 9%+ ] —al (P — sl (P%] %

7 Al Ly Y+ 00
- (2.3)

These vertices give the diagrams which cancel the divergences of

subintegrals. We now choose }bd in such a way that
e =
/C/,J[?&J + 4 ¢ ] o (2.4)

The counter Lagrangian AL[ 73661 can then be obtained by calculat-
ing divergent Feynman diagrams. In so doing we adopt the dimen-.
~sional regularization procedure and the minimal subtraction

scheme.

3. One-loop counter—-term formula

Let us consider a one-loop Lagrangian Az;
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where W, Nu and M are functionals of classical fields j%i
For usual renormalizable field theories (including gauge theories

with a Feynman-like gauge) we have
Wit == fR (3.2)

This case was considered by G. 'tHooft [22]. For theories with
gravitational interactions, the relation (3.2) is no longer
valid. Here we consider (3.1) without the relation (3.2).

By adding total space-time derivatives to Xiz (3.1) we can

always so arrange the system that the following symmetry holds:
\ a }‘ ¢ r
AP 4 - Fr
4 W /N M

g

(3.3)

X: 5 is invariant under the following transformation:
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where Sij(x) is an arbitrary infinitesimal function of x. The
local gauge symmetry (3.4) implies that of the original Lagrangian
Xi Lf 1. All[ fﬂzl must also be invariant under (3.4).

We now define covariant (contravariant) quantities as

followé:
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where
> / *
Aot = (ZM )" s (2awW )
24 Y
W Z;‘)f_ = J A .
(3.6)
The quantity A, transforms as
\ }'
4Ax, 5 = (S -AS +AS): . (3.7

We see this Ay plays the role of a guage field associated with



the gauge transformation (3.4). The quantities X and ¥y g

transform as

LX)t = s
AV el )t = (P S

(3.8)
The covariant derivatives are defined by
Ay Lo <F .f ‘
DW= gt E(wA) T WA )T =0
Y e ,,‘l }(A.‘
[a_)( ? = ZL/Y }'f'6X?4&,) ’ +-vaﬁk/) .
. (3.9)

Latin indices are raised and lowered by means of w') and Z;

3T

J
respectively:

/X; o= 2?[@ j?jﬂ /mel y
N = (S X ),.j + (SX )0

Ui

(3.10)

From the dimensional analysis we know that the one-loop

counter-terms are written as

. ¥ }‘ 4
A(f?‘fj*m_zg (a X‘j X* + b K(,\/ ; f\g\/ : )) (3.11)

where & = 4-n. "~ The result for the case whl = -89 [22] is

found to be
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J L4 . (3.12)

Similarly we can obtain invariant quantities for two-loop

counter-terms (See cf. Appendices A, B).

4, Counter-term formula for gravity

We now consider the following one-loop Lagrangian:
— __/_ A” /“) M /tr;: '
L=AF (F W8 7735 + 5 v) 724
L A3
+z/64/\7 e, ) , (4.1)

where g“v is an external gravitational field and W, N" and M are
functionals of the background fields. As before, 9)i denotes a
gquantum field. Under general coordinate transformations j%i'
Wij and Mij transform as scalars and NM as a contravariant
vector, respectively, so that the Lagrangian (4.1) remains
invariant. For the case of pure gravity or gravity interacting
with a scalar field, the .corresponding one-loop Lagrangian
reduces to (4.1). The counter-term formula for (4.1l) must
reduce to the formula (3.11l) for the flat metric guv = Guv' The
formula must be invariant under general coordinate transformationms.

We define the following quantities:



- 11 -

/

W»}'Zﬂ: e

4 (et L)

X = gt e Ll g h e ged”) ]
+2~/[W/—[;A,4"+/4/¢/4/A)Jﬂ +a /7 WM‘/

‘ | ‘ . #
Y,\o;; .= Vx/‘]a\,g g Vo»/l)\),; g ”//4,\//0»'/4%//\),( Py

(4.2)

where a is a constant to be determined léter and R is the Riemann
scalar. The operation \7u is the covariant derivative with
respect to general coordinate transformations.

From.the result of the previous section and the invariance

argument we obtain

. = _.L G Ly Py
AC ZE ﬁ[4 /\/,.‘}'X +/2$L KJ\/A 7/

b o/ X

A

2 D
+ +C o R~
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where we have taken into account the identity [31]

fo./‘tr»fﬁ_(/?ow/x//?d‘&/‘tf‘/;wf?ﬂg R*)=0 (-4

We can take R2 and Ruvav to be independent invariants which
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are constructed from two Riemann tensors. One-loop calculation
i he k ' = i

in t case of weak gravity (guV Suv +h , |huvl<<l) gives
three constants a, b and ¢ as follows:

N . N
— c = (4.5)
; Jéo J /20 :

where N is the number of independent scalar fields ?i:
i=1,2,+++,N. In the case wid = -6 our formula reduces to

that of G. 'tHooft and M. Veltman [21].

5. Gravity interacting with a scalar field

We apply (4.3) to the case of gravity interacting with a

scalr field:

LT3 (-F-435 3727 ), (52

where we have placed a bar on guv and 9’ to distinguish the full
fields §uv and § from the classical fields, R is the Riemann
scalar constructed from auv' We use the same notations as those
in ref.[21].

Following the procedure of the background-field method, we
write

};:?’J*?J ; ?/Au=3/u)7“ﬁ/ud (5.2)

~S
We regard 99 and guv as obeying the classical equation of motion.
Note that so far as ultraviolet divergences up to one-loop level

are concerned, the second term of (2.4) may be neglected. The
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one-loop Lagrangian for (5.1) is |

L =7 [~F282F (747 —24")~ L9505 (Hh™ =L b
SRV DE —(F64) 44, ) (R FaF i F)
RO R AR AR, b

_ ! s oM Ly Yoex,p6
A LGRSV AV L

%21/4 OKQ’//AA(;//A

(5.3)

where the covariant or contravariant derivative contains the
Christoffel symbol I' made up from the classical fielqyguv
Greek indices are raised and lowered by means of the classical

field g“v. The Lagrangian (5.3) is invariant under the gauge

transformation:
=27 5*9) 4.

fé.A‘J:[?‘,(,)ﬂ"ﬁdu)?i/A +/?)4,,(+/;/m()7 1/7“? s, o

(5.4)

]
where n® s are the parameters of infinitesimal general coordinate

transformations. To fix the symmetry we adopt the following

gauge—-fixing:

XC gauge = _;% &Q¥,)z
C°(=¢/7(A iu,/ -5 4 Vu,/ "f&}af“”) ZL/M(/

(5.5)
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where t"% is the root of the tensor g“v:
&« / v
Pt s g (5.6)

The Faddeev-Popov ghost Lagrangian is
\ _ /4’\‘ X ) "(}
Lot AT 77 {0.7° =Ryt AF (5.7)

Tensor and Scalar Part

The matrices W, N* and M in (3.1) take:the foilowing forms:
T S T S
‘ : y
o s AV e
W'I,I__ T W 0 WA)IT vl (W) 4

S 0 -l_/ , 5\ 0 2

- | S
Vv
, 4
I,J
M=
s M afeE ) (5.8)
where

y ‘ J

W KOS :;L{ /ﬁo(p?ﬂd_ﬁqwgﬁ __;wg@ﬂ)/
Zo((g//”) '—'9‘::((0 3/“/ “—go{/u g’px) "?o{yg(&/q )
WQ((@'/M)Z/A/,,\W :,Zi{foiff/; +(f:\[(i)

v/ o~
//‘//k)"({d//“ :______}/\ [W///VQ’LJ/ +W/“‘J-}/9 /’7[‘/,_/0({04_)/“1})}
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From these quantities we can obtain invariant gquantities

XTXeg = X Xar #2 X7 Nos + XX

~ —~ 2
X Kex =jz R + 4Rk 3 FRF )",

(5.10)
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where the symbols T and S mean the metric tensor and scalar,

respectively.

Ghost Part

Applying formula (4.3) to the case of complex fields, we

rewrite them in terms of real fields:
7. = ( 7, #4700 ) (5.11)
ARRCIRV A S

The matrices W, N" and M are given by

M///M’/ ,1/: W‘z/qul):——‘?/wj
1Y% ,21) o~
W) W) LR - o)
/,/A) 2 .
M/” = /‘72/“’ V:-Q—J::.z'" Qd{@d(gﬂ)\gd(g/jl‘e +c7/\u<?dp/,{:\ )}
o~ V)
“g/\ /7/\/5&‘5 —'ﬁ/‘ P

‘X//“/Il):zz/u,z)) :*;/1(1.)

(5.12)

All other components vanish.

The invariant quantities are found to be
1T _ J 52 Y
X 17 X - "7_” it T 2 /fw/ /LP

+/§2—Rf/uy+%/?/9&/go7/?+2(é’ﬂf2?“f/)2)
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Noting the minus sign that appears in the ghost part, the

total one-loop counter-terms are found to be
L, 1 o )T

40 = e T 55 BP0 72 Ry B+ 0. f orF)
B RIFIF + 20 F ) J

(5.14)
the result being in agreement with that of ref.([21].

6. Two—-loop counter-term formula
In order to obtain counter-terms which are to subtract
divergences of two-loop diagrams, we must take into account the

Lagrangian (2.2) up to O(¢4):
Lrp®epy - Lre) =L 0%

AoorF B

/ w A4
=79 B W9t + BN 9 f

0.7
(“é ‘é ,“t
500 % 2% 0%, ﬁ@ﬁ ih 28 44&%5@
4

FO(#5) ) (6.1)
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where W, Nu, M, E Qu, A, T Eu and () are functionals of

uv’ uv’

the background fields &Fi . In (6.1) we assumed that the
original Lagrangian XC[ED] has derivative couplings up to second
order. This is satisfied both for Einstein gravity and for
usual renormalizable theories. The symmetries of (6.1) and all
invariants are listed in Appendix D. Hereafter we consider the

following case for simplicity:

A S =
/';u = ¢ , Z'/A=0 , (6.2)

The relations (6.2) hold for usual renormalizable theories,
including gauge theories, with a Feynman-like gauge. Thus let

us now deal with the following Lagrangian:
LIPS ] =L L9 - L, (9%]%
sz 98 2t FANG AR +FE TP
Pl R gde * N BT Tk
7 @A‘//@; féff % ﬁ
+ 0 (p7)

(6.3)

where all Latin indices have been lowered. As in sect.3 we can

always arrange the system in the following way:
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@gu ]_L,,Ta/// symmefh‘c with respect to (i.4,%8 2)

(6.4)

The Lagrangian (6.3) is invariant under the following

transformation:

;6,{/ = 75, * 5:; (x) 7;‘ P

AN = S
/V/l; 6/7‘45:«; 7"'.5:,@/1/,5(] /Vmé '801 y,
A o= 3 r T L) t - /“4 - /‘1

/%CJ (Sléf/y&k /Viz~5}7 /VZE ébj}y' 5%51%’A<€j o

A_Q,tjf, (S,c,eﬂj_‘]é S -Q/:'f/@, '/"S/)M—Q/::jfe Y
,«;/é = Qg //1;‘/5 7‘5/2«&1 ng ’LC/’O/"C /"‘/"7"’5)/
(Diien s S @oges +epelie it 2)
| (6.5)

where cyclic (i, j, k) means those terms which are obtained by

cyclically exchanging Latin indices i, j and k. Sij(x) is an
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arbitray infinitesimal parameters with antisymmetric property
Sij(x) = —Sji(x). Note that the antisymmetry property is due
to the relation wrl = -61J in (6.2).

In view of the above transformation properties we can

construct covariant quantities:
Kai = My = WDy
~

v MoV
/"/‘}‘“’QJ)N{‘} +/\/A'£/‘//€}'—/VA(@/L//€}' P

Y
nS
AAtjg=A £ T3 [ vu+ / 0y 7“/‘/».% /';f)

(6.6)

The quantities X and Y*V in (6.6) are those given by G. 'tHooft
[22], corresponding to a special case of (3.5). These gquantities

transform as
| A/Y/f‘j = ‘5\,«’,@ /\/;GJ _/Yﬂ‘zﬁ ‘3\501’ P,
v Yald
\}/ \t = S/“,ﬁ’ 7//;;‘;‘ - 7//'!)@ Sz{o‘i )

7% ~ o r
4/)/“;'&:5‘4'1, ”ﬂ]‘/ﬁ +(S;‘¢"£ Z:’.(‘,Q’ +SA’£ 41/1‘01 ,

(6.7)

The transformation properties of Xij and Ygg correspond to

a special case of (3.8). The covariant derivatives are defined

by
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(6.8)

One-loop counter-terms for (6.3) are obtained by putting

il = 513 in (3.11):

one~ looF

4 ‘ _L AN AN
[, 777—2- /4 /Y"‘} i 7"271 Y»}' 7/;‘4{)/ (6.9)

where
£ = 4-»n (6.10)
The formula (6.9) was previously obtained by G.'tHooft [22].
From the dimensional analysis we expect that two-loop counter-
terms Allﬁwo—loop[ ?Ce] can be written as a linear combination

of the following terms:
o~ 2 ~2 ~ ~
;A X, pAaX, ofaY, 0
poix, QXY QXY , pty, 277
@Xl _ (6.11)

The explicit expressions for the coefficients of these terms are

obtained by calculating divergent Feynman diagrams. The Lagrangian



- 22 -

(6.3) contains the following vertices:

7o 4

4 b
a) 5)

“/L)UQ

Fig.3.

The Feynman rules relevant to such vertices are given in Appendix
C.. An easy way to find all coefficients of (6.11) except (:)X2

is to compute the logarithmically divergent two-loop diagrams

with four N-legs:

5 N N

N Y
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Fig.4.

We have checked that the diagrams a), b) and c), in fact, are
sufficient to fix all the coefficients. 1In order to obtain the

coefficient in front of QZXXz, we can compute, for example, a

®

diagram shown in Fig.5:

Fig.5.

Technical details of computing two-loop integrals are relegated

to Appendix A.

Let us now consider the problem of subdivergences. As an
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example we consider the following diagram:

0

/\/\/V/
/_

QX

Fig.6.

The above two-loop diagram contains three one-loop subdiagrams,

-

0 1o ol

N (0 iQX
a) b) C)

Fig.7.

and the power counting shows that the diagrams a) and b) diverge.
These one-loop subdivergences are subtracted by the one-loop

counter-terms. The vertices in(2.3) play the role:

| 0778-/00,0

ub /
L° N 4L ),.*}"[30“]?27’0{ , , (6.12)



- 25 -

where we have neglected the terms cubic and higher in ¢'s because
they contribute only to subdivergences of higher-loop diagrams.
Note further that A[:[ ?CL] has been replaced by Ailone—loqp[ fczl

for the same reason. The vertices in (6.12) are represented

graphically as

Fig.8.

In Appendix E, it is shown that these vertices cancel the
divergent part of one-loop subdiagrams. For the-one-loop
subdiagrams a) and b) in Fig.7, the vertices corresponding to

(6.12) are represented graphically as

FooN +00M
and

a) b)

Fig.9.

respectively. These vertices give subtraction diagrams for the

two—-loop diagram shown in Fig.G:
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a) b))

Fig.10.

In order to obtain Ailﬁwo—loop[ ?Cil we must take into
account both two-loop diagrams (such as a diagram in Fig.6) and
subtraction diagrams (such as diagrams a) and b) in Fig.10).
The subtraction diagrams cancel the one-loop subdivergences
contained in the two-loop diagrams. Here, however, we consider
the contribution to A[:FWO_lOOp[ ¢®] from the two subtraction
diagrams separately. The subtraction diagram a) in Fig.1l0, for
example, contributes to two-loop counter-terms in the following

way:

(‘g: +6)/’E‘/"Q.Q/V)M/ (6.13)

where the constants a and b are determined by explicitly calculating
the diagram a) in Fig.10. We have suppressed all indices contained
. ]J, u . . . . . ' .

in Q ik, Nij and Mij for simplicity. When the,fleld }ndlces

i, j,+++ contain Lorentz indices u, v, *++ we must cautiously

deal with contraction of Lorentz indices in’(6.l3). According

to the minimal subtraction scheme the counter Lagrangian Al:[? 1

is inserted in such a way that only divergent parts of diagrams
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are subtracted. Thus for the one-loop counter-terms (6.9), if

%%Lappears in Xin.. or Y%QY%q, we must take

ji ij~ji
- (6.14)
G ot .
Therefore, if Suu appears in .QON of (6.13), which originally
. AC AT
arises from Xinji or Yinji through (6.12), we must take
Sk =4 (6.15)

e

For ﬁuu's which are irrelevent to one-loop counter-terms we

must, of course, take

d

e =7 » (6.16)

where n is the space-time dimension. Therefore we first consider
the case when the field indices do not contain Lorentz idiceé,
and then consider how to modify the formula for the case when

the field indices do contain Lorentz indices.

[A]  The Case when the field indices do not contain Lorentz

indices

This is the case with scalar fields .?i (¢4—theory, g-model,
etc.). Evaluating the two-loop diagrams shown in Fig.4 and Fig.5,
and subtracting the divergences of subdiagrams in a simple-minded
manner we find the explicit form for (6.11) as follows:

> ~2 R J

" ~
0.// © 9Tt /1 4j% DZ”“J‘/@ P (6.17)

2

2 . _ /\-» A
A /\/ ‘ +ZY7/—452 {2 E)”A'/,{ AA‘J"Z A//Q’I 5 (6.18)
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t=a*+x & DN |

( ) J}f —Q sz ) (6.19)
o~ ‘ J
DALY . "t/gyﬂ-gg ,.JE [(/7‘/2, 5)01)7/ Aa,a.

e T D) g
PR — o (e (3000 e~ #0 20020
A J (6.21)

PEK S g

X[oiof;;'{ (h~F )yt (195 )y S
Q{ { (//+/2 E)p\Q‘:; +[/A~—_£)Q\Qéﬁ7n}

%D/»Q%v [~C+Ble) 0t +(2-7 ), )

'Dﬂf;q{(%”f)ﬂyp G ALY
*/)Qm {(/4 JE)DLQ,@ +(/3" 5)0‘)-04-7"}/7

(6.22)

2 2 . / Aa
paT Cretrret Ve

7o e T A
X[(’/—_g)p\QmJ DauQ/;»}' £ Dyﬁ;ﬂj Q/\Q;io']' #1745 E).D“Qo:j D‘)Qm;
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£/ 2
+(/a-—-g)ﬁ;q D))Da\_Q)) +(-147 7 E)D.rzf ' 1, //Mjg)w,w g

._(/+ Z)DAQW /)mﬂ_e EDJ_Q,;,.} Q\Q,@;A‘ +/f7L E)D”‘QrfAJDVQ.?JL

/2/2)0_[2&][294. +//3+ {)0 Qﬁg Q

«EJ,A

F7=5 ) i Do Dal2as +(13+

(6.23)

When applying this formula to the pure Yang-Mills theory with
the backgroﬁnd gauge we find that the counter-terms (6.17)~(6.23)

wvanish. Then only the following four types of counter-terms

remain: .
s ? b s 0 e (2~ oty S E) ey 07 3
0 X . +23'//-€‘Ez ()( /E.ﬂ [2_‘\9)—(254‘}'-[2-@“}( Z ,24 o2 € _Q'f".] ﬂ‘;,‘

Iy ~
Z,ﬁfz S K [ (5= Dy Do # (1~ 3 ) e Dleme |
(6.24)

(>( 7/ ,)4%L
xl}é;J { {~ E;)l?.éx' a /~—_— j}i)'[zj;u“}
/\/,ej 7//“)

2
@xXT er%

sz‘/e{/—i-ﬁLfl
x[_nu,é{(/w 5)!2,14,;7‘(/‘?‘* f)ﬂ'm}

"[/0"‘ ?)_Q,(J,Q-Q,(aj J

7
(6.25)
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/
2% 3 s

[ by 0iy f (4+E) ()

+(-27+ 2 €) (T”\//”Z/,@ =12+ 2 )T s /MJJ
w05 Dy (#6777 es

26+ B ) (TTY7 )yt (-15+5e) (7T Des 4 dur }J

/
_/_. P,
VLR Y/ A0

[t Qleef P3OV Ho5+E )Vl Vie d ]

ny?

+£2MLQLM{A(4*/wf) 7@:*/4ﬂ%‘) ﬂ

H4-Fe) Vi ij Ny

(6.26)
S

+247/'-f52 /Yab /‘/C‘o/ @aécQ/

B!

(6.27)

For the theory with non-derivative couplings (Nu = oV = 0), only
(6.17), (6.18) and (6.27) remain. This case was considered by
S. Tamura [32]. The ¢4-~theory and the o-model are well-known

examples of this case.
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[B] The case when the field indices contain Lorentz indices

This is the caée with Bose fields 95i with integer spin

> 1 (Yang-Mills theory, gravity, etc.).”.In this case we have

only to consider how to modify the formula éiven for the

previous case [A]l. As explained previously, both two-loop
diagrams and subtraction diagrams contribute to All?wo—lOOP[‘?CL];n
For the counter-terms corresponding to subtraction diagrams,

we must specify the part which comes from one-loop counter-terms
(such as QON in (6.13)). This is necessary'only for double pole
parts aﬁd not for single pole parts, because the difference
between Guu = 4 and Guu = n gives finite terms for the latter

case. We therefore redirive the double pole parts of two-loop
counter-terms which come from the subtraction diagrams. Substitut-
- ing the one-loop counter-term formula (6.9) in (6.12) we obtain

(for derivation, see Appendix E)

/ one=loop -
57 4L £9<), g b9
=L Lol nt ot 4 nibod t4mmy, 9 )
L 2 A‘dl‘/\da z/J AJA/AJ' 2 A] 14 )(628)
where
S/ ¥ % &
Wf; =7 | e (12 /ag*.(l;m)flgm

| ' )
— (405, +/szfm)12j;5 ~ (s # 1302 g0 ) L2 S j/
(6.29)
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7?/% = — [é /0/4&/5,4 DVQQAA)Q aéoz

7 4I?

/0 (—Qﬁaé —.Q 'AQ) ;aﬁ 05“/5-(2;‘75
)
%?[ﬂ/_()a/:;xf '_Q Q5‘] a6.¢ DJ).QCMJ )

2 .
+50V{(Qﬁab-—(2:)’£q)ﬂ;q5 — 4y J ,

(6.30)

Z[ﬁ;ac /:'ca)(ﬂ/;'cb—ﬂ;bc)])(a_b

772‘7" 3277

(¢ Fase #0u Qi ) (6 By + D 5 )
+2 (0%~ 0 ,‘m)(.Q,d, 24 YE
~ 51 D (0~ P8 ) - Qq(ﬁ,‘a,, -0 m)}fl(ﬂga.s
-3 V4 [712%12;)5@ ey ~f2i?m)/f2§qrﬂ§m) ]

7 D 4 (6Feus# 020 ) 0y ~FAlQfes060) G 7))

tie ]

. (6.31)

The quantities WY, 2 ¥ and 72 defined in (6.29), (6.30) and

(6.31) respectively, have the following symmetry:

P S VY
Z(/\,JJ‘ - Zl/"“}‘ » wr«?} Z(/JA p,

72/‘\"« :"‘72/‘7,:‘ ) 772,‘“ = 772‘;'4..
4 7 4 (6.32)
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From the invariance argument we find that the double pole parts
of two-loop counter-terms which come from the subtraction

diagrams are written as
. A Siub / v | AP~ oA 2
4 :ETZ‘/A/; /G}J(Q/C‘;e/rﬂ*/’ 2/;‘5: rx?+60/‘i)
b Ve Ted 4e pn X |

L oy Apo L y
glf?z/‘; D/L Y},«.’ 7 52 7 772,«} /*/ A .

where a, b, ¢, d, e, £ and g are constants to be determined
later. For convenience let us rewrite (6.28) in the following
way:

/ one—loop

a7 4L [e<d, o 0%

/ / -—-/ut) ) ——. ——/ ._.r 4
='g‘(g Wi g bt + My gt + 5 /Ty B ) ,

%
+Z‘/§:A//:'/V7”j #72{«‘2/1/2;
/4( (.
%77;1/14 7 777,0, : (6.35)
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The quantities in (6.35) possess the same symmetry as those

given in (6.32).

The vertices in (6.34) are expressed graphically as in

Fig.1ll:

Fig.1ll.

The Feynman rule for the vertices in Fig.ll is given in Appendix
C. An easy way to fix all constants in (6.33) is to calculate

logarithmically divergent diagrams such as given in Fig.12:

N N

Fig.12. C)

The result is
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sué / 7, v 2 AN
1% == amn Tr L™ g (14 2 7 o)
2 yprar, 2

g areima ],

(6.36)

As noted in (6.13) and (6.14),

where the symbol Tr means trace.

we must take

= 6.37
097“ va (6.37)
within @™V, 71” and Zy'and
é%m-’fz (6.38)
otherwise. Rewriting wy; as

' V
/Y 2 V., o+ P (6.39)
W"J J;‘“) ‘] Z/'} ) .
where
w X
/D Aab Aréa )-(2 J'aé

ot BRIt (e 5O )0 o)
(6.40)

ZGJ 247‘

/4
5> Q%ﬂ‘

we ‘obtain
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A,CSUb :Z 71 ;,[’Zf//\/ />/,\a\740\.+3_//)z/\/)}
e T (U FL) e LN )
*5/0/»?/ F )T px )
—Fnrny 4 A A S

(6.41)

We nptice that the first part of (6.41) is already contained in
the single pole parts of the counter-terms (6.17):(6.27).
Further we find that the doublé pole parts of (6.41) are just
twice as large as those of counter-terms (6.17)~(6.27). Noting
that the latter include contributioﬁ both from two-loop diagrams
and from subtraction diagrams, we conclude that the double pole
parts of counter-terms (6.17)~(6.27) must be replaced by the

following:

‘EWo—lovf’

AOC,JouHe [¢9 = “2{1{[,[?’&]7‘4’[\2[9"@]/  (6.42)

where the first term comes from the two-loop diagrams, the
second term from the subtraction diagrams, and AJC,l and Al:z

have a common expression such as

e f 7 T [ (#V# 7L ) T o)
125,74 )N T 0 pay )
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~F oY vt My F

(6.43)

However the rules for contracting Lorentz indices are different

for the two cases Alil and Allzo In Al:l

(6.44)

Jpgpu = 72

for all contractions in (6.43). 1In AJC:Z
Gzt (within Vo 375 N it 72 )
= / 4@3£;¢4d1241 )

(6.45)

e

We summarize the results in this section.

Case [A] The field indices do not contain Lorentz indices

The complete two-loop counter-terms are given by (6.17)~
(6.27). Especially for a theory with non-derivative couplings
(8" = o = 0), they are given by (6.17), (6.18) and (6.27).

Case [B] The field indices contain Lorentz indices

The double pole formula is given by (6.42), (6.43), (6.44)
and (6.45). The single pole formula is given by the single pole

parts of (6.17)~(6.27).
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.7. Conclusion and discusSion

The formula (4.3) is valid for bose systems with gravita-:
tional interaction. It is more powerfiul than that of G. 'tHooft
and M. Veltman in the following respects. Firstly ours gives
counter-terms without recourse to the doubling trick [2].
Seconaly it is easily generalized to the case of higher—ordef
calculations.

In sect.6 we have obtained the two-loop counter-term-
formula for a system with (non-gravitational) derivative
couplings. The formula can be applied to various types of field
theories such as ¢4—theory, scalar electrodynamics, o-model and
Ya;g—Mills theory. When combinéd with 'tHooft's trick [22],
the formula becomes applicable to the system including Fermi
fields, such as guantum electrodynamics and guantum chromodynamics.

In order to calculate the two-loop counter-terms for the
case of gravity, the formula given in sect.6 is insufficient.

We must take into account all the terms of (6.1). In Appendix D
all types of two-loop counter-terms for this case are listed.
From the analogy to the case of sect.6 it is expected that some
of the following logarithmically‘divergent diagrams must be

calculated in order to determine the necessary coefficients.

/\/N / NN\ /

(a) (b) (c)

ol
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(e) (f)

.
T
774

It does not seem to be very difficult to calculate these
diagrams when use is made of computers.

We now add some comments conce;ning'the renormalizability
of pufe Einstein gravity. It is well known [21, 23, 27] that
owing to the relation (4.4) we may take'R2 and RuvRuv as
independent one-loop counter-terms, both of which vanish on
éhell (Ruv =.0). At the lowest level, therefore, there appears
no infinity in ﬁhe S-matrix of pure Einstein gravity. G. 'tHooft
.and M. Veltman [21] pointed out that the one-loop counter-terms
can be absorbed by the renormalization of aﬁ unusual ﬁype such

as
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72 /
5%»*?}, + 5 (a%‘“j}?—/‘é@u)) (7.1)

where a and b are certain constants. As for two-loop counter-

terms only the following is nonvanishing on shell [23,' 27]:

Ruvie RY€™ R, 7 a2
Consequently two-loop quantum correction to pure Einstein gravity
will be finite only if the coefficient of this invariant happens
to vanish due to some miraculous mechanism of cancellation.

Finally let us touch on the meaning of gquantum gravity.
The gravitational force is one of the forces we experience in
the daily life. However, due to smallness of the coupling
constant k, its quantum effects are hardly measurable by ordinary
experiments. As is well known, the coupling constant k gives
the Planck length

}({ N, . —‘J)~5‘
L = v /0 27 (7.3)
.

and the Planck time

KA ~ 43
7—= oS /0 el (7.4)

' At present, however, we have no satisfactory theory which properly
describes a region of such a small space-time scale. The diffi-.

culties encountered in the application of quantum theory to
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gravity may thus provide us with a clue to new physics.
The calculations of diagrams shown in Fig.4 have been

carried out by means of computers.
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Appendix A. A method to compute the divergent parts of two-loop
integrals

In this appendix we show how to evaluate the divergent parts
of two-loop integrals. Some methods have already been given in
the literature [34, 37]. We present a new method, which has
the following features. Firstly our method is applicable to a
wide range of two-loop integrals. Secondly actual calculations
can easily be carried out by a computer. Let us explain the

method by referring to an example:

: /
= a/?? ”2 2 2 2 )2 2 (&1
I / & (P +m, )/ # D[ rere-p) +m7]

First we perform the Pl—integral

= [47 /
1, //? (P2+m) [ (B+f =R )+ m* ]

=4 E71/72‘-2) / y 77 (.2)
s x/r(/_ x) 2 7F (723> )72
e

where

2 2 7, %
M) =(xF—-f ) +F (A.3)

Next we perform the Pz—integral:

Z?zﬂz)
I = [d"A . (3. 4)
: / ClEeml ) (i )T

The Feynman parameter method gives us
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F/f ) ! : 2-Z / /
7y (- Z J47p . ~
I, = [ 6-3) /" 87 / (P +mimn )fﬁ%

“f (- ww P2t 2]

s (A.5)
,
where /‘; = A -—/f;/
. , P P N
M g) =mi-g) +EE1~8) z 7 T x 7’7(A‘ 6)
We proceed further,
%
[l5-2 2~ v /
I, = )//#(/~y)% z — = .
[T-F ()7 /052
[/—7/4 77),—72%/7/‘}_—72)[[/‘3’) 7L772/2}J
(A.7)
where use is made of the relation:
2 2
777/ v 5/%/ /Z
/Ez(/_? +;-2— + ———/_; = (/—g)?}—: + ' (2. 8)
From (A.2) and (A.7) we obtain
/)l _ 27z
’ (:C(/—x))z"iz"
'—'4‘7"77 /m/z

(™)
[/—,/4 e ” Yz +//f—7z)//~5‘)/ ),_)2 T
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F =) ()T J

(A.9)

So far our calculation is exact. We are now interested only in

the divergent part of (A.9). Let us evaluate the first term.
/ // [/—?)ﬂ - ( /2) —4-+7
[ - x) ] e
/ / - (772)
7o . +//
5 //x//m Dbt ) P I
, (A.10)
+ 0 (t=-m)2) |
where we have used an expansioﬁ
2-‘7'Z g ~p7
3 -
Va =/ 7 Z L F o+ O (@-7)2) ) (A.11)

The calculation of Jl proceeds as follows:

-2 LU=Y) (1 *)
Jy =—7 7 /‘//,m ) f* /J% //%
7‘0/(4-77]2)

. _ / (m)
=—% (4-2) /»2‘( )}2“[[0 o)

/

s> Y= 4t 7
*/a/,/'/r}/ "/(7” ) } *0(4-n)32)

___,5_—_[ (/- 4- w)jn%)

,,-—H/%—-)z) ———/z//x(/ )
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# Sea ;z)/aéﬂhﬁj ,16/;’ j7L Ol4-n)%)

(A.12)
From (A.12) the first term of ‘(A.9) is
A = / e 77))
, @ () G /4
x[_.._ )bt p Ly sy F2
> (4 ”)+z -+z (4~27) ,z Ry
/ Y 2 s A
— (47 dy (1~ —
7 )/a/x/o pl~4) =5 .
_ (A.13)
The second and third terms of (A.9) are not particularly
difficult to evaluate:
K, =— /fo/a@m i + 0w
2 4 ‘7
I/
o= 35 * O/ (A.14)

The final result is

[ [=2] o = i+ ]~ ]

+ O¢r)

. (A.15)

Note that K, cancels a term of the same type in (A.13). We have
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checked such cancellation for individual cases, and expect that
they may occur generally. In the Appendix B we list the results

for other examples.

Appendix B. The divergent parts of two-loop integrals
We list the divergent parts of wvarious two-loop integrals.
They are grouped according to the types of corresponding graphs.

Here we define some quantities which will be used below.

§=4-n

/
N=F (0t 4 msam) —F7

[ud/ a0 = dudip * Jurdvn + durdn

[/u//u»z W] = (;:,[/unz‘w] +o/f“)\[)/ ~Tw ]

+d,

o[ VA Tw] +g/Zr[yJ\o\w]+ %W,[y,t Az ]

(B.1)

wherex%? is a parameter to appear below.

A-type

-
U
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(B.3)

P (s el
A -f”//ﬁ/z LR+ m2) (fp+£)
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PR

'—',/a/wf/ﬂ/»/i /,02[/';""77‘122) [ﬁ_&+/€)2
=ﬂ"*[ i A /"7” * f)z
u{ [/577’ A éﬁ ——/77 /\/}]

+ 0(/)

S

(B.5)
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B-type
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prpY

(74 m2) (for )~ (ph )
=t gkt (~FF AFA)
P LAY

+ 0 ) > (B.8)

BL" < [ I

o, | £ R
Bla < JORIR ) (rv )



- 49 -

/ Y/ $.o2 / /
= W*4Z('27v€/k? E;"f é;y’ {'(,;72%2 ¢.%¥;¢91 7L/§[Zfz,) P

/
~Lmr X} ]+ ow

(B.9)

“p P p A
15}/// = ,/”f /D//D/D/
/ P G (e pre k)

- [ et wt (A - FX

+ A ] “ o, 2 —-~ 7“—/\/)

. 71 .t
Lo wI KR (T X) J* o
(B.10)

prp Y RN

/(AV/L
P 3
Blra = [/ 0% (e mi) (7 ) (P )

N VAT

R S _/,_izj?
1//5&{( /4 7"5—%/ +2%f2)2 5%/‘( |



- 50 -

+ dr X?-+ AVA?f){:- L Z@ * Af/)g‘ 7L_L)32/Y;} ;Z

7L- v (B.11)
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~ Appendix C. Feynman Rules
Feynman rules for the Lagrangian:
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Feynman rules for the interaction Lagrangian:
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All types of two-loop counter-terms:
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Appendix D.
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Transformation properties:
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Covariant derivatives:
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[2] Invariants for the case of XC,4 = %T 'ijkﬂ[ Fﬁ2]¢i¢'¢k¢g
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Appendix E. Proof of (6.28)
Here we show the derivation of (6.28). First we express
the coefficient functionals Nu, M, Qu, A and C:) introduced in

(6.3) as functional derivatives ofxC [ ?CZ]:
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Making use of relations (E.l), we find
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Substituting the one-loop counter-term formula (6.9) into (6.12)
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* 0. 0/75[7—(2454—(201{; _‘\}"Z/ (s - (i‘m)
/u[a /—Q,«aA _(2 rﬁq)}_Q a:& j ﬂ (E.3)

where

= 4 ,
é“é %}i 7 7.; ‘ (E.4)

Calculating one-loop subdiagrams such as Fig.7, we can check
that the vertices in (E.3) cancel the divergent part of those
diagrams. Adding total space-time derivatives we can write the

equation (E.3) in the form (6.28).

Appendix F. Renormalization of the ¢4~theory with N components
In this appendix we apply the one-loop .and two-loop counter-—
term formulas to the ¢4—theory with N components which possesses

a global O(N)-symmetry. The Lagrangian is of the form:
2 20,2 ___/\_(—» z)*
Losy-L] 234 e P (28 e

The coefficient functionals in (6.3) are given by

Nie=0 ey = —m2de =28 F “:gi%z”c';‘ o

“J v 7 7 il
e, =0 Bie ==l B L+ B Loyt s )
Aji o Aj)f £ « 1A 1 Yu K g Viy P
7\
@,‘J‘,u 22 /02, Jes * 051(’{;‘,2 7 0510‘/;%)

(F.2)
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The covariant quantities (6.6) are

Xoo= Mo Y=
“J ‘7 “7
(F.3)

From the one-loop counter-term formula (6.9),

a0 - ()% 2 7“/4 L) 2 (7% .

v/ E (F. 4)

This result was previously obtained by G. 'tHooft [22]. From o

the two-loop counter-terms (6.17), (6.18) and (6.27), we find

wo— (oo /'
‘ch.f loop - — / z{/ = (C¢/*-2/))lz}§‘?7%f

2"t

12 2 (pr )= F (wr2) AP
[ Flpre)® - L tswrz2) JA ()T ]

(F.5)

These results enable us to obtain various renormalization

constants up to two-lcop order:

Z, = /- (v42) A%+ O (42)

/o #E

2 ) / * -
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/ A* 2 >

- (F.6)

where my and'XB are bare parameters. The renormalization-group

function B(A) is given as

32
2%T

J
Zfﬁ-f-

pa) = - [T+ — A7 [+ /%) (F.7)

The results (F.6) and (F.7) are in agreement with those given in

(37, 38, 391.
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