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1. Introduction
We consider the following Cauchy problem in (0,7") x R™
Lu(t,z)] = f(t,z), (t,z)€(0,T)xR"
(1.1) {

u(0, z) = uo(z), z €R"
where L = 0; — @A + 2 iy ai(t,2)0/0z; + b(t,z) and A = > 5=y 0%/0x%. When the
coefficients a;(t, z) are complex valued functions, the equation (1.1) is called a Schrodinger
type equation. It is well known that if a;(t,z) are real valued smooth functions, the
Cauchy problem is well-posed in LZ(R™). But if the imaginary parts of {a;(¢,z)} do not
vanish identically, the Cauchy problem (1.1) is not necessarily well posed in L*(R™) nor in
H* = (1,50 H?, where H® stands for a usual Sobolev space in R".

Let T > 0 and k > 0. We say that the Cauchy problem (1.1) is HZ® (respectively.
H)-well-posed in [0,T], if for any ug € HZ° (respectively. H*) and f € C°([0,T); H®)
(respectively. C°([0,T]; H*) there is a unique solution u € C*([0,T]; HS®) (respectively.
C'([0,T); H®) of (1.1). Furthermore we say that the Ca,uc:hy problem (1.1) is L2-well-

posed in [0, T, if the Cauchy problem (1.1) is H*°-well-posed in [0, T] and the solution of

(1.1) satisfies
t
[u®lz < D) {Jlollzs + [ 15)lzds
0
for t € [0, T.
In [8], Mizohata gave a necessary condition for the Cauchy problem (1.1) to be well-

posed in L2(R") as following

(%) Z/ Saj(z +w - Tw;idr| < o0

wesSn—1 (x t)eR xR j=1



where $a; is the imaginary part of a;.
And in [5] Ichinose gave a necessary condition for the Cauchy problem (1.1) to be well-

posed in H* such as for any p > 0 there are some positive constants C' and C' such

that

n.fP
(%) sup Z/(; Sa;(z + bw)w;df| < Clog(l+p) + C'.
J=1

z€R™ ,wesS™—1

We can find in [8] a sufficient condition for the Cauchy problem (1.1) to be well-posed

in L2(R") that is under (*) for any multi indices a (|a| > 1)

sup Z/ 102 a;(z + wT)|dT < +o0.
z€R" weSn—1 j=1 0
In [9], Takeuchi claimed the following conditions are sufficient ones (1.1) to be well-posed
in L%(R™)
{ 02 Sa(2)| < Cafz) 701,
|02 Ra(2)| < Cal2) 7, (lel 2 1)
where (z) = (1 + |z|?)*/? and Ra; is the real part of a;.

In [2], we can find a sufficient condition for the Cauchy problem (1.1) to be well-posed
in H®
{ |Sa;(t, )] < Cla) ™,
[0ga;j(t,2)| < Calz)™
for any a (Ja| > 1).

In [4], Ichinose gave a sufficient condition for the Cauchy problem (1.1) to be well-posed

in H° which under (#*) for any a (|a| > 1)

/ n

+oo
() sup Z/ 10%a,(z + 6w)|d6 < +oo,
ZER",IJJES"—I ]=1 0‘

(1) sup Z// (83‘.3%- ~ Og; gai) dz; A dz;
S
\

< 4o




where [ [o(:++)dzi A dz; denotes the integral of two form over S.
In [10], Takeuchi gave a sufficient condition for the Cauchy problem (1.1) to be well-

posed in H° which under Ichinose’s condition (i)

G(z + pw)
G(z)

In this paper we shall investigate the Cauchy problem (1.1) in Gevrey classes when

sup Zf Sa;(z + sw)wjds — k(w) log —————=| < +00.

p>0,z€ER" ,wesS"—1

{a;(t,z)} does not satisfy the necessary conditions derived in [5,8]. To do so, we introduce
some function spaces. For a topological space X and an interval I in R we denote by
C*(I; X) the set of functions which are k times continuously differentiabie with respect
tot € I'in X. Form € R, p > 0 and x > 0 we define a Hilbert space HY, = {u(z) €
L2(R?); (5)"‘6”(5)1“'&(5) € L*(R})}, where i(£) stands for the Fourier transform of u and
g ={1+€+--- +§,2,}1/2. For p < 0 we define H[?, as the dual space of H,",. For

p = 0 define H'g = H™ the usual Sobolev space in R". Then note that the dual space of

H m becomes H

w T, for any p,m € R. Denote H* = J 5, Hy, and H® =), g H

We say a(z) belongs to the set of functions By 4 that there are constants A > 0 and £ >0

such that
(1.2) |DZa(z)] < CAPja)"

for any € R™ and a € N", where D,; = —/~10/0z; and Dy = Dz --- Dg». Define
By = g0 Bx,a and denote by B the set of functions whose all derivatives are bounded
in R™. We note that H C By, that is, HZ® is a subspace of the Gevrey class of exponent

x and that H® is the space of real analytic functions defined in R™.

Now we can state our theorems.



Theorem 1.1. Assume that a; (j =1, ,n) and b are in C°([0,T]; B>) and there are

positive constants C' and o > 1 such that

(1.3) Saj(t,z) = O (|2[77)  (|z| — o0)

uniformly in t € [0,T]. Then the Cauchy problem (1.1) is H>™-well-posed in [0, T) if o =1
and L2-well-posed in [0,T] if o > 1.

Theorem 1.2. Let T > 0. Assume that the coefficients a;(t,z) and b(t,z) belong to
C°([0,TY); Bso,4,) and moreover that the imaginary parts of a;(t,z) (j = 1,--+ ,n) satisfy
(1.4) Sa;(t,z) = o(lz[™") (l&] — o0)

uniformly in t € [0,T]. Then if 0 < ¢ < 1,k > 1 and s < & < (1 — o)™ the Cauchy
problem (1.1) is H®-well-posed in [0, T].

We note that if the condition (1.3) is verified, the imaginary parts of a; satisfy (*) and
(#%). Theorem 1.1 is a generalization of the results which are obtained in [2,3], where they
imposed some technical conditions on the real parts of a;.

To prove Theorem 1.1 and Theorem 1.2, by use of the idea introduced in [2] and [3] we

shall seek a function A(t,z,&) defined in [0,T] x R™ x R™ which satisfies the conditions

(1.5) A(t,z,€) + Y Eihs; (1,3,6) + ) Saj(t,2)é; <0,

j=1 =1

( P1(f>1/'c (e <1)
(16) A(t,2,6)| < Clog2+I¢)) (o =1)
(¢ (e>1)




for z, ¢ € R"® and t € [0,T], where A; = OA/0t and A;; = OA/Ox;. Besides, we change
the unknown function u as v(t,z) = e*(¢,z,D)u(t,z), where e*(¢,z, D) stands for the
pseudo-differential operator with symbol eA(#2:4), Then we can prove that in the case
of ¢ < 1 eA(¢,,D) is continuous from H) , to L*(R™) if p > py, where p; is given in
(1.6) and that in the case of 0 = 1 (respectively. ¢ > 1) e®(¢,z,D) is also continuous
from H (respectively. L?) to L? and has the inverse (e*(t,z,D))™. Moreover we can
write Ly = eM(t,z, D)L(er(t,z,D))™! = 8; — vV/=1A + A(t,z, D), where A(t,z,D) is a
pseudo-differential operator of first order, and besides if A satisfies (1.5) and (1.6), we can
prove that A(t,z, D)+ A(t,z,D)* is a negative operator in L*(R"), where A* denotes the
adjoint operator of A in L*(R™).
Then the new unknown function v satisfies

(at —-v-1A - A)’U(t, .'1:) = g(t,x) (= eA(t,w, D)f) )
(1.7)

v(0,z) = vy (= €*(0,2,D)uo) .
The negativity of A + A* in L?(R") evidently shows that the Cauchy problem (1.7) is
L2-well posed in [0, T], and consequently we can see that the Cauchy problem (1.1) is H.°

(respectively. H*® if o = 1 and L? if o > 1)-well-posed in [0, T7.

Acknowledgment. The author wishes to express the deepest appreciation to Professor

K. Kajitani for his valuable help and encouragement.



2. Preliminaries
Let k > 1 be a real number and put
Xor!® /st r 50
Ly(r) =
Ao, r=0.
Lemma. 2.1. With notations as above, there is a constant g > 0 such that for all
p=0,1,--- andq=1,2,---,
. oY
@) > (a,)MIa —a|+p+ 1Tk (lo| +¢) <Tw(lo'| +p+q).
a'<a
Furthermore, we have

(i9) S (&) e tla— o'l +pTa (') <Tu(a] +5).

o' <o

Remark. In Lemma 2.1 we may put Ag such as

-1
=~ 1
SG;UHJ |

For z € R™, z € R™, denoting by ¢(z) = (¢1(2), -+ , dm(z)), we set

8(}5(1‘ .
=1 .-

with X = (Xl, . ,Xn).

Given any function u(y) € C*°(R™), we can interpret

Dfu(9(a)) = X X5+ Xoruly)|



From now on, we shall write X --- X3» = X* We now consider a function u(y) which

satisfies

(2.1) [D5u(y)] < Cunodg™ T (la)

for any @ € N™ and y € K|, and ¢(z) such that

(2.2) |D2¢(z)| < CpaAl®ITi (o), z€K

for || <r and £ > 1.

Lemma 2.2. If u(y) and ¢(z) satisfy the conditions (2.1) and (2.2) respectively, then we

have

|D§D5X7u(y)|

2.3 il _ :
P < Cunat AP S (171 0Can Tl + ol = + DD (1145

i=1

for |a| + |y| <, |y] 2 1.

Proof of Lemma 2.2. We shall prove (2.3) inductively for |y|. It is obviously true for
ly| = 1 (Ja| + |v] € r). Hypothesize that (2.3) is true for || +|y] <7, |vl=1<r, Y[ 2 1,

7



then for |e| = 1, in fact, to be such that e = (1,--- ,0), we have

|Dg DEX 7 teu(y)| = | DX DEu(y)|

0 < 0
=|Dg | 5=+ ) _de;5— | (X"Df

=1 o' <L

< Cup,letHirt 4l Z ("7, ) (Coaho) Tu(lal + 1+ bl =5 +1) T (18] +5)

[vl-1
« oa—ao' ,
+Cusy <al>”C¢AA‘ HIrx (o= of| + )AL ST T (lef| + 1] =5 +1)
a'<a j=1

Aottt (1171 0,40y D81 +149)

< Cun Ala|+w|+1AlﬂIZ ("17)1) Coadoy Tl + b+ 1=+ )T 181+
|‘Y|‘1 _

+ Cuao Al AE ™ (0Cy4) T (ol + Iy +1 =5 + 1) Tw (18] + 5)
j=1

[v|+1
S Cun A0S (;™,) (nCoaY T (il + bl +1 =+ DT 181+

where we used the fact

(07 o=

Corollary 2.3. Under the hypotheses of (2.1), (2.2) and nCya, < 1, there are constants

Cua, and Cya such that for any o which satisfies 0 # |a| <7, z € K,

(2-4) |Dgu(d(2))| < Cuny A'*!CsaA0Tx (|a]).-

8



Proof. By (2.3) (Ja] # 0) and Lemma 2.1, we have

ID2u(g(2))] = [X*u(v)ly=|

||
< Cun S (1 71) (1Coate) T llal =+ 1TL0)

g —1
| || —1 IO!' -1 . '
< CquAIO‘ (nC¢AAo) Z ( i )FR (|a| —])Pn(j -+ 1)
Jj=1

< Cyua, (nCyado) AT, (|a]) .

Remark. Similarly as the proof of Corollary 2.3 we can get

(2.4) ID2uy((2))] < CungAl*InCyaAiTx (o] +1).

We define Fy(z,y) € C*°(R® x R*), (k=1,---,m) as
(2:5) |D2DfFi(e,y)| < Cra Ay T (el +18)

for any a, # € N*, z € R® and y € R™.

And we assume F(z,y) = (Fi(z,y), - , Fm(z,y)) satisfy
(26) 1By (2,9)7] < G

for z € R™, y € R™.

Let Q C R™ be closed domain and f(z) to be a solution of
(27) F (s, f(2)) = 0

for z € Q.



Lemma 2.4. If F = (F1, -+ ,F)(2,y) are functions which satisfy (2.5) and (2.6), and

f(z) is a solution of (2.7). Then there exist constants Cy 4 and A > 0 such that
(2.8) D2 f(2)] < Cy, 44T (Ja])

for any o € N™ and z € Q(C R™).

Proof. For & € R™ we put K.(2) = K, = {z € Q;|z — %| <e}. It is enough to show-

that the following (2.9) to be true instead of (2.8)
(2.9) D2 f(2)] < CraAlTu(la),

for any a and z € K.(&) where Cs4 and A are independent of £. We put ¢(z) =
(z — &, f(z) — f(2)) and w(w) = F(z + &,y + f(£)) for w = (z,y) € R**™.

By (2.7) we have

(2.10) u(p(z)) =0

for z € Q, and the estimate for ¢(z) such that

(2.11) sup [p(2)] < sup {|z — &] + cols — £} < (1 + co)e
K, K,
where
(2.12) co = sup | f(z)| < oo.
€N

Differentiating (2.7), we get

(2.12) Fy(e, f) + Fy(z, f) - fa() =0,

10



thus, |fz(z)| < c1CF 4,407« (1),

D2 f(z)| C1Cra,Ao
(2.13) sup D% < 0
a1 Ta(laDAlel = 7 2

(A is sufficiently large) and

sup | Dz (z — )| < !
laj=1 Tx(le)A ~ T(1)A

provided A to be sufficiently large. We now put

CiCra 1
2.14 = 0 -
(2.14) o4 = max { 2% 1+ oo, i |-

We shall show that

(2.15) 1Dgw(2)| < Cpad!*T(lal)

for any 2 € K, and o € N™.
By (2.11) and (2.13), (2.15) is obviously true for |a| = 0,1. Taking into account that

o(z) = (z — &, f(z) — f(2)), it suffices to show that
(216) ID:f(mM < CeAAlalrn(lal)

for |a] > 2.

Assuming that (2.16) holds for |a| < r, we can get from (2.12) that
(2.17) ug (p(2)) + uy (¢(2)) fo(z) = 0.

Therefore, we have
D2 f(2)] < Cpadl®ITe(|a])

11



for |a| =r + 1 and z € K¢(&), where C.4 and A are not depend on .

We avail oneself for (2.4)', we have
Dy (¢(2))] + | Dz ($(2))] < Cra,CoaAS A T(la] +1)

for |a| < r, thus

1Dz f=(2))]
~Fy(z, f)™ {D;’uz (B(z) = > (;’) D>~ u, () D fx(ac)}l
a'<a

<Cy {CFAoccpAAgAlalI‘rc(la| +1)

3 ( )CFAo CpadA1*=ID(Jor — of| + 1)y aAI¥ I (Jof| +1)}
I<a

C.Cra. A2
< Cyun {%‘l + CICFAOAg(Z,,A} Al 1T (la| + 1)

< Cpa AT (o) + 1),
if C1Cra, A2 <1/2 and C1Cpa,A2C,4 < 1/2.

We set

1
F((w,y;ﬁ,n);5)=3+\/:'1‘/o Vel (z + 6y, E)df — (£ +v—1n)

where E(z,y, £,7) is a solution of the following equation

(2.18) F(z,y,6,m;5(z,y,€,m)) =0.

Next, we shall prove that

|DZDgDy Dy {&(z,y,€1) — £ = V=1n}|
(2.19)
< CopAltB+ERl g 4 B4 6 4 )\l!n(g)ifﬁ—’a—k)\l.

12



We define as

F(@,9:6m) =2 (2,9,06)5 /"6, 6)7"/n) = (O (¢ +v=Tn)
where f(z,y,§,n) satisfy
Far &)+ VT [ Vo (24631 + O7/"(6+ V) o =0
for z,y,&, n € R™, |n| < M(ﬁ)}l/", and
(220)  F(z,y,&m) =+ \/—_1/01 VoA (24 0y, 6+ (O)7/"(6 + V=Tn)) db.
We derive by changing variables (z,y,€,n) and { to ¢ and y respectively that F(z,y)
implies
[DEDJF(2,9)| < Craods™P'Tu(la] +16)
for z € R*" and y € R™. Putting @ = {z € R*";z = (2!,2?,2°%,2%), [|¢*| < M}, it is
obtained that f(y) to be a solution of F'(z, f(y)) = 0 for 2 € Q. By virtue of (2.20), we

have

|Fy(xay)| 21— Ch—l-H/n 2 1/27
provided h to be sufficiently large. Then F(z,y) implies (2.6), therefore by Lemma 2.4 we

have

|D2f(z)| < CpaAlIT ()
for any z € © and o € N™, that is, using the variable (z,y, £,n) which was changed to z,
|Dg Dy DD} f(,y,€,m)| < Cradl*HPHRIFEIT, (ja] +16] + A + 18])

for (z,y,£,m) € Q. This implies (2.19).

Similarly as Corollary 2.3 we can get the following;

13



Lemma 2.5. (Lemma 5.3 of [6]) Let K; C R™ and Ky C R™ be closed sets, F(z,y) in

CH(K, x K) satisfying
|D2 D} F(a,y)| < CraB**Pl(jal + |8])!",
forz € Ky, y € K3 and |a] + || < k, and ¢(z) a mapping of K, to K, satisfying
D% ()| < Cpadl®llalt,
for z € Ky, and |a| < k. Then the composition F(z,p(z)) satisfles
g {F) (@, 0@)}| < CraBPH(M 4) (o] + 18]+ 8))1%,
for z € Ky and |al|+ |8] + 16| < k, where F§)(z,y) = D{D{ F(z,y) and

M = max {2"(1 +2BC,4),2B}.

14



3. Symbol of Gevrey class
In this section we shall construct a function A(t,z,{) which satisfies (1.5) and (1.6)
following the idea in [1,2].

Let g(z, &) be a function in C°(R™ x R™\0) and consider the following equation

(3.1) 3 650,78 = [ela(a, )

for z € R™ and ¢ € R™\0. Then we can find easily a solution of (3.1) has a following form

(3.2) A(z,€) = Ao(E) + / ™ o -, 8)dr,

where w =£/|¢|, z-w = E;=1 zjwj and Ag(€) is an arbitrary function of £.
Let x > 1 and x(t) be a function in C§°(R) such that x(¢) = 1 for |t| < 1/2, x(¢) =0

for |t| > 1, tx'(t) <0 and 0 < x(t) < 1, and moreover x(t) satisfies
(33) 0" x(t)] < AT Iml*

fort ¢ Rand m=0,1,2,---. For € > 0 we define

x1(z,€) = x (g%)

2z - w

(3.4)
a8 =x(Z2) @=ee,

then similarly in the proof of Corollary 2.3 we have

ID&(z)™| < Codo!™|a]t(z)m 1,
(3.5)
IDZ|E|™] < CoAo!®l|aftjé|m 1o

for z, £ € R™ with |¢] > 1 and «a, # € N*, where m € R™.

15



We have by virtue of (3.3), (3.5) and Lemma 2.5
(3.6) Ixk$5) (2, 6)] < C1 41 Plja 4 B|1% ()~ 141 j¢] 1!
for z, ¢ € R with |¢] > 1, o, € N*, 0 < e < 1, and k = 1,2, where x;'% =

(8)
(8/9¢€)° (—-V——l@/@m)ﬁ xk, and C; and A; are independent of €.

For M > 1 we put

( M(z)™"x1(z,€) (0 <1)
gl”(‘x’{) = {
(3.7) &M(m> x(z(a:> /|gl)a/2(a > 1),

M ((z-w)*+1) xi(z, &) (o <1),

920'(517,6) =

~0/2
(M (=) +1)7 x((2)/1E) (o 21),
where w = £/|£|. Taking account of (3.5) we can see from (3.6) and Lemma 2.5
CoM Ay lja + |1 (o)~ 1Aljg | 71 (k=1)
(38)  lgkoipy(®:€)] < ety
CoM A Plla+ B (- w)? +1) 7 (k=2)
for z,£ € R™ with |(| > 1, @, € N® and 0 < & < 1, where C; and A; are independent of

€ and M. Define for k = 1,2

(3.9) Ako(z,€) = /Ox'w Iro(z — Tw, £)dT,

which satisfies (2.1) with ¢ = gz,. Since (1 + (- w)2)1/2 < (z) implies

(310) 910(-’57 6) - 920('773 6) < 07
(311) (2+0) (1o (2, €) = Dao(2,£)) < 0.

16



We define

(3.12) Ao(2,€) = —d1o(z, €)§<z(w, §) = A2 (2,£) (1 — x2(2,€)).

Recalling that Ak, is a solution of (3.1) with g = g, and noting that (z-w)x' (2z - w/(z))<

0 we obtain from (3.11)

ijazj Ao(2,€) = —[€lg10(z, E)xa(2, §) — €lg20 (2, €) (1 — x2(2, )

(3.13) — (M1o(2,€) = Ao (2, 6)) X' <2:€g;)w> '2(1257' <1 - %TTV)

< —[€lg1o (2, £).
Moreover noting that (z — rw) > (z)/2 on suppy; for |7| < |z - w| and |z - w| > (z)/2

on supp(l — x2) are valid, we obtain by virtue of (3.6) and (3.8)
p 4 03M€1—0A3|a||a|!nl§|1—a—-|a| (0_ < 1)

A (@, €)] < CoaMlog(2+ [EDIEITI (0 =1)

(3:14) ‘ Mg (o> 1)

( CsMALT o+ Blklg 71 (0 < 1)

o3, < 4

\ [ CapM |71l (0 21)
forz € R™, £ € R™® with [£| > 1, a,8 € N* (|| #0) and 0 < ¢ < 1, where ('3 and A3 are

independent of €.

Now we define

([ p(OEN S + Ao(,6) (1 — x(B7HED) (o< 1)

(3.15) As(t,2,8) = p(t)log(l + (€)n) + A1e(2,8) (1 — x(BTYED) (a=1)

[ Xo(2,6) (1= x(ATYED) (o> 1),
where p(t) is a real valued function in C*([0,T]) with p'(¢) < 0 in [0,T] and (¢)n =

(r% + |§|2)1/2 ( h a large parameter).

17



Lemma 3.2. Assume that (1.3) or (1.4) is valid. Let p > 0 and N > 0. Then there are a
real valued function p(t) in C*([0,T]) with p'(t) < 0 in [0,T] and positive constants ¢ and

M such that A,(t,z,€) defined in (3.15) satisfies the following properties

(at + z 6]’&%’;) As(t,z,8) + Z Saj(t’m)gj
j=1

=1

( _ 1/k p
(5.16) C(h) = Nlp@®E)" (0 < 1)
< C(h) = N (|p(t)] + 1) log(1 + (€)4) (0 =1)
L C(h)  (0>1)
and
( (palljalix(e)}/* ™ (0 < 1)
A, (t,2,6)] < { CaMlog(L+ (E)n)(E)7 (0 =1)
(317) ‘ | CaM(€)7* (0> 1)

cmAaletla + g1 (0 <1)
Aot 2,6) <
\ CaﬂM<€>}—z—la| (U > 1)

forz, £ € R*, a,8 € N* (|| #0) and h > 1, where A, C and C,p are independent of h.

Proof. If 0 < o < 1, (1.4) implies that for any § > 0 there is Bs > 0 such that

gyswawns@;

for (z) > Rs. Hence we have from the above estimate and from (1.3)

(C(z)™7lél () < Rs, 0 < 1)

(3.18) 1Y Sa;(t,2)é51 < § 8() 71l ({2) 2 R, 0 < 1)

=1

| C(2)77IEl (o= 1).
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On the other hand from (3.13) and from the definition of A4 (¢, z,€) it follows that

(813 + Zg;ax_,) Ag(t,CC,f)
7=1

(1 1/ . _ _1 .
(3.19) PN = [Elg1o(2,€) (1= X(HHED) (o < 1)

<< P () log(1 + (€)n) — |€lg1o(z, €) (1 — X(h"l|§|)) (0 =1)

| — Elgro(z, ) A= x(R7NED) (0> 1).

Recalling the definition (3.7) of g1, we obtain from (3.18)

[ ME[(z)""x ((z}/elé]) (o < 1)
l§|g1a($,€) (1 - X(h—1|€l)) = 3
| MIE[(z) " x () /K]  (e21)

1> Sa;(t, 2)¢5| — 67T (0 < 1)
=1

]:

(3.20)

v

1> Sajg| —-2M  (021)

. J=1

for M > C (C is a constant of (3.18)), |¢| > h and €|¢| > eh > Rs (¢ < 1). Therefore in
the case of o > 1 (3.19) and (3.20) implies (3.16) directly. Besides, (3.19) yields (3.16) in

the case of o < 1, if p(t) satisfies
P(t)+ Np(t)+ 6677 =0 (0 <1)

P+ N(pt)+1)+2M =0 (c=1)
for t € [0, 7], which is solved as follows

e—Nt

e Ntp(0) — —1—:——]\—[———55—” (e <1)

e—Nt

- 1 -
€ th(O) - —-—AT——

Next we shall prove that A,(t, z, ) satisfies (3.17). By (3.3) and (3.5) there exist positive

(3.21) olt) =
(2M +N) (oc=1).
constants C7, Ay such that

(3.22) 188 x(h 1D < Cral[afte ()1
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for £ € R™, |¢] > 1 and a € N™. Then using Leibniz’ rule and the inequality |{| < (€)r <

3|€] on supp(1 — x(h~1|¢])) we obtain from (3.14) and (3.22)

((p(t) + CMe7) A=)}/ (0 < 1)

1A (D (t,2,6)] < { CoaMlog(l+ (E)a)E): (0=1)

328 LCaM(e)7 (o> 1)

(CMAlH|a 4+ aIRE) 1 (0 <1)

Ao i3 (t,2,6)] <

CasM(£);* (021)
for z,£ € R™, o, 8 € N" and h > 1, where C, A and Cyp are independent of h. In the case
of o > 1 (3.23) implies (3.17) immediately. In the case of o < 1 we have to choose p(t),

M, ¢ and §é such that
(3.24) (p(t) + CMe'~7) < p

for t € [0,T]. We can find p(t) satisfying (3.21) and (3.24) if we take M, ¢ and § suitably.

O
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4. Pseudo-differential operators in Gevrey classes

Let k > 1 and A(z,£) be a real valued function defined in R?" satisfying
(4.1) A (2,8)] < M) AP+l + = (e)y/ <1

for z,{ € R™ o, € N® and h > 1, where A(A) > 0 and 4A¢ > 0 are independent of the

parameter h. Following the Part I in [6] we introduce pseudo-differential operators
eM(z, D)u(z) = /ex/ZTI~G+A($,E)ﬁ(§)j§
and the reversed operator ®e?(z, D) of e*(z, D) as follows,

ReA(w’D)u($)=/ {/e\/:'—l—(x"'y)'f"’A(y'f)u(y)dy]J{,

foru € H? ,, where z - & = z1§; + -+ - + 2,&, and Cif = (2m)7"d¢ .

K,p?
Lemma 4.1. (Proposition 6.7 of [6]) Let A(z,&) be a symbol satisfying (4.1). Then there
is § > 0 such that e*(z, D) maps continuously L2 ,toL2 _, for|p—r| < §AY/* and
7> A(A) and {eA(:v,D)}R from L% , to L% ,__ for |p| < 6A7Y* and 7 > A(A).

K,p—

Then it follows from Lemma 4.1 that e*(z, D) and Re*(z,D) map continuously H R
into HY ,_, for |p— 7| < §A™*/* and 7 > A(A) and H , into HY ,_, for |p| < §A™1/* and
T > A(A) respectively, where § is a positive constant and p; is that of (1.6).

We put

o(z,8) =€ — \/——-TA(IC,f)

and define

I, (z,D)u(z) = /e‘/__l“"(”’f)ﬁ(ﬁ)cif,
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F (IF(z, DYu) (€) = / VT () dy.

Let Z(z,y,¢) and Y (z,£,n) to be solutions of the equation
1
= - \/—1/ V:A(z +6(z —y),2)df =€,
0

1
Y -1 / VeA(Y, €+ 0n)d6 = z,
0

respectively, and

p—

o) = det { (a0}

j(z,ﬁ,n) = det {_a—x_(za 6777)} :
Lemma 4.2. (Corollary 6.13 in [6]) Let A(z,£) be a symbol satisfying (4.1) and ¢ =
€ —iA(z,€). Then
‘P(w D) ‘,o(x D) J(CE,D)-}-T‘(JL‘,D),
IR (z,D)I,(z,D) = J(z, D)+ #(=z, D),

where

1 (e ZaTs]
Ha,&)= Y SDSEI(@ e +u.E+0)| _ _ +In(z6),
|a|]<N

7 1 ana 7 2
J(mﬁﬁ) = Z Z!'Dyan']_(m—i"zafan)’z:n:o+JN(x7€)a
|a|<N

and for C > 0 and § > 0, Jn, Jn and r, 7 satisfy
7w @0, (|5, 6)) < Ona(Ca=+olla+ li=(g); 1=V,
for any non-negative integer N,

78, O (#6522 8)) < Cva(CAPlgl exp {~547/7(0)} ")
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respectively.

By virtue of Lemma 4.2 we have

e*(z,D) o Be A (z, D) = I +r(z,D)
42 {
Re=A(z,D)oer(z, D) = I +ry(x, D)

where i (k = 1,2) satisfy
4502 €)1 < Cag(@)}/ 771 < Caght/= ()71

for z,{ € R™, a,8 € N*, h > 1 and Cyp is independent of h. In (4.2) A o B means
the operator product of A and B. Therefore Neumann series assures the existence of the
inverse of I + ri(z,D) if h is taken sufficiently large. Hence we have also the inverse of

e*(z, D) from (4.2). Let p(z,¢) be a symbol satisfying

(4.3) {3 (2, )] < CAle*Pl|a 4 g1 (e) 1

for z,£ € R*, o, € N* and h > 1.
Lemma 4.3. (Theorem 6.14 in [6]) Let A(z,§) and p(z,§) be symbols satisfying (4.1) and
(4.3) respectively, and ¢ = zf —/—1A(z,£). Then we have

I,(z,D)p(z, D) = p(p; z, D)1 (z, D) + r(y; z, D),

where p(; ¢, D) maps continuously H*}* to H} , if |p| < §A7/* and s € R, and r(y; z, D)
maps Li,p to L? o6 A=1/%—A(A) if |p| < 8A™/* and p+6A~1/* < M(A). Moreover p(p;z, D)

satisfies for any integer N > 0
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pn(2,8) =p (z — V=TA¢(2, E), £ + V=1A,(=, E))
+ Y Pl (2 — V=TA(2,E), € + V=TAL(2,B)) wl(;5 2, 8),
0<|a+B|<N

where Rn(z, D) maps continuously H,'J",',"s to H:;,N(l*l/n)—l for |p| < 6A7Y/*%, and

wB(p;z,€) is a solution of the equation
E+4+ V-1V A(z,2) = ¢

Then it follows from Lemma 4.3 that there are § > 0 and hg > 0 such that if A(A) <

§A—1/k
(4.4) e*(z,D) o p(z, D) o (e*(z, D))_1 =p(x, D)+ ¢(z,D) + r(z, D)

where ¢(z,¢) and r(z, {) respectively satisfy

(45) =)= > p3)6) (8/A,0) (V=10.)"A(,9))
|e+8|=1
(4.6) g (2, €)| < Cagle)y 2071/ 97

for z,{ € R*, o, € N™ and h > hy. For A(z,£¢) and p(z,§) satisfying (4.1) and (4.3)

respectively we define a pseudo-differential operator (e*p)(z, D) as follows
(47) (¢*p)(z, D)u(z) = / eV T A= (g, £)a(¢)de
for u € Hg, o

Lemma 4.4. (Theorem 6.10 in [6]) p(z,{) and A(z,€) be symbols satisfying (4.3) and
(4.1) respectively and ¢ = z€ — /—1A(z,{). Then there are C > 0, § > 0 and hy > 0

independent of A such that the product of p,(z,D) and I_I_zw(x, D) is given as follows:

ptp(m: D)I§¢($a D) = ﬁ(x) -D) + f(an)a
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where

) 1 e _ )
Bz, &)= ) — Dy (@, e +y, £ + m)p(,E(z, @ +y,{ +n)} N +pn(z, ),
la|l<N T

|15NEZ;($7 &) < C’NA(CA)W|ﬁ|1~(§)?}:‘—-1—lal—N(1—1/.¢),

for any non-negative integer N,
7)(2, )| < Caa(CANW exp {—647/(e)}/"},

forz, (£ € R", o, B € N*, h > ho and E(z,y,§) is a solution of the following equation

1

= - \/—“1/ s (z+6(z —y),E)do = €,
0
and J(z,y,{) = det {02/0¢(z,y,£)}.
Then quoting Lemma 4.4, if A\(A) < §A™/* we have

(4.8) (e*p) (z,D) o (e*(, D))—1 = p(z, D) + ¢(z, D) + 7(X, D),

where ¢(z,£) and 7(z, £) satisfy (4.5) and (4.6) respectively.
We try to apply the above results to A,(,z,£) defined by (3.15) in the case of o < 1.

First of all we note that the estimates (3.17) yields

(4.9) |A¢,Egg(t,m,f)| < (p + CMh-—l/n) A|a+/3||a + ﬂl!n@)i/n—lal

for z,£ € R*, t € [0,T], a,8 € N* and A > 1. In Lemma 2.1 we choose p > 0 and k> 0
such that

(4.10) (o) = (p+ CMETI") < 647
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for t € [0,T). If aj(t,z) (j = 1,--+,n) belong to C°([0,T); Bsy,a,), S0 < &, & > 1 and
AAg) < 5A;1/'° are valid, by virtue of (4.4) and (4.5) with p(z,€) = Z?=1 a;(t,z);, we

have

ere(t,z,D) o (——\/—_li a;(t, x)@xj) o (eA" (t,z, D)) -
(4.11) =1

= —/-1 Z a;(t,z)0s; + q(t,z, D)+ r(t,z, D)
i=1

where ¢ and r respectively satisfy

(4.12) 4(t,2,6) =V=1Y_aj(t,2)Ass; —V=1 Y aj, (t,2); Moy,

J=1 3i=1

13 r{5) (62, )1 < Cap(@} 707071

for z,£ € R™, ¢ € [0,T], @, B € N" and h > ho.
Next we shall calculate e (¢,z, D) o (8, —v/=1A) o (e*(¢,z, D)) '. We have
(8 —V=1A)u
= (8, — vV=IA) o {eA"(t,w,D) o (e (t,2,D)) " u}
= {(e**A}) (t,2,D) + et (t,z,D) 0 8, } o (e (t,2,D)) " u
Y Zn: { (eA“Aaij) (t,2,D) +2 (X A,,,) (t,2,D) 0 8y, + e (t,2,D) 0 2, }
j=1

o (e*(t,z, D))_—1 u
where we write A, = A, /0t and Ay,; = OA,/0z;. Hence we obtain

ebo(t,z, D) o (8 —v/—=1A) o (er*(t,2,D)) " u

= (8 = V=IA) u — (e**AL) (t,z,D) o (e**(¢,2,D)) " u
; ﬁz {(*A02,) (t,2,D) + (e**Ars,) (t,2,D) 0 0y, }
o (eAc(Jt,x,D))”l u.
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Noting that from (3.15) and (3.17) it follows that ;A (t,z,&) = p'(1)(¢ )1/'c and
0z; Ao (t,2,€) = Aos; (2,8) (1 — x(R71|£])) is a symbol of order zero, we obtain using (4.4)

and (4.8)

ere(t,z,D)o (6, — \/———1A) o (eA" (t,av,D))'—1 u

(4.14) n
= (0y — V—-1A) u —p(t)(D)l/"u-i-\/—_l-ZAaz,- (z, D) 0 Og;u + co(t,z,D)u
=1

where ¢, (%, z, £) satisfies

(4.15) o {3 (t,, )] < Cap(e)y/ ="M

for z,£ € R", a,3 € N® and h > hy. Thus summing up, if 0 < 0 < 1 and 50 < kK <

(1—0)7!, we can transform L by e*< (t,z, D) to the following form

e (t,z, D)o Lo (et (t,z, D)).—1

4.16 n
(4.16) =L—p(t)(DW"  + V=13 Auy,(t,2,D) 00, — g(t,3,D) —é(t,2,D)
J=1

where ¢(t,z,£) is given by (4.12) and &, satisfies (4.15). In the case of o > 1 applying
the asymptotic expansion of products of pseudo-differential operators of (1,0)-type, we can

obtain the formulas (4.4) and (4.8) replacing (4.6) by the following estimates

Cap {(log(1 + () (O (7 (0=1)

(4.17) rSt,2,8)| <

Capl)p 271 (o >1)
for z,£ € R, o, 8 € N® and h > hy. Therefore in this case r(,z,£) in the formula (4.11)
satisfies (4.17) with m = 1 instead of (4.13). Thus we can see that the formula (4.16) in

the case of ¢ > 1 also holds, replacing (4.15) by (4.17) with m = 1.
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5. Proof of Theorems

In this section we shall prove Theorem 1.1 and 1.2. Let A, (%, z,£) be a symbol defined
by (3.15). Put v(t,z) = e?e(t,z,D)u(t,z) and L, = et (¢t,z,D)o0 Lo (eA“(t,:c,D))_l.
Then if u is a solution of (1.1) and satisfies that e (¢,z, D)u € C([0,T]; H*), v(t,z)

belongs to C*([0,T]; H*®) and satisfies

Lyv(t,z) = g(t,z), (t,z)€(0,T)xR"
(5.1) {

v(0,2) = vo(2), z € R",

where g = eAv(¢,z, D) f(t,z) and vy = e*7(0,z, D)uy. Conversely if v(t,z) € C*([0, T);

H) satisfies (5.1), then u(t,z) = (e*< (¢, z, D)) - v(t,z) is a solution of (1.1) and satisfies
that et (¢,z, D)u(t,z) belongs to C1([0, T]; H*). Therefore it suffice to show that for any
vo € H' and for any ¢(t,z) € C°([0,T); H") there is a solution v(¢, z) of (5.1) which belongs

to C°([0, T); HY) N C*([0, T); H?), where [ is a real number.

Proposition 5.1. Assume that the conditions of Theorem 1.1 or of Theorem 1.2 are valid.
Let I be a real number and v(t, z) be in C*([0,T]; H>). If we take suitably p(t), M, € and

h in the definition of A, there is a positive constant C = C(l,T) such that

(5.2) o)z < eSHv(0) s + / eS| Lyo(r)| g

for t € [0,T).

Proof. Denote |[v||; = ||v|]|z and (v,v); = (v,v) g for short. Differentiating |lv(t)||?
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with respect to ¢t we have from the formula (4.16) for L,

(5.3)
ol ()l = R (0'2), o),

=% (v—lAv + Zajaxjv + g,v)
7=1

l

+ R ((p'(t)(p)}z/“ - \/Tli Aoy, (2,D)00,:; +q(t,z,D) + E,(t,m,D)) v,v) :
!

Jj=1
Moreover noting that the expression (4.12) and the estimate (3.17) yield
(C (pleh/"+on=e)/") (o< 1)

la(t, @, )| < § C {log(1 + () + (@)} (0 =1)

( C (o > 1).
we have by virtue of (3.16) and (4.15) (¢ < 1) (or (4.17) (¢ > 1))
PN + D Eihor (2, 6) + 3 Saj&j + R (gt 2,8) + & (t,2,8) < C
j=1 J=1
if we choose p, N and % in Lemma 3.2 suitably. Hence we obtain from (5.3) and Theorem

4.4 in Chapter.3 of [7]

2@l < Clo@ll +lg@l

which implies (5.2) directly. O

We can obtain the following proposition similarly as Theorem 4.1 of [1].

Proposition 5.2. Assume that the conditions of Theorem 1.1 or of Theorem 1.2 are valid.
Let [ be a real number and take suitably p(t), M, € and h in the definition of A,, then for
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any vo € H' and for any g(t,z) € C°(|0, T); H") there is an unique solution v(%, x) of (5.1)

which belongs to C°([0,T]; H') n C1([0, T]; H*?).

Following the idea of Kumano-go [7], we shall prove the above theorem. We need several

lemmas. First, we define {(,(£)}52, as

(5.4) (&) = (VSIH%,"' ,vsin %)
and P,(t) =p,(t,z,D,) as
(55) pu(t9$7£) =pl/(t)$,cl/(€))‘

We now consider the following Cauchy problem

L,v, = 0w, —vV—1P,(t)v, = ¢(t), te€ (0,T),
59) {

Uu|t=o = .

We define the series of weight function {A,(£)}52, as

(5.7 M) = (Go(£)) = {1+2(vsm~—)2},

then we have

(1) 1< X, (¢) < min ((5), m) ,

i) 10§ 0 ()] < Aarnu(€)' 1%,
(5.8) q
1#8) Au(€) = (€) (v — o0) on R,

\ (uniform convergence in a compact set).
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In fact ¢, (¢) satisfies
(4) [¢(&)] < min (J¢],v/nv),
i6) 98¢ (&) < AAnu(&)'1%1,

(5.9) q
22) Cu(€) — &,

L (uniform convergence in a compact set).

Denote by ST the set of symbols p(z,£) € C>°(R2") satisfying

Ip{5) (2, )] < Caphu(§)™71
for any multi-index «, S. Then we get the following lemma.

Lemma 5.1. For p(z,£) € S™ put p,(z,€) = p(z,((£)). Then p,(z,£) € ST, and «,
there is constant A, g which is independent of v and p, we have

(33 (@ 1 < (AaalpliZ5) M(O™ )
(5.10)

pu(2,§) = p(e,€)  (uniformly) (v — oo) at Ry x K.

where K¢ is an arbitrary compact set of Ry.

Denoting Hx, s = {u € 8';2,(£)%a € L?}, we have the following;

Lemma 5.2. P = p(z,D,) € ST is continuous mapping from the Sobolev spaces Hj, s+m

to Hy, s and for constants C, ,,, and | = I(s,m) we have

(5.11) 1Pvlla, o < (Comlpli™ ) o1l oot
Especially for m = 0 and s = 0 we have

(5.12) IPollze < (Clpl?) llvllze, © € ZAR™).
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Lemma 5.3. For any vo € H' and any g(t) € C? ([0,T); H') there exists a solution

v, (t) € CF ([0, T); HY) of (5.6) which satisfies the energy inequalities

t

(5.13) lou (Bl < e Jlvolls + / e=g()dr ¢ € [0, T
0

. . t .

(514) v (D)l < ™| AZvols + / A g(r)idr € [0,T]; 5 =1,2, -

0
d . : 4 .
(5.15) Ha;/\ivu(t)lll_<.CT{HAf/“voIll+I[f)lai2]<|lAi+29(T)llldT} te[0,T); j=1,2, -

Ll { 14+l + max ||A£+Zg<r)uzdf}

t7t' € [OaTL ] =1’27"'

where v, v1, Cr, C7 are constants which are independent of v, and A, = \,(D,).

Proof of Lemma 5.3. I) If we fix v arbitrarily, we have p,(t,z,£) € C¥ ([O, TY; Bw(Ri:‘E))
(k= 0,1). Then P,(t) is an H'-bounded operator uniformly with respect to t. Therefore

v,(t) to be a unique solution of the integral equation
t t
(5.17) v,(t) = vy + \/—1/ P,(T)uy(7)dr + / g(7)dr,
0 0
which can be solved as follows;
t oo k t k! Tk—1
v,(t) = vo +/ g(rydr +> V-1 / / / Py(r1) - Py(Ti)vodTi -+ - 11
0 =1 0o Jo 0
st E t p71 Th-1
S VAT / / / Py(r1) -+ Po(ri)g(ri)drme--- 11 1o =1t.
t—2g o Jo 0

Then we have v,(t) € C} ([0,T]; H').
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IT) From (5.6) we have

=2 (VTG D)o + Y aéuso + g,v)
=1

l

+2R( (P OGN = VLY Aoy (2, G(D)) © Gy + (8,2, 6o (D))

+2,(t,, G (D)) v,0) p
On the other hand, we have

(5.18)

n n

PG ™ + D Cuoihoa; (2, Gu(E) + Y S0y + R (4t 2, () + 8 (12, G(§)) < C
j=1 Jj=1

if we choose p, N and h in Lemma 3.2 suitably. Thus by Lemma 5.2 and the Sharp

Garding inequality (for instant Theorem 4.4 of Chapter 3 in [7]), for a constant v > 0

which independent of v, ¢ we have
d
@I < 29llee D7 + 2lgDllellon Dl ¢ € [0, Ty =1,2,--
and
d
= [ @l < Yo (Dl + llg@lllow ()11

Therefore we get (5.13). Moreover from (5.6) we have

%A{;v,, =+v—1(P, +[A},PJA;7) Adv, + Alg

and P, ; = P, + [A}, P,JA; 7. Here, [AJ, P,JA;7 € CP([0,T1; S35 ) and P, ; satisfies (5.18).
Hence we get (4.14) similarly to (5.13). On the other hand, noting

9 Mvw = VI (AL RAZI?) A0, + Adg
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where o (AJP,A;77%) € CP([0, T 5% ) (uniformly on v), we have

d . . .
I A v (Dl < CrllAT oy [l + (| A gl
Then from this and (5.14), we get (5.15). Put v,(t) — v, (t') = tt 4y, (r)dr. Then we get

(5.16) from (5.15). This completes the proof of Lemma 5.3. O

Proof of Proposition 5.2. 1) First we assume that vy € H'4, ¢(t) € C2([0, T]; H'H*).
Then it follows from Lemma 5.3 that there is a solution v, (t) of (5.6).Then, from (5.9) we
have

1AZvolle < [[A7wolls, 1AL gll < lIA7g]l:

for j <4, where A = (D,). Therefore by (5.13), (5.14), (5.16) we have

(5:20) A0, (Oll < s { IAdoulle+ axliadol |
620 I~ w@)lh < ot = ¢1 {15l + 1451}
for j < 4.

Therefore if we fix £y € [0,7] arbitrarily, then from (5.20) with j = 0, {v,(t0)}52,
is a bounded sequence in H'!. Hence there exists v(tp) € H ! and a sequence such that

{vy, }2_, of H' we have
v, = v(to) (weakly) in H' (m — o0).

Let {t;}%2, be a dense set in [0, T]. Then by the diagonal method there exists v(t;) € H'

and we have

(5.22) vy, (tr) = v(tx) (weakly) in H' (m — o).
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Then from (5.21) with j = 0, for any ¢,t' € {¢;}$2, we have
(5.23) o) — w(E)s < Calt - ¥ {nA%onz + e nA?guz} |

For any to € [0,T] we choose subsequence {1y, }52, of {t;}$2, such that ¢, — t5. Then
by (5.23), {tx, }32; becomes a Cauchy sequence in H!(R™). Thus there exists v(to) € H'

and we have v(tr,) — v(to) in H' (s — 00). Moreover for all v(t) we obtain (4.23) and
Uy, (1) = v(t) (weakly) in H' (m — co).

Thus for ¢ € S we have

(5.24) (A, 00m (), 0); = (V0 (1), A%, 0), = (v(2), AFp), (m — o0).

Therefore noting | (AX v, (1), go)l| < ||AE v, (O|illelli, we get from (5.20) and (5.24)

(5.25) | (v(t), A*@), | < C1 {IIARwollr + [[A*g)li} o]l (¢ € S)

for £ < 4. We define vg(t,z) € H' for any ¢t € [0,T] and R > 0 such that og (¢, £) =
(6)F5(t,€), and Gr x = 0 (]€] > R) and take the sequence {pj}52, of S as supp ¢ C {[¢| <
R}, ¢; — Opk(t,€) in H' (j — o). Then we have

(u(®), A*g;), = / a(t, €)(€)**3;()de — [€I<R(£>2(1+k)la(t’ &) de

(4 — o0)

Therefore from (5.25) we get

Joms(@)le < Cs {[A%olle+ e A%l } (b < 9
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Hence taking R — oo, we have A¥v € H! and
(5.26) A%l < O { IAtuoll+ e A0l | (k<)
From (5.21) we have similarly to (5.26)
521) A (o) — o) I < Ot — #1 { A unll e Al | (6 <2)
Thus we obtain u(t), Au(t) and A?u(t) are contained in CJ ([0, T]; H').
We take ¢(t, 2) = 1 (t)p2(z) € C§((0,T) x R™) arbitrarily. Noting

Lk o — L* in CY([0,T]; HY),
we have

// Ly - gdxdt = // v - L*pdzdt
Qrp Qr

= lim // Vy, - L} odzdt = lim / Lv, , - pdzdt
Qp Qr

= // g - pdzdt.
Qr
Thus Lv = ¢ (¢t € [0,T]). Therefore u is a solution of (5.2). Also noting v(t), Av(¢)
and A2v(t) are contained in C?9([0,T); H') and 8yv = —=1P(t)v + g, we get v(t) €
Ci([0,T]; HY) n C([0, T); HM?).

II) If v(t) € CH([0, T); H) N CY([0, T); HH2) is a solution of (5.2), we obtain the energy
inequality (5.3) similarly to the proof of Lemma 5.3. Assume vo € H'*? and g¢(t) €
C7([0,T); H™?). Put vo,e = xe(Ds)vo and ge(t) = xe(Dz)g(t), where x(§) € S¢ satisfies
x(0) =1 and x.(¢) = x(e€). Then vy . € H'*4, g.(t) € C{([0,T); H**?). Therefore from

I), we get the solution v.(t) of (5.2) for vg,. and g.. Then by (5.3) we have

[ve() = ver (#)lliye < €™ { lvo,e = vo,erllega + T max lge(r) — ga(f)llm} :
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On the other hand when €, ¢’ — 0 we have

”UO,E - vO,E’”1+2 = ”(Xe(-Dz) - Xa'(Dz))'UO”l+2 — 0,

max 19e(m) — ger (T) |42 = max I(xe(Dz) = xe'(D2))g(T)ll142 — 0.

Therefore, noting 9ive = v/—1Pve + g., We can see {ve Jo<e<1 becomes a Cauchy sequence
in C}([0,T}; H') N CY([0, T]; H?) and the limit of this series v(t) is a solution of (5.2).

This completes the Proposition 5.2. O

Proof of Theorem 1.1 and Theorem 1.2. By Propositions 5.1 and 5.2 we see that there
exists an unique solution v(¢,z) € C?([0,T]; H') N C} ([0, T); H*+?) of the Cauchy problem

(5.1) with initial data vo(z) and we get the energy inequality

Iott )l < €@) (ol + [ 1 o,

for t € [0,T]. Hence, we obtain the unique solution u(t,z) = (eA)_l v(t,z) of the equation

(1.1) with initial data by using the Sharp Garding inequality and the energy inequality

lu(t, )l < C(T) (||u0]], +/O |7 (, -)I]ldr>

fort€[0,T],(0<o<lorl<o)and

lu(t, )l < C(T) (||u0|,,,+/0 ”f(T,.)”,,dT)

for £ € [0,T] and I' € R (o0 = 1). Thus we complete the proof of our Theorems. O
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