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Preface

In this paper we shall consider the one dimensional

boundary value problem for euation

@) 8t8(u) - U + g(u)m = fw)

T

where 8(v), gw), fw) with v 2 0 and the intial data ¢(z) are
nonnegative continuous functions.

Egquation (1) describes the combution process with
convection in a stationary medium in which the thermal
conductivity B’(u)~1 and convection g(u) are depending in a
nonlinear way on the temperature B (u) = B(ulz,t)).

We assume the conditions which guarantee the uniqueness and
local existence of the nonnegative continuous weak solution to
above problem. Let T be the maximum existence time of the
solution. If u(x,t) does not exist globally in time, then T ( =
and

2) lim sup u(g,t) = =,

ttT xz€eR
In this case we say that ¥ is a blow-up solution and 7 is a
blow-up time.

The main purpose of the present paper is the study of
blow-up solutions. Especially we are interested in the shape of
the blow-up set which locates the "hot-spots" at the blow-up

time. In addition, since our quasilinear equation (1) has a
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property of the finite propagation of an interface, there are
some interesting subjects such as asymptotic behavior of the
interface near the blow-up time.

Firstly we consider the Neumann and Dirichlet problem
for (1> in a bounded domain,. Furthermore we consider only the
case g(£€) = 0 for £ = 0. Especially in the semilinear case B(E)
= £, Chen-Matano [1] shows that the blow-up set of a solution is

finite, tf
(1) f(£€) grows more rappidly than £.

In Chapter I, we extend this result to more general B(£). In
our result we do not use the analyticity condition on the
initial data ¢(z) and f(E) which is reqguired by Chen-Matano in
the case of the Dirichlet problem and in case f(0) > 0. But we
have to add some technical condition on o@(xz).

Next, we consider the Cauchy problem. We assume that the

initial data ¢(z) has a compact support ([-a all. If we add

1’
some assumptions on B(E) and f(E), we can obtain a finite
propagation of the interface of the blow-up solution u(z,t) in ¢
< T. In the Cauchy problem, we do not consider only the

condition (I) but also the following condition (I1):
(I F(E) grows more slowly than E.

In Chapter I, we also treat this problem for the case g(£&)
= 0. In this case, the shape of the blow-up set will be very
different +to each other under the <conditions (I) and (II).

Roughly speaking, under (I) we show that the blow-up set S is



contained in [-a all and the interface stays bounded as ¢ t T.

1°
Furthermore, if the technical condition is added on ¢(z), then S
becomes a finite set. On the other hand, under (ll1) we show
that S = RU{x}U{-»} and consequently the interface propagates to
the infinity as ¢ * T.
In Chapter II, we consider this problem for (1) with g(&) ¥
0. Further we treat only the case (I) such as f(f) grows more
rappidly than £ and g(&). Then we have to assume that ¢(x) has
the unique locally maximum point in R. Because, the
reflectional symmetry for equation which plays important role in
the proof for the case g(E) = 0 does not hold. Especially, in
the semilinear «case B(E) = &, Friedman-Lacey showed the
existence of single point blow-up solutions of (1) for Dirichlet
problem. We extend this result to the Cauchy problem of a
degenetrate quasilinear equation whose initial data ¢(z) has a
compact support. Moreover we can show also that the left side
interface stays bounded as t tends to the blow-up time T.
Namely, we get S = {no} for some - ® o < o,

Finally, we consider the problem whether no { ®© Qor no = ®
holds. For this problem, we obtain no < «, if we add another
conditions on f and ¢ such that f(£) grows rappidly than £ and
g(€), and we show that the right side interface stays bounded as

t{ tends to the blow-up time T.

Acknowlegement. The author wishes to express his gratitude
to Professors M. Matsumura and K. Mochizuki for their valuable

suggestions and helpful encouragement.



References

[11 Chen X.-Y. and H. Matano, Convergence, asymptotic
periodicity and finite-point blow-up in one-dimensional
semilinear heat equations, J. Differential Equations, 78(1819),
[2] A. Friedman and A.A. Lacey, Blow-up of solutions of

semilinear parabolic equations, J. Math. Anall. Appl. 132(1988),

171-186



CONTENTS

CHAPTER I. oOn Blow-up Sets and Asymptotic Behavior of Interfaces
of One Dimensional Quasilinear Degenerate

Parabolic Equations

§ I-1. INtroduction =+ cottoeo oot oasessnonsen 1
§ I-2. Definitions and Preliminaries -«---++-++-- 6
§ I-3. Fundamental Lemmas «:-:-crcrverecnananen. 10
§ I-4 Key LEemma + -+t s eceoesrtnennsaenasesness 17
§ I-5. The Case of a Bounded Domain «-+++-eceve-n 24
§ I-6. Asymptotic Behavior of an Interface «----- 29

CHAPTER II. Blow-up Solutions of Quasilinear
Degenerate Parabolic Equations with
Convection
§ 11-0. INtrodUuction =« cceeetettetnenatsaasenss 49
§ II-1. A Comparison Principle and Finite
Propagation of an Interface = = +++ccc-s 47
§ II-2. The Property of Zeroe Set of u (x,t) ---- 55
§ II-3. Single Point Blow-up ++++srserresrennenns 63
§ II-4. The Upper Bound Estimates and

Bounded Point Blow-up = sscrsceonan 71



Chapter 1

On Blow-up Sets and Asymptotic Behavior

of Inlterfaces of One Dimensional Quasilinear
Degenerate Parabolic Equations
1. Introduction

In this paper we study the initial boundary value problem

for a quasilinear degenerate parabolic equation of the form
(1.1) b(u)t = Uy, * f(u) in x € Q, t >0,

with one dimensional open interval O < R under the initial

condition
(1.2) u(x,0) = uo(x) in x € Q,

together with one of +the following three types of boundary

conditions:

(a) the Dirichlet boundary conditions with Q (0,LD)
(1.3a) u(0,t) = ud(L,t) = 0 in t > 0;

(b) the Neumann boundary conditions with Q

"
o]
=~
A

(1.3b) u _(0,t) = u_(L,t) =0 in t > 0
X X

(¢) the Cauchy problem, namely,



(1.3¢c) Q = R.

We assume the following conditions on b(u), £fCu) and

uO(x), respectively:

(Al) b(u)EC([O,w))nCw((O,W)), b_l(v)ecl([o,m)), Iim

U

b(u) = e, b(0)=0, Db(u) =0 for u=0 and b'(u)>0 b" (u)<0
for u>0 where u=b_1(v) is the inverse function of v=b(u);

(A2) f(u)EC([O,w))nCm((O,m)), f(b~1(v))ecl([0,w)) and

f(u)>0 for u>0;

(A3) uo(x)GB(ﬁ) and Uy (X020 for x€Q

where B(K) is the set of all bounded continuous functions on

a closed subset XK of R.

In the case of the Dirichlet problem, we assume in addition

the following compatibility condition:

(A3a) uO(O) = uO(L) = 0,

Furthermore, we assume the following condition so that weak
solutions of (1.1) may blow up in a finite time:

® breE) -
(A4) T dE < .

The equation (1.1) is called a porous media type equation
and it represents the process of thermal diffusion in a non-
linear continuous medium with the emission of thermal energy.

And wix,t) represents a temperature and f(u) represents a



heat source.

Remark 1.1. Assumptions (Al), (A2) and (A4) are satisfied

if, for example, the equation (1.1) is

1/m _ p/m
(1.4) (u )t = uXx + U (p>1, m==1).
Let us put Qt = Qx(0,Tt). We know that if =t > O is
small enough, there exists a unique non-negative weak

solution u(x,t) of (1.1>(1.2)(1.3abc) (see, e.q., [2]1, (31,
[12] and [131). The definition of "weak" solutions will be
given below in Section 2.

Now let us put
(1.5) T =sup {( Tt | u(x,t) exists in Q. = Qx(0,T)}.
If u(x,t) does not exist globally in time, namely,
0 < T K =,

then we call this solution a blow—up weak solution and we call
T a blow-up time. The local existence theorem implies

(1.6) lim sup { u(x,t) | x € Q )} = =,
t1TT

For studies on blow-up or non-blow-up of solutions, see
references [6]1, [81, [9] and [101].

By a blow-up point of a blow-up weak solution u(x,t)
we mean a point X € QU{eIU{-=) such that there is a sequence

(x .t} c Qx(0,T) satisfying



t T 7T, x_ =2 x and u(x_,t ) = «© as n = o,
n n n’'n

Also we call the set of all blow-up points a blow-up set.

From the definition, we see that the blow-up set is a
closed subset in RU{=}U{-=}. We shall study the shape of the
blow-up set of each blow-up solution to (1.1)(1.2)(1.3abc) and
furthermore, in the case of the Cauchy problem (1.1)(1.2)(1.3c¢)
we shall study the asymptotic behavior of an interface of each
blow-up solution of this problem near the blow-up time t=T.

In the case the o0f the Dirichlet or Neumann problem, we
shall show that if f(u) grows more rapidly than u (see (Ab)),
then the blow-up set of a blow-up solution is finite (Theorem
5.1). In the semilinear case b(E)=E, this result has already
been obtained by Chen-Matano [4] and our methods are based on
theirs. Note that we have to add some technical conditions on
the initial data uo(x) (see (A6) and (A7)). On the other
hand, we do not use the analyticity condition on uo(x) and
f(u) which is required in the case of the Dirichlet problem and
in case f(0) > 0.

In the case o0f the Cauchy problem, we assume that the
initial data uO(x) has a compact support [0O,L] (see (A8)).
£ we add some assumptions on b(u) and f(u) (see
(A9) (A10)(A11)), we can obtain a finite propagation of the
interface of the blow-up solution u(x,t) in t<T. We are
interested in the behavior of the interface near the blow-up
time =T as well as the shape of the blow-up set.

We consider the following two cases:



(I) f(u) grows more rapidly than u (see (A5)).

(II) f(u) grows more slowly than u (see (A12)).

If (I) holds, we obtain that the Dblow-up set SCuy) is
contained in fo,L] and the interface stays bounded as t 1
T. Furthermore, if the technical condition (A7) is added on
uo(x), then S(uo) becomes a finite set (Theorem 6.2 (i)).
On the other hand, if (II) holds, we obtain that the blow-up set
S(uo) is equal to R and consequently the interface propagates

to the infinity as t T T (Theorem 6.2 (ii)).

To prove these results, we can use the finite propagation

property of the interface for (I) and (I1). We can also use the
non—-blow-up result for the Dirichlet problem due to
Imai-Mochizuki [81 for (II) only. In order to prove results for

(I> we can also use the methods developed Friedman-McLeod [51]
and Chen-Matano [4] for the semilinear problem. Note here that
[8] studied the initial-boundary value problem (1.1)(1.2)(1.3ab)
and asserted that the above two conditions (I) and (II) on £f(uw)
bring on the completely different blow-up situations.

Similar results to Theorem 6.3 were already obtained in [6]
and ([7]1 for the special equation (1.4) with m>l. However, the
proof in [6,7] strongly depends on the equation and it seems
difficult to apply it directly to our general quasilinear
equation.

The paper is structured as follows: In Section 2, we
state the definition of weak solutions of (1.1)(1.2)(1.3abc)

and we state some lemmas used throughout this paper. In Section



3, we also state some lemmas which will be directly used in our
blow-up problems. In Section 4, we shall show that the blow-up
set becomes {finite under some special conditions on the blow-
up solution ulx,t>. In Section © we consider the Dirichlet
or Neumann problem wusing the results in Section 4 and in

Section 6 we consider the Cauchy problem.

Acknowledgment. The author wishes to express his gratitude
to Professor K. Mochizuki for his valuable suggestions and
helpful encouragement. The author is also grateful to

Professors M. Matsumura and Y. Shibata for their kind advice.

2. Definitions and Preliminaries
In this section, we assume (Al)-(A4),

Definition 2.1. Let § be an open interval in R and
let T > 0. A function u(x,t) defined in QT = Q %(0,T) is

called a weak solution of (1.1), if:

1) ulx,t) € B x [0,T'1) for each T € (0,T), and
ulx,t) =2 0 for (x,t) € QT;

2) For any T € (0,T) and any bounded open interval

Q' = (a,B8) in €, the identity

f b(u(x,T'))e(x,T') dx - f b(u(x,0)0(x,0) dx

t



T v

T! T'
- f b(u(x,t))wtdxdt = j f ue_ (x,t)dxdt - f
ovQ: o vor *X

X=0
u%% dtl
0 x=8

+ f f f(u)e(x,t) dxdt
o Yo

2.1 a3 x  [o,T)

holds for any test function Q(x,t) € C
satisfying e, t) = @B,t) = 0 for t € (0,T) and
e(x,t) 2 0 for t € (0,T).

A function u(x,t) defined in QT = Q X (0,T) 1is called
a weak super-(sub-)solution of (1.1), if uix,t) satisfies
1) and 2) with equality replaced by = ( £ ).

A function u(x, t) defined in (0,LYy X (0,T) is called
a weak solution of the Dirichlet problem (1.1)(1.2)(1.3a), if
u(x,t) is a weak solution of (1.1) in (0,L) x (0,T) and,
if u(0,t) = u(l,t) = 0 in t € (0,T) and u(x,0) = uo(x)
in x € (0,L).

A function u(x, t) defined 1in (O,L) x (0, is called
a weak solution of the Neumann problem (1.1)(1.2)(1.3b), if
u(x,t) is a weak solution of (1.1) in (0,L) x (0,T) and, if
u(x, t) satisfies 1) and 2) with ©@(x,t) replaced by @(x,t)

¢ 1@ x [0,T)) satisfying  @(x,t) = 0 for (x,t) €

€

({a,B¥N{O,L}Y) X [0,T) and @X(x,t) = 0 for (x,t) €
{,BIN{0,L}%x(0,T), and if u(x,0) = uO(X) for x € Q.

A function u(x, t) defined in (O,L)Yy x (0,T) is called

a weak super—(sub )solution of the Neumann problem (1.1)

(1.3b), if u(x,t) satisfies 1) and 2) with equality replaced

by P2 « < ) and with o{x,t) replaced by p(x,t) €

Cz’l(ﬁ‘x[O,T)) satisfying e(x,t) = 0 for (x,t) € ({a,B}N



{o,L}Y) x [0,T) and @X(X,t) = 0 for (x,t)€{a,B}N{0,L}X(0,T).

A function u(x,t) defined in R x <0, is called a
weak solution of the Cauchy problem (1.1)(1.2)(1.3c), if
u(x,t) is a weak solution of (1.1) in R x (0,T) and, if

u(x,0) = uO(x) for x € R.

Lemma 2.2.(the comparison theorem). Assume (Al)-(A4),
Let Q be an open interval in R. Then, the two following

results hold:

(i) Suppose that u(x, t) i8 a super—-solution of (1.1)

Q x (0,T) and vix,t) i8 a s8sub—-solution of (1.1)

in Q
T
Q x 0,T. Then, if u(x,t) =2 v(x,t) Jfor (x,t) €

in  Qp
80 x (0,T) and if u(x,0) 2 v(x,0) for x € Q, u(x,t) = v(x,t)
for all (x,t) € Q x (0,T).

(ii)d Suppogse that u(x,t) 18 a super-solution of the
Neumann problem (1.1)(1.3b) in QT = Q x (0,T) and v{(x,t) i8
a sub-solution of the Neumann problem (1.1)(1.3b). Then, If
u(x,0) =2 vi{x,0) for x € (0,L), u(x,t) = v(x,t) for all «(x,t)

€ Q x (0,T).

Proof. See Aronson-Grandall-Peletier [2]1 and Bertsch-

Kersner-Peletier [31]. o

Finally we show the following lemma:

Lemma 2.3. Agssume (Al)-(Ad). Let u(x,t) be a weak
solution of (1.1) 1in QT. Then, if there exists a point (x,t)
€ Qp such that u(xy,ty) > 0, u(x,t) is a c”- function in a



neighborhood of (xo,to) and

(2.1) U(Xo,t) 2 n(t) > 0 t € (tO,T)

where n(t) i8 a golution of an ordinary differeniial equalion

n' = -axn/b'<n) for some positive conslant 2x.

Proof. We only show (2.1). By the fact that u(xO,tO)

> 0, there exist 6 > 0 and o > 0 such that
(2.2) u(x,t) = a >0 for [x - x,l <& and |t -ty < 5.
Set
(2.3) vix,t) = gxin(t)
where
(2.4) g(x) = sin({x - (X, - 8)Im/28)
and n(t) satisfies a differential equation
(2.5) N AT
with n(t) = o and x = (U/28)°,

We shall show
(2.6) u(x,t) 2 vi(x,t) for all (x,t) € {xo*é,xO+SJXEtO,T).

First, n can be represented explicity by
RCE) = W W )=a(t=tg))

where



N,
2.7) Win) = f P__é_él at . n >0
1

and w'l is the inverse function of W. Noting that W({n» is

an increasing function and W(n) - - as n 4 0, we have that

nct) > 0 in t € (¢t ) and ndt) ¥ 0 as t » o, Since

0*”

1/b'(n) is an increasing function, a simple calculation shows

that
(2.8) b(v)t < Vex + f(v) for (x,1) € (xo-a,xo+5)X(tO,T).
Thus, we see that v(ix,t) is a sub-solution of (1.1) in

(xo—é,xo+8)x(tO,T) and that

(2.9 v(xoié,t) = 0 £ u(xoié,t) for t € (tO,T)
and
(2.10) v(x,to) = ag(x) £ u(x,to) for x € [xo-é,x0+6].

Applying the comparison theorem to u(x,t) and vix,t), we
obtain that ulx,t) = vix,t), (x,t) € £x0~6,x0+6]X[t0,T).

This proof is complete. O

3. Fundamental Lemmas

In this section, we assume (A1)-(A4). We state

some fundamental lemmas used after this section.

Lemma 3.1, Assume (Al)-(A4). Let Q = (a,d) be a

bounded open interval and, let u(x,t) be a weak solution of

_10_



(1.1) in QT = QX(0,T). Then, the following two results hold:

(i) Suppose that ufa,t) > 0 for t € [0,T), u(a,0) >
u(d,0) = 0 and ocu(x,t) > u(x,t) for (x,t)> € [c,dlx[0,T)
where ocu(x,t) = u(2c-x,t) with ¢ = (a+d)/2. Then, If

there erists tO € (0,T) such that u(x,t) > 0 for x € [a,c],

(3.1) UX(C,tO) < 0.

(ii) Suppose that u(d,t) > 0 for t € [0,T), u(d,0) >
u(a,0) = 0 and oCu(x,t) =z u(x,t) for (x,t) € fa,clx[0,T)
where ocu(x,t) i8 as above. Then, if there ezists tO €

(0,T) suech that u(x,to) >0 for x € [c¢,d],

(3.2) ux(c,to) > 0.

Proof. We shall only show (3.1).

First, we show that

(3.3) ocu(x,to) > u(x,to) for ¢ < x £ 4d.
Assume that ocu(xo,to) - u(xo,to) = 0 for some x0 €
(c,d). Set w = v-u where v = ocu. Then we see that w(x,t)

satisfies a linear parabolic equation

N S I
(3.4) i T BT {wxx + {f-b vt}w}
_ _ 1
in (x,t) satisfying w(x,t) > 0, where ¢ = @(v,u) = f
0
@' (8v+(1-6)u) d6. Note that (x,,t)) € (c,d)x(0,T) is a
minimum point of wix,t) in (c,d)x[0,T). Applying the



maximum principle to w(x,t), we obtain that w(x,to) = 0 in
x € [c¢,d]l, which implies w(d,t) = 0 in t € [O,tO]. Namely
w(d,0) = uca,0) - udd,0) = 0. However this contradicts the
assumption of Lemma 3.1.

Next we show (3.1). Note that u(x,t) > 0 in the
neighborhood of t=tO and x€[a,c]. Then, by the same methods

by which we demonstrated to show (3.3) we have that wix,t)>0

in (x,t) € (c¢,dlx(t —6,t0+5) for some 5>0. Applying the

0
maximum principle to wix,t) and using the fact that w(c,t) =
0, we have that wx(c,t) > 0 for t € (to~6,t0+6). Namely

ux(c,t) < 0 for t € (t0~5,t +5). This is a proof of (3.1). O

0
Next, we further assume the following condition:
(A5) There exists a C -function F : [0,%») » [0,®) such
that
(i) F(u) > 0, F'(u) =2 0, F"(u) =2 0, for u > 0;

(ii) there exist ¢ > 0 and M, > 0 such that,

0
, b" 2 ]
(3.5) f'F - fF' 2 c(F'F - BT F™) for u > MO’
(iii)d
® du
(3.6) Fo ¢
1
Remark 3.2. 1f p/m > 1, equation (1.4) satisfies this
condition.
Lemma 3.3 (cf, Friedman-#Hcleodl5], Chen-Matanol[41).
Assume (Al1)-(A5). Let Q@ = (a,b) be a bounded open interwval

..12_..



and let u(x,t) be a positive weak solution of (1.1) in QT =

Qx(0,T). Furthermore suppose that
3.7) ux(x,t)>0 [or uX(X,t)<03 in (x,t)elc-8,c+81x(t,T),

for some <c€(a,b) and &>0 with (c-8,c+8)c(a,b) and some T

€ (0,TY. Then there are no blow-uUp points in (c-8,c+8).
Proof. We shall show this lemma in case
(3.8) ux(X,t) > 0 in (x,t) € (c-&6,c+d)X(t,T).

We give an indirect proof. Assume that XO € (¢c-b6,c+d) is a

blow-up point of u(x,t). Then we see that

(3.9) lim u(x,t) = o for X e(xo,c+8).
t1TT
In fact, let d E(xo,c+6) be fixed. Since XO is a blow-

up point, there exist sequences {xk) c (c-6,d) and {tk) C

(t,T) such that X, = X t, = T and U(Xk’tk) T o as k

k k

-+ o, By (3.8), we obtain

O )

(3.10) u(x,tk) > u(x ) for d £ x £ c+b.

K bk
Hence, by Lemma 2.3 we have

(3.11)  u(x,t) 2 n (OsinC 225 1 ) for xeld,c+sl, Trtzt,.

_ N

Here () = W hW@ - aCt-t))  and W) = I b E) éﬁ) dE
]

with o = u(x,t) and X = (n/(c+w-d))>. Since W(n) is a

monotone increasing function, we have

My



() = W hwiuex

nk k,tk)) - A(T—tk)) in t e[tk,T).
Noting that lim {(W(ud(x,,t,.) - A(T-t,)} = 1lim w(n), we obtain
k’ 'k k
ko nToo
min n,.(t) = w-l(W(u(x s t,.)) = 2(T=t,)) =+ © ag Kk = o,
k kK’ 'k k
te[tk,T)

This and (3.11) show (3.9) since d € (xo,c+5) is chosen
arbitrarily.

Choose d € (XO,C + d) again and set

(3.12) Jo=u, - ep(X)Flulx,t)), (x,t) € Q = (d,c+5)x(tl,T)
and

o M(x-d)
(3.13) p(x) = sin or5-d

where g > 0 and tl € (t,Ty. Noting the assumptions (Al),

(A4), (AB5) and (3.7), and assuming that g is sufficiently

small and t is sufficiently close t = T, we have

1
(3.14) (b'J)t - JXX 2 B(x,t)J + C(x,t>J , (x,t) € Q;
(3.15) J,t) > 0, J(c+s,t) > O, tl <t < T
(3.16) J(X,tl) > 0, d < x < c+d.

(cf, Chen-Matano [4] and Imai-Mochizuki ([81). Applying the
maximum principle to (3.14) (3.15) and (3.16), we obtain
J{x,t) > 0 for (x,t) € @, or

ux(x,t)

(3.17) Fu(x, 0))

> gp(x) in (x,t) € Q.



Integrating this inequality over d £ x < ¢ +8 vyields

ulc+d, t) 4 c+d
(3.18) j F(E) > ef p(x) dx in t. ¢t < T.
udd, t) d

The right-hand side of (3.18) is a positive constant, while the

left-hand side tends to zero as t T T by virtue of condition

(AB)(iii) and (3.9). This contradiction shows that XO is a
not blow-up point of wu(x,t). The proof is complete. 0O

Finally we show

Lemma 3.4. Let ulx,t) be as in Lemma 3.3. Then

u(x,t) can be ezxtend to a Cz’l—function in (c~-&,c+8)x(0,T1.
)
Horeover if we represent this C“’l-funetion as u(x,t) again,

then
(3.19) ux(x,T) > 0 [or uX(X,T) < 0] in X € (c-b6,c+8).

Proof. We sall show this lemma in case u, > 0. By

Lemma 2.3 and Lemma 3.3, for any c¢-& <« d1 < d, < c+8, there

2

exists M' = M'(dl,d ) > 0 such that

2
%T < u(x,t) < M for (x,t) € [d ,d,Ix[T,T).

Therefore we can easily extend u(x,t) to 02’1—function ul(x,t)

in (c-8,c+d)x[t,T] by means of standard Lp and Schauder's
estimates (cf, Chen-Matano [41).

Choose d € (c-8,c+d) arbitrarily and choose £ > 0
such that [d-¢,d+41 < (c=-8,c+d). Let us consider the

following initial boundary value problem:
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b(v)t = Ve t f(v) in X € (d-¢&,d+8), t > T,
(3.20) vix,t) = u(x,Tt) in X € (d-¢,4+¢),

v(idz{,t) = ni(t) in t > T,

where n (1) are continuous functions on [Tt,~) and satisfies
that ni(t) = ulaxdi,t) for t € [t,T) and np_(t) < n+(t) for
t € [t,=). Then, there exists T' > 0 such that a solution
vix,t) of (3.20) exists in (d=L,d+L)x(T,T+T") by the

.existence theorem, and the uniqueness theorem implies
(3.21) vix,t) = u(x,t) in (x,t) € (d-¢,d+&)x[t,T].

We compare o . v(x,t) and v(x,t) in [d-£,dIx[T,T+T'). We can

d
see easily that odv(x,r) 2z v(x,Tt) for x € [d-{,41, odv(d,t) =
v(d, t) for t €fT,T+T") and odv(d-{,t) - v{d-¢,t) =
n,(ty - n_«t) 2 0 for t € [t,T+T'). Noting o4V and v are

solutions of (1.1) and applying +the comparison theorem, we

obtain

(3.22) o.v(x,t) 2 v(x,t) in (x,t) € [d-¢,dIx[T,T+T"').

d
Then it follows from Lemma 3.1 that

(3.23) ux(d,t) > 0 for t € (x,T+T'),

S0 ux(d,T) > 0. Since d € (c-&,c+d) is chosen arbitrarily,

we obtain (3.19). O



4. Key Lemma

In this section, we assume (Al1)-(AD) and prove the

following key lemma for the case of a bounded domain:

Lemma 4.1. Assume (A1)-(A5). Let u(x,t) be a positive
weak solution of (1.1) in Qp = Q x (0,T) = (0,L) x (0,T) and
let 0 < a; < a; < L. Suppose that for any ty € (0, there
exisis &8 = 6(to) > 0 such that

(4.1 ux(x,t) > 0 [or ux(x.t) < 01, (x,t)€{a1-6,31+81x(t0,T)
and
(4.2) ux(x,t) < 0 [or ux(x,t) > 01, (x,t)e[az—s,a2+6]x(tO,T)

where [ai~5,ai+6] c Q (i=1,2) and [a —6,a1+8]n[a2—6,a2+5] = ¢,

1
Then, the blow-up set of u(x,t) is finite in (a;-8,a,+8).

Remark 4.2. Consider the Dirichlet problem (1.1)(1.2)
(1.3a) with b(uw=u. Let wu(x,t) be a blow-up solution of the
problem. Then, we see that u(x,t) > 0 for (x,t) € (0,L)X(0,T)
and for any T€E(C0,T) there exists 8=8(t) > 0 such that
ux(x,t) > 0, (x,t) € (0,5)x(t,T) and ux(x,t) < 0, (x,t) €
(L-8,L)%X(t,T) <(see Friedman-McLeod ([51). Using Lemma 4.1 and
the fact that the blow-up set of u(x,t) is contained in (O,L)
(Friedman-McLeod [5]1), we obtain that the blow-up set of u(x,t)
is a finite set. Then, we do not use the analyticity condition

on a initial data uo(x) and a heat source f(u) which is



required in Chen-Matano [4]1 in case f(0) > 0.

We need some notations and preliminary lemmas (see Chen-

Matano [4] and Angenent [11).

Notation 4.3. Let wix) be a continuous real value
function on K where KX s S1 = R/Z or a bounded closed

interval in R. We define the nodal number of w by
V(w) = the number of points x € K with w(x) = 0.
This defines a functional v : C(K) - NU{Q}U{x=},.

Definition 4.4. We say that w € CI(K) poses only
simple 2zeroes 1if w'(x) # 0 for any X € K such that

w(x) = 0. The set of all such functions is denoted by 2(K).

Lemma 4.5 (Angenent). Let p(x,t), q(x,t) and r(x,t)
be locally bounded continuous functions on Slx(tO,T) with

Py Pyyio Pyt P> Py, Ay qys all Ltocally bounded

continuous. Furthermore, let p(x,t) > 0 and let w(x,t) be

a classical solution of

(4.3) W, = P, W + a(x, v+ rix, O, (x,tresix(t

t ).

O’
Asgume that w 1is mnot identically equal to zero. Then

(i) viw(-,t)) is finite Ffor any t €(t.,T) and is

O,

monotone nonincreasing in t;

(ii) there ezxzists a strictly decreasing sequence of

points ~(tk} c (tO,T) such that (t,} 4 to and w(-,t) €

..18...



Scsly for any t e (t

O,T)\{tk}.
Lemma 4.6 (Angenent). The assertions of Llemma 4.5 hold
wilh S1 replaced by a closed interval [a,bl] in R, 1if we

assume in addition that w(a,t) # 0 and w(b,t) # 0 for any

t € (tO,T).
Remark 4.7. Lemma 4.5 and Lemma 4.6 follow immediately
from the next lemma due to Angenent [11]:

Lemma 4.8 ([11). Under the assumpltion of Lemma 4.1 or of

Lemma 4.2, we have

(i) vw(+,t)) 1is finite for t € (tO,T),

(iid If (x4,ty) is multiple zero of w, then VW, t,))
> vw(,ta)) for all t, < t; <ty < T.

With Lemma 4.6 we can now prove Lemma 4.1.

Proof of Lemma 4.1 (c¢f, Chen-Matano). We note that the
point of (al—a(to),a1+5(t0)) U (a2-6(t0),a2+5(t0)) is not a

blow-up point.
By differentiating equation (1.1) with respect to x,
we see that W o= ux(x,t) satisfies a parabolic equation of

the form (4.3) 1in [al,a 1 X (tO,T). Therefore noting 4.1)

2

and (4.2) and using Lemma 4.6 (ii), we can see the existence

of T e(tO,T) such that

(4.4) u (-, t) € 2<[a1,a 1) for all t € [T,T).

2

Applying the implicit function theorem to uX, we obtain

_19_



1 .
C -curves &1,&2,...,En [T, T) - (al,ag) such that

(i) E (1) < ﬁz(t) < ... < E () for t € [T,T),
and
(ii) (x € [al,azll u (x,t) = 0} = { &l(t),..,ﬁn(t))

for each t € [t,T).

Let S(uo) be the blow-up set of u(x,t). We shall show

(4.5) lim €,.(t) = ¢x, exists for each 1 < i < n
tTT 1 1
and
(4.6) S(uo)n(al,a2) c {al,ag,...,un}.
First, set a; = lim inf £, (), a; = lim sup £, (t) and
tTT t1T
i, = [a;,a;] for each 1 < i < n. Then, by (4.1) and (4.2)
we have
n
4.7) ‘U J. € (al,az).
i=1
Moreover we obtain
n
(4.8) (al,az)\ik—_)l.li s (al,az)\S(uO).
n
In fact, choose a «closed interval fc,d]l <« (al,ao)\ U Ji
= i=1
(¢c<d) arbitrarily. Then, there exists tl €(t,T) such that

ux(x,t) # 0 does not change its sign in the rectangular

region [c,d]XEtl,T). It follows from lemma 3.3 that (c,d)

- 20 -



n

c (31’32)\5(“0)' Since [c¢,d] C (al,ag)\ikzll.li is chosen

arbitrarily, (4.8) follows.

Next we define the family {wi} of sets inductively as

follows: For closed intervals A1=[c1,d1] and A2=[cg,d2],
Pt o "

set (AI’A2) ((cl+c2)/2,(d1+d2)/u) and define wj

(j=0,1,..) inductively as

x,
i

((al—a,a1+6),(a2—5,a +8)}

0 2
W, = (Al A = (A, Ay, Ay, A, € W)
wj+1 = {AI A = (AI’AQ)’ Al, A2 € WJ }

ooooooooooooooooooooooooooo

Then, we see easily the following properties with W.= U  A:
AEW .
J

(4.9) Wj C wj+1 for j =2 0,

(4.10) Wj c (a,-8,a,+8) for each j,

1 2

and there exists m 2 1 such that

m
(4.11) (a;,a,) ¢ U V..
j=0
Hence,if we show
no m
(4.12) (VU JHnCu W) =¢
i=1 j=0 3

where K is the set of all interior points of a subset K in
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n
R, then we have U Ji = ¢ by (4.7) ,and therefore we obtain
i=1

(4.5) and (4.6) by (4.8).

Let us show (4.12). Suppose that (4.12) does not hold.

Then, by (4.9) there eXxists jO (ISJOSm) such that
W U3
(4.13) . N CUJ) = ¢
Jomb =l
n (-]
(4.14) W.n (v Iy A $.
Jo  i=1

A) for some A

Since A is represented as A=(Kl, 5

it follows from (4.8) and (4.13) that

- +
(4.15) (A UA INK o | a=o, =ty ) € (a;,8,)\S(uy).
On the other hand, by (4.14), there exists i0 (ISiOSn) such
that
(4.16) AN, #=¢.

Noting that A=(A ,A,), there exist a€AN( a | a=x =x] ) and

a non-empty open interval D ¢ Ao\{ o | a=ai=a; } such that

(4.17) (a,D) = { a;x | x€D y ¢ A n §.
1
0
Hence, by (4.15) we have
(4.18) D c (a;,a,)\8Cuy).
Noting that DcAyNfa | a=aj=a{ ), there exist t,€(t ,T) and

a non-empty closed interval KcD  such that ux¢0 does not

_22...



change its sign in Kx[t,,T). Therefore, by Lemma 3.3, we can

) o
extend u(x,t) to a C“’l—function in Kx[t,,Tl uniquely and
we may see that ux(x,T) > 0 for all x€K. Since the
1im u(a,t) = uda,T) also exists by Lemma 3.3, we can see the
t1TT
existence of x € K such that u(xO,T) # uta,T). Hence there
exists tée [tZ,T) such that
(4.19) u(xo,t) # u(a,t) for all te[té,T).

Set wix,t) = obu(x,t)—u(x,t) where obu(x,t)=u(2b—x,t)
with b=(x0+a)/2. Assume that xo<a for convenience. Then

we can see that wix,t) is a solution of a linear parabolic
equation of the form (4.3) in {xo,a]x(t‘,T). Moreover, it

follows from (4.19) that

w(xo,t)zo u(xo,t)~u(x t)=ula,t)-u(x., t) &0, tE(té,T),

b 0’ 0’
(4.20)

t)-o, u(x

w(a,t)=u(x0, b O.t)#O, tE(té,T).

Applying Lemma 4.6 to wix,t) in [xo,a]x(tg,T), we see that
there exists tg € (t},T) such that w(-,t) € E([Xo,a]) for

all t € [t,,T). Hence, noting w(b,t) = u(b,t)-ul(b,t) = 0, we

3 ’
have wx(b,t)¢0 for t € [tS’T)’ namely,

(4.21) ux(b,t) = 0 for all t € [tS,T).

On the other hand, since b € 3. = (o, ,af Y, there exists a
i i
0 0 0
sequence {t.} c (0o,T such that t T T and b=E. (t ),
n n ig n
that is, ux(b,tn) = 0 n=1. This contradicts (4.21). So we

have (4.12), namely <(4.5) and (4.6). Thus the proof is
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complete. O

5. The Case of a Bounded Domain

Throughout this section, we assume (Al)-(AS5) and consider
the Dirichlet or Neumann problem (1.1)(1.2)(1.3ab>. We assume

further the following technical conditions on an 1initial data

uo(x):
(AB) uO(O) = uO(L) = 0 and uo(x) > 0 for x€Q=(0,L);
(A7) there exist ay and a, in Q@ = (0,L) such that
2a1 < a2, a, < 2a2—L, oa uo(x) P uo(x) on xe[O,al] and

1
oa uo(x) 2 uo(x) on xE[az,L] where aau(x)=u(2a—x).

2
The main result in this section is as follows:
Theorem 5.1, Assume (Al)-(A7). Let u(x,t) be a blow-

Up weak solution of problem (1.1)(1.2)(1.3a) or (1.1)(1.2)

(1.3b) with blow-up time t=T and, let S(uo) be the blow-up

set of u(x,t). Then

(5.1) S(uO) is a fintite set,

and furthermore in the case of the Dirichlet problem,
(6.2) S(uo) C (al,az).

First, we consider a weak solution u(x,t) of the

Dirichlet problem (1.1)(1.2)(1.3a). We need some lemmas.

- 24 -



Lemma 5.2, Assume (Al)~(A7). Let u(x,t) be a blow-up

weak solution of the Dirichlet problem (1.1)(1.2)(1.3a). Then

(5.3) 9, ulx,t) = u(x,t) for all (x,t)e[O,al]x[O,T);
1

(5.4) oa ulx, t) =2 udx,t) for atl (x,t)e[ag,L]x[O,T).
2

Proof. We show only (5.3). Set v(x,t):oa u(x,t). Then
1

we see that vix,t) is also a weak solution of (1.1) in
(O,al)x(O,T). By the assumption (A7), we obtain that v(x,0)

=0 >u
a u,(x)

1

(O,al)x(O,T), we obtain that v(O,t):aa u(0, t)=0=u(0,t) and
1

v(al,t)=u(a1,t) for t € [0,T). Applying the comparison

(x)=u(x,0). For Dboundary values of ulx,t) in

0 0

theorem to v(x,t) and u(x,t), we have that v(x,t) =2 u(x,t)

for (x,t) € (0,a,)x(0,T). This is a proof of (5.3). O

1

This and Lemma 3.1 imply the following

Lemma 5.3. Let u(x,t) be as in Lemma 5.2. Then

(5.5) ux(al,t) > 0 for all t € (0,T);
(5.6) ux(az,t) < 0 for atl t € (0,T).
Lemma 5.4. Let u(x,t) be as in Lemma 5.3. Then for

any tO € (0,T), there ezists 6=5(t0) > 0 such that for any

a € {al—é,a +51]

1

(5.7) Oau(x,t) > u(x,t) for all (x,t)€El0,alx[t. ,T)

0’
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and for any a € Cag—s,a9+6]

(5.8) oau(x,t) > u(x,t) for atl (x,t)e[a,L]x[tO,T).
Proof . We only show (5.7). Noting the proof of Lemma

5.2, we see that it 1is enough to show the following: For

any tO € (0,T), there exists 8=6(t0) > 0 such that for any

a € [al—a,a +67,

1

(5.9) oau(x.to) - u(x,t.> > 0 for all x € [0,a).

0

Therefore we show (5.9).

By (5.5), for any t € (0,T) there exists 6=6(t0)>0

0
such that
(5.10) u (x,t) > 0 for lx-all < 8.
Set h(a) = min (oau(x,to) - u(x,to)) for each a €
0<x<a-8/2

[o,L/27. Then, we see <clearly that h(a) is a continuous

function in (0,L/21. Noting the proof of (3.3), we obtain
(6.11) h(al) > 0.

Hence there exists 8§'>0 (0<86'x8/2) such that h(a) > 0

for all |a-a < &', namely

|

(5.12) o ulx,t)-ulx,t;) > 0 for 0<x<a-8/2, la-allsa'.
On the other hand, since a-8/2<x<a  and Ia—a1|s6/2 imply

—6$x—31$5/2, by (5.10) we have



(5.13) o ulx,t)-u(x,t,) > 0 for a-§/2<x<a, la—allsé'.

Combining (56.12) and (5.13), we obtain (5.9). The proof is

complete. O

This and Lemma 3.1 imply the following

Lemma 5.5. Let wu(x,t) be as in Lemma 5.4. Then,
(5.14> u (x,t) >0 for all (x,t) € [a1~6,a1+6]x(t0,T);
(5.15) ux(x,t) <0 for all (x,t) € [aQ—B,a2+6Jx(tO,T).

We are now ready to prove Theorem 5.1 in the case of the

Dirichlet problem.

Proof of Theorem 5.1 (the case of the Dirichlet problem).
By Lemma 5.5 and Lemma 4.1, we see that S(uo)m(al—é,a2+6) is a
finite set. Hence, if we show that [O,al—BJU[a2+6,L] c [O,LIN

S(u,), the proof is complete. We show only

0

(6.16) [0,81—8] c [O,L]\S(uo)

Now we assume that X, 6[0,a1~6] is a point of S(uo).

Then, by (A7) we have that 2a1~x e[al,agl. It follows from
Lemma 5.2 that 2a1-xO€S(uO)‘ Since S(uo)n(al—é,a2+6) is a
finite set, there exXists a3€(a1—5,a1+8) such that
2a3~x0$S(uO) and O$x0<a3. By the fact that oaau(x,t) >

ulx, t) for (x,t)E[O,a3]x£tO,T), we obtain that XO € S(uo).

This contradicts the assumption that XO € S(uo), and thus



we prove (b.16). ]

Next we consider a Dblow-up weak solution u(x,t) of
the Neumann problem (1.1)(1.2)(1.3b). We can consider the

following three cases:

QP u(0,t)= u(L,t) = 0 for all t€[0,T).
(I1Y) (i) u(o0,ty = 0 for all tef0,T) and there exists
tle(O,T) such that u(L,tl) > 0,
(ii) udL,t)y = 0 for all tefo,T) and there exists
tle(O,T) such that u(O,tl) > 0.

(III) there exist t t,€(0,T) such that u(O,tl) > 0

1 ’

and u(L,t,> > 0.

2
Proof of Theorem 5.1 (the case of the Neumann problem).

Case (I). Since ulx, t) can be regarded as a solution
of the Dirichlet problem, this case comes to the case of

the Dirichlet problem.

Case (II). We only prove in case (ii). Extend a weak

solution u(x,t) as

(5.17)

R { u(x,t) 0 < x <L
Y=

u(-x,t) -LLx <0

Then, we see that u(x,t) is a weak solution of the Neumann
problem and that u(xL,t)=0 for tzt, and ﬁ(x,tl) > 0 for

X €(-L,L). Hence this case comes to the case (I).

Case (III). By extending u(x, t> as (5.17) and
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appropriate rescaling of the variables, this problem can be

converted into the form (1.1)(1.2) with Q=SI=R/Z. Set t0=

max{tl,tz}. Then, it follows from the assumption (III) and
Lemma 2.3 that  u(x,t)>0  for all (x,t)ESlx(tO,T) and
u(x,t) is a classical solution of (1.1) on Slx(tO,T).

Noting Lemma 4.5 and Lemma 3.2 and using the same methods as
Chen-Matano [4]1, we can prove the assertion in this case. The

proof is complete. O

Remark 5.6. Considering the proof in this section, we can
also get the similar result as Theorem 5.1, even if we extend

conditions (A6) and (A7) on u,(x) to the following condition:

0
(k) there exists a finite family (Qi};:% of open intervals
2
such that U Qi c (0,L), Qi N Qj = ¢ (i¥j) and uo(x) = 0 in
i=1
[}
(0,LO)N U Qi’ and such that (A6) and (A7) hold with @ replaced
i=1

by Qi'

6. Asymptotic Behavior of an Interface

In this section, we consider the Cauchy problem (1.1)
(1.2)(1.3¢). We assume (Al)-(A4) and assume the following

conditions on an initial data uo(x):

(x) > 0, x€(0,L) and u,.(x) = 0, =xeRN¢0o,L).

(A8) u 0

0

Furthermore, we assume the following conditions for the finite



propagation of the interface of a weak solution u(x,t) to

(1.17(1.2)(1.3¢c) in t € (O0,T):

1
(A9) Io b%g) <@
(A10) f(0) = 0;
(A11) there exists a Cl—function G(u) on [0,®) such
that
(6.1) G(u) =2 f(u) and G'b - Gb' 2 0O for all u=20.

Now we can show a finite propagation of an interface of

a weak solution.

Theorem 6.1 (a finite propagation of an interface).
Assume (Al)-(A4) and (A8)-(A11). Let u(x,t) be a blow-up
weak solution of (1.1)(1.2)(1.3¢c) with blow-up time t=T. Then,
there ezist continuous functions Ei(t) : [0, T =» R (i=1,2)

such that
(6.2) (él(t),&z(t)) = { x€R | u(x,t)>0 } for each t€[0,T),

ﬁl(t) i8 a monotone decreasing function and ﬁz(t) i8 a

monotone increasing function, and furthermore,
(6.3) T GBI B () (e for each t€[0,T).

Next we state behavior of the interface of u(x,t) near
the blow-up time t=T. For this aim, we further assume (A5) or

the condition
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(A12) 11:1}—”—%1-l =0

U= U

u
where H(u) = f f(€) dE.
0

Theorem 6.2, Let S(uo) be the blow-up set of u(x,t)
where u(x,t) s as in Theorem 6.1 and let &i(t) (i=1,2) i8

the interface of u(x,t). Then the following two results hold

(i)Y +if (A5) holds, then

(6.4) S(uo) c [0,L]

and

(6.5) -o < 1im 51(t) < lim ﬁz(t) { @,
t1TT 11T

and furthermore if (A7) holds, then
(6.6) S(uo) c (al,az) and S(uo) is a finite set.

(i1) i1f (Al2) holds,

(6.7) S(uo) = RU{=}U{-}
and
(6.8) lim El(t) = -® and lim iz(t) = o,
£17TT tTT
Remark 6.3. If p>1 and m>l, equation (1.4) satisfies

these conditions (A9)>-(Al11) with G(u)=f(u)=up/m. If p/m < 1,

equation (1.4) satisfies condition (Al12).
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First we prove Theorem 6.1. We need the following lemma:

Lemma 6.4, Assume (Al1)-(A4) and (A9)-(All). Let u(x,t)
be a weak solution of (1.1)(1.2)(1.3c¢c). Suppose that there

erist (a,t,) € Rx[0,T) and M > 0 such that

1
(6.9) u(x,tl) = 0 for x 2 a;

(6.10) u(a,t) < M for t € [tl’T)'

Then, there exist £ > 0 and h > 0 depending on only M such

that
(6.11) u{x,t) = 0 for (x,t) € [a+£,m)X[t1,t1+h]ﬁ[t1,T).
Proof. Consider the function ¢ : [0,®) = [0,=) such
that
U gp
(6.12) y(u) = Bny (see Knerr [111).
0 ¢D)

Then, by (Al) and (A9) we see that ¥ (u) is well defined and

is an onto and one to one mapping. Put
(6.13) vix,t) = ¥(ulx,t)).

Since u(x,t) satisfies the equation (1.1) in (x,t)-set

where u(x,t) > 0, a simple computation gives

ep L ov)d

by L (v)ib (v (v))

1 2
(6.14) v, = v + (v_ )" +

oy vy XX

where w_l(v) is the inverse function of v=¢(u).
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LLet us consider the following function v(x,

(6.15) v(x,t) = (n(t) - C(x-a))  for X >a, t=t
where n(t) satisfies the problem
n(tl) =Ny = Y(M) > 0
(6.16) noe . c T
t by Yambr )
and C is a positive constant. Then n(t) is represented as
the following:
(6.17) nCt) = & @Gy - (t-t,))
where
— _ o« 1
(6.18) G(n) = f - dn.
n o2, GO ()
b L) )

Here we note that

= P v tane g oy b (E) 1

< | -1 an = [ o RES e e

n GO () ¥t ()

and £ = é—l(n) is the inverse function of n = G(E). And we
have
(6.19) nit)<e, te[tl,t1+5) and n(t) T ® as t 1 t1+5,
where h = G(nl). Since Vv(x,t) = n(t)-C(x-a) where n(t)

C(x-a), we obtain
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-1
v, = 1 v o+ v 2 s G~ (n))

by lovyy XX x vy Tannbrw anyy

G(&) . . . .
ETETETFEY is a monotone increasing function

Considering that
by (Al) and (Al1l1), and that vix,t) = (n(t)-C(x—a))+ < n(t)
for X2a, namely w~1(v) < wnl(n) for x>a, we have

-1
(6.20) v, 2 1 v+ (VX)Z R _lc(w (v)i1 .
b T (VIIb'(F (V)

o prp vy XX

Hence, if we put w(x,t) = ¢~1(v(x,t)), we obtain
(6.21) b(w)t p-3 wxx+f(w), t€[t1,t1+h), n(t)>C(x-a), x=za.

On the other hand, since vix,1)=0 namely wix,t)=0 in
(x,t)-set where x=a, tE[tl,t1+5) and n{t)<C(x-a), and since

£(0)>=0, we have

(6.22) b(w), = W +f(w), tert +h), n(t)<C(x-a), x=a.

14
Since w=0 on n(t)=C(x-a) and b(0)=0, we have
(6.23) W, = va(w)( = 0.

n=C{(x-a)

Hence, combining (6.21), (6.22) and (6.23), we see that w(x,t)
is a super-solution of (1.1) in [a,m)x[tl,t1+ﬁ)

On the other hand, by (6.9) and (6.10) we have
(6.24) wia, =¥ L (via, )26 Ttz o y=M2uca, t)
for t € [t,,t;+h)NCt;,T) and

(6.25) w(x,tl) > 0 = u(x,tl) for x 2 a
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Applying the comparison theorem to wix,t) and ulx, ty on

[a,m)x[tl,to) where tO = min{t1+h,T}, we obtain
(6.26) wix,t) 2 u(x,t) for (x,t) € [a,w)x[tl,to).
Namely,
(6.27) u(x,t) = 0 for Xx=2a, n(t)<C(x-ay, te[tl,to).
If we choose h = h/2 and £ = n(t1+h)/C, we can show the
assertions of Lemma 6.3. ]

Proof of Theorem 6.1. Set &1(t) = inf{ x | u(x,t)>0 }
and  £,(t) = sup{ x | u(x,t)>0 }. Then, by Lemma 2.2 and

Lemma 2.3 it is obvious that ﬁl(t) is a monotone decreasing
function and &z(t) is a monotone increasing and that (6.2)
holds (cf, Knerr [111).

Next, we show (6.3) and here we only prove
(6.28) ﬁz(t) ( o for each t € (0,T).

Assume that (6.28) does not hold. Then, it follows that

(6.29) ﬁg(t) = ® for all t € (0,T)

or there exists tO € (0,T) such that

(6.30) ﬁz(t) { o for t € (O,to) and Ez(to) = o,

We only drive a contradiction in case of (6.30). In case of

(6.29), we can also drive it similarly.

Set



M = sup{ u(x,t) | (x,t) € Rx[0,t.+81 }

0

where 0 < & < T~t0. Then, by Lemma 6.3 there exist ¢ > 0 and

h > 0 such that (6.11) holds with T replaced by t0+5. Choose

a > 0 and t1 €(0,t

Then, we obtain

) such that t. < t.,+h and a = &o(tl).

0 0 1

u(x,t) =0 for (x,t) € [a+d,=) X [tl,t +h]n[t1,t0+6),

1

that is,
(6.31) Eg(to) < a + ¢,

This contradicts (6.30) and thus (6.28) is shown.
Finally we can show the continuity of &i(t) by similar

methods as that show (6.28), and we omit this proof. O
We need some lemmas to show Theorem 6.2.
Lemma 6.5. Assume (Al1)-(A4) and (A8). Let u(x,t) be a

weak solution of (1.1)(1.2)(1.3¢c) and let a € RN(0,L). Then

for all x€[la,x) if a=L

(6.32) o ulx,t) = ulx,t), For all =x€(-»,al if a<0 ° te(0,T).

Therefore. u(x,t) i8 a monotone decreasing function on x21,

and a monotone increasing function on x<£0 for each t€(0,T).

Proof. This proof is similar to it of Lemma 5.2. We

omit it. O

Lemma 6.6. Let Ei(t) (i=1,2) be as in Theorem 6.1.

Then



lim £,(t) = - 4if and only if lim g,(t) = =.
1T tTT -

Proof. This proof is obvious by Lemma 6.5. 0O

Proof of Theorem 6.2 (i). First, we show that S(uo) c
fo,L1.

Assume that XO € S(uo) is not a point in [O,L1]. Without

loss of generality, we may assume that x.>L. By Lemma 6.5, we

0
have that [L,XO) c S(uo). It follows from Lemma 3.1 and.

Lemma 6.5 that for any 6>0 small enough there exists t0=t0(6)

€ (0,T) such that ulx,ty> > 0 for (X,t)G[L,XO—GJX[tO,T)

and uX(x,t) > 0 in (x,t)€elL,x —BJUEtO,T). Usig Lemma 3.3,

yE,

0

we have that (L,x~-8) c S(u This contradicts that

0 0

0) C S(uo) and thus we show that S(uo) c [O,L].

Hence, noting that u(x,t) < M(8) for (x,t) € (~o,-31U

[L,x

[L+d.«) X [O0,T) (8>0) and using the similar method as in the
proof of Theorem 6.1, we see (6.5).

Next we further assume (A7) and prove (6.6). Consider
u(x,t) and aazu(x,t) in (az,w)x(O,T). By the comparison

theorem on a half space, we have that oa u{x,t) =2 u(x,t) in
2

(a,,®)X(0,T) (cf, proof of Lemma 5.2). Using Lemma 3.1, we

I

obtain that uX(aq,t) < 0 for t € (0,T). Hence, by the
similar method as in the proof of Lemma 5.4 and by the

continuity of ﬁg(t), we have that, if t1 € (0, is

sufficiently close to t=0, then oau(x,tl) P-4 u(x,tl) in

[a,»)x[t,,T) where |a-a < & for some 8>0. Using Lemma 3.1

1’ 2‘
again, we obtain that u (a,t) ¢ 0 for |a-a

<86, t, <t < T.

2‘ 1
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Also similarly we obtain that wu (a,t) > 0 for Ia-all < 8,
t1 < t < T for some &'>0. Therefore as we prove Theorem 5.1,

we obtain (6.6). The proof is complete. O

Next we prove Theorem 6.2 (ii). We need the following

lemma due to Imai-Mochizuki [81].

Lemma 6.7. Assume (Al1)-(A4) and (Al2). Let u(x,t) be
a weak solution of the Diriechlet problem (1.1)(1.2)(1.3a).
Then, u(x,t) exists globaltly 1in time and stays bounded (in

L,L)) as t 1 o,
Proof of Theorem 6.2 (ii). First, we show

(6.33) (-, 0]JU(L,®) c S(u,).

0
Here, we only show that I[L,«) C S(uo).

Assume that XO € [L,») is not a point in S(uo). Then,

by Lemma 6.5 we have that for some M1>O

(6.34) u{x,t) < M1 for (x,t) € [xo,w)XEO,T),

and by (A8) we see

(6.35) u(x,0) = u . (x) = 0 for x 2 x

0

As we prove Theorem 6.1, we obtain

(6.36) lim £, (t) < =,
trT ©

Using Lemma 6.6, we have
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(6.37) lim ﬁl(t) > -,
1T

Choosing Xy < lim ﬁl(t) and lim &2(t) < X,, wWe see that
tTT t1T

u(xl,t) = 0 and u(xg,t) = 0 for t € (0,T). Since we can
look u(x,t) as a solution of the Dirichlet problem with Q =
(xl,xg), we see that u(x,t) does not blow up at t=T by
Lemma 6.7 . This is a contradiction since t=T is assumed to
be the blow-up time of u(x, t) and thus we prove (6.33).

Noting Lemma 6.5, we obtain that (0,L) c S(uo). Hence we see

that S(u0)=Ru{m)U{—m} and that 'lim Ez(t) = and lim ﬁl(t)
7T tTT

= ~o, The proof is complete. D
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Chapter 11

Blow-up Solutions
of Quasilinear Degenerate Parabolic Equations

with Convection

0. Introduction
In this paper we shall consider the Cauchy problem in R

atB(u) - U + g(U)x = fu)y (x, t)eRx0,I (0.1)

T

UCr,0) = () x € R (0.2)

where B8((v), gw), f(v) with v20 and ¢{xr) are nonnegative
continuous functions.
Equation (0.1) describes the combution process with

convection in a stationary medium in which the thermal

conductivity 6'(11,)-1 and the volume heat source f(u) and

convection gu) are depending in a nonlinear way on the
temperature B(u) = 8(ufz,t)) of the medium.

Throughout this paper we assume

(A1) B, F, g € CRINCWR,), BwI>0, B ()0,
B" (»)<0 and F(»), 9(¥), g’ (V>0 for v>0. lim B’ (V) = =. fep™?
Yoo

1

and ge8 - are locally Lipschitz continuous in [8(0),=).

(A2) {9°B—1}’(u) < C/ {8'1}’(u) in the neighborhood of u=0
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for some positive constant C.
(A3) @(z) 2 0, = 0 and € B(R) (bounded continuous in R).

With these conditions above Cauchy problem has a unigue
local solution u(z,t) (in time) which satisfies (0,1) in R x
(0,7) in the following weak sense, where T > 0 1is assumed

suffisiently small.(see e.g. Oleinik et all [9, 12, 161>

Definition 0.1, Let G be an open interval in R. By a weak
solution of equation (0.1) in G X (0,T) we mean a function
u(z,t) such that

1) uz,t) =2 0 in G x [(0,T) and € C(G x[0,t]) for each 0 < <t
< T.

2) For any bounded open interval Q = (T,,2,)

c G, 0 < t < T and ¢(z,t) € Cz(ﬁ x[0,7T)) which vanishes on & =
the following identity holds:

A N

1' 72

f Bu(z,t))elz,t)ds - f B(uiz,0))e(x,0) dz
Q Q

T ‘$2

T r=
= IOIQ{B(U)Qt + ummx + g(u)wm + f(uweydzdt - I uwmdtl$= L (0.3)

0 T

1

If u(x,t) does not exist globally in time, it's existence

time I ¢ = defined by
T = sup{ Tt > 0 ; uz,t) is bounded in R x [0,T]} (0.4)

and we see that



lim sup u(z,t) = «, (0.5)
ttT zeR
In this case we say that u is a blow-up solution and 7 is a
blow-up time.

The main purpose of the present paper is the study of
blow-up solutions. Especially we are interested in the shape
of the blow~up set which locates the "hot-spots™ at the blow-up
time. In addition, since our quasilinear equation (0.1) has a
property of the finite propagation of an interface, there are
some interesting subjects such as asymptotic behavior of the
interface near the Dblow~-up time. These problems have been
studied by the authors [6, 7, 8, 17] and Mochizuki-Suzuki [15]
for equation (0.1) without convection term.

Firstly we consider the finite propagation of interfaces of
solutions of (0.1)(0.2). To deal with +this we require the

additional conditions:

(A4) @(x) > 0 for z € (-a;.a;) and = 0 for g 3 (-a,,a,).
{(AB) lim QT(U) = 0 and QT is increasing in v=20.
B 8
-0
1 dy
(A6) B(0) = f(O)Y = 0O, f B ( { o,
0 U)
Put
QCt) = (z € R ; utz,t) > 0}y, T(t) = QLY (0.6)



for each ¢ € (0,T). Then the interface I' is given by

r= v Fcty x (ty, (0.7)
0<t<T

and under these assumptions (Al)-(A6) we can show that Q%) is

bounded and nonincreasing in t € [0,7) (Theorem 1.7). Moreover
Q(t) is represented by continuous functions ii(t) . 10,7 — R
(i=1,2) 1like QCt) = { x | x € (ﬁl(t),ﬁz(t))). In the case

without convection term in (0.1), these results have been shown
by knerr [121, R. Suzuki [15]1 and Mochizuki-Suzuki [17].

Next, we restrict ourselves to the blow-up solution of
(0.1)(0.2) and shall study the shape of blow-up set and the
behavior of the 1interface of % near the blow-up time. The
existence and non-existence of blow-up solution (0.1)(0.2) is
discussed in Friedman-Lacey {61, Imai-Mochizuki [10] and
Imai-Mochizuki~Suzuki [111]. We assume the following condition

is given in [10] as a "necessary" condition to raise a blow-up:

T B
(AT) fl Ty 4Y <

Furthermore we assume that f(u) grows rappidly than g(uw)

and ¥ (see (Al10)) and assume for the initial data ¢(z) that
(A8) e" - {gled}” + f(¢) =2 0 in 92,

(A9)) the lap-number of ¢(Z) in [al,all is two.

Here, we denote the lap-number of @(x) in the following

Definition 0.2. Let I = [a,b] be a closed interval and w =
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w(z) be a real-valued function on [a,b]. We say w is piecewise

menotone if I can be divided into a finite number of

m
---'Jm(k} Ji = [) on each

non-overlapping sub-intervals Jl’ J
i=1

2 s
of which monotone. Then there is the least value of the numbers
m for which we can fined a division {Ji} as above. This valued

is called the lap-number of w on [a,b] and denoted by £ (w).

Then, in the semilinear case B(u%) = u, Friedmann-Lacey [5]
showed the existence of single point blow-up solutions of (0.1)
for Dirichlet problem . In this paper we extend this result to
the Cauchy problem of a degenerate quasilinear equation.
Moreover we can get also that the left side interfaces stay

bounded as ¢ tends to the blow-up time I. Namely, if we denote
Definition 0.3. The blow-up set of ¥ is defined as

S = {z € R ; there is a sequence (mi’ti) € R x (0,7) such

that . —m z, t. — T and u(x.,f.,) — ® ags { — o }
1 i i' v

and each £ € § is called a blow-up point of u,

then we obtain that S = {nO} for some -o < Ng £ © and -« <

lim il(t) (see Theorem 3.3).
t1T

Finally, the rest problem is that whether no  ® or nO = @
holds. About this problem, we anser that "O ¢ ®© (Theorem 4.2)
if we add another conditions on f and ¢ such that f grows

rappidly than g(u) and ¥ (see (All)).
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Remark 0.4. 1If p+m > 2q (2m-1 < @) or p+l > g+m (m/2 + 1/2

< q £ 2m-1), equation

1/m _ _ q/m
(u Yp T U (u ), U

P/Im u b, g > 1 (0.8)

satisfies (A1) (A2) (A5)-(A7)(A10) (All).

Remark 0.5. Condition (A2) is needed to show uniqueness of
weak solution of (0.1). If uniqueness of weak solution to (0.1)

holds, above theorems are given without (A2).

The methods to prove these results are essentially the
same to thoes of Friedman—Laéey {51 and R. Suzuki [17]. We use
smoothness, comparison principle and property of the zero set of
um(m,t).

The paper is structured as follows. In §1 we summarize
above two principles and show the finite propagation of the
interfaces of solutions (Theorem 1.7). In 82 we study the
property of the zeroes set of ux(m,t) where the lap-number of
the initial data of the solution u(z,%) is two. Using this
property we Dprove the existence of single point blow-up
solutions in §3. Finally if we add some assumptions we show

that the blow-up point is bounded in §4.

1. A Comparison Principole and Finite Propagation of

an Interface.

In this section we begin with two proposition which will be
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fundamental tools in our study of interfaces and the blow-up

sets.

Proposition 1.1 (Smoothness principle). Assume (Al1)-(A3).
Let G be an open interval and let u be a solution of (0.1) in G
x (0,T) in the sense of Definition 0.1. If u(z,t) > 0 Ffor some
(z,t) € Gx(0,T), then u is a classical solution in a neighbor-

hood W of (z,%) and hence u € C (W).

Proof. Note that B(v), f(v), g(vu) € Cm(R+) and B8 (v) > 0
for v > 0. Then the above proposition follows from the usual
parabolic regularization method (see e.g. Ladyzenskaja [13] et

all).

Definition 1.2, For each open interval G < R, a super-
solution (or sub-solution) of (0.1) in G %X (0,7T) is defined by

1), 2) of Definition 0.1 with equality (0.3) replacd by = (or £).

Proposition 1.3 (Comparison principle). Assume (Al1)-(A3).
Let u (or v) be a super-solution (or sub-solution) of (0.1) in G
X (0.T). If v 2 v on the parabolic boundary of G x (0,7T), then

we have u > v in the whole G x (0,T).

Proof. See e.g. Gilding [91. 0O

Remark 1.4. Condition (A2) 1is required in the proof of
Proposotion 1.3. But this condition <could have replaced by
weaker condition if we add some regularity conditions on @{(z)
(see Diaz-Kersner [4]1).

In the rest of this section, based on these principle, we
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shall show finite propagation of the interface in t < I. Firstly

we prove sevral lemmas.,

Lemma 1.5 (positivity). Assume (A1)-(A3)(A5). Let u be a

weak solution of (0.1)(0.2). If u(z,t) > 0 for some (z,l) €

Rx(0,T), then

uz,t) > 0 for t = . (1.1)

Proof. <(c.f. R.Suzuki [17], Friedman-Lacey [151). Without
loss of generality we can assume z = 0. Since U is continuous

in R x [0,T), there exist a, > 0 and & > 0 such that

Uz, t) = a in [-28,281 X [T,1+258).

0

Let p(f) be the solution to

’ - kp . 7z © . 7 -
p’(t) = —ETTBT_ in (t,») with p(%) a (1.2)
where x = ( 2§ )2 and 0 < a < aO. Integrating this, we have
-1 . S 8
p(ty = W “(W(a) - x(t-1)), where W(g) = f — dv (1.3)

1

Note that 8°(v) > 0 and B"(v) £ O in » > 0. Then as is easily
seen, W(8) is increasing in 8 > 0 and W(8) — -« as 8 | 0. Thus
p(t) > O for each t > t.

Now we put

n
28

v(z,t) = p(fl)sin (z-%). (1.4)



Then since 87 (p) < 87 (V), we see

B(v)t < Vo (z,t) € (-8,8)x(t, ).
Next we put

t 4
r(t) = f—%—cp(tn dt.
0

Cosidering condition (A5), we can see that

Set

and

r(t) < » for each t € [{,T).

Rl = { 0 < x <8, 0t <Ty,
R, = {r(t) - v(I) <z <0, 0t <T},
R3 = { r(t) - r(TY - & <z < rt) - r(I,

Then we define a functon w(x,t) in the following:

Note

w(z,t) = v(z,t) in Rl,

w(r,t) = p(L) in R2

w(z,t) = viz-r)+r(I),t) in R3
w(z,t) = 0 in the else case.
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r(I) < T max —g-,-(g). (1.7)
0<E<a

Then, in virtue of (A5), if a>0 is small enough, we have
0 < r(I) < &.

Hence we obtain

w(z,t) = 0 in z < -28, z 2 28,
w(z,t) € a in -286 < T < 26.
we get
we,t) < u, i) z € R. (1.8)

On the other hand, we computate that

B(m)t - Wt g(u)x

= B(U)t - vxm + g (v)vX < g (v)v$ < 0 in Rl’
(since vxso in Rl)

B(m)t - Wt g(m)m = B (p(tY)yp (L) £ 0 in Rg,

(since p'(L)<0)

and

il
™
c‘

o~

]
o™
N;
Q:‘
I
<
+
Q
~
<
g_;é



< (g (v)y - r'B )vm
(g ) - Lo )8 (v
B T

_p- 9 _ -9

<0 inR (since v £ p, vw 2 0 in RS and (A5)).

It follows from this computation and (1.8) that we can see
that w(z,t) is a sub-solution of (0.1) in R x [0,7). Applying

the comparison theorem to w and u, we get

u(z,t) = wix, t> (z,t) € R x (¢, (1.9)
namely,

u(0,t) 2 p(t> >0 t € [t,T). O (1.10)

This lemma and the comparison theorem implies the existence

of the interface: That is, if we put

51(t) inf ( 2 | udz,t) > 0} (1.11)

sup { z | uce,ty > 0} (1.12)

ﬁz(t)
and assume (A4), then we have

{z | u(x,t) >0 1} = (El(t),&o(t)) for each ¢ € [0,7). (1.13)

Furthermore assume (A6), Then we can obtain the finite

propagation of the interface in t < T by the following lemma:

Lemma 1.6. Assume (Al1)-(AB). Let wu(z,t) be a weak



solution of (0.1)(0.2). Suppose that there exzist (a,t) € R x

(0,7) and ¥ > 0 such that
u(w,tl) =0 forzxz 2a (1.14)
ula,t) < M for t € [tl’T)‘ (1.15)
Then, there exist L > 0 and h > 0 depending on only M such that

uCz,t) = 0 for J(z,t) € [a+l,=) X [tl,t1+h]m[t1,T). (1.16)

Furthermore, if M > 0 is small enough, we can take 2 > 0 small

enough.

Proof., (C.F., Lemma 2.2 and Lemma 2.3 of Mochizuki~ Suzuki
{151 and Xnerr [12]) We construct a super~solution w(z,{) of

(0.1) in the following form:

w(z,t) = ¥ 1 (lpt) - (z-a)1 ™) (1.17)
+ L D)
where [g]l] = max {g,0}, ¥(u) = f oy p(t)y = C(H)(t—tl)+¢(M)
‘ 0
and C(H4) = 1 + sup {%é- + —§7} (these functions are well

0<w<2M

defined since we have assumed (Ab) (AB6)).
In fact, in the domain {{$2a}x[t1,t1+k]}n{p(t)2$~a)
where k = CUHO L (§2M -y (M)}, we have w = ¢ L(p(t)-z+a) <

w"l(p<t1+k>) = 24 and hence

1 2

—_— _ g an
B (u) w(”)mm *

87 (w)

)
B(w)B” (w)

w(w)xl w(w)x +

- K3 -



g’ (w) f )
<1 =y Y B

< C = 8t¢(w). (1.18)

Therefore this w is extended by 0 to the whole (mza}x[tl,tl+k]
as a super-solution of (0.1). For this aim we have only to note
that f(0) = 0 and Smw(p(t)+a,t) = (w_l)’(O) = B8(0) = 0.

Moreover, we have

m(w,tl) 2 0 = u(m,tl) on I 2 a,

wiz, t)2¢ Lptn =y Loty LW M) =M = uz.t) on z=a, t2t .

Thus, Proposition 1.3 implies that

wx,t) =2 ulz,t) in {z=2a ) X [tl,t1 + k') (1.19)

where k' = min ( k,T - t1 }
By the property of w(x,t), choosing h = k' and { = p(t1+h),
we conclude the assertion of (1.16). Since ¥ (M) goes to 0 as M

goes to O, we can choose k small if M > 0 is small enough. Hence

we can choose £ > 0 small enough also.

Theorem 1.7. Assume (Al)-(A6). Let u(z,ty be any weak
solution to (0.1)(0.2). Then Q(t) formes a bounded set in R and

18 mnontncreasing in t:

Q(tl) c Q(tz) if tl < tg,

and there ezist continuous funciions g,y 10,1 — R (i=1.2)

such that



QY = {z | z € (ﬁl(t),ﬁo(t)) Y.

Proof . Proposition 1.3, Lemma 1.5 and 1.6

reduce to Theorem 1.7 soon. O

2. The Property of Zeroe Set of ux(x,t)

Throughout this section, assume (Al)-(A6). Furthermore we
assume that the lap-number of the initial data ¢(z) is two (see

(A9))., In this section we prove the next proposition:

Proposition 2.1 (see Chen-Matano-Mimura [3] Proposition
2.4). Let u(z,t) and &i(t) be as in Theorem 1.7. If we assume
(A9), then there ezisis a Cl—function ncty : 0,7y — R such
that

{ z € (ﬁl(t),ﬁg(t) ; u$($,t) = 0 ) = {(n()} (2.1)

for each t € (0,7T) and for some & > 0

T 5 £ n(t) for all t € (0,7). (2.2)

First we give the following lemma

Lemma 2.2. Let @, (T be a C -function such that @, () 2
1/m, @, (#Fn) = 1/n  and ¢, (z) converges to ¢(z) as n goes to =«
locally uniformly with respect to xz. Furthermore assume that
the Llap-number of ¢, (T is two and 0,9,¢2) = ¢ (@) in z<a if

at-a,+8, in zT=2a 1if a=za

1 1 for some &>0. Here we mnote thatl



(oa$+m)/2 = a and oau(x) = U(oam). Let un(x,t) be a classical

solution of the initial boundary value problen
GtB(u) - Uy, U - l/n)m = f(u - 1/n) (z,)eRx0,T)
ulz,0) = ¢, () z € R x 0,1 (2.3)
uzn,t) = 1/n t >0
Then un(x,t) > 1/n for (z,t)> € R x (0,7) and un(m,t) — u(c,t)
as n — « locally uniformly in R x [0,7).

Proof. see Gillding [91].

Remark 2.3. The existence of above ¢,(z) is guaranteed by

the assumption (A4) (A9).

Lemma 2.4. Let un(m,t) be as in Lemma 2.2. Then for each
I € (0,T) there exists a C1~function nn(t) . (0, Ty — R

for large enough n such that

0} = (nn(t)) for each t€(0,7'). (2.4)

]

{x € (-n,n) ; un’$($,t)

Furthermore

-a, + 8 £ nn(t) for t € (0, T"). (2.5)

1
where & > 0 is appeared in Lemma 2.2.

Before we show this lemma, we need some notations and

definitions (c.f. Chen-Matano [2] and R.Suzuki [171).

Notation 2.5. Let w(x) be a continuous real value function

on K where K is a bounded closed interval in R. We define the
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nodal number of w by
vK(u) = the number of points © € K with w(z) = 0.

Definition 2.6. we say that w € CI(K) poses only simple
zeroes if w'(x) = O, The set of all such functions is denoted

by 2(K).

Lemma 2.7 (see Angenent [1] and mote R. Suzuki [171) ). Let
p(z,t), q(z,t) and 7rz,t) be locally bounded continuous
funections on [a,bl X (tO,T) with Prypr Prts Ppes Py Pys 9y Qg
all locally bounded continuous. Furthermore, let p(z,t) > 0 and

let w(z,t) be a classical solution of
wy = p(w,t)wmx + q(x,t)mx + r(z,tw (m,t)eta,b]x(tO,T). (2.6)
Agsume that wda,t) # 0 and w(b,t) # 0 for any t € (tO,T). Then

(i) v(w(-,t)) is finite for any 1t € (tO,T) and i8
monotone nonincereasing in t;
(ii) there exists a strictly decreasing sequence of points

y 4 t. and wi(z,t) € S(la,bl) for any t €

such that (¢t 0

{t

% k

(to)\{tk}.

On the other hand there 1is the following lemma about

lap-number (see Matano [14]1).

Lemma 2.8 (Matano). Let u(z,t) be a solution of the

following Dirichlet problem



ut = a(m,t)um$ + b(:c,t)um + f(t,u)y in [a,bix(0,T)

u(z,0) = uo(m) in [a,b]
ua,t) = ub,t) = 0 in (0,7).
where uy(z) € C(la,bIxL0,T), a € clira,bixr0,7yy, be

c®(ta,b1x10,7)) for some O<x<l, f € C ([0, )xR), alz,t) = & in
[a,b1x[0,T) for some & > 0 and f(t,0) = 0. Then if we assume
that uz,t) =2 0 in I[a,b1x[0,T), the Lap-number L(u(-,t)) 1is

decreasing in t € [0,7).

Proof of lemma 2.4. Applying the maximum principle to

un(m,t), we obtain

un(x,t) 2 1/n in « € [-n,n]l, £ > O (2.7)
and

ium(in,t) < 0 for € > O. (2.8)

Note the lap-number Q(un(-,t)) for t>0 equals to two by

Lemma 2.8. Hence since the nodal number v (+,t)») = 1,

[-n,n](u

it follows from 1lemma 2.7 that there eXxist Cl-function nn(t)

such that
{z € (-n,n) ; un’$(x,t) = 0 } = { nn(t) } for t>0 (2.9)
Next we show (2.5) (see Friedman-Lacy [51). Choose a €

[—n,—a1+6] and set
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w o= u(x,t) - viz,t) in [-n,al

where % = un and v = oaun. Then w satisfies equation

8 (u)ut-wm$+ Cw = -{g " (u-1/n)+g (v-l/n)}u$+g (v—l/n)um (2.10)

i - V) - fw - 1/m) 0 BT w) - BT (W)
u - v U - v t

Furthermore if we set h(z,t) = e—ytw where Y is choesn later,

where C = C(x,t) =

then h(x,t) satisfies the following equation

B’(v)ht - hmz {vB” + Crh

i

= - {g’(u - 1/n) + g° (v - 1/m)re U, + 9" - 1/mh (2.11)

Since B8°(w) > 0 and C < o for each t € [0,T'] and z € [-n,n],

if vy is large enough then
Y8 (v) + C > 0
Further we note

hia,t) = 0

h(-n,t>) = e-yt{u(—n,t) - v} = emyt{l/n - vy £ 0 for t >0

- - - 2.12
h(x,0) @, 9,9, < 0 for z € [-n,al (2.12)

We shall claim that A < 0 in [-n,al] x [0,7T'1. Indeed

otherwise we take a positive maximum at some point (Z,f) in

(-n.a) X (0,7'1. Then we have



hz,t) > 0, h$($,t) = 0, ht(x,t) 2 (O and h$x($,t) < 0. (2.13)

and for u(x,t) also we have

ulz, ) > vz, D (2.14)
u$(m,t) = vm(w,t). (2.15)
Suppose Z < nnci). Then um(i,f) 2 0. Noting this and

(2.13), we see

B8 (v)ht ~ hmw + {yB (v) + CYh

> ={g'(u - 1/n) + g (v - 1/n))e_ytu$ + g (v - l/n)hx

at (z,t) = (z,%). This contradicts to (2.11).
Next suppose nn(f) < . Then um(i,f) < 0 and vm(i,Z) > 0.
These results contradict to (2.15).

Hence we obtain h < 0 in [-n.al x [0,T'), that is,

un(x,t) <0 un(x,t) for (z,t) € [-n,al X {(0,F"'1. (2.16)

a
Therefore
U x(a,t) >0 for t € [0,T'1] (2.17)

n,

Since a € [~n,al+6} is chosen arbitrarily, we get

nn(t) > --a1 + 5,



This shows (2.5). The proof is complete. O

Proof of Proposition 2.1. Using lemma 2.4, lemma 2.5 and
the 1limit proceduer of appromixmate solution un’ we ¢an prove
Proposition 2.1, By Theoren 1.7, there exist continuous

functions &i(t) : [0,T) — R such that

ﬁl(O) = -a £,(0) = a for t € [0, (2.18)

1 1

and

{z; ulz,td> > 0} = (&l(t), ﬁz(t)) for each t € (0,7). (2.19)

Hence for each tl € (0,7T), there exist sequence {mj} and 5j > 0

such that

— + .
xj — &l(tl) and mj — ﬁz(tz) as j — o, (2.20)
P * t.- - 2.9
€l(t) < zj < mj < ﬁz(t) for t € (tl Bj,tl+8j), (2.21)

+
t. - , 2.22
iux(xj,t) < 0 for each t € (61 6j,t1+6j). (2.22)

Now we shall show that the nodal number of ux(',tl) on

- +
[wj,xj] is one, namely,

1Y (u, (-,t,)) = 1. (2.23)

Applying Lemma 2.7 to u$(~,t1) in [m;,xgl, we can see that

v[x_ $+](u$(-,t1)) is finite for each t € (tl—éjtl*éj) and that
i’7



is decreasing in t € (tl—éj,tl+5j), and see that ux(',tz) €

- .t : .
2([$j,$j)] for some t2 € (tl—aj,tl). Then, we get that if n is

large enough,

-+
{nn(t)} C (xj,xj) for ¢t € (t1~6j,t1+5j). (2.24)

In fact, assume that there exists a subsequence ({(n. (t)}c{nn(t)}

Ly
such that x; < n,  (t). Then, by Lemma 2.4 we obtain that
k
u_ (z,t) is increasing in g € [m},m}]. Therefore, since

o
un (z,t) converges to u(z,t) as nk — o by Lemma 2.2, WwWe can see
k

that u(x,t) has same property as un (z,t) and um(xg,t) > 0. This

4
contradicts to (2.22). In the other hand assume that there

exists a subsequence {(n._ (£)} c {n_(td} such that n_ (t) < z.,
T n ny J

we can also show same contradiction.
For each ¢ € (tl—éj,t1+8j) let no(t) be accumulating point

of {nn(t)}. Then, since u(-,%t) is decreasing in z € [wj,no(t)]

-’-

J
- . i + .

T € [zj,no(t)] and ux(x,t) £ 0 in z € [no(t),zj], we obtain that

and u(-,%{) is decreasing in z € [no(t),m ] namely uzcx,t) 2 0 in

- +
um(no(t),t)) = 0 and no(t) € (£j,£j).

Take t = ¢, and assume that there is a point T, € (x;,xj)
beside no such that ux(xl,tz) = 0 . It follows from Lemma 2.7
that ml is a single zeroe point of ux(x,tz) in [z},m;] namely,
U m(xl’t2) # 0. This contradicts to the fact that uz(m,tz) =z 0
[ er £ 0] in the neighborhoods of z,. Hence the zeroe points of

1

. -+ C . . .
ui(m,tz) in [xj,xj] coincides with "0(t2>’ that is



V) (u_(-,t.)) =1
- Lt 71 ’
[zj,xj]

Since the nodal number of ‘uz(',t) in [zj

P x+] is
L

nonincreasing in t by Lemma 2.7, we get (2.23). Furthermore
noting the cumulating point is only nO(tl), we see that nn(tl)

— no(tl) as n — o,

Therefore if § — o« in (2.23). we get

L.

n
—

1% (u
(B (10,8, (t,00 7 1

and

L]

{wE(il(tl),ﬁo(tl) ; uw(x,t) 0y = {no(tl)}.

Noting tl € (0,7 is chosen arbitrarily and u$(-,t1) €

Z(El(tl),ﬁz(tl)) by Lemma 2.7 and setting ndi) = no(t), we have
that {x € (ﬁl(t),ﬁz(t)) 3 ux(m,t) = 0}y = (n(ty)y for each { €
(0,T) and nt) is Cl—function and that

nn(t) — n(t) (n — ») for each. ¢ € (0,7). (2.25)

(2.2) is reduced by (2.5) soon. The proof is complete. 0O

3. Single Point Blow-up

In this section we show the existence of single
point blow-up solutions of (0.1)(0.2) and study the asmyptotic
behavior of an interface of the blow-up solutions. For this

aim we need (A7)(A8) and the next assumptions ©beside the
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conditions (Al1)-(A6) (A9).

9
(A10) There exists a C°-function F(v) such that
(i) Fwy, F vy, F'(v) 2 0 for v 2 0.
(oo}
.. dE& o
(iid fl _FTEY <
(iii) there are constants ¢ > 0 and vo > 0 such that

F'F - Ff - %—(g’)2F > c(Fig" + F'F) v > v,

Condition (A10) shows that f grows more rappidly than g and u.
Condition (A8) is required to ensure that u(z,t) is increasing

in t for each z € R. Namely,

Lemma 3.1. Assume (A1)-(A3) (A8). Let ulz,t) be a weak
solution of (0.1>¢0.2) in R x 0,7). Then u(z,t) 18
nondecreasing in t. If u(xo,to) > 0 for some (xo,to) € R x(0,)

then atu(x,t) 2 0 in the neighborhood of (wo,to).
If we add (A7) (A10), we can get

Lemma 3.2 (Chen-Matano [21, R.Suzuki [171). Assume
(A1)-(A3) (A7) (A10). Let Q = (a,b) be a bounded open interval

and let u(zx,t) be a positive weak solution of (0.1) in QT= 0 x

(0,7). Furthermore suppose that

um(m,t) > 0 [or u$<$,t) < 01 in (x,t) € [e-6,c+81x(Tt,T) (3.1)
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for csome ¢ € (a,b) and 8 > 0 with (¢-8,e+8) c (a,b) and some <

€ (0,7). Then there are no blow-up poinits in (c-6,c+8).
Proof. We shall show this lemma in case

um(x,t) > 0 in (x,t) € (e-8,c+8) %X (t,1). (3.2)

Assume Zq € (¢~-6,c+d) is a blow-up point of u(x,t). Then, by

(3.2) and Lemma 3.1, we soon see that

lim u<z,t) = » for x € (wo,c+6). (3.3)
trT

Choose d € ($0,0+6) and set

J = U, - gp(YFulxz,t) (z,t) € @ = (d,e+8) x (t,T) (3.4)
and
2
o . n(z-=d)
p(z) = [ sin Sy ] (3.5)

where £ > 0 and tl € (t,T) is chosen later. We computate

(B’J)t - Jxm

= epAz,t) + Blz,t)d - g'J - 88 Fu, + BpF”(um)Q (3.6)

where

11

. P

£ )F ~g(pF’g" + 2p'F'F)

Az, t) = f°F - F'f + { -

oo
Uq ~
+



and
Btz,t) = f° + gpF’'g” + 2ep ' F" - gg'pF" - g"J - 2eg”pF.
Here we used the relation that
=J_ + gp’'F + gpF’'J 202FF
uwm =J, gp Ep + E P

and
+ 2gpFJ + ezszz.

If we note that

p’” = 2x sinx(z-d)-cosx(z-d)
and
= 2&2(1—2 ) where X = A
we get that
o
_ p’g, . P _ _-2g’'sin A(z-d)-cos A(E-d) + 227 (1-2p)
- 2
e e {sin x(z-d)}”
= 42 4 22{x - cos k(m—d;-51n Alz-d)+-g’}
{sinx{(z-d)}
> -4y 4 —22{x - sin A(x—g)'lg [}
{sin x(z-d)}"~
Hence putting 6 = sin x(zx-d), we can write above inequality

in



the following

e . p” o 452 4, 22(x-81g")
o o} 92

where 0 < 0 < 1.

22 (x-81g" 1)
92

g'. Then, we see that h(8) takes a minimum value h(—gﬁn) = —4A2

tg” 1
2 3 . 219_2g' and h(9) =

and assume that 6 is indpendent of

Set h(8) = -4x +

since R’ (0) = -41°@"

at 0 = |2A

1. .
2

Therefore we have

0 reduces to 6 = i

Sl g 4 By %l L2 (3.7)
Thus we get lower bounded estimates of A(x,t)
4 —_ ’ 2 1 ’ 2 2 " rd 4
Alz,t) =2 f'F = F'f + (AX"+ (g’ )")F - g{pF g"+21p  |F'F}y. (3.8)

Considering (A10), Lemma 3.1 and the fact that F " (u) goes to

infinity as 4 — =« if tl is closed enough to T, we have

(B’J)t - Jmm 2 B(z,t)J - g'Jx. (3.9
On the other hand
Jd,t) = ux(d,t) > 0, J(e+d,t) = uw(c+6,t) > 0 (3.10)
and
J(m,tl) > 0 (by (3.2)) {for small enough & > 0. (3.11)



Hence applying the maximum principle to J(z,t), we abtain

Jx,t) > 0 in (tl,T) X (d,e+8),
namely,
uw
T > gp in (tl,T) X (d,e+8). (3.12)

Integrating this enequality over d £ & £ c+8 yieds

u(e+sd,t) du c+d
f > BI p(zr) dr in t1< t < T. (3.13)

ued,ty T d

The right-hand side of (3.13) is a positive constant, while
the left-hand side tends to zero as t T I by virtue of condition
(A10)(ii) and (3.3). This contradiction shows that Ty is a not
blow-up point of u(z,%f). The proof is complete. O

Theorem 3.3. Let utz,t) and &L(t) be as in Teorem 1.7 and

S be a bBlow-up set of u(x,t). Furthermore assume (A7)-(A10).

Then
S = { no } (3.14)
for some N, € [-—a1 + 8,21 with a small & > 0 and
- o < lim ﬁl(t). (3.15) (3.15)
t1r7T

Proof (see Friedman-Lacey [17]). By Proposition 2.1. there

exists a Cl~function nct) : 0,7y — R such that



{z € (il(t),ZZ(t) ; uz(w,t) =0 ) = {nlt) ) (3.16)

for each £t € (0,7) and

—a, ¢+ 5 < n(t> for all t € (0,1) (3.17)

where Ei(t) is defined by (1.11)(1.12). Therefore we see
u$(x,t) > 0 for &l(t) <z < —a1+6, 0 <t < T (3.18)
and it follows from Lemma 3.1 and Lemma 3.2 that

(T ;2 <-a+8 ) c s¢ (3.19)

where S is a blow-up set of u(z,t).

Here if show

lim n(t) = exists (3.20)

n
£1T 0

then by Lemma 3.1 and Lemma 3.2 we can obtain the results of

Theorem 3.3. Hence we shall show (3.20).

Assume that lim n(t) doesn't exist. Then if we set n_= lim
t17 trT
inf n(t) and n, = lim sup n(?),
t17
—a1 + 8 £ n < n, £ o, (3.21)

Choose -a, + 6 < 8y < m_ and n_ < 8, < n, such that

o

o = (8 * 32)/2 € (n_,n). (3.2

Then, since lim un(t),t) = @, by Lemma 3.1 we get lim uz,t) =
1T 17



© for each z € (n_,n,). Hence, if T, is chosen close enough to

0
T, we obtain

ux(x,TO) > 0, for 84 < x < s,

and

ucsl,t) < u(sz,t) for t € (TO,T).

Set w = ¥ - v where v(z,t)

i

in the rectangle reigion R 1

see

w(m,TO) = u(m,TO) - cau(m,TO) < 0 in [sl,a]

and

w(x,sl) = u(sl,t) - u(sg,t) £ 0 in t € [TO,T).

By the same methods as it to show (2.16) we obtain

w(z,t) £ 0 for (z,t) € [sl,a]x[T ,T&.

Since w(ee,t) = 0, we get

1 _
wa(a’t) = um(a,t) = 0 for ¢ € [TO,T).

This is contradiction to o € (n_,n_). Therefore

(3.20) and § = {no}. The proof is complete. O

{ 8, < x < a,TO <t < T 1.

(3.

(3.

(3.

(3.

oau = U{(2x¢~z,%t> and consider w(z,t)

Then we

26)

28)

we obtain



4. The Upper Bound Estimates and Bounded Point Blow-up

In this section we show Ny < = where Ny is appeared 1in
Theorem 3.3. In order to show this, we need the upper bound
estimates of the blow-up solution of (0.1)(0.2). For this aim,
we further assume the following another assumptions for f(u) and
the initial data ¢ such that f(u) grows more rappidly than % and

guw)
(A11) there exists a Cz—function ®(yY) such that

(i ®, &°, & > 0 for v > 0 and ®(0) = 0

0

(ii) f € (

1 d(E)
(iii) there are constants C > 0 and U1 > 0 such that
47 (G - 0 F) = (g% for v 2 v
and
(g")Zm + fo < C for 0 £ v £V
497 8”7 BB’ 1
1 g’ (V)
(iv) f sup W—dt { =
O o<w<t ™l ity + 1
_dn
where H(E) : e



11

(v) " - g(e) + f(p) = d(p) in D'.

Lemma 4.1. Assume (Al)-(Al1l1). Let un(z,t) be a solution
of the regularized problem (2.3) with blow-up time Tn‘ Let s add
the following condition to wn(m) appeared in Lemma 2.2

1

®n

- {g(¢n - 1/n)}" + f(wn - 1/n) = m(wn - 1/n) in 2°'. (4.1)

(the ezistence of above wn(x) is guaranteed by the assumpiion

(A11)Y<(v)>). Then, for some ¢y > 0.

- 1 t -— y ]
un(m,t) < H (Cl(Tn £y + 1 for (z,t) € R x [O,Tn) (4.2)

dn
¢ {n)

where H(E) = Ig and Tﬁ = nin {Tn,T}

Proof (see Friedman-Lacey). Set
J = Uy - c(tHrouw - 1/n) (4.3)

-Mt

where U = U c(t)y = e and M is positive constant chosen

n’

later. We computate (B'J)t - Jmm in the following :

(B’J)t - J = B(z,t)J - g’Jm + c(DYAz, D)

Iz
where

2 2
Az, t) = f'0 - @' f - cB"0° + MB'® - g du_ + O (u,)

and
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Bix,t) = —g”ux - ef"e + 7.
Here we used the next relation

Y = + -
uxt Jm ch ux.

We further computate that

Atz t) = 0" (ud? - L—ou ) + F70 - 0°F - cB"0° + HE'O
gss 2 (gu)z(bz
=('LL$—~275,7—'¢)" 15" + f°0 - 0 Ff
1 4 ” i1 2 4 (4 2 2
> 4070 f'® - @ Ff -cB"d” + MB'® 1 ~ (g")"d
4(1)1!
Choosing ¥ = C and noting 8" < 0, we get

AMO DB - 4070 F - (g*) 2>

= aproroc - L - (3;3Z? ) 20 for 0<v <.
Hence considering condition (All), we see that
Alz,t) =2 0. (4.4)
Thus we have
(B’J)t - Jxx 2 B(z,0)dJ - g'Jw. (4.5)

On the other hand

Jxn,t) = ut(in,t) - c(t)@(un(in,t) - 1/1)

..73....



= un,t(in,t) - ce()do) = 0 (4.6)

and

J(z,0) = un,t(w,O) - m(un(m,O) - 1/n)

141

" - {g(wn - 1/n)y" + f(@n - 1/n) - ¢(¢n - 1/7)
=20 (by (4.1)). (4.7)

Applyiong the maximum principle to J, we obtain

J,t) 2 0 in [-n,n] X [O,Tﬁ), (4.8)
that is,
w2 e Mo - 1/m 2 e 0 - 1/ (4.9)
n,t n 1 n
where ey = e—Ht

Let T' € (0,7T) fixed and choose m large enough such that T

< Tn' Furthermore, integrate (4.9) over [t,7') for each T €

[-n,n1. Then

T un,t

f dt > T' - ¢, (4.10)
¢ olm(un

1/n)

Setting H(E) = f ¢?n , we have
E n

1 T _—
ol H(un - 1/n) 1 > 7 t,

1

that is,



S

c

{ Hu (xz,T*'Y) - 1/m) - Hu (z,t) - 1/m))y 2T - ¢
) n n

Therefore
H(un(m,t) - 1/n) = cl(T‘ - i), (4.11)

Since H(E) is a decreasing function in £, we obtain

u, (z,t) - 1/n < H‘1(01<T'—t))

namely,

. -1 . 1 -1 _—
un(x,t) < H (cl(T t)y) + T < H (cl(T t)y) + 1.
The proof is complete. O
Theorem 4.2, In Theorem 3.3, if we further assume (All),
we get
"O { o (4.12)
and
lim £,(8) < = (4.13)
7T -

Proof. Let's T* € (0,T) be fixed and set h(t) =
H_l(cl(T'—t))+1. Then using Lemma 4.2, if m is large enough, T'
< Tﬁ and
(4.14) u (z,1) < H—l(clcfﬁ - t)) + 1 < h(t). (4.14)
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Put

vz, t) = u (x + k(t),t) (4.15)
t (V)
where k(t) = f 2(h(s))ds and 2(£) =  sup %TTBT
0 0<V<E

Then v(z,t) satisfies the following equation

8" (v, -~ v, = B (k' - g (UBT(;{R) o+ fw - 1/,

Since g (v¥) is a decreasing function in v, we get

g'(w(z,ty - 1/m) g’ (V)

B” (viz,t)) < B () - Q(v) < QCh(LY) = k" (D).

Hence we obtain

g (v-1/7)

2 0 for (z,t) € [-k(t)-n,-k(L)+nIx{0,T').(4.16)

On the other hand, noting condition (A11)(iv) we see that

1]

k(t) < k(T") f Q(H”l(cl(r* - g)) + 1) ds
0

p el
- E“f L™t + 1) At (put t=e (T7-s)

e, T
< k(I = %—f oy ety + 1) at

{ = for t € (0,7T"). (4.17)



Thus for each a = al, there exists N such that

ax<mn - k(I') <n - k(i) for all n 2 N and each t € [0,7T'] (4.18)

Put v(z,t) = o v = v2a - z,t).

a Then we can onsider w =

viz,t) - v(z,t) in U [a,n - k(£)]1 x {t} since n - k(I) < n
0<t<T

- k(i) for t € [0,T']1. As ¥ satisfies equation

B (v)wt Wt clz,t)u

- N MR B VA (D) , . _ glw-1/n)
{ B” () (k 0D Y + BT (w)(k 57 (D) }v$
_ foy o L 9.0 - 1/m)
{ 87 (V) (k 57 ) )w$ (4.19)
. __fw - 1/m) - fWU - 1/ B (w) - B (V)
where c(z,t) = TR + TR— vy
Furthermore, if we set h(z,t) = e-?tw where Y is chosen later,
then we obtain the following equation with respect to h
B (v)ht - hm + {yB"(v) + cYh
_ Py L Gl - 1/1) . . _ g w-1/n),, -rt
S (B Dy (ke - L= /M)y (4.20)

B" (v T
Since B"(v) > 0 and ¢ < =, choosing v large enough we get
Y8 (v) + ¢ > 0. (4.21)
On the other hand, as u(z,t) 2 % for (z,t) € [-n,n]l x [0,T') and
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vin - k(t),t) = un,t) = =, we obtain

S

hin-k(t),t) = e Y win-kt),ty - o Vn-k(t), 1))

= e"yt( % - oav(n - k(t),t)y £ 0 (4.22)
and
_ vt
hia,t) = e {via,t) - va,t)y = 0 (4.23)
Noting condition for wn in Lemma 2.2, we also obtain
h(z,0) = un($ + k(0),0) - oaun(m + k(0,0
= $n(m) - oawn(m) £ 0 for each z € [a,n]. (4.24)
We claim that h £ 0 in U la,n - k(t)] x {t}. Suppose
0<t<T!
(z,t) € U (a,m - k(t)) x {t} is a maximum point and h(z,t) >
o< t<T!
0. Then
- - - - T )
ht(x,t) > 0, hmm(w’t) < 0, hm(z,t) 0, (4.25)
namely
vz, > vz, b, (4.26)
-2~ o= g oy
v$(m,t) = vm(x,t). (4.27)

Assume T 2 nn(f) - k(t). Then

..78..



Noting this , (4.16) and (4.25). We see that

B’(v)ht - hmx + {yB'(v) + ¢Yh

_ g w - 1/n) y + B (v)(k’ - & (v-1/n)

-rt
B (v)

dle v

> { BT (W) (k 87 () -

_ ;o ;g - 1/7m)
{ 87 (V) (k BT Yy h,,

This contradicts to ((4.20).
On the other hand, assume I < nn(i) - k(). Then vm(i,i) >

0 and vx(i,f) < 0. These results contradicts to (4.27). Hence

we obtain h £ 0, that is,
w(z,t) < 0 (z,t) € [a,n-k(t)) x[0,T"'1. (4.28)
or,

un(m+k(t),t) < un(2a~m+k(t),t) (z,tYela,n-k(tYIX[0,7T'] <(4.29)

Here, if n goes to «, then
uz+k(t),t) < u(2a-z+k(t),t) for (x,t) € [a,=)x[0,7T'1.(4.30)

Putting ' = z + k(t), a'* = a + k(t) and noting k(f) < k(I), we

obtain for each a' € [a1 + k(T),=)

uczc',t) < oa,u(m',t) for (z',t) € [0,T'1].

Since this shows that u(z,t) 1is decreasing function in & €
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[a1+k(T),w) for t € [0,T'1, we get
n(t) < a, + k(T).

As T' € (0,7T) is chosen arbitrarily, we conclude

(4.31) n(t) < ay + k(Ty for t € [0,]). (4.31)

Hence we get

Ny = lim n(t) < a, + k(T
t1T

and noting Thorem 3.3 we obtain
S = (no}.

Therefore by virtue of Lemma 1.6. We also obtain (4.13). The

proof is complete. 8]

References

[1] S. Angenent, The =zeroset of a solution of a parabolic
equation, J. Reine Angew. Math., 390(1988) 79-96.

(21 Chen X.-Y. and H. Matano, Convergence, asymptotic
periodicity and finite-point blow-up in one-dimensional
semilinear heat equations, J. Differential Equations, 78(1819),

160~190.

_80...



{3] Chen X.-Y., H. Matano and M. Mimura, Finite-point extinctio
and continuity of interfaces in nonlinear diffusion equation
with strong absorption, J. Reine Angew. Math.

[4] J. I. Diaz and Kersner R. On a nonlinear degenerate prabolic
equation in infiltration or evaporation through a porous medium,
J. Differential Equations, 69(1987), 368-403.

[5] A. Friedman and A.A. Lacey, Blowup of solutions of
semilinear parabolic equations, J. Math. Anall. Appl. 132(1988),
171-186.

[6] A. Friedman and B. Mcleod, Blow-up of positive solutions of
semilinear heat equations, Indiana Univ. MHalh. J., 34(1985),
425-447.

(71 V.A. Galaktinov, Proof of the localization of wunbounded
solutions of the non-linear partial differential equation u, =
(uoux)X + uB, Differential nye Uravneniya, 21(1985), 15-23;
Differential Equations, 21(1985), 11-18.

[81 Y. Giga and R.V. Kohn, Asymptotically self-similar blow-up
of semilinear heat equations, Comm. Pure Appl. HMath., 38(1985),
297-319.

{91 B.H. Gilding, A nonlinear degenerate parabolic equation,
Ann Scuola Norm. Sup. Pisa, 4(1977), 393-432.

fi1o1 T. Imai and K. Mochizuki, On blow-up Solutions for
gquasilinear degenerate parabolic eguations, Publ. RIMS, Kyoto
Univ., 27(1991), 695-7009.

{111 T. 1Imai, K. Mochizuki and R. Suzuki, On blow-up sets for

the parabolic equation atB(u) = AU + f(u) in a ball, J. Fac.

Sei., Shinshu Univ. 25(1990), 51-58.

- 81 -



[12]1 B.F. Knerr, The porous medium equation in one dimension,
Trans. Amer. Math, Soc., 234(1977), 381-415.

(131 O.A. Ladyzenskaja, Solonnikov V.A. and Ural'ceva N.N.,
Linear and Quasilinear Equations of Parabolic Type, Trncl. Math.
Monographs, 23 AMS Providence, R. I. 1968.

[14]1 H. Matano, Nonincreasing of the lap-number of a solution for
a one-dimensional semilinear parabolic equation, J. Fac. Sci.
Univ. Tokyo, Sect IA Math., 29(1982), 401-441.

[15]1] K. Mochizuki and R. Suzuki, Blow-up sets and asymtotic
behavior of interfaces for quasilinear degenerate prabolic
equations in Rn, J. Math. Soec. Japan, to appear.

[16] O.A. Oleinik, A.S. Kalashinikov and Chzou Yui-Lin, The
Cauchy problem and boundary problems for equations the type of
nonlinear filtration, Izv. Akad. Nauk SSSR Ser. Math., 22(1958),
667-704 (Russian)

[17] R. Suzuki, On blow-up sets and asymptotic behabior of one
dimensional quasilinear degenerate parabolic equations, Publ.

RIMS, Kyoto Univ., 27(1991), 375-398.

- 82 -



	0001.tif
	0002.tif
	0003.tif
	0004.tif
	0005.tif
	0006.tif
	0007.tif
	0008.tif
	0009.tif
	0010.tif
	0011.tif
	0012.tif
	0013.tif
	0014.tif
	0015.tif
	0016.tif
	0017.tif
	0018.tif
	0019.tif
	0020.tif
	0021.tif
	0022.tif
	0023.tif
	0024.tif
	0025.tif
	0026.tif
	0027.tif
	0028.tif
	0029.tif
	0030.tif
	0031.tif
	0032.tif
	0033.tif
	0034.tif
	0035.tif
	0036.tif
	0037.tif
	0038.tif
	0039.tif
	0040.tif
	0041.tif
	0042.tif
	0043.tif
	0044.tif
	0045.tif
	0046.tif
	0047.tif
	0048.tif
	0049.tif
	0050.tif
	0051.tif
	0052.tif
	0053.tif
	0054.tif
	0055.tif
	0056.tif
	0057.tif
	0058.tif
	0059.tif
	0060.tif
	0061.tif
	0062.tif
	0063.tif
	0064.tif
	0065.tif
	0066.tif
	0067.tif
	0068.tif
	0069.tif
	0070.tif
	0071.tif
	0072.tif
	0073.tif
	0074.tif
	0075.tif
	0076.tif
	0077.tif
	0078.tif
	0079.tif
	0080.tif
	0081.tif
	0082.tif
	0083.tif
	0084.tif
	0085.tif
	0086.tif
	0087.tif
	0088.tif

