

THE CAUCHY PROBLEM FOR

THE SCHRÖDINGER TYPE EQUATIONS

AKIO BABA

THESIS

Submitted in partial fulfillment of the requirement for the degree of Doctor of Philosophy (Science) in Doctoral Program in Mathematics at the University of Tsukuba

January, 1994

CONTENTS

1.	ntroduction · · · · · · · · · · · · · · · · · · ·	1
2.	Preliminaries · · · · · · · · · · · · · · · · · · ·	6
3.	ymbols of Gevrey class · · · · · · · · · · · · · · · · · ·	15
4.	seudo-differential operators in Gevrey class · · · · · · · · · · · · · · · · · ·	21
5.	Proof of Theorems	28
Re	erences · · · · · · · · · · · · · · · · · · ·	38

1. Introduction

We consider the following Cauchy problem in $(0,T) \times \mathbb{R}^n$

(1.1)
$$\begin{cases} L[u(t,x)] = f(t,x), & (t,x) \in (0,T) \times \mathbb{R}^n \\ u(0,x) = u_0(x), & x \in \mathbb{R}^n \end{cases}$$

where $L = \partial_t - \frac{\sqrt{-1}}{2}\Delta + \sum_{j=1}^n a_j(t,x)\partial/\partial x_j + b(t,x)$ and $\Delta = \sum_{j=1}^n \partial^2/\partial x_j^2$. When the coefficients $a_j(t,x)$ are complex valued functions, the equation (1.1) is called a Schrödinger type equation. It is well known that if $a_j(t,x)$ are real valued smooth functions, the Cauchy problem is well-posed in $L^2(\mathbb{R}^n)$. But if the imaginary parts of $\{a_j(t,x)\}$ do not vanish identically, the Cauchy problem (1.1) is not necessarily well posed in $L^2(\mathbb{R}^n)$ nor in $H^\infty = \bigcap_{s>0} H^s$, where H^s stands for a usual Sobolev space in \mathbb{R}^n .

Let T > 0 and $\kappa > 0$. We say that the Cauchy problem (1.1) is H_{κ}^{∞} (respectively. H^{∞})-well-posed in [0,T], if for any $u_0 \in H_{\kappa}^{\infty}$ (respectively. H^{∞}) and $f \in C^0([0,T]; H_{\kappa}^{\infty})$ (respectively. $C^0([0,T]; H^{\infty})$ there is a unique solution $u \in C^1([0,T]; H_{\kappa}^{\infty})$ (respectively. $C^1([0,T]; H^{\infty})$ of (1.1). Furthermore we say that the Cauchy problem (1.1) is L^2 -well-posed in [0,T], if the Cauchy problem (1.1) is H^{∞} -well-posed in [0,T] and the solution of (1.1) satisfies

$$||u(t)||_{L^2} \le C(T) \Big\{ ||u_0||_{L^2} + \int_0^t ||f(s)||_{L^2} ds \Big\}$$

for $t \in [0, T]$.

In [8], Mizohata gave a necessary condition for the Cauchy problem (1.1) to be well-posed in $L^2(\mathbb{R}^n)$ as following

(*)
$$\sup_{\omega \in S^{n-1}, (x,t) \in \mathbb{R}^n \times \mathbb{R}} \left| \sum_{j=1}^n \int_0^t \Im a_j(x + \omega \cdot \tau) \omega_j d\tau \right| < +\infty$$

where $\Im a_j$ is the imaginary part of a_j .

And in [5] Ichinose gave a necessary condition for the Cauchy problem (1.1) to be well-posed in H^{∞} such as for any $\rho \geq 0$ there are some positive constants C and C' such that

(**)
$$\sup_{x \in \mathbb{R}^n, \omega \in S^{n-1}} \left| \sum_{j=1}^n \int_0^\rho \Im a_j(x + \theta \omega) \omega_j d\theta \right| \le C \log(1 + \rho) + C'.$$

We can find in [8] a sufficient condition for the Cauchy problem (1.1) to be well-posed in $L^2(\mathbb{R}^n)$ that is under (*) for any multi indices α ($|\alpha| \ge 1$)

$$\sup_{x \in \mathbb{R}^n, \omega \in S^{n-1}} \sum_{j=1}^n \int_0^\infty |\partial_x^\alpha a_j(x + \omega \tau)| d\tau < +\infty.$$

In [9], Takeuchi claimed the following conditions are sufficient ones (1.1) to be well-posed in $L^2(\mathbb{R}^n)$

$$\begin{cases} |\partial_x^{\alpha} \Im a(x)| \le C_{\alpha} \langle x \rangle^{-1-\varepsilon_0 - |\alpha|}, \\ |\partial_x^{\alpha} \Re a(x)| \le C_{\alpha} \langle x \rangle^{-1}, \quad (|\alpha| \ge 1) \end{cases}$$

where $\langle x \rangle = (1+|x|^2)^{1/2}$ and $\Re a_j$ is the real part of a_j .

In [2], we can find a sufficient condition for the Cauchy problem (1.1) to be well-posed in H^{∞}

$$\begin{cases} |\Im a_j(t,x)| \le C\langle x \rangle^{-1}, \\ |\partial_x^{\alpha} a_j(t,x)| \le C_{\alpha}\langle x \rangle^{-1} \end{cases}$$

for any α ($|\alpha| \ge 1$).

In [4], Ichinose gave a sufficient condition for the Cauchy problem (1.1) to be well-posed in H^{∞} which under (**) for any α ($|\alpha| \ge 1$)

$$\begin{cases} (i) \sup_{x \in \mathbb{R}^n, \omega \in S^{n-1}} \sum_{j=1}^n \int_0^{+\infty} |\partial_x^{\alpha} a_j(x + \theta \omega)| d\theta < +\infty, \\ (ii) \sup_{S \in \mathcal{T}} \left| \sum_{i < j} \iint_S \left(\partial_{x_i} \Im a_j - \partial_{x_j} \Im a_i \right) dx_i \wedge dx_j \right| \le +\infty \end{cases}$$

where $\int \int_{S} (\cdots) dx_i \wedge dx_j$ denotes the integral of two form over S.

In [10], Takeuchi gave a sufficient condition for the Cauchy problem (1.1) to be well-posed in H^{∞} which under Ichinose's condition (i)

$$\sup_{\rho \geq 0, x \in \mathbb{R}^n, \omega \in S^{n-1}} \left| \sum_{j=1}^n \int_0^\rho \Im a_j(x+s\omega) \omega_j ds - \kappa(\omega) \log \frac{G(x+\rho\omega)}{G(x)} \right| < +\infty.$$

In this paper we shall investigate the Cauchy problem (1.1) in Gevrey classes when $\{a_j(t,x)\}$ does not satisfy the necessary conditions derived in [5,8]. To do so, we introduce some function spaces. For a topological space X and an interval I in \mathbb{R} we denote by $C^k(I;X)$ the set of functions which are k times continuously differentiable with respect to $t \in I$ in X. For $m \in \mathbb{R}$, $\rho > 0$ and $\kappa > 0$ we define a Hilbert space $H^m_{\kappa,\rho} = \{u(x) \in L^2(\mathbb{R}^n_x); \langle \xi \rangle^m e^{\rho(\xi)^{1/\kappa}} \hat{u}(\xi) \in L^2(\mathbb{R}^n_\xi) \}$, where $\hat{u}(\xi)$ stands for the Fourier transform of u and $\langle \xi \rangle = \{1 + \xi_1^2 + \dots + \xi_n^2\}^{1/2}$. For $\rho < 0$ we define $H^m_{\kappa,\rho}$ as the dual space of $H^{-m}_{\kappa,-\rho}$. For $\rho = 0$ define $H^m_{\kappa,0} = H^m$ the usual Sobolev space in \mathbb{R}^n . Then note that the dual space of $H^m_{\kappa,\rho}$ becomes $H^{-m}_{\kappa,\rho}$ for any $\rho, m \in \mathbb{R}$. Denote $H^m_{\kappa} = \bigcup_{\rho > 0} H^m_{\kappa,\rho}$ and $H^\infty_{\kappa} = \bigcap_{m \in \mathbb{R}} H^m_{\kappa}$. We say a(x) belongs to the set of functions $\mathcal{B}_{\kappa,A}$ that there are constants A > 0 and $\kappa > 0$ such that

$$(1.2) |D_x^{\alpha} a(x)| \le C A^{|\alpha|} |\alpha|!^{\kappa}$$

for any $x \in \mathbb{R}^n$ and $\alpha \in \mathbb{N}^n$, where $D_{x_j} = -\sqrt{-1}\partial/\partial x_j$ and $D_x^{\alpha} = D_{x_1}^{\alpha_1} \cdots D_{x_n}^{\alpha_n}$. Define $\mathcal{B}_{\kappa} = \bigcup_{A>0} \mathcal{B}_{\kappa,A}$ and denote by \mathcal{B}^{∞} the set of functions whose all derivatives are bounded in \mathbb{R}^n . We note that $H_{\kappa}^{\infty} \subset \mathcal{B}_{\kappa}$, that is, H_{κ}^{∞} is a subspace of the Gevrey class of exponent κ and that H_1^{∞} is the space of real analytic functions defined in \mathbb{R}^n .

Now we can state our theorems.

Theorem 1.1. Assume that a_j $(j = 1, \dots, n)$ and b are in $C^0([0, T]; \mathcal{B}^{\infty})$ and there are positive constants C and $\sigma \geq 1$ such that

$$\Im a_j(t,x) = \mathcal{O}\left(|x|^{-\sigma}\right) \quad (|x| \to \infty)$$

uniformly in $t \in [0,T]$. Then the Cauchy problem (1.1) is H^{∞} -well-posed in [0,T] if $\sigma = 1$ and L^2 -well-posed in [0,T] if $\sigma > 1$.

Theorem 1.2. Let T>0. Assume that the coefficients $a_j(t,x)$ and b(t,x) belong to $C^0([0,T];\mathcal{B}_{s_0,A_0})$ and moreover that the imaginary parts of $a_j(t,x)$ $(j=1,\cdots,n)$ satisfy

$$\Im a_j(t,x) = o(|x|^{-\sigma}) \quad (|x| \to \infty)$$

uniformly in $t \in [0,T]$. Then if $0 < \sigma < 1$, $\kappa > 1$ and $s_0 \le \kappa \le (1-\sigma)^{-1}$ the Cauchy problem (1.1) is H_{κ}^{∞} -well-posed in [0,T].

We note that if the condition (1.3) is verified, the imaginary parts of a_j satisfy (*) and (**). Theorem 1.1 is a generalization of the results which are obtained in [2,3], where they imposed some technical conditions on the real parts of a_j .

To prove Theorem 1.1 and Theorem 1.2, by use of the idea introduced in [2] and [3] we shall seek a function $\Lambda(t, x, \xi)$ defined in $[0, T] \times \mathbb{R}^n \times \mathbb{R}^n$ which satisfies the conditions

(1.5)
$$\Lambda_t(t, x, \xi) + \sum_{j=1}^n \xi_j \Lambda_{x_j}(t, x, \xi) + \sum_{j=1}^n \Im a_j(t, x) \xi_j \le 0,$$

(1.6)
$$|\Lambda(t, x, \xi)| \le \begin{cases} \rho_1 \langle \xi \rangle^{1/\kappa} & (\sigma < 1) \\ C \log(2 + |\xi|) & (\sigma = 1) \end{cases}$$

$$C (\sigma > 1)$$

for $x, \xi \in \mathbb{R}^n$ and $t \in [0, T]$, where $\Lambda_t = \partial \Lambda/\partial t$ and $\Lambda_{x_j} = \partial \Lambda/\partial x_j$. Besides, we change the unknown function u as $v(t, x) = e^{\Lambda}(t, x, D)u(t, x)$, where $e^{\Lambda}(t, x, D)$ stands for the pseudo-differential operator with symbol $e^{\Lambda(t, x, \xi)}$. Then we can prove that in the case of $\sigma < 1$ $e^{\Lambda}(t, x, D)$ is continuous from $H^0_{\kappa, \rho}$ to $L^2(\mathbb{R}^n)$ if $\rho > \rho_1$, where ρ_1 is given in (1.6) and that in the case of $\sigma = 1$ (respectively. $\sigma > 1$) $e^{\Lambda}(t, x, D)$ is also continuous from H^{∞} (respectively. L^2) to L^2 and has the inverse $(e^{\Lambda}(t, x, D))^{-1}$. Moreover we can write $L_{\Lambda} = e^{\Lambda}(t, x, D)L(e^{\Lambda}(t, x, D))^{-1} = \partial_t - \sqrt{-1}\Delta + A(t, x, D)$, where A(t, x, D) is a pseudo-differential operator of first order, and besides if Λ satisfies (1.5) and (1.6), we can prove that $A(t, x, D) + A(t, x, D)^*$ is a negative operator in $L^2(\mathbb{R}^n)$, where A^* denotes the adjoint operator of A in $L^2(\mathbb{R}^n)$.

Then the new unknown function v satisfies

(1.7)
$$\begin{cases} (\partial_t - \sqrt{-1}\Delta - A)v(t,x) = g(t,x) \left(= e^{\Lambda}(t,x,D)f \right), \\ v(0,x) = v_0 \left(= e^{\Lambda}(0,x,D)u_0 \right). \end{cases}$$

The negativity of $A+A^*$ in $L^2(\mathbb{R}^n)$ evidently shows that the Cauchy problem (1.7) is L^2 -well posed in [0,T], and consequently we can see that the Cauchy problem (1.1) is H_{κ}^{∞} (respectively. H^{∞} if $\sigma=1$ and L^2 if $\sigma>1$)-well-posed in [0,T].

Acknowledgment. The author wishes to express the deepest appreciation to Professor K. Kajitani for his valuable help and encouragement.

2. Preliminaries

Let $\kappa \geq 1$ be a real number and put

$$\Gamma_{\kappa}(r) = \begin{cases} \lambda_0 r!^{\kappa} / r^{\kappa+1}, & r > 0 \\ \lambda_0, & r = 0. \end{cases}$$

Lemma. 2.1. With notations as above, there is a constant $\lambda_0 > 0$ such that for all $p = 0, 1, \dots$ and $q = 1, 2, \dots$,

(i)
$$\sum_{\alpha' < \alpha} {\alpha \choose \alpha'} \Gamma_{\kappa} (|\alpha - \alpha'| + p + 1) \Gamma_{\kappa} (|\alpha'| + q) \leq \Gamma_{\kappa} (|\alpha'| + p + q).$$

Furthermore, we have

(ii)
$$\sum_{\alpha' \leq \alpha} {\alpha \choose \alpha'} \Gamma_{\kappa} (|\alpha - \alpha'| + p) \Gamma_{\kappa} (|\alpha'|) \leq \Gamma_{\kappa} (|\alpha'| + p).$$

Remark. In Lemma 2.1 we may put λ_0 such as

$$\lambda_0 \le \left(2\sum_{j=0}^{\infty} \frac{1}{(j+1)^2}\right)^{-1}.$$

For $x \in \mathbb{R}^n$, $x \in \mathbb{R}^m$, denoting by $\phi(x) = (\phi_1(x), \dots, \phi_m(x))$, we set

$$X_{j} = \frac{\partial}{\partial x_{j}} + \sum_{i=1}^{m} \frac{\partial \phi(x)}{\partial x_{j}} \frac{\partial}{\partial y_{j}} \qquad for \ j = 1, \cdots, n$$

with $X = (X_1, \dots, X_n)$.

Given any function $u(y) \in C^{\infty}(\mathbb{R}^m)$, we can interpret

$$D_x^{\alpha}u(\phi(x)) = X_1^{\alpha_1}X_2^{\alpha_2}\cdots X_n^{\alpha_n}u(y)\Big|_{y=\phi(x)}.$$

From now on, we shall write $X_1^{\alpha_1} \cdots X_n^{\alpha_n} = X^{\alpha}$. We now consider a function u(y) which satisfies

$$|D_y^{\alpha} u(y)| \le C_{uA_0} A_0^{|\alpha|} \Gamma_{\kappa}(|\alpha|)$$

for any $\alpha \in \mathbb{N}^n$ and $y \in K_0$, and $\phi(x)$ such that

$$|D_x^{\alpha}\phi(x)| \le C_{\phi A} A^{|\alpha|} \Gamma_{\kappa}(|\alpha|), \quad x \in K$$

for $|\alpha| \le r$ and $\kappa \ge 1$.

Lemma 2.2. If u(y) and $\phi(x)$ satisfy the conditions (2.1) and (2.2) respectively, then we have

$$\begin{aligned}
&\left|D_{x}^{\alpha}D_{y}^{\beta}X^{\gamma}u(y)\right| \\
&\leq C_{uA_{0}}A^{|\alpha|+|\gamma|}A_{0}^{|\beta|}\sum_{j=1}^{|\gamma|}\binom{|\gamma|-1}{j-1}\left(nC_{\phi AA_{0}}\right)^{j}\Gamma_{\kappa}\left(|\alpha|+|\gamma|-j+1\right)\Gamma_{\kappa}\left(|\beta|+j\right)
\end{aligned}$$

for $|\alpha| + |\gamma| \le r$, $|\gamma| \ge 1$.

Proof of Lemma 2.2. We shall prove (2.3) inductively for $|\gamma|$. It is obviously true for $|\gamma| = 1$ ($|\alpha| + |\gamma| \le r$). Hypothesize that (2.3) is true for $|\alpha| + |\gamma| \le r$, $|\gamma| = l < r$, $|\gamma| \ge 1$,

then for |e| = 1, in fact, to be such that $e = (1, \dots, 0)$, we have

$$\begin{split} &\left|D_{x}^{\alpha}D_{y}^{\beta}X^{\gamma+e}u(y)\right| = \left|D_{x}^{\alpha}X^{\gamma+e}D_{y}^{\beta}u(y)\right| \\ &= \left|D_{x}^{\alpha}\left(\frac{\partial}{\partial y_{1}} + \sum_{j=1}^{n}\phi_{x_{j}}\frac{\partial}{\partial y_{j}}\right)\left(X^{\gamma}D_{y}^{\beta}u(y)\right)\right| \\ &= \left|D_{x}^{\alpha+e}X^{\gamma}D_{y}^{\beta}u(y) + \sum_{j=1}^{n}\sum_{\alpha'\leq\alpha}\binom{\alpha}{\alpha'}D_{x}^{\alpha-\alpha'}\phi_{x_{1}}D_{x}^{\alpha'}X^{\gamma}\left(D_{y}^{\beta}D_{y_{j}}u(y)\right)\right| \\ &\leq C_{uA_{0}}A^{|\alpha|+|\gamma|+1}A_{0}^{|\beta|}\sum_{j=1}^{|\gamma|}\binom{|\gamma|-1}{j-1}\left(C_{\phi A}A_{0}\right)^{j}\Gamma_{\kappa}\left(|\alpha|+1+|\gamma|-j+1\right)\Gamma_{\kappa}\left(|\beta|+j\right) \\ &+ C_{uA_{0}}\sum_{\alpha'\leq\alpha}\binom{\alpha}{\alpha'}nC_{\phi A}A^{|\alpha-\alpha'|+1}\Gamma_{\kappa}\left(|\alpha-\alpha'|+1\right)A_{0}^{|\beta|+1}\sum_{j=1}^{|\gamma|-1}\Gamma_{\kappa}\left(|\alpha'|+|\gamma|-j+1\right) \\ &\times A^{|\alpha|+|\gamma|}\binom{|\gamma|-1}{j-1}\left(nC_{\phi A}A_{0}\right)^{j}\Gamma_{\kappa}\left(|\beta|+1+j\right) \\ &\leq C_{uA_{0}}A^{|\alpha|+|\gamma|+1}A_{0}^{|\beta|}\sum_{j=1}^{|\gamma|}\binom{|\gamma|-1}{j-1}\left(C_{\phi A}A_{0}\right)^{j}\Gamma_{\kappa}\left(|\alpha|+|\gamma|+1-j+1\right)\Gamma_{\kappa}\left(|\beta|+j\right) \\ &+ C_{uA_{0}}A^{|\alpha|+|\gamma|+1}A_{0}^{|\beta|}\sum_{j=1}^{|\gamma|-1}\left(nC_{\phi A}\right)^{j}\Gamma_{\kappa}\left(|\alpha|+|\gamma|+1-j+1\right)\Gamma_{\kappa}\left(|\beta|+j\right) \\ &\leq C_{uA_{0}}A^{|\alpha|+|\gamma|+1}A_{0}^{|\beta|}\sum_{j=1}^{|\gamma|+1}\binom{|\gamma|-1}{j-1}\left(nC_{\phi A}\right)^{j}\Gamma_{\kappa}\left(|\alpha|+|\gamma|+1-j+1\right)\Gamma_{\kappa}\left(|\beta|+j\right) \end{split}$$

where we used the fact

$$\binom{|\gamma|-1}{j-1}+\binom{|\gamma|-1}{j}=\binom{|\gamma|}{j-1},\quad (j\geq 2).$$

Corollary 2.3. Under the hypotheses of (2.1), (2.2) and $nC_{\phi A_0} \leq 1$, there are constants C_{uA_0} and $C_{\phi A}$ such that for any α which satisfies $0 \neq |\alpha| \leq r$, $x \in K$,

$$|D_x^{\alpha} u(\phi(x))| \le C_{uA_0} A^{|\alpha|} C_{\phi A} A_0 \Gamma_{\kappa} (|\alpha|).$$

Proof. By (2.3) ($|\alpha| \neq 0$) and Lemma 2.1, we have

$$\begin{split} &|D_{x}^{\alpha}u(\phi(x))| = \left|X^{\alpha}u(y)|_{y=\phi}\right| \\ &\leq C_{uA_{0}}A^{|\alpha|}\sum_{j=1}^{|\alpha|}\binom{|\alpha|-1}{j-1}\left(nC_{\phi A}A_{0}\right)^{j}\Gamma_{\kappa}\left(|\alpha|-j+1\right)\Gamma_{\kappa}(j) \\ &\leq C_{uA_{0}}A^{|\alpha|}\left(nC_{\phi A}A_{0}\right)\sum_{j=1}^{|\alpha|-1}\binom{|\alpha|-1}{j}\Gamma_{\kappa}\left(|\alpha|-j\right)\Gamma_{\kappa}(j+1) \\ &\leq C_{uA_{0}}\left(nC_{\phi A}A_{0}\right)A^{|\alpha|}\Gamma_{\kappa}\left(|\alpha|\right). \end{split}$$

Remark. Similarly as the proof of Corollary 2.3 we can get

$$|D_x^{\alpha} u_y(\phi(x))| \leq C_{uA_0} A^{|\alpha|} n C_{\phi A} A_0^2 \Gamma_{\kappa} (|\alpha| + 1).$$

We define $F_k(x,y) \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$, $(k=1,\cdots,m)$ as

$$(2.5) |D_x^{\alpha} D_y^{\beta} F_k(x, y)| \le C_{FA_0} A_0^{|\alpha| + |\beta|} \Gamma_{\kappa}(|\alpha| + |\beta|)$$

for any α , $\beta \in \mathbb{N}^n$, $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$.

And we assume $F(x,y) = (F_1(x,y), \cdots, F_m(x,y))$ satisfy

$$(2.6) |F_y(x,y)^{-1}| \le C_1$$

for $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$.

Let $\Omega \subset \mathbb{R}^n$ be closed domain and f(x) to be a solution of

$$(2.7) F(x, f(x)) = 0$$

for $x \in \Omega$.

Lemma 2.4. If $F = (F_1, \dots, F_m)(x, y)$ are functions which satisfy (2.5) and (2.6), and f(x) is a solution of (2.7). Then there exist constants $C_{f,A}$ and A > 0 such that

$$(2.8) |D_x^{\alpha} f(x)| \le C_{f,A} A^{|\alpha|} \Gamma_{\kappa}(|\alpha|)$$

for any $\alpha \in \mathbb{N}^n$ and $x \in \Omega(\subset \mathbb{R}^n)$.

Proof. For $\hat{x} \in \mathbb{R}^n$ we put $K_{\varepsilon}(\hat{x}) = K_{\varepsilon} = \{x \in \Omega; |x - \hat{x}| \leq \varepsilon\}$. It is enough to show that the following (2.9) to be true instead of (2.8)

$$(2.9) |D_x^{\alpha} f(x)| \le C_{fA} A^{|\alpha|} \Gamma_{\kappa}(|\alpha|),$$

for any α and $x \in K_{\varepsilon}(\hat{x})$ where C_{fA} and A are independent of \hat{x} . We put $\varphi(x) = (x - \hat{x}, f(x) - f(\hat{x}))$ and $u(w) = F(x + \hat{x}, y + f(\hat{x}))$ for $w = (x, y) \in \mathbb{R}^{n+m}$.

By (2.7) we have

$$(2.10) u(\varphi(x)) = 0$$

for $x \in \Omega$, and the estimate for $\varphi(x)$ such that

(2.11)
$$\sup_{K_{\epsilon}} |\varphi(x)| \le \sup_{K_{\epsilon}} \{|x - \hat{x}| + c_0|x - \hat{x}|\} \le (1 + c_0)\varepsilon$$

where

$$(2.12) c_0 = \sup_{x \in \Omega} |f(x)| < \infty.$$

Differentiating (2.7), we get

$$(2.12)' F_x(x,f) + F_y(x,f) \cdot f_x(x) = 0,$$

thus, $|f_x(x)| \leq c_1 C_{F,A_0} A_0 \Gamma_{\kappa}(1)$,

(2.13)
$$\sup_{|\alpha|=1} \frac{|D_x^{\alpha} f(x)|}{\Gamma_{\kappa}(|\alpha|) A^{|\alpha|}} \le \frac{C_1 C_{FA_0} A_0}{A}$$

(A is sufficiently large) and

$$\sup_{|\alpha|=1} \frac{|D_x^{\alpha}(x-\hat{x})|}{\Gamma_{\kappa}(|\alpha|)A} \le \frac{1}{\Gamma(1)A}$$

provided A to be sufficiently large. We now put

(2.14)
$$\varphi_A = \max \left\{ \frac{C_1 C_{FA_0}}{A}, (1 + C_0)\varepsilon, \frac{1}{\Gamma_{\kappa}(1)A} \right\}.$$

We shall show that

$$|D_x^{\alpha}\varphi(x)| \le C_{\varphi A}A^{|\alpha|}\Gamma_{\kappa}(|\alpha|)$$

for any $x \in K_{\varepsilon}$ and $\alpha \in \mathbb{N}^n$.

By (2.11) and (2.13), (2.15) is obviously true for $|\alpha| = 0, 1$. Taking into account that $\varphi(x) = (x - \hat{x}, f(x) - f(\hat{x}))$, it suffices to show that

$$(2.16) |D_x^{\alpha} f(x)| \le C_{\varepsilon A} A^{|\alpha|} \Gamma_{\kappa}(|\alpha|)$$

for $|\alpha| \geq 2$.

Assuming that (2.16) holds for $|\alpha| \leq r$, we can get from (2.12)' that

$$(2.17) u_x(\varphi(x)) + u_y(\varphi(x)) f_x(x) = 0.$$

Therefore, we have

$$|D_x^{\alpha} f(x)| \le C_{\varphi A} A^{|\alpha|} \Gamma_{\kappa}(|\alpha|)$$

for $|\alpha| = r + 1$ and $x \in K_{\varepsilon}(\hat{x})$, where $C_{\varepsilon A}$ and A are not depend on \hat{x} .

We avail oneself for (2.4)', we have

$$|D_x^{\alpha} u_y\left(\varphi(x)\right)| + |D_x^{\alpha} u_x\left(\phi(x)\right)| \le C_{FA_0} C_{\varphi A} A_0^2 A^{|\alpha|} \Gamma_{\kappa}(|\alpha| + 1)$$

for $|\alpha| \leq r$, thus

$$\begin{aligned} &|D_{x}^{\alpha}f_{x}(x)| \\ &= \left| -F_{y}(x,f)^{-1} \left\{ D_{x}^{\alpha}u_{x}\left(\phi(x)\right) - \sum_{\alpha' < \alpha} \binom{\alpha}{\alpha'} D^{\alpha - \alpha'}u_{y}\left(\varphi\right) D^{\alpha'}f_{x}(x) \right\} \right| \\ &\leq C_{1} \left\{ C_{FA_{0}}C_{\varphi A}A_{0}^{2}A^{|\alpha|}\Gamma_{\kappa}(|\alpha|+1) \right. \\ &+ \sum_{\alpha' < \alpha} \binom{\alpha}{\alpha'} C_{FA_{0}}C_{\varphi A}A_{0}^{2}A^{|\alpha - \alpha'|}\Gamma_{\kappa}(|\alpha - \alpha'|+1)C_{\varphi A}A^{|\alpha'|+1}\Gamma_{\kappa}(|\alpha'|+1) \right\} \\ &\leq C_{\varphi A} \left\{ \frac{C_{1}C_{FA_{0}}A_{0}^{2}}{A} + C_{1}C_{FA_{0}}A_{0}^{2}C_{\varphi A} \right\} A^{|\alpha|+1}\Gamma_{\kappa}(|\alpha|+1) \\ &\leq C_{\varphi A}A^{|\alpha|+1}\Gamma_{\kappa}(|\alpha|+1), \end{aligned}$$

if $C_1 C_{FA_0} A_0^2 \leq 1/2$ and $C_1 C_{FA_0} A_0^2 C_{\varphi A} \leq 1/2$.

We set

$$F\left((x,y;\xi,\eta);\Xi\right) = \Xi + \sqrt{-1} \int_0^1 \nabla_x \Lambda\left(x + \theta y, \Xi\right) d\theta - (\xi + \sqrt{-1}\eta)$$

where $\Xi(x, y, \xi, \eta)$ is a solution of the following equation

(2.18)
$$F(x, y, \xi, \eta; \Xi(x, y, \xi, \eta)) = 0.$$

Next, we shall prove that

(2.19)
$$\left| D_x^{\beta} D_{\xi}^{\alpha} D_y^{\delta} D_{\eta}^{\lambda} \left\{ \Xi(x, y, \xi, \eta) - \xi - \sqrt{-1} \eta \right\} \right|$$

$$\leq C_{\Xi A} A^{|\alpha + \beta + \delta + \lambda|} |\alpha + \beta + \delta + \lambda|!^{\kappa} \langle \xi \rangle_h^{1/\kappa - |\alpha + \lambda|}.$$

We define as

$$f(x,y,\xi,\eta) = \Xi\left(x,y,\langle\xi\rangle_h^{-1/\kappa}\xi,\langle\xi\rangle_h^{-1/\kappa}\eta\right) - \langle\xi\rangle_h^{-1}(\xi+\sqrt{-1}\eta)$$

where $f(x, y, \xi, \eta)$ satisfy

$$f(x,y,\xi,\eta) + \sqrt{-1} \int_0^1 \nabla_x \Lambda\left(x + \theta y, f + \langle \xi \rangle_h^{-1/\kappa} (\xi + \sqrt{-1}\eta)\right) d\theta = 0$$

for $x, y, \xi, \eta \in \mathbb{R}^n$, $|\eta| \leq M \langle \xi \rangle_h^{1/\kappa}$, and

$$(2.20) F(x, y, \xi, \eta; \zeta) = \zeta + \sqrt{-1} \int_0^1 \nabla_x \Lambda\left(x + \theta y, \xi + \langle \xi \rangle^{-1/\kappa} (\xi + \sqrt{-1}\eta)\right) d\theta.$$

We derive by changing variables (x, y, ξ, η) and ζ to x and y respectively that F(x, y) implies

$$\left| D_x^{\alpha} D_y^{\beta} F(x, y) \right| \le C_{FA_0} A_0^{|\alpha| + |\beta|} \Gamma_{\kappa} (|\alpha| + |\beta|)$$

for $x \in \mathbb{R}^{4n}$ and $y \in \mathbb{R}^m$. Putting $\Omega = \{x \in \mathbb{R}^{4n}; x = (x^1, x^2, x^3, x^4), |x^4| \leq M\}$, it is obtained that f(y) to be a solution of F(x, f(y)) = 0 for $x \in \Omega$. By virtue of (2.20), we have

$$|F_y(x,y)| \ge 1 - Ch^{-1+1/\kappa} \ge 1/2,$$

provided h to be sufficiently large. Then F(x,y) implies (2.6), therefore by Lemma 2.4 we have

$$|D_x^{\alpha} f(x)| \le C_{fA} A^{|\alpha|} \Gamma_{\kappa}(|\alpha|)$$

for any $x \in \Omega$ and $\alpha \in \mathbb{N}^n$, that is, using the variable (x, y, ξ, η) which was changed to x,

$$\left|D_x^{\alpha} D_y^{\beta} D_{\xi}^{\lambda} D_{\eta}^{\delta} f(x, y, \xi, \eta)\right| \leq C_{fA} A^{|\alpha| + |\beta| + |\lambda| + |\delta|} \Gamma_{\kappa} (|\alpha| + |\beta| + |\lambda| + |\delta|)$$

for $(x, y, \xi, \eta) \in \Omega$. This implies (2.19).

Similarly as Corollary 2.3 we can get the following;

Lemma 2.5. (Lemma 5.3 of [6]) Let $K_1 \subset \mathbb{R}^{n_1}$ and $K_2 \subset \mathbb{R}^{n_2}$ be closed sets, F(x,y) in $C^k(K_1 \times K_2)$ satisfying

$$|D_x^{\alpha} D_y^{\beta} F(x,y)| \le C_{FB} B^{|\alpha|+|\beta|} (|\alpha|+|\beta|)!^{\kappa},$$

for $x \in K_1$, $y \in K_2$ and $|\alpha| + |\beta| \le k$, and $\varphi(x)$ a mapping of K_1 to K_2 satisfying

$$|D_x^{\alpha}\varphi(x)| \le C_{\varphi A} A^{|\alpha|} |\alpha|!^{\kappa},$$

for $x \in K_1$, and $|\alpha| \leq k$. Then the composition $F(x, \varphi(x))$ satisfies

$$\left|D_x^{\alpha}\left\{F_{(\delta)}^{(\beta)}\left(x,\varphi(x)\right)\right\}\right| \leq C_{FB}B^{|\beta|+|\delta|}(MA)^{|\alpha|}(|\alpha|+|\beta|+|\delta|)!^{\kappa},$$

for $x \in K_1$ and $|\alpha| + |\beta| + |\delta| \le k$, where $F_{(\delta)}^{(\beta)}(x,y) = D_x^{\delta} D_y^{\beta} F(x,y)$ and

$$M = \max \left\{ 2^{\kappa} (1 + 2BC_{\varphi A}), 2B \right\}.$$

3. Symbol of Gevrey class

In this section we shall construct a function $\Lambda(t, x, \xi)$ which satisfies (1.5) and (1.6) following the idea in [1,2].

Let $g(x,\xi)$ be a function in $C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n \setminus 0)$ and consider the following equation

(3.1)
$$\sum_{j=1}^{n} \xi_j \partial_{x_j} \lambda(x, \xi) = |\xi| g(x, \xi)$$

for $x \in \mathbb{R}^n$ and $\xi \in \mathbb{R}^n \setminus 0$. Then we can find easily a solution of (3.1) has a following form

(3.2)
$$\lambda(x,\xi) = \lambda_0(\xi) + \int_0^{x \cdot \omega} g(x - \tau \omega, \xi) d\tau,$$

where $\omega = \xi/|\xi|$, $x \cdot \omega = \sum_{j=1}^{n} x_j \omega_j$ and $\lambda_0(\xi)$ is an arbitrary function of ξ .

Let $\kappa > 1$ and $\chi(t)$ be a function in $C_0^{\infty}(\mathbb{R})$ such that $\chi(t) = 1$ for $|t| \leq 1/2$, $\chi(t) = 0$ for $|t| \geq 1$, $t\chi'(t) \leq 0$ and $0 \leq \chi(t) \leq 1$, and moreover $\chi(t)$ satisfies

$$(3.3) |\partial_t^m \chi(t)| \le A_0^{m+1} m!^{\kappa}$$

for $t \in \mathbb{R}$ and $m = 0, 1, 2, \cdots$. For $\varepsilon > 0$ we define

(3.4)
$$\begin{cases} \chi_1(x,\xi) = \chi\left(\frac{\langle x \rangle}{\varepsilon|\xi|}\right) \\ \chi_2(x,\xi) = \chi\left(\frac{2x \cdot \omega}{\langle x \rangle}\right) \quad (\omega = \xi/|\xi|), \end{cases}$$

then similarly in the proof of Corollary 2.3 we have

(3.5)
$$\begin{cases} |D_x^{\alpha}\langle x\rangle^m| \le C_0 A_0^{|\alpha|} |\alpha|! \langle x\rangle^{m-|\alpha|}, \\ |D_{\xi}^{\alpha}|\xi|^m| \le C_0 A_0^{|\alpha|} |\alpha|! |\xi|^{m-|\alpha|} \end{cases}$$

for $x, \xi \in \mathbb{R}^n$ with $|\xi| \ge 1$ and $\alpha, \beta \in \mathbb{N}^n$, where $m \in \mathbb{R}^n$.

We have by virtue of (3.3), (3.5) and Lemma 2.5

$$|\chi_{k(\beta)}^{(\alpha)}(x,\xi)| \le C_1 A_1^{|\alpha+\beta|} |\alpha+\beta|!^{\kappa} \langle x \rangle^{-|\beta|} |\xi|^{-|\alpha|}$$

for $x, \xi \in \mathbb{R}^n$ with $|\xi| \geq 1$, $\alpha, \beta \in \mathbb{N}^n$, $0 < \varepsilon \leq 1$, and k = 1, 2, where $\chi_{k(\beta)}^{(\alpha)} = (\partial/\partial \xi)^{\alpha} (-\sqrt{-1}\partial/\partial x)^{\beta} \chi_k$, and C_1 and A_1 are independent of ε .

For M > 1 we put

$$(3.7)$$

$$g_{1\sigma}(x,\xi) = \begin{cases} M\langle x \rangle^{-\sigma} \chi_1(x,\xi) & (\sigma < 1) \\ M\langle x \rangle^{-\sigma} \chi(\langle x \rangle / |\xi|) & (\sigma \ge 1), \end{cases}$$

$$g_{2\sigma}(x,\xi) = \begin{cases} M\left((x \cdot \omega)^2 + 1\right)^{-\sigma/2} \chi_1(x,\xi) & (\sigma < 1), \\ M\left((x \cdot \omega)^2 + 1\right)^{-\sigma/2} \chi(\langle x \rangle / |\xi|) & (\sigma \ge 1), \end{cases}$$

where $\omega = \xi/|\xi|$. Taking account of (3.5) we can see from (3.6) and Lemma 2.5

$$(3.8) |g_{k\sigma}^{(\alpha)}(x,\xi)| \le \begin{cases} C_2 M A_2^{|\alpha+\beta|} |\alpha+\beta|!^{\kappa} \langle x \rangle^{-\sigma-|\beta|} |\xi|^{-|\alpha|} & (k=1) \\ C_2 M A_2^{|\alpha+\beta|} |\alpha+\beta|!^{\kappa} \left((x \cdot \omega)^2 + 1 \right)^{-\sigma/2 - |\alpha+\beta|/2} & (k=2) \end{cases}$$

for $x, \xi \in \mathbb{R}^n$ with $|\xi| \geq 1$, $\alpha, \beta \in \mathbb{N}^n$ and $0 < \varepsilon \leq 1$, where C_2 and A_2 are independent of ε and M. Define for k = 1, 2

(3.9)
$$\lambda_{k\sigma}(x,\xi) = \int_0^{x \cdot \omega} g_{k\sigma}(x - \tau\omega, \xi) d\tau,$$

which satisfies (2.1) with $g = g_{k\sigma}$. Since $(1 + (x \cdot \omega)^2)^{1/2} \leq \langle x \rangle$ implies

(3.10)
$$g_{1\sigma}(x,\xi) - g_{2\sigma}(x,\xi) \le 0,$$

we can see

$$(3.11) (x \cdot \omega)(\lambda_{1\sigma}(x,\xi) - \lambda_{2\sigma}(x,\xi)) \le 0.$$

We define

(3.12)
$$\lambda_{\sigma}(x,\xi) = -\lambda_{1\sigma}(x,\xi)\chi_{2}(x,\xi) - \lambda_{2\sigma}(x,\xi)(1-\chi_{2}(x,\xi)).$$

Recalling that $\lambda_{k\sigma}$ is a solution of (3.1) with $g = g_{k\sigma}$ and noting that $(x \cdot \omega)\chi'(2x \cdot \omega/\langle x \rangle) \le$ 0 we obtain from (3.11)

$$\sum_{j=1}^{n} \xi_{j} \partial_{x_{j}} \lambda_{\sigma}(x,\xi) = -|\xi| g_{1\sigma}(x,\xi) \chi_{2}(x,\xi) - |\xi| g_{2\sigma}(x,\xi) \left(1 - \chi_{2}(x,\xi)\right)
- \left(\lambda_{1\sigma}(x,\xi) - \lambda_{2\sigma}(x,\xi)\right) \chi' \left(\frac{2x \cdot \omega}{\langle x \rangle}\right) \frac{2|\xi|}{\langle x \rangle} \left(1 - \frac{(x \cdot \omega)^{2}}{\langle x \rangle^{2}}\right)
\leq -|\xi| g_{1\sigma}(x,\xi).$$

Moreover noting that $\langle x - \tau \omega \rangle \ge \langle x \rangle/2$ on $\mathrm{supp}\chi_2$ for $|\tau| \le |x \cdot \omega|$ and $|x \cdot \omega| \ge \langle x \rangle/2$ on supp $(1 - \chi_2)$ are valid, we obtain by virtue of (3.6) and (

$$(3.14) \begin{cases} |\lambda_{\sigma}^{(\alpha)}(x,\xi)| \leq \begin{cases} C_{3}M\varepsilon^{1-\sigma}A_{3}^{|\alpha|}|\alpha|!^{\kappa}|\xi|^{1-\sigma-|\alpha|} & (\sigma<1) \\ C_{\alpha}M\log(2+|\xi|)|\xi|^{-|\alpha|} & (\sigma=1) \end{cases} \\ |\lambda_{\sigma}^{(\alpha)}(x,\xi)| \leq \begin{cases} C_{3}MA_{3}^{|\alpha+\beta|}|\alpha+\beta|!^{\kappa}|\xi|^{-|\alpha|} & (\sigma<1) \\ |\lambda_{\sigma}^{(\alpha)}(x,\xi)| \leq \end{cases} \\ C_{\alpha}M|\xi|^{-|\alpha|} & (\sigma>1) \\ |\lambda_{\sigma}^{(\alpha)}(x,\xi)| \leq \begin{cases} C_{3}MA_{3}^{|\alpha+\beta|}|\alpha+\beta|!^{\kappa}|\xi|^{-|\alpha|} & (\sigma<1) \\ C_{\alpha\beta}M|\xi|^{-|\alpha|} & (\sigma\geq1) \end{cases}$$

for $x \in \mathbb{R}^n$, $\xi \in \mathbb{R}^n$ with $|\xi| \geq 1$, $\alpha, \beta \in \mathbb{N}^n$ $(|\beta| \neq 0)$ and $0 < \varepsilon \leq 1$, where C_3 and A_3 are independent of ε .

Now we define

Now we define
$$\Lambda_{\sigma}(t, x, \xi) = \begin{cases}
\rho(t)\langle \xi \rangle_{h}^{1/\kappa} + \lambda_{\sigma}(x, \xi) \left(1 - \chi(h^{-1}|\xi|)\right) & (\sigma < 1) \\
\rho(t)\log(1 + \langle \xi \rangle_{h}) + \lambda_{1\sigma}(x, \xi) \left(1 - \chi(h^{-1}|\xi|)\right) & (\sigma = 1) \\
\lambda_{\sigma}(x, \xi) \left(1 - \chi(h^{-1}|\xi|)\right) & (\sigma > 1),
\end{cases}$$
where $\rho(t)$ is a real valued function in $C^{1}([0, T])$ with $\rho'(t) < 0$ in $[0, T]$ and

where $\rho(t)$ is a real valued function in $C^1([0,T])$ with $\rho'(t)<0$ in [0,T] and $\langle\xi\rangle_h=0$ $(h^2 + |\xi|^2)^{1/2}$ (h a large parameter).

Lemma 3.2. Assume that (1.3) or (1.4) is valid. Let $\rho > 0$ and N > 0. Then there are a real valued function $\rho(t)$ in $C^1([0,T])$ with $\rho'(t) < 0$ in [0,T] and positive constants ε and M such that $\Lambda_{\sigma}(t,x,\xi)$ defined in (3.15) satisfies the following properties

$$(3.16) \qquad \left(\partial_{t} + \sum_{j=1}^{n} \xi_{j} \partial_{x_{j}}\right) \Lambda_{\sigma}(t, x, \xi) + \sum_{j=1}^{n} \Im a_{j}(t, x) \xi_{j}$$

$$\leq \begin{cases} C(h) - N|\rho(t)| \langle \xi \rangle_{h}^{1/\kappa} & (\sigma < 1) \\ C(h) - N(|\rho(t)| + 1) \log(1 + \langle \xi \rangle_{h}) & (\sigma = 1) \end{cases}$$

$$C(h) \qquad (\sigma > 1)$$

and

$$(3.17) \begin{cases} \left| \Lambda_{\sigma}^{(\alpha)}(t, x, \xi) \right| \leq \begin{cases} \rho A^{|\alpha|} |\alpha|!^{\kappa} \langle \xi \rangle_{h}^{1/\kappa - |\alpha|} & (\sigma < 1) \\ C_{\alpha} M \log(1 + \langle \xi \rangle_{h}) \langle \xi \rangle_{h}^{-|\alpha|} & (\sigma = 1) \end{cases} \\ \left| \Lambda_{\sigma}^{(\alpha)}(t, x, \xi) \leq \begin{cases} C M A^{|\alpha + \beta|} |\alpha + \beta|!^{\kappa} \langle \xi \rangle_{h}^{-|\alpha|} & (\sigma < 1) \\ C_{\alpha\beta} M \langle \xi \rangle_{h}^{-|\alpha|} & (\sigma \geq 1) \end{cases} \end{cases}$$

for $x, \xi \in \mathbb{R}^n$, $\alpha, \beta \in \mathbb{N}^n$ ($|\beta| \neq 0$) and $h \geq 1$, where A, C_{α} and $C_{\alpha\beta}$ are independent of h.

Proof. If $0 < \sigma < 1$, (1.4) implies that for any $\delta > 0$ there is $R_{\delta} > 0$ such that

$$\sum_{j=1}^{n} |\Im \ a_j(t,x)| \le \frac{\delta}{\langle x \rangle^{\sigma}}$$

for $\langle x \rangle \geq R_{\delta}$. Hence we have from the above estimate and from (1.3)

(3.18)
$$|\sum_{j=1}^{n} \Im a_{j}(t,x)\xi_{j}| \leq \begin{cases} \tilde{C}\langle x \rangle^{-\sigma} |\xi| & (\langle x \rangle \leq R_{\delta}, \ \sigma < 1) \\ \delta\langle x \rangle^{-\sigma} |\xi| & (\langle x \rangle \geq R_{\delta}, \ \sigma < 1) \\ \tilde{C}\langle x \rangle^{-\sigma} |\xi| & (\sigma \geq 1). \end{cases}$$

On the other hand from (3.13) and from the definition of $\Lambda_{\sigma}(t, x, \xi)$ it follows that

$$\left(\partial_{t} + \sum_{j=1}^{n} \xi_{j} \partial_{x_{j}}\right) \Lambda_{\sigma}(t, x, \xi)$$

$$\left\{ \begin{aligned} \rho'(t) \langle \xi \rangle_{h}^{1/\kappa} - |\xi| g_{1\sigma}(x, \xi) \left(1 - \chi(h^{-1}|\xi|)\right) & (\sigma < 1) \\ \rho'(t) \log(1 + \langle \xi \rangle_{h}) - |\xi| g_{1\sigma}(x, \xi) \left(1 - \chi(h^{-1}|\xi|)\right) & (\sigma = 1) \\ - |\xi| g_{1\sigma}(x, \xi) \left(1 - \chi(h^{-1}|\xi|)\right) & (\sigma > 1). \end{aligned} \right.$$
Recalling the definition (3.7) of $g_{1\sigma}$ we obtain from (3.18)

Recalling the definition (3.7) of $g_{1\sigma}$ we obtain from (3.18)

(3.20) Recalling the definition (3.7) of
$$g_{1\sigma}$$
 we obtain from (3.18)
$$|\xi|g_{1\sigma}(x,\xi)\left(1-\chi(h^{-1}|\xi|)\right) = \begin{cases} M|\xi|\langle x\rangle^{-\sigma}\chi(\langle x\rangle/\varepsilon|\xi|) & (\sigma<1) \\ M|\xi|\langle x\rangle^{-\sigma}\chi(\langle x\rangle/|\xi|) & (\sigma\geq1) \end{cases}$$

$$\geq \begin{cases} |\sum_{j=1}^{n} \Im a_{j}(t,x)\xi_{j}| - \delta\varepsilon^{-\sigma}|\xi|^{1-\sigma} & (\sigma<1) \\ |\sum_{j=1}^{n} \Im a_{j}\xi_{j}| - 2M & (\sigma\geq1) \end{cases}$$

for $M \geq \tilde{C}$ (\tilde{C} is a constant of (3.18)), $|\xi| \geq h$ and $\varepsilon |\xi| \geq \varepsilon h \geq R_{\delta}$ ($\sigma < 1$). Therefore in the case of $\sigma > 1$ (3.19) and (3.20) implies (3.16) directly. Besides, (3.19) yields (3.16) in the case of $\sigma \leq 1$, if $\rho(t)$ satisfies

$$\rho'(t) + N\rho(t) + \delta \varepsilon^{-\sigma} = 0 \quad (\sigma < 1)$$

$$\rho'(t) + N(\rho(t) + 1) + 2M = 0 \quad (\sigma = 1)$$

for $t \in [0, T]$, which is solved as follows

(3.21)
$$\rho(t) = \begin{cases} e^{-Nt} \rho(0) - \frac{1 - e^{-Nt}}{N} \delta \varepsilon^{-\sigma} & (\sigma < 1) \\ e^{-Nt} \rho(0) - \frac{1 - e^{-Nt}}{N} (2M + N) & (\sigma = 1). \end{cases}$$

Next we shall prove that $\Lambda_{\sigma}(t, x, \xi)$ satisfies (3.17). By (3.3) and (3.5) there exist positive constants C_1 , A_1 such that

$$(3.22) |\partial_{\varepsilon}^{\alpha} \chi(h^{-1}|\xi|)| \leq C_1 A_1^{|\alpha|} |\alpha|!^{\kappa} |\xi|^{-|\alpha|}$$

for $\xi \in \mathbb{R}^n$, $|\xi| \ge 1$ and $\alpha \in \mathbb{N}^n$. Then using Leibniz' rule and the inequality $|\xi| \le \langle \xi \rangle_h \le 3|\xi|$ on supp $(1 - \chi(h^{-1}|\xi|))$ we obtain from (3.14) and (3.22)

$$(3.23) \begin{cases} \left| \Lambda_{\sigma}^{(\alpha)}(t, x, \xi) \right| \leq \begin{cases} \left(\rho(t) + CM \varepsilon^{1-\sigma} \right) A^{|\alpha|} |\alpha|!^{\kappa} \langle \xi \rangle_{h}^{1/\kappa - |\alpha|} & (\sigma < 1) \\ C_{\alpha} M \log(1 + \langle \xi \rangle_{h}) \langle \xi \rangle_{h}^{-|\alpha|} & (\sigma = 1) \end{cases} \\ \left| \Lambda_{\sigma}^{(\alpha)}(t, x, \xi) \right| \leq \begin{cases} CM A^{|\alpha + \beta|} |\alpha + \beta|!^{\kappa} \langle \xi \rangle_{h}^{-|\alpha|} & (\sigma < 1) \\ C_{\alpha\beta} M \langle \xi \rangle_{h}^{-|\alpha|} & (\sigma \geq 1) \end{cases} \end{cases}$$

for $x, \xi \in \mathbb{R}^n$, $\alpha, \beta \in \mathbb{N}^n$ and $h \ge 1$, where C, A and $C_{\alpha\beta}$ are independent of h. In the case of $\sigma \ge 1$ (3.23) implies (3.17) immediately. In the case of $\sigma < 1$ we have to choose $\rho(t)$, M, ε and δ such that

$$(3.24) \qquad (\rho(t) + CM\varepsilon^{1-\sigma}) \le \rho$$

for $t \in [0, T]$. We can find $\rho(t)$ satisfying (3.21) and (3.24) if we take M, ε and δ suitably.

4. Pseudo-differential operators in Gevrey classes

Let $\kappa > 1$ and $\Lambda(x,\xi)$ be a real valued function defined in \mathbb{R}^{2n} satisfying

$$|\Lambda_{(\beta)}^{(\alpha)}(x,\xi)| \le \lambda(\Lambda) A_0^{|\alpha+\beta|} |\alpha+\beta|!^{\kappa} \langle \xi \rangle_h^{1/\kappa-|\alpha|}$$

for $x, \xi \in \mathbb{R}^n$ $\alpha, \beta \in \mathbb{N}^n$ and $h \geq 1$, where $\lambda(\Lambda) > 0$ and $A_0 > 0$ are independent of the parameter h. Following the Part I in [6] we introduce pseudo-differential operators

$$e^{\Lambda}(x,D)u(x) = \int e^{\sqrt{-1}x\cdot\xi + \Lambda(x,\xi)}\hat{u}(\xi)\tilde{d}\xi$$

and the reversed operator ${}^Re^{\Lambda}(x,D)$ of $e^{\Lambda}(x,D)$ as follows,

$$^{R}e^{\Lambda}(x,D)u(x)=\int\Big[\int e^{\sqrt{-1}(x+y)\cdot\xi+\Lambda(y,\xi)}u(y)dy\Big]\tilde{d}\xi,$$

for $u \in H^0_{\kappa,\rho}$, where $x \cdot \xi = x_1 \xi_1 + \dots + x_n \xi_n$ and $\tilde{d}\xi = (2\pi)^{-n} d\xi$.

Lemma 4.1. (Proposition 6.7 of [6]) Let $\Lambda(x,\xi)$ be a symbol satisfying (4.1). Then there is $\delta > 0$ such that $e^{\Lambda}(x,D)$ maps continuously $L^2_{\kappa,\rho}$ to $L^2_{\kappa,\rho-\tau}$ for $|\rho-\tau| < \delta A^{-1/\kappa}$ and $\tau > \lambda(\Lambda)$ and $\left\{e^{\Lambda}(x,D)\right\}^R$ from $L^2_{\kappa,\rho}$ to $L^2_{\kappa,\rho-\tau}$ for $|\rho| < \delta A^{-1/\kappa}$ and $\tau > \lambda(\Lambda)$.

Then it follows from Lemma 4.1 that $e^{\Lambda}(x,D)$ and ${}^Re^{\Lambda}(x,D)$ map continuously $H^0_{\kappa,\rho}$ into $H^0_{\kappa,\rho-\tau}$ for $|\rho-\tau|<\delta A^{-1/\kappa}$ and $\tau>\lambda(\Lambda)$ and $H^0_{\kappa,\rho}$ into $H^0_{\kappa,\rho-\tau}$ for $|\rho|<\delta A^{-1/\kappa}$ and $\tau>\lambda(\Lambda)$ respectively, where δ is a positive constant and ρ_1 is that of (1.6).

We put

$$\varphi(x,\xi) = x\xi - \sqrt{-1}\Lambda(x,\xi)$$

and define

$$I_{\varphi}(x,D)u(x) = \int e^{\sqrt{-1}\varphi(x,\xi)}\hat{u}(\xi)\tilde{d}\xi,$$

$$\mathcal{F}\left(I_{\varphi}^{R}(x,D)u\right)(\xi) = \int e^{\sqrt{-1}\varphi(y,\xi)}\hat{u}(y)\tilde{d}y.$$

Let $\Xi(x,y,\xi)$ and $Y(z,\xi,\eta)$ to be solutions of the equation

$$\begin{split} \Xi - \sqrt{-1} \int_0^1 \nabla_x \Lambda \left(x + \theta(x-y), \Xi \right) d\theta &= \xi, \\ Y - \sqrt{-1} \int_0^1 \nabla_\xi \Lambda(Y, \xi + \theta \eta) d\theta &= z, \end{split}$$

respectively, and

$$\begin{split} J(x,y,\xi) &= \det \left\{ \frac{\partial \Xi}{\partial \xi}(x,y,\xi) \right\}, \\ \hat{J}(z,\xi,\eta) &= \det \left\{ \frac{\partial Y}{\partial x}(z,\xi,\eta) \right\}. \end{split}$$

Lemma 4.2. (Corollary 6.13 in [6]) Let $\Lambda(x,\xi)$ be a symbol satisfying (4.1) and $\varphi = x\xi - i\Lambda(x,\xi)$. Then

$$I_{\varphi}(x,D)I_{-\varphi}^{R}(x,D) = J(x,D) + r(x,D),$$

$$I_{-\varphi}^R(x,D)I_{\varphi}(x,D) = \hat{J}(x,D) + \hat{r}(x,D),$$

where

$$J(x,\xi) = \sum_{|\alpha| < N} \frac{1}{\alpha!} D_y^{\alpha} \partial_{\zeta}^{\alpha} J(x, x + y, \xi + \zeta) \Big|_{y=\zeta=0} + J_N(x, \xi),$$
$$\hat{J}(x,\xi) = \sum_{|\alpha| < N} \frac{1}{\alpha!} D_y^{\alpha} \partial_{\eta}^{\alpha} \hat{J}(x + z, \xi, \eta) \Big|_{z=\eta=0} + \hat{J}_N(x, \xi),$$

and for C > 0 and $\delta > 0$, J_N , \hat{J}_N and r, \hat{r} satisfy

$$\left|J_{N(\beta)}^{(\alpha)}(x,\xi)\right|, \left(\left|\hat{J}_{N(\beta)}^{(\alpha)}(x,\xi)\right|\right) \leq C_{NA}(CA)^{|\alpha+\beta|}|\alpha+\beta|!^{\kappa}\langle\xi\rangle_{h}^{-1-|\alpha|-N(1-1/\kappa)},$$

for any non-negative integer N,

$$|r_{(\beta)}^{(\alpha)}(x,\xi)|, \left(|\hat{r}_{(\beta)}^{(\alpha)}(x,\xi)\right) \le C_{NA}(CA)^{|\beta|}|\beta|!^{\kappa} \exp\left\{-\delta A^{-1/\kappa} \langle \xi \rangle_h^{1/\kappa}\right\}$$

respectively.

By virtue of Lemma 4.2 we have

(4.2)
$$\begin{cases} e^{\Lambda}(x,D) \circ {}^{R}e^{-\Lambda}(x,D) = I + r_{1}(x,D) \\ {}^{R}e^{-\Lambda}(x,D) \circ e^{\Lambda}(x,D) = I + r_{2}(x,D) \end{cases}$$

where r_k (k = 1, 2) satisfy

$$|r_{k(\beta)}^{(\alpha)}(x,\xi)| \le C_{\alpha\beta} \langle \xi \rangle_h^{1/\kappa - 1 - |\alpha|} \le C_{\alpha\beta} h^{1/\kappa - 1} \langle \xi \rangle_h^{-|\alpha|}$$

for $x, \xi \in \mathbb{R}^n$, $\alpha, \beta \in \mathbb{N}^n$, $h \geq 1$ and $C_{\alpha\beta}$ is independent of h. In (4.2) $A \circ B$ means the operator product of A and B. Therefore Neumann series assures the existence of the inverse of $I + r_k(x, D)$ if h is taken sufficiently large. Hence we have also the inverse of $e^{\Lambda}(x, D)$ from (4.2). Let $p(x, \xi)$ be a symbol satisfying

$$|p_{(\beta)}^{(\alpha)}(x,\xi)| \le CA^{|\alpha+\beta|} |\alpha+\beta|!^{\kappa} \langle \xi \rangle_h^{m-|\alpha|}$$

for $x, \xi \in \mathbb{R}^n$, $\alpha, \beta \in \mathbb{N}^n$ and $h \ge 1$.

Lemma 4.3. (Theorem 6.14 in [6]) Let $\Lambda(x,\xi)$ and $p(x,\xi)$ be symbols satisfying (4.1) and (4.3) respectively, and $\varphi = x\xi - \sqrt{-1}\Lambda(x,\xi)$. Then we have

$$I_{\omega}(x, D)p(x, D) = p(\varphi; x, D)I_{\omega}(x, D) + r(\varphi; x, D),$$

where $p(\varphi; x, D)$ maps continuously $H_{\kappa, \rho}^{m+s}$ to $H_{\kappa, \rho}^{s}$ if $|\rho| < \delta A^{-1/\kappa}$ and $s \in \mathbb{R}$, and $r(\varphi; x, D)$ maps $L_{\kappa, \rho}^{2}$ to $L_{\kappa, \rho+\delta A^{-1/\kappa}-\lambda(\Lambda)}^{2}$ if $|\rho| < \delta A^{-1/\kappa}$ and $\rho+\delta A^{-1/\kappa} < \lambda(\Lambda)$. Moreover $p(\varphi; x, D)$ satisfies for any integer $N \geq 0$

$$p(\varphi; x, D) = p_N(x, D) + R_N(x, D),$$

$$p_{N}(x,\xi) = p\left(x - \sqrt{-1}\Lambda_{\xi}(x,\Xi), \xi + \sqrt{-1}\Lambda_{x}(x,\Xi)\right)$$

$$+ \sum_{0 < |\alpha + \beta| < N} p_{(\beta)}^{(\alpha)}\left(x - \sqrt{-1}\Lambda_{\xi}(x,\Xi), \xi + \sqrt{-1}\Lambda_{x}(x,\Xi)\right) \omega_{\alpha}^{\beta}(\varphi; x, \xi),$$

where $R_N(x, D)$ maps continuously $H_{\kappa, \rho}^{m+s}$ to $H_{\kappa, \rho}^{s-N(1-1/\kappa)-1}$ for $|\rho| < \delta A^{-1/\kappa}$, and $\omega_{\alpha}^{\beta}(\varphi; x, \xi)$ is a solution of the equation

$$\Xi + \sqrt{-1}\nabla_x \Lambda(x,\Xi) = \xi.$$

Then it follows from Lemma 4.3 that there are $\delta > 0$ and $h_0 > 0$ such that if $\lambda(\Lambda) < \delta A^{-1/\kappa}$

(4.4)
$$e^{\Lambda}(x,D) \circ p(x,D) \circ (e^{\Lambda}(x,D))^{-1} = p(x,D) + q(x,D) + r(x,D)$$

where $q(x,\xi)$ and $r(x,\xi)$ respectively satisfy

(4.5)
$$q(x,\xi) = \sum_{|\alpha+\beta|=1} p_{(\beta)}^{(\alpha)}(x,\xi) \left(\partial_{\xi}^{\beta} \Lambda(x,\xi)\right) \left((\sqrt{-1}\partial_{x})^{\alpha} \Lambda(x,\xi)\right)$$

$$|r_{(\beta)}^{(\alpha)}(x,\xi)| \le C_{\alpha\beta}\langle\xi\rangle_h^{m-2(1-1/\kappa)-|\alpha|}$$

for $x, \xi \in \mathbb{R}^n$, $\alpha, \beta \in \mathbb{N}^n$ and $h \geq h_0$. For $\Lambda(x, \xi)$ and $p(x, \xi)$ satisfying (4.1) and (4.3) respectively we define a pseudo-differential operator $(e^{\Lambda}p)(x, D)$ as follows

(4.7)
$$(e^{\Lambda}p)(x,D)u(x) = \int e^{\sqrt{-1}x\cdot\xi + \Lambda(x,\xi)}p(x,\xi)\hat{u}(\xi)\tilde{d}\xi$$

for $u \in H^0_{\kappa,\rho}$.

Lemma 4.4. (Theorem 6.10 in [6]) $p(x,\xi)$ and $\lambda(x,\xi)$ be symbols satisfying (4.3) and (4.1) respectively and $\varphi = x\xi - \sqrt{-1}\Lambda(x,\xi)$. Then there are C > 0, $\delta > 0$ and $h_0 > 0$ independent of A such that the product of $p_{\varphi}(x,D)$ and $I_{-\varphi}^{R}(x,D)$ is given as follows:

$$p_{\varphi}(x,D)I_{-\varphi}^{R}(x,D) = \hat{p}(x,D) + \hat{r}(x,D),$$

where

$$\begin{split} \hat{p}(x,\xi) &= \sum_{|\alpha| < N} \frac{1}{\alpha!} D_y^\alpha \partial_\eta^\alpha \left\{ J(x,x+y,\xi+\eta) p(x,\Xi(x,x+y,\xi+\eta)) \right\} \bigg|_{y=\eta=0} + \hat{p}_N(x,\xi), \\ |\hat{p}_N^{(\alpha)}_{(\beta)}(x,\xi)| &\leq C_{NA}(CA)^{|\beta|} |\beta|!^\kappa \langle \xi \rangle_h^{m-1-|\alpha|-N(1-1/\kappa)}, \end{split}$$

for any non-negative integer N,

$$|\hat{r}_{(\beta)}^{(\alpha)}(x,\xi)| \le C_{A\alpha}(CA)^{|\beta|} \exp\left\{-\delta A^{-1/\kappa} \langle \xi \rangle_h^{1/\kappa}\right\},$$

for $x, \xi \in \mathbb{R}^n$, $\alpha, \beta \in \mathbb{N}^n$, $h \geq h_0$ and $\Xi(x, y, \xi)$ is a solution of the following equation

$$\Xi - \sqrt{-1} \int_0^1 \Lambda_x (x + \theta(x - y), \Xi) d\theta = \xi,$$

and $J(x, y, \xi) = \det \{ \partial \Xi / \partial \xi(x, y, \xi) \}.$

Then quoting Lemma 4.4, if $\lambda(\Lambda) < \delta A^{-1/\kappa}$ we have

(4.8)
$$(e^{\Lambda}p)(x,D) \circ (e^{\Lambda}(x,D))^{-1} = p(x,D) + q(x,D) + \tilde{r}(X,D),$$

where $q(x,\xi)$ and $\tilde{r}(x,\xi)$ satisfy (4.5) and (4.6) respectively.

We try to apply the above results to $\Lambda_{\sigma}(t, x, \xi)$ defined by (3.15) in the case of $\sigma < 1$. First of all we note that the estimates (3.17) yields

$$(4.9) |\Lambda_{\sigma(\beta)}^{(\alpha)}(t, x, \xi)| \le \left(\rho + CMh^{-1/\kappa}\right) A^{|\alpha+\beta|} |\alpha + \beta|!^{\kappa} \langle \xi \rangle_h^{1/\kappa - |\alpha|}$$

for $x, \xi \in \mathbb{R}^n$, $t \in [0, T]$, $\alpha, \beta \in \mathbb{N}^n$ and $h \ge 1$. In Lemma 2.1 we choose $\rho > 0$ and h > 0 such that

(4.10)
$$\lambda(\Lambda_{\sigma}) = \left(\rho + CMh^{-1/\kappa}\right) \le \delta A^{-1/\kappa}$$

for $t \in [0,T]$. If $a_j(t,x)$ $(j=1,\dots,n)$ belong to $C^0([0,T];\mathcal{B}_{s_0,A_0})$, $s_0 \leq \kappa$, $\kappa > 1$ and $\lambda(\Lambda_{\sigma}) < \delta A_0^{-1/\kappa}$ are valid, by virtue of (4.4) and (4.5) with $p(x,\xi) = \sum_{j=1}^n a_j(t,x)\xi_j$, we have

$$(4.11) \qquad e^{\Lambda_{\sigma}}(t,x,D) \circ \left(-\sqrt{-1}\sum_{j=1}^{n} a_{j}(t,x)\partial_{x_{j}}\right) \circ \left(e^{\Lambda_{\sigma}}(t,x,D)\right)^{-1}$$
$$= -\sqrt{-1}\sum_{j=1}^{n} a_{j}(t,x)\partial_{x_{j}} + q(t,x,D) + r(t,x,D)$$

where q and r respectively satisfy

(4.12)
$$q(t, x, \xi) = \sqrt{-1} \sum_{i=1}^{n} a_{i}(t, x) \Lambda_{\sigma x_{i}} - \sqrt{-1} \sum_{i,l=1}^{n} a_{i}(t, x) \xi_{i} \Lambda_{\sigma \xi_{l}},$$

$$|r_{(\beta)}^{(\alpha)}(t,x,\xi)| \le C_{\alpha\beta} \langle \xi \rangle_h^{1-2(1-1/\kappa)-|\alpha|}$$

for $x, \xi \in \mathbb{R}^n$, $t \in [0, T]$, $\alpha, \beta \in \mathbb{N}^n$ and $h \geq h_0$.

Next we shall calculate $e^{\Lambda_{\sigma}}(t, x, D) \circ (\partial_t - \sqrt{-1}\Delta) \circ (e^{\Lambda_{\sigma}}(t, x, D))^{-1}$. We have $(\partial_t - \sqrt{-1}\Delta) u$

$$\begin{split} &= \left(\partial_{t} - \sqrt{-1}\Delta\right) \circ \left\{e^{\Lambda_{\sigma}}(t,x,D) \circ \left(e^{\Lambda_{\sigma}}(t,x,D)\right)^{-1}u\right\} \\ &= \left\{\left(e^{\Lambda_{\sigma}}\Lambda'_{\sigma}\right)(t,x,D) + e^{\Lambda_{\sigma}}(t,x,D) \circ \partial_{t}\right\} \circ \left(e^{\Lambda_{\sigma}}(t,x,D)\right)^{-1}u \\ &- \sqrt{-1}\sum_{j=1}^{n} \left\{\left(e^{\Lambda_{\sigma}}\Lambda_{\sigma x_{j}}^{2}\right)(t,x,D) + 2\left(e^{\Lambda_{\sigma}}\Lambda_{\sigma x_{j}}\right)(t,x,D) \circ \partial_{x_{j}} + e^{\Lambda_{\sigma}}(t,x,D) \circ \partial_{x_{j}}^{2}\right\} \\ &\circ \left(e^{\Lambda_{\sigma}}(t,x,D)\right)^{-1}u \end{split}$$

where we write $\Lambda'_{\sigma} = \partial \Lambda_{\sigma}/\partial t$ and $\Lambda_{\sigma x_j} = \partial \Lambda_{\sigma}/\partial x_j$. Hence we obtain

$$e^{\Lambda_{\sigma}}(t, x, D) \circ \left(\partial_{t} - \sqrt{-1}\Delta\right) \circ \left(e^{\Lambda_{\sigma}}(t, x, D)\right)^{-1} u$$

$$= \left(\partial_{t} - \sqrt{-1}\Delta\right) u - \left(e^{\Lambda_{\sigma}}\Lambda'_{\sigma}\right) (t, x, D) \circ \left(e^{\Lambda_{\sigma}}(t, x, D)\right)^{-1} u$$

$$+ \sqrt{-1} \sum_{j=1}^{n} \left\{ \left(e^{\Lambda_{\sigma}}\Lambda_{\sigma x_{j}}^{2}\right) (t, x, D) + \left(e^{\Lambda_{\sigma}}\Lambda_{\sigma x_{j}}\right) (t, x, D) \circ \partial_{x_{j}} \right\}$$

$$\circ \left(e^{\Lambda_{\sigma}}(t, x, D)\right)^{-1} u.$$

Noting that from (3.15) and (3.17) it follows that $\partial_t \Lambda_{\sigma}(t, x, \xi) = \rho'(t) \langle \xi \rangle_h^{1/\kappa}$, and $\partial_{x_j} \Lambda_{\sigma}(t, x, \xi) = \lambda_{\sigma x_j} (x, \xi) \left(1 - \chi(h^{-1}|\xi|)\right)$ is a symbol of order zero, we obtain using (4.4) and (4.8)

$$e^{\Lambda_{\sigma}}(t, x, D) \circ \left(\partial_{t} - \sqrt{-1}\Delta\right) \circ \left(e^{\Lambda_{\sigma}}(t, x, D)\right)^{-1} u$$

$$= \left(\partial_{t} - \sqrt{-1}\Delta\right) u - \rho'(t) \langle D \rangle_{h}^{1/\kappa} u + \sqrt{-1} \sum_{j=1}^{n} \Lambda_{\sigma x_{j}}(x, D) \circ \partial_{x_{j}} u + c_{\sigma}(t, x, D) u$$

where $c_{\sigma}(t, x, \xi)$ satisfies

$$(4.15) |c_{\sigma(\beta)}^{(\alpha)}(t,x,\xi)| \le C_{\alpha\beta} \langle \xi \rangle_h^{1/\kappa - (1-1/\kappa) - |\alpha|}$$

for $x, \xi \in \mathbb{R}^n$, $\alpha, \beta \in \mathbb{N}^n$ and $h \geq h_0$. Thus summing up, if $0 < \sigma < 1$ and $s_0 \leq \kappa \leq (1-\sigma)^{-1}$, we can transform L by $e^{\Lambda_{\sigma}}(t, x, D)$ to the following form

$$(4.16) \qquad e^{\Lambda_{\sigma}}(t, x, D) \circ L \circ \left(e^{\Lambda_{\sigma}}(t, x, D)\right)^{-1}$$

$$= L - \rho'(t)\langle D \rangle_{h}^{1/\kappa} + \sqrt{-1} \sum_{j=1}^{n} \Lambda_{\sigma x_{j}}(t, x, D) \circ \partial_{x_{j}} - q(t, x, D) - \tilde{c}_{\sigma}(t, x, D)$$

where $q(t, x, \xi)$ is given by (4.12) and \tilde{c}_{σ} satisfies (4.15). In the case of $\sigma \geq 1$ applying the asymptotic expansion of products of pseudo-differential operators of (1,0)-type, we can obtain the formulas (4.4) and (4.8) replacing (4.6) by the following estimates

$$(4.17) |r_{(\beta)}^{(\alpha)}(t, x, \xi)| \leq \begin{cases} C_{\alpha\beta} \left\{ (\log(1 + \langle \xi \rangle_h)) \langle \xi \rangle_h^{-1} \right\}^2 \langle \xi \rangle_h^{m-|\alpha|} & (\sigma = 1) \\ C_{\alpha\beta} \langle \xi \rangle_h^{m-2-|\alpha|} & (\sigma > 1) \end{cases}$$

for $x, \xi \in \mathbb{R}^n$, $\alpha, \beta \in \mathbb{N}^n$ and $h \ge h_0$. Therefore in this case $r(t, x, \xi)$ in the formula (4.11) satisfies (4.17) with m = 1 instead of (4.13). Thus we can see that the formula (4.16) in the case of $\sigma \ge 1$ also holds, replacing (4.15) by (4.17) with m = 1.

5. Proof of Theorems

In this section we shall prove Theorem 1.1 and 1.2. Let $\Lambda_{\sigma}(t, x, \xi)$ be a symbol defined by (3.15). Put $v(t, x) = e^{\Lambda_{\sigma}}(t, x, D)u(t, x)$ and $L_{\sigma} = e^{\Lambda_{\sigma}}(t, x, D) \circ L \circ \left(e^{\Lambda_{\sigma}}(t, x, D)\right)^{-1}$. Then if u is a solution of (1.1) and satisfies that $e^{\Lambda_{\sigma}}(t, x, D)u \in C^{1}([0, T]; H^{\infty})$, v(t, x) belongs to $C^{1}([0, T]; H^{\infty})$ and satisfies

(5.1)
$$\begin{cases} L_{\sigma}v(t,x) = g(t,x), & (t,x) \in (0,T) \times \mathbb{R}^n \\ v(0,x) = v_0(x), & x \in \mathbb{R}^n, \end{cases}$$

where $g = e^{\Lambda_{\sigma}}(t, x, D)f(t, x)$ and $v_0 = e^{\Lambda_{\sigma}}(0, x, D)u_0$. Conversely if $v(t, x) \in C^1([0, T]; H^{\infty})$ satisfies (5.1), then $u(t, x) = \left(e^{\Lambda_{\sigma}}(t, x, D)\right)^{-1}v(t, x)$ is a solution of (1.1) and satisfies that $e^{\Lambda_{\sigma}}(t, x, D)u(t, x)$ belongs to $C^1([0, T]; H^{\infty})$. Therefore it suffice to show that for any $v_0 \in H^l$ and for any $g(t, x) \in C^0([0, T]; H^l)$ there is a solution v(t, x) of (5.1) which belongs to $C^0([0, T]; H^l) \cap C^1([0, T]; H^{l+2})$, where l is a real number.

Proposition 5.1. Assume that the conditions of Theorem 1.1 or of Theorem 1.2 are valid. Let l be a real number and v(t,x) be in $C^1([0,T];H^{\infty})$. If we take suitably $\rho(t)$, M, ε and h in the definition of Λ_{σ} , there is a positive constant C = C(l,T) such that

(5.2)
$$||v(t)||_{H^{l}} \le e^{Ct} ||v(0)||_{H^{l}} + \int_{0}^{t} e^{C(t-\tau)} ||L_{\sigma}v(\tau)||_{H^{l}} d\tau$$

for $t \in [0, T]$.

Proof. Denote $||v||_l = ||v||_{H^l}$ and $(v,v)_l = (v,v)_{H^l}$ for short. Differentiating $\frac{1}{2}||v(t)||_l^2$

with respect to t we have from the formula (4.16) for L_{σ}

$$(5.3)$$

$$\|v(t)\|_{l} \frac{d}{dt} \|v(t)\|_{l} = \Re \left(v'(t), v(t)\right)_{l}$$

$$= \Re \left(\sqrt{-1}\Delta v + \sum_{j=1}^{n} a_{j}\partial_{x_{j}}v + g, v\right)_{l}$$

$$+ \Re \left(\left(\rho'(t)\langle D\rangle_{h}^{1/\kappa} - \sqrt{-1}\sum_{j=1}^{n} \Lambda_{\sigma_{x_{j}}}(x, D) \circ \partial_{x_{j}} + q(t, x, D) + \tilde{c}_{\sigma}(t, x, D)\right)v, v\right)_{l}$$

Moreover noting that the expression (4.12) and the estimate (3.17) yield

$$|q(t, x, \xi)| \le \begin{cases} C\left(\rho\langle\xi\rangle_h^{1/\kappa} + Ch^{-1/\kappa}\langle\xi\rangle_h^{1/\kappa}\right) & (\sigma < 1) \\ C\left\{\log(1 + \langle\xi\rangle_h) + |\rho(t)|\right\} & (\sigma = 1) \\ C & (\sigma > 1). \end{cases}$$

we have by virtue of (3.16) and (4.15) ($\sigma < 1$) (or (4.17) ($\sigma \ge 1$))

$$\rho'(t)\langle\xi\rangle_h^{1/\kappa} + \sum_{j=1}^n \xi_j \Lambda_{\sigma x_j}(x,\xi) + \sum_{j=1}^n \Im a_j \xi_j + \Re \left(q(t,x,\xi) + \tilde{c}_\sigma(t,x,\xi) \right) \le C$$

if we choose ρ , N and h in Lemma 3.2 suitably. Hence we obtain from (5.3) and Theorem 4.4 in Chapter 3 of [7]

$$\frac{d}{dt} \|v(t)\|_{l} \le C \|v(t)\|_{l} + \|g(t)\|_{l},$$

which implies (5.2) directly.

We can obtain the following proposition similarly as Theorem 4.1 of [1].

Proposition 5.2. Assume that the conditions of Theorem 1.1 or of Theorem 1.2 are valid. Let l be a real number and take suitably $\rho(t)$, M, ε and h in the definition of Λ_{σ} , then for

any $v_0 \in H^l$ and for any $g(t, x) \in C^0([0, T]; H^l)$ there is an unique solution v(t, x) of (5.1) which belongs to $C^0([0, T]; H^l) \cap C^1([0, T]; H^{l+2})$.

Following the idea of Kumano-go [7], we shall prove the above theorem. We need several lemmas. First, we define $\{\zeta_{\nu}(\xi)\}_{\nu=1}^{\infty}$ as

(5.4)
$$\zeta_{\nu}(\xi) = \left(\nu \sin \frac{\xi_{1}}{\nu}, \cdots, \nu \sin \frac{\xi_{n}}{\nu}\right)$$

and $P_{\nu}(t) = p_{\nu}(t, x, D_x)$ as

(5.5)
$$p_{\nu}(t, x, \xi) = p_{\nu}(t, x, \zeta_{\nu}(\xi)).$$

We now consider the following Cauchy problem

(5.6)
$$\begin{cases} L_{\nu}v_{\nu} = \partial_{t}v_{\nu} - \sqrt{-1}P_{\nu}(t)v_{\nu} = g(t), & t \in (0, T), \\ v_{\nu}|_{t=0} = v_{0}. \end{cases}$$

We define the series of weight function $\{\lambda_{\nu}(\xi)\}_{\nu=1}^{\infty}$ as

(5.7)
$$\lambda_{\nu}(\xi) = \left\langle \zeta_{\nu}(\xi) \right\rangle = \left\{ 1 + \sum_{j=1}^{n} \left(\nu \sin \frac{\xi_{j}}{\nu} \right)^{2} \right\},$$

then we have

(5.8)
$$\begin{cases} i) \ 1 \leq \lambda_{\nu}(\xi) \leq \min\left(\langle \xi \rangle, \sqrt{1 + n\nu^{2}}\right), \\ ii) \ |\partial_{\xi}^{\alpha} \lambda_{\nu}(\xi)| \leq A_{\alpha} \lambda_{n} u(\xi)^{1 - |\alpha|}, \\ iii) \ \lambda_{\nu}(\xi) \to \langle \xi \rangle \quad (\nu \to \infty) \ on \ \mathbb{R}^{n}_{\xi}, \\ (uniform \ convergence \ in \ a \ compact \ set). \end{cases}$$

In fact $\zeta_{\nu}(\xi)$ satisfies

(5.9)
$$\begin{cases} i) |\zeta_{\nu}(\xi)| \leq \min(|\xi|, \sqrt{n\nu}), \\ ii) |\partial_{\xi}^{\alpha} \zeta_{\nu}(\xi)| \leq A'_{\alpha} \lambda_{n} u(\xi)^{1-|\alpha|}, \\ iii) \zeta_{\nu}(\xi) \to \xi, \\ (uniform convergence in a compact set) \end{cases}$$

Denote by $S^m_{\lambda_{\nu}}$ the set of symbols $p(x,\xi)\in C^{\infty}(\mathbb{R}^{2n})$ satisfying

$$|p_{(\beta)}^{(\alpha)}(x,\xi)| \le C_{\alpha\beta}\lambda_{\nu}(\xi)^{m-|\alpha|}$$

for any multi-index α , β . Then we get the following lemma.

Lemma 5.1. For $p(x,\xi) \in S^m$ put $p_{\nu}(x,\xi) = p(x,\zeta_{\nu}(\xi))$. Then $p_{\nu}(x,\xi) \in S^m_{\lambda_{\nu}}$, and α , β there is constant $A_{\alpha,\beta}$ which is independent of ν and p, we have

(5.10)
$$\begin{cases} |p_{\nu(\beta)}(x,\xi)| \leq \left(A_{\alpha,\beta}|p|_{|\alpha+\beta}^{(m)}\right) \lambda_{\nu}(\xi)^{m-|\alpha|}, \\ p_{\nu}(x,\xi) \to p(x,\xi) \quad (uniformly) \ (\nu \to \infty) \ at \ \mathbb{R}_{x}^{n} \times K_{\xi}. \end{cases}$$

where K_{ξ} is an arbitrary compact set of \mathbb{R}^{n}_{ξ} .

Denoting $H_{\lambda_{\nu},s} = \{u \in \mathcal{S}'; \lambda_{\nu}(\xi)^{s} \hat{u} \in L^{2}\}$, we have the following;

Lemma 5.2. $P = p(x, D_x) \in S_{\lambda_{\nu}}^m$ is continuous mapping from the Sobolev spaces $H_{\lambda_{\nu},s+m}$ to $H_{\lambda_{\nu},s}$ and for constants $C_{s,m}$ and l = l(s,m) we have

(5.11)
$$||Pv||_{\lambda_{\nu},s} \leq \left(C_{s,m}|p|_{l}^{(m)}\right) ||v||_{\lambda_{\nu},s+m}.$$

Especially for m = 0 and s = 0 we have

(5.12)
$$||Pv||_{L^2} \le \left(C|p|_l^{(0)}\right) ||v||_{L^2}, \quad v \in L^2(\mathbb{R}^n).$$

Lemma 5.3. For any $v_0 \in H^l$ and any $g(t) \in C_t^0([0,T];H^l)$ there exists a solution $v_{\nu}(t) \in C_t^0([0,T];H^l)$ of (5.6) which satisfies the energy inequalities

(5.13)
$$||v_{\nu}(t)||_{l} \leq e^{\gamma t} ||v_{0}||_{l} + \int_{0}^{t} e^{\gamma(t-\tau)} ||g(\tau)||_{l} d\tau \quad t \in [0, T]$$

$$(5.15) \quad \left\| \frac{d}{dt} \Lambda_{\nu}^{j} v_{\nu}(t) \right\|_{l} \leq C_{T} \left\{ \left\| \Lambda_{\nu}^{j+2} v_{0} \right\|_{l} + \max_{[0,T]} \left\| \Lambda_{\nu}^{j+2} g(\tau) \right\|_{l} d\tau \right\} \quad t \in [0,T]; \ j = 1, 2, \cdots$$

(5.16)
$$\|\Lambda_{\nu}^{j}\left(v_{\nu}(t)-v_{\nu}(t')\right)\|_{l} \leq C_{T}'|t-t'| \left\{ \|\Lambda_{\nu}^{j+2}v_{0}\|_{l} + \max_{[0,T]} \|\Lambda_{\nu}^{j+2}g(\tau)\|_{l} d\tau \right\}$$

$$t,t' \in [0,T]; \ j=1,2,\cdots$$

where γ , γ_1 , C_T , C_T' are constants which are independent of ν , and $\Lambda_{\nu} = \lambda_{\nu}(D_x)$.

Proof of Lemma 5.3. I) If we fix ν arbitrarily, we have $p_{\nu}(t, x, \xi) \in C_t^k\left([0, T]; \mathcal{B}^{\infty}(\mathbb{R}^{2n}_{x, \xi})\right)$ (k = 0, 1). Then $P_{\nu}(t)$ is an H^l -bounded operator uniformly with respect to t. Therefore $v_{\nu}(t)$ to be a unique solution of the integral equation

(5.17)
$$v_{\nu}(t) = v_0 + \sqrt{-1} \int_0^t P_{\nu}(\tau) u_{\nu}(\tau) d\tau + \int_0^t g(\tau) d\tau,$$

which can be solved as follows;

$$v_{\nu}(t) = v_{0} + \int_{0}^{t} g(\tau)d\tau + \sum_{k=1}^{\infty} \sqrt{-1}^{k} \int_{0}^{t} \int_{0}^{\tau_{1}} \cdots \int_{0}^{\tau_{k-1}} P_{\nu}(\tau_{1}) \cdots P_{\nu}(\tau_{k})v_{0}d\tau_{k} \cdots \tau_{1}$$

$$\sum_{k=2}^{\infty} \sqrt{-1}^{k} \int_{0}^{t} \int_{0}^{\tau_{1}} \cdots \int_{0}^{\tau_{k-1}} P_{\nu}(\tau_{1}) \cdots P_{\nu}(\tau_{k})g(\tau_{k})d\tau_{k} \cdots \tau_{1} \quad \tau_{0} = t.$$

Then we have $v_{\nu}(t) \in C_t^1([0,T]; H^l)$.

II) From (5.6) we have

$$\begin{split} &\frac{d}{dt} \|v_{\nu}\|_{l}^{2} \\ &= 2\Re\left(\frac{d}{dt}v_{\nu}, v_{\nu}\right)_{l} \\ &= 2\Re\left(\sqrt{-1}|\zeta_{\nu}(D)|^{2}v + \sum_{j=1}^{n} a_{j}\zeta_{\nu j}v + g, v\right)_{l} \\ &+ 2\Re\left(\left(\rho'(t)\langle\zeta_{\nu}(D)\rangle_{h}^{1/\kappa} - \sqrt{-1}\sum_{j=1}^{n} \Lambda_{\sigma x_{j}}(x, \zeta_{\nu}(D)) \circ \zeta_{\nu j} + q(t, x, \zeta_{\nu}(D)) + \tilde{c}_{\sigma}(t, x, \zeta_{\nu}(D))\right)_{l}. \end{split}$$

On the other hand, we have

(5.18)

$$\rho'(t)\langle\zeta_{\nu}(\xi)\rangle_{h}^{1/\kappa} + \sum_{j=1}^{n} \zeta_{\nu j} \Lambda_{\sigma x_{j}}(x, \zeta_{\nu}(\xi)) + \sum_{j=1}^{n} \Im a_{j} \zeta_{\nu j} + \Re (q(t, x, \zeta_{\nu}(\xi)) + \tilde{c}_{\sigma}(t, x, \zeta_{\nu}(\xi))) \leq C$$
 if we choose ρ , N and h in Lemma 3.2 suitably. Thus by Lemma 5.2 and the Sharp Gårding inequality (for instant Theorem 4.4 of Chapter 3 in [7]), for a constant $\gamma > 0$ which independent of ν , t we have

$$\frac{d}{dt} \|v_{\nu}(t)\|_{l}^{2} \leq 2\gamma \|v_{\nu}(t)\|_{l}^{2} + 2\|g(t)\|_{l} \|v_{\nu}(t)\|_{l} \quad t \in [0, T]; \nu = 1, 2, \cdots$$

and

$$\frac{d}{dt} \|v_{\nu}(t)\|_{l} \leq \gamma \|v_{\nu}(t)\|_{l} + \|g(t)\| \|v_{\nu}(t)\|_{l}.$$

Therefore we get (5.13). Moreover from (5.6) we have

$$\frac{d}{dt}\Lambda_{\nu}^{j}v_{\nu} = \sqrt{-1}\left(P_{\nu} + [\Lambda_{\nu}^{j}, P_{\nu}]\Lambda_{\nu}^{-j}\right)\Lambda_{\nu}^{j}v_{\nu} + \Lambda_{\nu}^{j}g$$

and $P_{\nu,j} = P_{\nu} + [\Lambda^{j}_{\nu}, P_{\nu}]\Lambda^{-j}_{\nu}$. Here, $[\Lambda^{j}_{\nu}, P_{\nu}]\Lambda^{-j}_{\nu} \in C^{0}_{t}([0, T]; S^{0}_{\lambda_{\nu}})$ and $P_{\nu,j}$ satisfies (5.18).

Hence we get (4.14) similarly to (5.13). On the other hand, noting

$$\frac{d}{dt}\Lambda_{\nu}^{j}v_{\nu} = \sqrt{-1}\left(\Lambda_{\nu}^{j}P_{\nu}\Lambda_{\nu}^{-j-2}\right)\Lambda_{\nu}^{j+2}v_{\nu} + \Lambda_{\nu}^{j}g$$

where $\sigma\left(\Lambda_{\nu}^{j}P_{\nu}\Lambda_{\nu}^{-j-2}\right)\in C_{t}^{0}([0,T];S_{\lambda_{\nu}}^{0})$ (uniformly on ν), we have

$$\|\frac{d}{dt}\Lambda_{\nu}^{j}v_{\nu}(t)\|_{l} \leq C_{1}\|\Lambda_{\nu}^{j+2}v_{\nu}\|_{l} + \|\Lambda_{\nu}^{j}g\|_{l}.$$

Then from this and (5.14), we get (5.15). Put $v_{\nu}(t) - v_{\nu}(t') = \int_{t'}^{t} \frac{d}{d\tau} v_{\nu}(\tau) d\tau$. Then we get (5.16) from (5.15). This completes the proof of Lemma 5.3.

Proof of Proposition 5.2. I) First we assume that $v_0 \in H^{l+4}$, $g(t) \in C_t^0([0,T]; H^{l+4})$. Then it follows from Lemma 5.3 that there is a solution $v_{\nu}(t)$ of (5.6). Then, from (5.9) we have

$$\|\Lambda_{\nu}^{j}v_{0}\|_{l} \leq \|\Lambda^{j}v_{0}\|_{l}, \qquad \|\Lambda_{\nu}^{j}g\|_{l} \leq \|\Lambda^{j}g\|_{l}$$

for $j \leq 4$, where $\Lambda = \langle D_x \rangle$. Therefore by (5.13), (5.14), (5.16) we have

(5.20)
$$\|\Lambda_{\nu}^{j} v_{\nu}(t)\|_{l} \leq C_{1} \left\{ \|\Lambda_{\nu}^{j} v_{\nu}\|_{l} + \max_{[0,T]} \|\Lambda_{\nu}^{j} g\|_{l} \right\},$$

(5.21)
$$\|\Lambda_{\nu}^{j}(v_{\nu}(t) - v_{\nu}(t'))\|_{l} \leq C_{2}|t - t'| \left\{ \|\Lambda_{\nu}^{j+2}v_{\nu}\|_{l} + \max_{[0,T]} \|\Lambda_{\nu}^{j+2}g\|_{l} \right\},$$

for $j \leq 4$.

Therefore if we fix $t_0 \in [0,T]$ arbitrarily, then from (5.20) with j=0, $\{v_{\nu}(t_0)\}_{\nu=1}^{\infty}$ is a bounded sequence in H^l . Hence there exists $v(t_0) \in H^l$ and a sequence such that $\{v_{\nu_m}\}_{m=1}^{\infty}$ of H^l we have

$$v_{\nu_m} \to v(t_0) \ (weakly) \ in \ H^l \ (m \to \infty).$$

Let $\{t_k\}_{k=1}^{\infty}$ be a dense set in [0,T]. Then by the diagonal method there exists $v(t_k) \in H^l$ and we have

(5.22)
$$v_{\nu_m}(t_k) \to v(t_k) \ (weakly) \ in \ H^l \ (m \to \infty).$$

Then from (5.21) with j=0, for any $t,t'\in\{t_k\}_{k=1}^{\infty}$ we have

(5.23)
$$||v(t) - v(t')||_{l} \le C_{2}|t - t'| \left\{ ||\Lambda^{2}v_{0}||_{l} + \max_{[0,T]} ||\Lambda^{2}g||_{l} \right\}.$$

For any $t_0 \in [0,T]$ we choose subsequence $\{t_{k_s}\}_{s=1}^{\infty}$ of $\{t_k\}_{k=1}^{\infty}$ such that $t_{k_s} \to t_0$. Then by (5.23), $\{t_{k_s}\}_{s=1}^{\infty}$ becomes a Cauchy sequence in $H^l(\mathbb{R}^n)$. Thus there exists $v(t_0) \in H^l$ and we have $v(t_{k_s}) \to v(t_0)$ in $H^l(s \to \infty)$. Moreover for all v(t) we obtain (4.23) and

$$v_{\nu_m}(t) \to v(t) \; (weakly) \; in \; H^l \; (m \to \infty).$$

Thus for $\varphi \in \mathcal{S}$ we have

$$(5.24) \qquad (\Lambda_{\nu_m}^k v_{\nu_m}(t), \varphi)_I = (v_{\nu_m}(t), \Lambda_{\nu_m}^k \varphi)_I \to (v(t), \Lambda^k \varphi)_I \quad (m \to \infty).$$

Therefore noting $|\left(\Lambda_{\nu_m}^k v_{\nu_m}(t), \varphi\right)_l| \leq ||\Lambda_{\nu_m}^k v_{\nu_m}(t)||_l ||\varphi||_l$, we get from (5.20) and (5.24)

$$|(v(t), \Lambda^{k} \varphi)_{l}| \leq C_{1} \{ ||\Lambda^{k} v_{0}||_{l} + ||\Lambda^{k} g||_{l} \} ||\varphi||_{l} (\varphi \in \mathcal{S})$$

for $k \leq 4$. We define $v_{R,k}(t,x) \in H^l$ for any $t \in [0,T]$ and R > 0 such that $\hat{v}_{R,k}(t,\xi) = \langle \xi \rangle^k \hat{v}(t,\xi)$, and $\hat{v}_{R,k} = 0$ ($|\xi| > R$) and take the sequence $\{\varphi_j\}_{j=1}^{\infty}$ of S as supp $\hat{\varphi} \subset \{|\xi| \leq R\}$, $\hat{\varphi}_j \to \hat{v}_{R,k}(t,\xi)$ in H^l $(j \to \infty)$. Then we have

$$\begin{split} \left(u(t), \Lambda^{k} \varphi_{j}\right)_{l} &= \int \hat{u}(t, \xi) \langle \xi \rangle^{2l+k} \overline{\hat{\varphi}_{j}(\xi)} d\xi \to \int_{|\xi| \leq R} \langle \xi \rangle^{2(l+k)} |\hat{u}(t, \xi)|^{2} d\xi \\ & (j \to \infty) \end{split}$$

Therefore from (5.25) we get

$$||v_{R,k}(t)||_{l} \le C_1 \left\{ ||\Lambda^k v_0||_{l} + \max_{[0,T]} ||\Lambda^k g||_{l} \right\} \quad (k \le 4).$$

Hence taking $R \to \infty$, we have $\Lambda^k v \in H^l$ and

(5.26)
$$\|\Lambda^k v\|_l \le C_1 \left\{ \|\Lambda^k v_0\|_l + \max_{[0,T]} \|\Lambda^k g\|_l \right\} \quad (k \le 4).$$

From (5.21) we have similarly to (5.26)

Thus we obtain u(t), $\Lambda u(t)$ and $\Lambda^2 u(t)$ are contained in $C_t^0([0,T];H^l)$.

We take $\varphi(t,x) = \varphi_1(t)\varphi_2(x) \in C_0^{\infty}((0,T) \times \mathbb{R}^n)$ arbitrarily. Noting

$$L_{\nu_m}^* \varphi \to L^* \varphi \text{ in } C_t^0([0,T]; H^l),$$

we have

$$\begin{split} \iint_{\Omega_T} Lv \cdot \bar{\varphi} dx dt &= \iint_{\Omega_T} v \cdot \overline{L^* \varphi} dx dt \\ &= \lim_{m \to \infty} \iint_{\Omega_T} v_{\nu_m} \cdot \overline{L^*_{\nu_m} \varphi} dx dt = \lim_{m \to \infty} \iint_{\Omega_T} Lv_{\nu_m} \cdot \overline{\varphi} dx dt \\ &= \iint_{\Omega_T} g \cdot \bar{\varphi} dx dt. \end{split}$$

Thus Lv = g $(t \in [0,T])$. Therefore u is a solution of (5.2). Also noting v(t), $\Lambda v(t)$ and $\Lambda^2 v(t)$ are contained in $C_t^0([0,T];H^l)$ and $\partial_t v = \sqrt{-1}P(t)v + g$, we get $v(t) \in C_t^1([0,T];H^l) \cap C_t^0([0,T];H^{l+2})$.

II) If $v(t) \in C_t^1([0,T]; H^l) \cap C_t^0([0,T]; H^{l+2})$ is a solution of (5.2), we obtain the energy inequality (5.3) similarly to the proof of Lemma 5.3. Assume $v_0 \in H^{l+2}$ and $g(t) \in C_t^0([0,T]; H^{l+2})$. Put $v_{0,\varepsilon} = \chi_{\varepsilon}(D_x)v_0$ and $g_{\varepsilon}(t) = \chi_{\varepsilon}(D_x)g(t)$, where $\chi(\xi) \in \mathcal{S}_{\xi}$ satisfies $\chi(0) = 1$ and $\chi_{\varepsilon}(\xi) = \chi(\varepsilon\xi)$. Then $v_{0,\varepsilon} \in H^{l+4}$, $g_{\varepsilon}(t) \in C_t^0([0,T]; H^{l+2})$. Therefore from I), we get the solution $v_{\varepsilon}(t)$ of (5.2) for $v_{0,\varepsilon}$ and g_{ε} . Then by (5.3) we have

$$||v_{\varepsilon}(t) - v_{\varepsilon'}(t')||_{l+2} \le e^{\gamma_1 T} \left\{ ||v_{0,\varepsilon} - v_{0,\varepsilon'}||_{l+2} + T \max_{[0,T]} ||g_{\varepsilon}(\tau) - g_{\varepsilon'}(\tau)||_{l+2} \right\}.$$

On the other hand when ε , $\varepsilon' \to 0$ we have

$$\begin{cases} \|v_{0,\varepsilon}-v_{0,\varepsilon'}\|_{l+2} = \|(\chi_\varepsilon(D_x)-\chi_{\varepsilon'}(D_x))v_0\|_{l+2} \to 0, \\ \max_{[0,T]} \|g_\varepsilon(\tau)-g_{\varepsilon'}(\tau)\|_{l+2} = \max_{[0,T]} \|(\chi_\varepsilon(D_x)-\chi_{\varepsilon'}(D_x))g(\tau)\|_{l+2} \to 0. \end{cases}$$

Therefore, noting $\partial_t v_{\varepsilon} = \sqrt{-1}Pv_{\varepsilon} + g_{\varepsilon}$, we can see $\{v_{\varepsilon}\}_{0<\varepsilon<1}$ becomes a Cauchy sequence in $C_t^1([0,T];H^l) \cap C_t^0([0,T];H^{l+2})$ and the limit of this series v(t) is a solution of (5.2). This completes the Proposition 5.2.

Proof of Theorem 1.1 and Theorem 1.2. By Propositions 5.1 and 5.2 we see that there exists an unique solution $v(t,x) \in C_t^0([0,T];H^l) \cap C_t^1([0,T];H^{l+2})$ of the Cauchy problem (5.1) with initial data $v_0(x)$ and we get the energy inequality

$$||v(t,\cdot)||_{l} \leq C(T) \left(||v_{0}||_{l} + \int_{0}^{t} ||e^{\Lambda}f(\tau,\cdot)||_{l}d\tau \right)$$

for $t \in [0,T]$. Hence, we obtain the unique solution $u(t,x) = (e^{\Lambda})^{-1} v(t,x)$ of the equation (1.1) with initial data by using the Sharp Gårding inequality and the energy inequality

$$||u(t,\cdot)||_{l} \le C'(T) \left(||u_{0}||_{l} + \int_{0}^{t} ||f(\tau,\cdot)||_{l} d\tau \right)$$

for $t \in [0, T]$, $(0 < \sigma < 1 \text{ or } 1 < \sigma)$ and

$$||u(t,\cdot)||_{l} \leq C'(T) \left(||u_{0}||_{l'} + \int_{0}^{t} ||f(\tau,\cdot)||_{l'} d\tau \right)$$

for $t \in [0,T]$ and $l' \in \mathbb{R}$ ($\sigma = 1$). Thus we complete the proof of our Theorems.

REFERENCES

- A. Baba, The L₂-wellposed Cauchy problem for Schrödinger type equations, Tsukuba J. Math. 16
 (1992), 235-256.
- The H[∞]-wellposed Cauchy problem for Schrödinger type equations, Tsukuba J. Math. 18 (1994).
- 3. S. Doi, On the Cauchy problem for Schrödinger type equations and the regularity of the solutions (to appear).
- 4. W. Ichinose, Sufficient condition on H_{∞} well posedness for Schrödinger type equations, Comm. Partial Differential Equations 9 (1984), 33-48.
- 5. _____, Some remarks on the Cauchy problem for Schrödinger type equations, Osaka J. Math. 21 (1984), 565-581.
- K. Kajitani and T. Nishitani, The hyperbolic Cauchy problem Lecture Note in Math. 1505, Springer-Verlag, 1991.
- 7. H. Kumano-go, Pseudo-Differential Operators, MIT Press, Cambridge, 1981.
- 8. S. Mizohata, On the Cauchy Problem Notes and Reports in Math. 3, Academic Press, 1985.
- J. Takeuchi, Le problème de Cauchy pour quelques équations aux dérivées partielles du type de Schrödinger, C. R. Acad. Sci. Paris Série I, 310 (1990), 823-826.
- Le problème de Cauchy pour certaines équations aux dérivées partielles du type de Schrödinger
 C. R. Acad. Sci. Paris Série I, 312 (1991), 341-344.