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1. Introduction

A Lie transformation group on a smooth manifold M is

a pair (G,M) of a Lie group G which acts smoothly on M. This

paper is concerned with the cohomogeneity (abbrev. coh ) of (G,M),

which is defined by
coh(G,M) = dimM~dimG+min{dime; x in M},

where GX is the isotropy subgroup of G at x. Then
coh(G,M) > dimM-dimG (=: doh(G,M) ),

{x in M; coh(G,M) = doh(G,M)+dimGX} is an open subset of M, and
coh(G°,M)= coh(G,M)

where G° is the identity connected component of G.



An orthogonal transformation group (abbrev. o.t.g.) on

an N dimensional Euclidean space EN is defined as a pair (G,EN

)

of a connected Lie subgroup G of the full orthogonal group O (N)

N . o . .
on E. (G,EN) is said to be contained in another o.t.g.(G',EN

on EN if there is a real linear isometry 1:EN—~>EN and a Lie

)

group monomorshism T1:G—>G' such that
T(g)1= 1g for all g in G.
If moreover T is a Lie group isomorphism, (G,EN) is said to be

equivalent to (G',EN).

Let p be a linear representation on RN over the field R
of all real numbers of a Lie group G. We say (G,p,RN) an

orthogonal linear triple and p an orthogonal representation of

G if there is a positive definite inner product on RN which is
invariant under the action of p(G). Suppose p' is another
orthogonal representation of G. We call (G,p',RN) and (G,p,RN)

are equivalent as real representation if p' and p are equivalent

as real representations of G.

‘An orthogonal linear triple,(G,p,RN) naturally induces
an o.t.g.(p(GO),EN) which is well defined up to equivalences
and denoted by O(G,p,RN). We denote
",

'doh(G,0,RY) = doh(0(G,0,RY)).

coh(G,p,RN)= coh(0(G,p,R

If G is compact, then any real representation of G 1is
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an orthogonal linear representation, and the corresponding o.t.g.

is called a compact linear group.

An o.t.g. 1s called maximal if it does not properly
contain an o.t.g. of the same cohomogeneity. Suppose (G,EN) is
a maximal o.t.g. If it contains a compact linear group of
the same cohomogeneity, then itself is a compact linear group.
In fact the closure 8 of G in O(N) is compact and

coh(a,EN)= coh(G,EN)
since {x in EN; G(x) is compact(i.e., a(x)= G(x) ), coh(G,EN)
= N—dimG+dimGX} is an open dense subset of EN.

Hsiang-Lawson[ll] gave a classification theorem of all
compact linear groups of cohomogeneity 2 (resp. 3) and maximal
by means of the classification of compact linear groups which has
a non trivial isotropy subgroup at a point of.a principal orbit(
cf. Kramer[15], Hsiang[1l0] and Hsiang-Hsiang[9]). As a result,
all(resp. most) of them can be induced from the linear isotropy
representations of Riemannian symmetric pairs of rank 2(resp. 3).

Conversely, the linear isotropy representation of each
Riemannian symmetric pair of rank r induces a compact linear group
of cohomogeneity r(cf. Takagi-Takahashi[19]). Any of its orbit
in the representation space is an R-space in the meaning of
Takeuchi[20] (cf. Takeuchi-Kobayashi[21]). We define a principal
R-space as an R-space of the'highest dimension among all R-spaces
associated with a given Riemannian symmetric pair.

From tables of Takagi-Takahashi[l9, Table I and II], it

appears that two principal R-spaces associated with



two distinct Riemannian symmetric pairs of rank 2 are not
equivalent as Riemannian manifolds nor Riemannian submanifolds
of a hypersphere of the representation space. Especially if
two maximal o.t.g.'s of cohomogeneity 2'contain o.t.g.'s from
two distinct Riemannian symmetric pairs of rank 2 respectively,
then they are not equivalent (cf. Ozeki-Takeuchi[1l7; Thoorem 1,
Theorem 2]).

However it is well known that the o.t.g. from the
Riemannian symmetric pair (G2,SO(4)) of rank 2 is missed in a
theorem of Hsiang-Lawson[ll; Theorem 5] (cf. Uchida[23]).
More than before, Uéhida[23] pointed out many examples of real
reducible(i.e., non irreducible) compact linear groups of coh 3
which shows that another theorem of Hsiang-Lawson[ll; Theorem 6]
shoud be properly modified. Uchida[23; Theorem] also gave a
ﬁodified classification theorem of real reducible compact linear
groups of coh 3 and maximal in a correct form by the use of a
classification of compact Lie groups which act transitively on
spheres (cf. Montgomery—Sameléon[16], Borel [3],[4]).

In this paper, we study ﬁhe classification of real

irreducible o.t.g.'s of coh at most 3 by a direct method (cf.

Sato-Kimura (18], Yokota[25]). We have the list of them in
Section 4, which shows that the other theorem of Hsiang-Lawson
[11; Theorem 7] should be properly modified and also gives a
modified classification of real irreducible cémpact linear groups
of coh 3 and maximal in a correct form (cf. Theorem 4.8, Remark

4.10) .



Our results also. give a proof of the fact that a compact
linear group of coh 2 and maximal is equivalent to an o.t.g.
which is induced from the linear isotropy representation of a
Riemannian symmetric pair of rank 2. Topologically, Asoh[2] has
already completed the classification of compact Lie groups acting
on spheres with an orbit of codimension one, which properly
modified the result of H.C. Wang[26] (cf. Hsiéng-Hsiang[8]).
Recently, Dadok[5] classified real irreducible compact linear
groups with certain property, so-called 'polar', which is

satisfied by each compact linear group of coh 2.



2. Preliminaries
For each type of compact simple Lie algebra of dimension g
and rank k, we shall investigate (cf. Goto-Grosshans[6])

(1) 'Real' complex irreducible representations of degree m such

that
d0:= m-g < 3,

(2) Complex irreducible representations of degree m such that
d1:= 2m-g < 4,

(3) 'Quaternion' complex irreducible representations of degree 2m

such that
-d2:= 4m-g < 6.

. We denote a compact simple Lie algebra of type Xk by Xk(X=
A,B,C,D,E,F,or G) and the corresponding compact simply connected
Lie group by ik(abbrev. Xk). A complex irreducible representation
of the highest weight A is denoted by A. Especially the trivial
representation is denoted by 0. The fundamental weights with

respect to the simple roots Q1,C2,...,0, are denoted by

A1,A2,..,,Ak

(A)

The simple roots of Ak are given by

o1 02 . Qg (k > 1).

(1) 'Real' complex irreducible representations of Ak are

h+1

given by A=2Xx;A;(if k=1), Zi=1

Ay (Mg *hy 5, 1) (AE k=2h+2),

2h+1 ) _
Xopeolonss® Z3=1 Ay (Ag*+A 5 ,1) (Af k=4h+3), or

2h+2 o
2)‘2}1+3A2h+3’+ 2i=1 Ki(Ai+Ak_i+1)(1f k=4h+5),

2-1



where h and Ai(i=l,...,[(k+l)/2]) are non-negative integers, and

[p] denotes the maximal integer at most p.

Proposition 2.1 If d0:= degA-kz—Zk < 3, then A is

. equivalent as a complex representation of A, (k>1) to one of the
q . k' 'T=

followings:
dg<0: Az (k=3), 0(k21),
dg=0: 20, (k=1), Ai+h (k22),
dy=2: 4hi(k=1).

Proof: If Ai;l for some i=4,...,or [(k+1)/2], then k>7 and doi

~k2-2k>7. TIf [(k+1)/21>3 and A;>l, then k>5

) k%-2k= (k+2) (k+1) %k? (k-4) /36-k*-2k>140.

2
deghy~-k™ -2k > k+lC4

and dO; deg(A3+Ak__2 ‘
If A2l and k24, then d;> deg(fp+A, _ ) -k?-2k= (k+1) > (k®-4) /4-k>

-2k>51. Therefore A= 0(k2>1), 2A,A;(k=1), Al(A1+Ak)(k;2), or

Aala+A1 (Ay+As) (k=3) . If k=1 and A;23, then dO; deg6/\,-3=4.

2

) —k2-2k= k (k+1) % (k+4) /4-k2

If k>2 and A1>2, then d.> deg2(A;+A

0
-2k>19. If k=3 and A,>2, then d

k
> deg2M,-15=5. If k=3 and A;=

0
A2=1, then dO; deg(A;+Ay+A3)-15=49. Q.E.D.
(2) Complex irreducible representations of Ak(kél) are
given by A= Zi=§ AiAi where Ai(i=l,...,k) are non-negative

integers.
Proposition 2.2 If dl:= 2degA~k2—2k;4, then A is

equivalent as a complex representation of Ak(k;l) to one of

the followings:
0(}(;1) , M (k;l) , 201 (k=1,2), A, (k;‘?') ,
205 (k=2) , Ay _;(k24), A (k23).

Proof: If k=1 and X;>3, then degA> deg3A;=4 and d,>5. If k=2

1



and A;(or Az)23, thep degA> deg3A;=10 and dl;IZ. If k22, A2l

and A, >1, then deglA> deg(A1+Ak)=k(k+2) and dlis. If k>3 and

k

A1 (oxr Ak)iz, then degA> deg2A;=(k+1) (k+2)/2 and 4,>5. If Ai;l

1

for some i=3,...,k-2, then deghA> degA3=k(k2-l)/6, k>5 and 4d,2>5.

1
If Ap(or A _;)22 and 2gk-1, then deghy deg2h,=k (k+1) % (k+2) /12,

k>3 and 4,>25. If A,21, A >1 and 2<k-1, then degA> deg(A.+

1 k-1=

(k+1) % (k®-4) /4, k>4 and 4 >1 and 1<

be-1)= 1 k=12
k-1, then deghy deg(Ar+A,_ ) =(k+2) (k*~1)/2, k23 and 4

>126. If A;>1, A

1215.

If Ap21, A 21 and 2<k, then d;215. If X121, A2l (or A _,21,

k-1
>56.

k
Ak;l) ahd 2<k-1, then degA>deg(A;+A;) =2k (k+1) (k+2)/3, dl
Q.E.D. |

Remark 2.3 2A;(k=1), A,(k=3) are 'real'. A;(k=1l) is
'quaternion'. AAl,Ak(k;2)(resp. Az,Ak_l(k;4), resp. 2A;,2A; (k
=2)) are conjugate from each other;

(3) 'Quaternion' complex irreducible representations of
21D Agpan #1520

k=4h+1, Ai and h are non-negative integers.

Ak(k;l) are given as A=(2X Ai(Ai+A l) where

k-1i+

Proposition 2.4 If d2:= 2degA-k2—2k;8, then A is

equivalent as a complex representation of Ak(k;l) to one of the

followings:
d,=l: A, (k=1),
d,=5: 3My(k=1), As(k=5).
Proof: If k=4h+16, then k29 and d,> 2degh,, ,,-k’-2k2 2deghs-

k?-2k>405. So k=1 or 5. Suppose k=l. If A,22, then d,= 2deg(

2X1+1) Ay -3> 2deg5A;-3=9. So A= A; or 3A;. Next suppose k=5.

If X221, then d,> 2deg(A,+Ay)-35=343. If A;>1,

2



then d2; 2deg(A1+As)-35= 35. If A;3>1, then d2; 2deg3M3-35= 1925.

So A = As. Q.E.D.

(C)

The simple roots of Cy are given by

01 0.2 ce Uy 0 (k>2).

(1) 'Real' complex irreducible representations of Ck(k;Z)

are given by A= Zi=§ A-Ai where Zi.0dd X

i ; 1s even and Ai(l—l,...

,k) are non-negative integers.

Proposition 2.5 If d0:= degh-k(2k+1)< 3, then A is

equivalent as a complex representation of Ck(k;2) to one of the

followings:

dy<0:  0(k22), Az (k22),

d0=0: 2/\.1(](;2).

Proof: Suppose k>5. Then degAis< degAi for i= 4,...,k and degA;

-dika= 4k(k2-3k—7); 20. deg3A1—dika= k(2k+1) (4k-1)/3> 165.

deg(A1+h;) -dimCy = k(8k*-6k-11)/32 265.  deg2A,-dimCy= K2 (ax%-13
)/3> 725. So A= 0, Az or 2A,. Suppose k=4. Then the assertion
holds since degAg-dimC4= 12, degAu-dimC4= 6, degZAz-dimC4=272,

degSAl-dimC4= 84 and deg(A1+A2)—dimC4= 124. Suppose k=3. Then

the assertion holds since degSAl-dimC3= 35, deg(A1+A2)~dimC3= 43

, deg(A1+A3)-dimC3= 49, deg2h3-dimC,= 63 and degZAz-dimC3= 69.

3
Suppose k=2. Then the assertion holds since deg4A1—dimC2= 25,

deg2A;-dimC,=4 and deg(2A,;+A;)-dimC,= 25. Q.E.D.

2 2

2-4



(2) Complex irreducible representations of Ck(k;ZJ are

given by A= Zi=¥ AiAi where Ai(i=1,...,k) are non-negative

integers.

Proposition 2.6 If d1:= 2degh-k(2k+1)<6, then A is

equivalent as a complex representation of Ck(k;2) to one of
the followings:

0(k>2), A1(k>2), Ap(k=2).
Proof: Suppose k>3. If A is not equivalent to 0 nor A;, then
degA> degh,, so d1; ZdegAz-dika= 2k2—3k-2; 7. Suppose k=2.
The the assertion holds since ZdegZAl-dimC2= 10, 2deg(Ai1+A3)-

dimC,= 22 and 2deg2A,-dimC.,= 18. Q.E.D.

2 2
(3) 'Quaternion' complex irreducible representations of
. _ k )
Ck(k;ZJ are given by A= Zi=1 AiAi where zi:odd Ai is odd and
Ai(i=l,...,k) are non-negative integers.

Proposition 2.7 If d2:=2degA-k(2k+1);6, then A is

equivalent as a complex répresentation of Ck(k;2) to one of the
followings:
Ay (k>2) .
Proof: Suppose k>3. If A is not equivalent to A;, then
degh> deghs, so d,> ZdégAz—dika= 2k?-3k-2> 7. Suppose k=2.
If A is not equivalent to A;, then degA> deg(A;+A;)=16, so

d,> 22. Q.E.D.

2

(B)

The simple roots of Bk are given by

a Q2 . e ak_l ‘d.k (k;3)

2-5
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(1) 'Real' complex irreducible representations of Bk(k;S)
. _ k k-1
are given by A= Z._5 A A -1

i (if k=4h+3 or 4h+4), ZAkA +3T.

k*%i Aihy

(otherwise) where h and Ai(i=l,...,k) are non-negative integers.

Proposition 2.8 If d0:= degA-k(2k+1)<5, then A is

equivalent as a complex representation of Bk(k;S) to one of the

followings:

dg<0: A1 (k23), A (k=3 or 4), 0(k23),

dy=0: A, (k23).

Proof: 1If xi;1 for some i= 3,...,k-1, then k>4 and doi deghs-

dimBk= k(2k+1) (2k-4)/3> 48. 1If X122, then do; degZAl—dimBk= 2k

>6. If X222, then d,> degZA,-dimB, = (2k+3) (2k+1) (k+1) (k-1)/3-
k(2k+1)> 147. If X221 and A.2>1, then dO; deg(A1+A2)—dimBk=
(2k+1) (k+1) (4k-3)> 84. Then A= Al,Az,Ak, or A2+Ak (if k=4h+3 or
4h+4), A, or A, (otherwise) since degZAk-dimBk= 2k+1ck+l'k(2k+1)
> 14 and deg(A;+A)-dimBy= k2" k(2k+1)2 27. If k=4h+3 or 4h+d
, k25 and A >1, then k28 and d,> deghy -dimB, = Zk-k(2k+1); 120.
If k=3(resp. 4), then deg(A2+Ak)-dimBk= 91 (resp. 396). Q.E.D.

(2) Complex irreducible representétions of Bk(k;S) are
given by A= Zi=§ AiAi where Ai(i=l,...,k) are non-negative

integers.

Proposition 2.9 If d1:= 2degA-k(2k+1)<8, then A is

equivalent as a complex representation of Bk(k;S) to one of
- the followings:
d;<0: Ay (k23), Ay (k=3 or 4), 0(kz3).
Proof: If A.>1 for some i= 2,...,k-1, then dl;ZdegAz—k(2k+l)=
k(2k+1)221. TIf X122, then d;>2degZh;-k(2k+1)= k(2k+5)2 33.

2-6



If Akéz, then d1; ZdegZAk-k(2k+l)= 2 21(_'_lck_’_l-k(21<+1)_>_= 49, If
k+

>2deg(Ay+Ay ) -k (2k+1)= k2
k+1

A121 and A, >1, then d

k 1
If k>5, then ZdegAk-k(2k+l)= 2

2.k(2k+1)> 75.
-k(2k+1)> 9. Q.E.D.

(3) 'Quaternion' complex irreducible representations of
Bk(k;SJ are given by A= Zi=§-1kiAi +(2Ak+1)Ak where k=4h+5 ot

4h+6, h and Ai(i=1,...,k) are non-negative integers. Then k>5.

Proposition 2.10 There is no 'quaternion' complex

irreducible representation of Bk such that d2:=2degA-k(2k+1);8.

Proof: Since k25, d,> 2degh, -k(2k+1)= 25"}

(D)

The simple roots of Dk are given by

G102 e 0 T %%-1 (k24)

-k(2k+1)> 9.  0.E.D.

12

a
k
(1) 'Real' complex irreducible representations of Dk(k;4)
. _ k-2 . . _ k
are given by A= Ei=1 AiAi + Ak_l(Ak_1+Ak) (if k=2h+5), zi=1xiAi

k-2

(if k=4h+4), or I, 7

* *

* * . _
AiAi + Ak-lAk-1+AkAk (if k=4h+6), where

. *3 -
Ak-l+lk is even, h and A£ )(i=1,...,k] are non-negative integers.

Proposition 2.11 If dO:= deghA-k(2k-1)< 6, then A is

equivalent as a complex representation of Dk(k;4) to one of

the followings:
dy<0:  0(k24), Ay(k24), Au(k=4), As(k=4)

d =0: NAp(k>4).

0
Proof: If Ai;I for some i=3,...,or k-2, then k>5 and doi deghs-

k(2k-1)= k(2k-1) (2k-5)/3> 75. So Ai=0 for i=3,...,k-2.
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Since deg2A)-k(2k-1)= 2k-1> 7, degZAz-k(Zk-l)=k2(4k2'13); 272 and
deg (A1+A2)-k(2k-1)= k(4k-5)(2k+1)/3> 132, we have Xi1+i <l.

Suppose kﬁf% or Aé*);l. If k28, then dj> Zk-l—k(Zk-lj; 8. If
k=7, then dO; deg(As+A7)-91= 2912. 1If k=6, then dO; deg(As+Ag) -
66= 726 or do; deg(2As)-66= deg(2As)-66= 11C6-§6= 396. If k=5,
then dO; deg(Au+As)-45= 165. If k=4 and A1>1, then dO; deg(A1+Ay)

-28= deg(A1+A3)-28= 28. If k=4 and A,>1, then dO; deg(A,+Ay)-28

= deg(Ag+A3)—28= 132. So k=4 and A= Asor As. Q.E.D.
(2) Complex irreducible representations of Dk(k;4) are
. _ k . - ;
given by A= Zi=l AiAi where Ai(l—l,...,k) are non-negative

integers.

Proposition 2.12 1If d1:= 2degh-k(2k-1)<36, then A is
equivalent as a complex representation of Dk(k;4) to one of
the followings:

d1<0: 0(k>4), A1(k24), As(k=4), Ay(k=4),

Ay (k=5), As(k=5), As(k=6), As(k=6).

Proof: If liil for some i=2,...,k-2, then d1;2degA2-k(2k~1)=
k(2k-1)> 28. So that ;=0 for i=2,...,k-2. Since 2deg2A;-k(2k-1)
=(k+2) (2k-1)> 42, we have A;<1. Suppose xk_1+xk;1. Then k<6

since d;> 2deghy -k(2k-1)= 2degh,_,-k(2k-1)= 2¥-k(2k-1)237 if k27.

k-1

We have that A1+Ak_1+xk;1 since Zdeg(A1+Ak)-k(2k—1)= Zdeg(A1+Ak_l)

-k(2k-1)= (Zk—k)(Zk-l); 84, Zdeg(Ak_1+Ak)-k(2k-1)=k(2k-l)[4(2k-

2) 1/ {(k-1) 1 (k+1)1}-1]>
; 2

k(2k-1){2(2k-2) !/ (k!)%-1}242.  Q.E.D.

84 and 2deg2Ay -k(2k-1)= 2deg2h, .-k(2k-1)=

k-1

Remark 2.13 A4(k=5) and As(k=5) are conjugate. A;(k=4)

and Ay(k=4) are 'real', and there are outer automorphisms Ti(i=1

2-8



,2) of D4 such that Aj;oT: and A4.T, are equivalent as complex
representations of D4 to A;.

T3(resp. T,) of D6(resp. Ds) such that AsoTs;(resp. AsoTy) and

14

There is also an outer automorphism

A¢(resp. As) are equivalent as complex representations of Dﬁ(resp‘

DS).

(3) 'Quaternion' complex irreducible representations of
Dy (k24) are given by A= I
k= 4h+6, and h,Ai(i=1,.

Proposition 2.14

equivalent as a complex representation of Dk(k;4) to one of

the followings:

d2=-2:

Proof: The assertion follows from Proposition 2.12 and

Remark 2.13. Q.E.D.

k
i=1 i

If d2:=

2degh-k(2k-1)<36, then A is

As(k=6), A¢(k=6).

A;A; where Ay ;+X is odd,

..,k) are non-negative integers.

(E)
The simple roots of exceptional Lie algebras are given by

GZ: Qy=—==0,
P4: o1 o2 o3 oy
E6: oy o2 0 3 Oy 5

Qg
E7 ol 2 Q3 Oy Qs O g

a7
Eg: oy 0. 2 clxs Oy s 06

Qg

2-9
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Proposition 2.15 Suppose A is a complex irreducible

representation of an exceptional Lie algebra of dimension g.
If d0:= degA-g< 12, then A is equivalent as a complex
representation to one of the followings:
d0<0: AZ(Gz): AMCF4)’ A1CE6), AS(E6), AG(E7),
d0=03 AI(Gz), AICF4): AG(E6), AI(E7), A?(ESJ-

Proof: Case Gz) If A is not equivalent to A; nor A,, then

d0;13 since deg2A,=77, deg2A,=27 and deg(A1+A2)=64. Case F4)
If A is not equivalent to A; nor A,, then dO;ZZI since
deg2h,= deg(A1+Ay)=1053, deg2A,=324, degh,=1274 and degh3=273.
Case E6) If A is not equivalent to A;, As, nor Ags, then d0;273
since deg2A,= deg2As= degh,= deghA,= 351, degls= 2925, deglihs=
2430, deg(A1+As)= 650 and deg(Ai1+A¢)= deg(As+Ag)=1728.
Case E7) If A is not equivalent to A; nor Ag, then d0;779 since
degh,=8645, degh;=365750, degAy=27664, deghs=1539, degh,=912,
deg2A1=7371, deg2Ag=1463 and deg(A:1+As)=3920. Case E8) If A is
not equivalent to A7, then d0;3627 since degh1=3825, degh,=6696000
, degh3=6899079264, degh,=146325270, degAs=2450240, deghs=30380,
deghg=147250, and deg2A,=27000. Q.E.D.

Remark 2.16 Az(Gz) is 'real' of degree 7. Au(F4) is
'real' of degree 26. A1CE6) and As(Eé) are conjugate from each
other and of degree 27. AS(E7) is 'quaternion' of degree 56.
A1(G2),A1(F4),As(EG),Al(E7) and A7(Eg) are the adjoint
‘repreéentations, especially 'real', of degree 14,52,78,144,248
respectively. Any A of d1 or d2;12 is contained in the above

list since d1=d2>d0.,

2-10



Next propositions are also useful in section 3 and 4.

Proposition 2.17 £Each non trivial 'real' complex

‘irreducible representation of'degree at most 3 of a compact
simple Lie algebra is equivalent as a complex representation
to one of the followings:

degree 3: ZAl(Al).

Proof: The assertion follows from Prop.2.1,2.5,2.8,2.11 and

2.15 since d0 is less than the degree which is at most 3. Q.E.D.

Proposition 2.18 Each non trivial complex irreducible

representation of degree at most 3 of a compact simple Lie
algebra is equivalent as a complex representation to one of
the followings:

degree 2: Al(Al),

degree 3: ZAl(AlJ, Al(AZ), Az(Az).
Proof: The assertion follows from Prop.'s 2.2,2.6,2.9,2.12 and
2.15 since d1= 2degree - g < 2-3-3=3, Q.E.D.

Remark 2.19 A2(A,) is conjugate to AI(Aé);.

Proposition 2.20 Each non trivial 'quaternion' complex

irreducible representation of degree at most 6 of a compact
simple Lie algebra is equivalent as a complex representation
to one of the followings:

degree 2: Al(Al),

degree 4: 3A1(A1), Al(CZ),

degree 6: SAl(Al), Al(Cs).

Proof: The assertion is trivial in the case of Al'

2-11

16



Otherwise, it follows from Prop.'s 2.4, 2.7, 2.10,

2.15 since d2= 2degree - g < 2°6-8= 4. Q.E.D.

2-12

2.14 and

17
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3. Basic classification
by cohomogeneity
Let (G,M) be a Lie transformation group. For x in M, we
denote G(x) the orbit of G through x , and GX the isofropy
subgroup of G at Xx.
Lemma 3.1 Let (G,M),(G,N) be Lie transformation groups
and f be a G-equivariant submersion from M onto N with
the property:
£HE()) = Bgppy (X)
at a fixed x in M. Then we have that
dimM-dimG+dimG, = dimN—dimG+dime(x).
Proof: dimM= dimN+dimf T(£(x))= dimN+dimGg . (x)=
dimN+dime(X)-dime since (Gf(x))x= Gx‘ Q.E.D.
Let R, C and H be the set of real numbers, complex numbers

and quaternions respectively. Naturally H contains C , and C

contains R. The conjugate u+jv of u+jv in H is defined by

u+jv= u- jv
where u is the complex ﬁonjugate of u, u and v are in C. For
u+jv, u'+jv' in H, the product.(u+jv)(u‘+jv') of them are
defined by

(u+jv) (u'+jv')= (uu'-vv')+j(vu'+uv').

Let F be R, C, or H. The set of all (nl,nz)-matrixes

" with coefficients F is denoted by F(nl,nz). For X in F(nl,nz),
we deﬁote the conjugate of X with respect to the coefficients

by X, and the transposed matrix of X by tX. We write Fn=F(n,1)

, F(n)=F(n,n),and denote the identity matrix of F(n) by In.

3-1



19

We denote hF(n)={X in F(n); 1:Y=X}, pF(n)={X in hF(n); X is
positive definite}, and use the following notations for
classical groups:

GF(n)={X in F(n); “XX=X"X=1_}.
If F=R or C, denote 4

SF(n)={X in GF(n); detX=1}.
Then GR(n)=0(n), GC(n)=U(n), GH(n)=Sp(n), SR(n)=SO0(n) and
SC(n)=SU(n) in usual notations. Any subgroup of GF(n) acts on
F linearly over right multiplications of F by usual manner and
acts on hF(n)(resp. pF(n)) by

A-X= AX'K (3.1)
for A in GF(n), X in hF(n) (resp. pF(n)). Each matrix of hF(n)
can be transformed to a diagonal form by the action of GF(n)
(resp. SF(n)). Similarly any subgroup of GF(nl)xGF(nz) acts
on F(ny,n,) by

(A,B)-X= AX'B (3.2)
for (A,B) in GF(nl)xGP(nz), X in F(nl,nz).

We use mappings k,k':H(nl,nz)———>C(2nl,2n2),

h:H(nl,nZ)——>C(2n1,n2) and h':H(nl,nz)——>C(nl,2n2) such that

k(U+jV)=(U -g], k'(U+Vj)=[ % %], h(U+jV)=[$],

VvV -
h' (U+Vj)=(U,V) for U,V in C(nl,nz).
Then k,k' are real linear injections such that
FRTPT=K (P ), TKTTPY=k (P, k(PQI=k(PIK(Q), k' (PQ)
=k'(P)k'(Q) for P in H(ny,n,), Q in H(n,,ns),
and h(resp. h') is a linear bijection over right(resp. left)

multiplications of C such that h(PQ)=k(P)h(Q) (resp. h'(PQ) =
h' (P)k(Q)) .
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For P in H(nl,nz), we see that column-rankH(P):= n,-
dim.{Q in H"?; PQ=0}= (2n,-dim {Q in H"?; PQ=01}) /2=(rank k (P)) /2
= (rankck'(P))/2= (an—dimC{Q in H(l,nl); QP=01}) /2= nl~dimH{Q in

H(l,n QP=0}=: row-rankH(P). Note that the linear independence

l);

in an, H(l,n over right multiplications of H is equivalent to

l)
one over left multiplications of H respecﬁively owing to pg= g-p
(p,q in H) . Therefore rankH(P):é column—rankH(P)= row-rankH(P)
is well-defined. Denote MF(nl,n2)={X in F(nl,nz); rankF(X)=
max(nl,nz)}. Then k(MH(nl,nz))= MC(2n1,2n2)r\k(H(nl,nz)).

Assume nl;nz. Denote f:MF(nl,nZ)———>pF(n2) such that
£(X)= XX for X in MF(n,,n,). Then f is GF (n,) XGF (n,) -equivariant
with respect to the action (3.2) on MF(nl,nz) and the following
action on pF(nz):

tg (3.3)

(A,B) *¥Y= BY
for (A,B) in GF(nl)xGF(nz), Y in pF(nz).
Lemma 3.2 (1) £ is a submersion.
-1 _ .
(2) £ ~(f(X))= (GF(nl)X{Inz}) X for X in MF(nl,nz).
(3) If n,>n,, then £ L1(£(X))= (SF(n,)x{I_ })-X ‘for X in
1 2 1 n,
MF(nl,nz) where F= R or C.
Proof: (1) Since any diagonal matrix in pF(nz) is in the image
of £, it follows that f is onto from the diagonalizability by
the action (3.3). To prove deO:F(nl,nz)——éhF(né);X—>t§X0+t§dx
is oﬁto at X, in MF(nl,nz), if we use the action (3.2) of GF(nl)
xGF(nZ), we may assume that X, has the following form for some

non-zero X, in R (i=1,...,n2):

XO = . .
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In fact, the action (3.3) of {Inl}XGF(HZ) transforms tioxo to
a diagonal form and the action (3.2) of GF(nl)x{Inz} gives a
required form. Then it is easy to show that dfXO is onto,

(2) Suppose f£(X)=f(Y). Denote X=[xl,...,xn2], Y=[yl""’yn2]
where x., y; in F™!, then tiixj=t§iyj (i,9=1,...,n,). We can
choose X/, Y (h,k=nz+l,...,nl) such that tEixh=t
t§hxk=t§hyk=6hk - Then X'=[xy,...,x
-1

§iyh=0 and
'=
1., [Yl""’ynl] have

the inverse matrices. For A= Y'X'
t

, A is in GF(nl) since
i'x'=t?'Y'. We have (A,Inz)*X=Y. (3) If F=R or C, then
X"=X'-diag[l,...,l,detx'fl] and Y"=Y'-diag{l,...,l,detY'_l] are
in SL(n,,F). Then B=Y"X"™" is in SF(n;) and (B,I, ) -X=Y if

nl>n2. Q.E.D.

The tensor product F'lm...sF'S over F of F"!,...,F'S is
F F
defined if F=R or C. Naturally RMm...aR"S={z in c™lam...=mc"Ss;
R R ‘
z=z} where = denotes the complex conjugation extended naturally

on C"'@...aC™"S. If F= H, then we consider the real linear map.

C C
3:C2n1&...xczns———écznlx...xczns; . z.(h(P.,)&@...&gh(P, ))—>
C C C C i1 il is
- . . s . nt -
Zi Zi(h(Pil])&...ﬁh(Pisj)), whe?e z,"in C and Pit in H (t=1,...
,S). Then 32=id (if s is even), or -id (if s is odd). The tensor
product Hnlg...ans over right H of H'!,...,H"S is defined by
H' g, . .@H"S:={2 in Cznlm...xczns; ¥2=2} (if s is even), or
H H C C
21’11 2n

C %...gc S with the guaternion structure Y (if s is odd).

If s=1, then Y is the standard guaternion structure on C2n1=h(Hn1).

21’12

If s=2, then HM!'mH"2? is a real form of c?Pige with respect

" C

to the real structure 3 on Cznlxcznz. For an even s,
C
HM @, . .@H"S is equivalent as real spaces to
H H



(B '@H" ) m. . @ (H"S~ 1@n?s)
H R R H
since the complexifications are isomorphic over C.
Let p1,...,Ps be linear representations of Lie groups

Gl""'Gs on Fnl,...,FnS over F respectively. If F= R or C,

then the exterior tensor product piR...8pg over F 1is defined
F

\

as the representation of the direct product group Glx...sz

on the tensor prodict space F'l@...aF"s over F such that
: F F

(plg---gps)(gl,-..,gs):= ol(gl)i---gps(gs)

for (gl,...,gs) in Glx...sz, where the right hand side is the

usual tensor product of linear transformations. If F= H, then

note that 3 commutes with the representation (kopl)ﬁ...ﬁ(kops)
of Glx...sz on h(Hnl)g...gh(Hns). The exterior tegsorcproduct
'plﬁ...ﬁps over right H 1is defined as the representation of
Glg...iGs on Hnlg...anS such that

(plﬁ...ﬁps)(gl,...,gs):=((kop1)a...x(kops))(gl,...,
H H
gs)|Hn1x...mHnS.
H H

If s is even, then it is equivalent as a real representation of

G,X...XG_ to (p1&p2)&...8(p &p_ ). Next, we study the case of
1 s - R R s--lH S
s=2 in more detail. The identity representation of a Lie

subgroup K of GF(n) 1is denoted by 1id. We consider the action
(3.1) of K on pF(n).

Proposition 3.3 If K is a Lie subgroup of GF(nz) and

. e n :
nl;pz, then (1) coh(GF(nl)xK,ldgld,Fnl%F )= coh(K,pF(nz)),

(2) coh(SO(nl)xK,idﬁid,Rnlan2)= coh(K,pR(n,)), (3) If n;>n,,
R R

then coh(SU(nl)xK,idgid,CnlgCn2)= coh(K,pC(nz)), (4) coh(K,pF(n2

));coh(GF(nz),pF(nz))=n (=coh(SF(n2),pF(n2)) if F=R or C).

2

22
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Proof: If F=R or C, the representation space Fnl%}?n2 is
identified with F(n,,n,) by the correspondence 1:Fn1?Fn2——>

F(nl,nz) such that 1(eixej)=Ei (i=l,...,nl; j=l,...,n2) with

3
respect to the standard bases {ei}, {ej}, {Eij} of FU, FM2,
F(nl,nz) respectively. Through 1, the action of GF(nl)xK on
F(nl,nz) is induced as

(A,B) -X= AX'B
for X in F(nl,nz), (A,B) in GF(nl)xK. The o.t.g. induced from
this action is equivalent to one from the similar action of
‘GF(nl)xf where K= {B; B is in K} is the conjugation of K in
GF(nz). Hence the g.t.g. induced from idgid is equivalent to
one from the action (3.2) of GF(nl)xK. When F= H, we consider

2n:

1:C gcznz——>c(2nl,2n2) for the standard basis e =h(e;'),...,

= 1 = 1 2nj 1
eni h(eni ), eni+1 ny h(eni j) of C where e’y

.o en_' is the standard basis of ®"'i (i=1,2). Then we have
i

=h(e;"'3) ..., &,

n; Ny, _ .
1(H gH )= k(H(nl,nz))

. N, = . 2n., Yoy —=+t . 2n1_.2n;
since Jzi— Jizi (Zi in Cc™71i), 1(J2)= Jll(Z) J2 (z in C %C )
- ~ LTt
and k(H(nl,nz))— {X in C(2n1,2n2), JiX TT,= X} where
0. -I,
J.= 1 1 (i=1,2).
Tl 0
ni ni

Through 1, the action of Sp(nl)xK on



24

k(H(nl,nZJ) is induced from the representation idgid on Hnlanz
by (A,B) k()= k(A)k(X)“k(B) for X in H(ny,n,), (A,B) in Sp(n)
xK. The o.t.g. induced from this action is equivaleht to the one
which is induced from the action(3.2) of Sp(nl)xK on H(nl,nz),
since 'RTBYT=k('B) and k(A)k(X)k('F)=k (AX'E) .

Then (1) follows from Lemma3.l and Lemma3.2(0),(1),(2),
since MF(nl,nz) is open and dense in F(nl,nz). (2) follows from
(1) since GR[nl)O=SO(n1). (3) follows from Lemma3.l and Lemma
3.2(0),(1),(3). (4) follows from that GF(nZ)(resp. SF(nz) if
F= R or C) transforms any matrix in pF(nz) to a diagonal form.
Q.E.D.

Denote r(nl, 2,n3) coh(SO(nl)xSO(nz)xSO(ns) 1dﬁ1dﬁ1d
Rnlmanan3), c(nl,n 3) coh(U(nl)xSU(nz)xSU(nS) 1dﬁ1dﬁ1d
cnlmcnzgc’“), a(ny,n,,nz)=coh((Sp(ny)xSp(n,))xS0(ny), (1dﬁ1d)ﬁ1d,
(HngmHng)mRna) .

H R
Proposition 3.4

(1) r(nl,nz,ns); 18 if nlipzipS;S.

(2) c(nl,nz,ns); 6 if nlipzips;z.

(3) q(nl,nz,ns); 3 if n3;3, nliﬁzil-

(4) aq(nq,n,,n;)> 8 if ny23, ny22, ny2n,>1.
Proof: Denote k(nl,nz,n3)=dim pR(nZnS)-dimSO(nz]xSO(ns) (if
n,>n,n,) or dim RnlmanmRna—dimSO(n )xS0(n,)xS0(n,) (otherwise),
1="2"3 R R 1 2 3
K(nl,nz,n3)=dim pC(nZnS)-dimSU(nZ)xSU(ns) (if nI;pzns) or
dim Cnlmcnzmcna-dimU(nl)xSU(nz)xSU(ns) (otherwise), and

C C

u(nl,nz,n3)=dim pR(4n1n2)—dimSp(nl)xSp(nZ) (if n3;4n1n2),

dim pH(nan)—dimSp(nz)xSO(ns) (if n3;4n1n2, nznsépl) or
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dim(Hnlanz)aRna-dimSp(nl)xSp(nZ)xSO(n3) (otherwise) . Then
R

A(nl,nz,n3); r(nl,nz,n3), K(nl,nz,nB); c(nl,nz,n3) and

1au"2)gRrR"™? is

H R

equivalent to Hnlg(anans) as Sp(nl)xSp(nz)XSO(nB)—spaces
. 2.2 2 2

over R. Since A(xl,xz,XB)—(x2 Xq +x2x3—x2 ~Xq +x2+x3)/2

2—x22—x32)/2 (otherwise) ,

u(nl,nz,nB); q(nl,nz,n3) by Prop.3.3 since (Hn

(1f x,2x,%4) or X Xy Xa+ (X +X 4% -y

_ . 2.2 2 2. . .22
K(Xl,Xz,X3)— Xy Xy =X, " =g +2 (if xl;x2x3) or 2xlx2x3 xl X,

2 . _ 2 2 _ 2_ 2
~X4 +2 (otherwise), and u(xl,xz,x3)— 8xl xz +2xlx2 2xl 2x2

. 2.2 2 2 .
—X; =X, (i1f x3;4xlx2), 2x3 X, —x3x2—2x2-—x2—x3 /2+x3/2 (if X4

A
4xlx2, x3x2;xl) or 4xlx2x3—xl(2xl+l)—x2(2x2+l)-x32/2+x3/2
(otherwise), they define continuous‘piecewise polynomial
functions on R3 if we take #i(i=1/2"3) as real numbers.
(1) Since aA/axi(xl,xz,x3);o for xl;gZ;xBLl (1i=1,2,3), we have
A(nl,nz,n3);ALnl,n2,3);A(nl,3,3);A(3,3,3)=18. . (2) Similar to
(L), K(nl,nz,n3);K(2,2,2)=6. (3) Since Bu/axi(xl,x2,x3);0 for
. i=1,2,3; xl,xz,x3;l (if x3;4x1x2 or x3x2;:xl), and Bu/3x3(xl,
xz,x3)=(4xlx2—x3)+l/2> 1/2, au/axz(xl,xz,x3)=4(xlx3—x2)—l;4xl(
' x3-l)-l;3, au/axl(xl,xz,x3)=4(x2x3-xl)—l>—l for Xl;XZ;l’ x3;2
i .

(if x and x.x >xl), we have u(nl,nz,n3); u(nl,n2,3);

3°%¥1%2 3%2

u(nl,1,3)= u(nl—l,l,3)+8u/8xl(nl—6,1,3) (O<e<l);u(nl—l,l,3) (since
u(nl,l,3) and u(nl—l,l,3) are integers, and *l<3u/axl is also an

- integer, especially au/aleO) ;u(1,1,3)=3. (4) Similar to (3),

u(nl,nz,n3);u(nl,l,3);u(2,1,3)=8. Q.E.D.



Let L be the Lie algebra of a connected Lie group G. We
write the same letter for a linear representation of L and the
corresponding representation of G. According to Iwahori[12],
there is the following relation between real irreducible
representations of L(resp. G) and complex irreducible
representations of L(resp. G) (cf. Goto-Grosshans[6]). For a
complex irreducible representation p on a complex vector space
V, we denote the real restriction of p on the real restricted
vector space VR(abbreV. V since V=VR as a set) by pR(abbrev. o)
, which is not real irreducible if and only if p is 'real', and
so we attach to p a real irreducible representation pr as
follows. pr= o (if p is the complexification oc of a real
representation ¢ on a real form W of V ,i.e., p is 'real'.) or
PR (otherwise). Note that plr and pzr are equivalent as real

representations if and only if Py and p, are conjugate or

26

equivalent as complex representations of L(resp. G). Conversely

the complexification UC on WC of a real irreducible

representation ¢ on a real vector space W is not complex
irreducible if and only if W has a L(resp. G)-invariant complex
structure(then it is unique), and so we attach to ¢ a complex

o

irreducible representation o as follows. o-= o (if W has a L(

resp. G)-invariant complex structure) or cc (otherwise). Note

 that oT¢ and p (resp. oY and o) are equivalent as complex(resp.

real) representations.

3-9



Let (G,EN) be an o.t.g. Then the Lie algebra L of G is
a real reductive Lie algebra and has a form:
L= LO@Llo...oLS ’ (3.4)
where LO is the center of L, and Li(i=l,...,s) are simple

ideals of L. Let G Gi be connected Lie subgroups of G

0’
corresponding to LO’ Li respectively and %O’ %i be the universal
covering groups of GO’ Gi respectively, then %i and %i are
compact (i=1,...,s). Let id:G——=SO(N) be the identity
representation and id be the corresponding representation of
Btk Ll

In this paper, we consider (G,EN) in case that id is a
real irreducible representation of G. Then G is compact (cf.
Kobayashi-Nomizu[1l4]), and so GO=U(1) or the trivial group 1.
For t in RX:=R-{0}, we denote t£:R—>U(1l) the complex

2mxti £ .
or x in

irreducible representation of R such that €(x)=e
R. We shall decompose id® into an exterior tensor product of
complex irreducible representations of ai(i=0,...,s).

Case 1) i4€=idC:  Then G, is trivial, and (a,iBC,CN) is
equlvalent as complex representations to some

(@ x...x0 ,0.8...f0_ ,CMm...uC"S)
1 [ 1C c S C C

where 03 is a self-conjugate complex irreducible

representation of &i on Cni, ni;2(i=1,...,s), Hi=i ni=N, and
#{1i; o is 'quaternion'} is even. We may assume pj(j=1,...,2r)
are 'quaternion' and pk(k=2r+l,...,2r+q; s=2r+q) are 'real', and

. n;
o, denotes a real representation of %i on R"1 whose

3-10
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complexification 1is pzr+i(i=l,...,q); where r and q are

non-negative integers. Then n >3(i=1,...,9), and

2r+i
(E,iX,RN) is equivalent as real representation to

(alx...XEera2r+1x...x@2r+q,(p1§p2)§...g(pZT_ISQZI)E

o.8...fi0 ,(u"/ 2gun2/2yg | g(ut2r-1/25ynor/ 2y gp2r+ly | gRM2T+q)
R

Ip" 'R @ H R H R R R
) (3.5)
Case ii) id%=id, 6y=U(1): Then (¥,1¥%,cV?) is

equivalent as complex representations to some

(RxG.x...xG_, tRp.&...8p_ ,CeC™lm...mC"s)
1 1 s

> ¢cc cC c C C
where t 1s in R, Py is a complex irreducible representation of

n: . S _ . N, .
%i on C'1 | ni;Z(l—l,...,s) and Hi=l ni—N/Z. So (%,18,R ) is

equivalent as real representation to

(RxG.x...xG , (tRpo.8...80 ), , (CaC™m...wC"S) ) (3.6)
1 S C 1C C s’R C c C R

N/2

Case iii)iac=13, Gozlz Then (%,i&c,c ) is equivalent

as complex representations to some

(G, x...xG_ , o,8...80_ , C™lm...mC"S)
where Py is a complex irreducible representation of %i on CMi R
ni;Z (i=1,...,s) and Hi=i ni=N/2. So (a,ia,RN) is equivalent as

real representation to

(C.x...x¢_, (p,8...80 ), , (C™m...=wC"S) ) (3.7)
1 S 1C c S R C C R
~where p,R...8p_ 1s not 'real' since (p,R...8p ), 1is real
lC c S 1C c S R
irreducible.

3-11
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Theorem 3.5 Let (G,EN) be an o.t.g. of cohomogeneity
at most 3. If id:G—=SO(N) is real irreducible and s>3 (cf.(3.4))
then (a,iH,RN) is equivalent as real representation to
(X xK K] L (naganaczan’, (HmH) mR>) (3.8)
H R H R

Especially coh(G,EN)=3.

b4

Proof: Suppose id is real irreducible and s>3. Then O(G,id,RN)
is contained in (1) O((Sp(n /2)xSp(n /2))xSO(n3) (1d®1d)ﬁ1d

n1/2 n2/2

N3
(H )JmR"°) for some nl,nZ;Z, n3;3 N= =n;N,n,, (2) O(SO(nl)

R

xSO(nz)xSO(nS),idﬁidﬁid,RnlmanmRns) for some ny, n,, n > 3; N=
R R R R

or (3) 0(U(n;)xSU(n, )xsucns),(id?idgid)R ,(cnlgcnzgcnS)R)

nn,ng,
for some Ny, Ny, n.> 2; N= 2n1n2n3 owing to (3.5), (3.6) and
(3.7). On the other hand, coh(2)>18,coh(3)2>6, coh([l)(max(nl
nz);4)); 8 by Prop.3.4(1)(2)(4). There G0 is trivial, and
0(G,1id, RN) is contained in O((Sp(l)xSp(l)xSO(ns) (idﬁid)ﬁid
(HmH)=R™3) which is equivalent to O(SO(4)XSO(n ), 1dﬁ1d R mR™?) .
Then n3-3 since coh(G,E )<3 So 0(G,1id, R ) is contalned En 0
(K1XK1XK1 ,(AlﬁAl)ﬁ(ZAl) ,(HEH)QR ). Since s>3, ¢ is isomorphic
to X xk xK,, and 0(¥,1d,R")=0(A xa xa ,(AlﬁAljﬁ(ZAl) , (HmH)mR) .
Then (G,id, R ) and (3.8) are equivalent as real representatlgn
since A1,2A, are characterized by degrees of complex

irreducible representations of Kl’ and 12=22-3(cf. Section 2).

And coh(G,EV)=3 by Prop.3.3. 0.E.D.

3-12



Suppose s=2: L=LOoLloL2 (cf. (3.4)). Then (a,ia,RN) is

equivalent as real representation to one of the followings:

Type I) (alxaz,plrﬁpzr,Rnlman); n;2n,>3, N=n;n,, p;
R R .
is a 'real' complex irreducible representation of 8i on Cnl,Rnl

is a ﬁi-invariant real form of Cni(i=1,2).
Ny Moy, =
Type II) (Elxaz,olgpz,H ®gH " “); nliﬂzil’ N 4nln2, 04

H
is a 'quaternion' complex irreducible representation of Gi on

Czni, and H'1L is Czni with the Gi-invariant quaternionic
structure(i.e., the right multiplication of j)(i=1,2).

Type ITI) (Rx&;x&, , (80,80,) ,(c§cnigcn2)R);
nl>n2>2 N=2n1n2 o5 is a complex irreducible representation

of & (i=1,2), t is in RX
Type IV) (% x& ,(plﬁpz)R ,(cnlgCHZ)R), n,>n,>2,

N= annz, - is a complex 1rreduc1b1e representation of Cl on
Cni(1=1,2), and P80, is not 'real'.

Lemma 3.6 Let o be a linear representation on F™' of
a compact Lie group K> and denote di=2imi-dimKi where i=0(if
F=R), 1(if F=C), or 2(if F=H). Then

(1) If lgngm, , then doh(KixGF(n),pigid,Fmian);
di+n{2i'1(n—3)+1} (> d.+3 if moreover n>3).

(2) If 1<n<m. then doh(K xGF(n), os ﬁld FMigp™? )>
d +2l 1{n(n 1)-2}+n (> d +2 if moreover n>2 and 151)
Proof: doh(KixGF(n),piﬁld,lexF )> dlumlan-dlmKixGF(n)=
di+2i(n~1)mi—(Zi-l)n-zi—ln(n-l). Replacing m, by n(resp. n+1),

we have (1) (resp. (2)). 0.E.D.
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Suppose s=1: L=L0@L1 (cf. (3.4)). Then (a,ia,RN) is
equivalent as real representation to one of the followings:
Type V) (%1,p1r,Rn1); n,>3, N=n,, p; is a 'real’
complex irreducible representation of &1 on Cnl, and R™! is a
al-invariant real form of C™!.
n, . -
Type VI) (Rxal,(t?pl)R,(CgC ]R), nliz, N an, and

P1 is a complex irreducible representation of %1 on cM,

Type VII) (%l,pl,cnl); n,22, N=2n,, p; is a complex

irreducible representation of G, on c™', and Pq is not 'real'.
Lemma 3.7 If n,<n,, then GF(nl)(:GP(nl)x{Inz} in GP(nl)
] in F(nl,nz)(xi is

xGF(nz)) transforms any matrix X=t[x1,...,xn1

. n . t . t
in F'? for i=1,...,n;) to a form Y= [yl,...,ynl] in F(ny,n,) (Ty;

.. . t B
is in F(l,nz) for 1—1,...,n1) such that yiyj_cisij for some c;
in R (i,j=1,...,ny) by the action(3.2).

Proof: There is A in GP(nl) such that A transforms XX in

pF(nl) to a diagonal form €y by the action(3.1).
.cnl

Then Y=AX satisfied the desired property. Q.E.D.

Suppose s=0: L=L, (cf. (3.4)). Then (G,id,RN) is
equivalent as real representation to one of the followings:

“Type VIII) (R,%,,Cp); t is in RY.
TYpe IX) (1,0,R); 1 is the trivial group, and 0 is

the trivial representation on R.

Note that the'o.t.g. of type VIII is equivalent to

0(S0(2),id,R%).
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For general s>0, the estimate of coh(G,EN) is given in
each cases i),ii),iii), if id:6—>SO(N) is real irreducible, by
the following theorem. If moreover s>3, especially we have
coh(G,EN); s.

Theorem 3.8

(1) In case i), coh(G,EM)= coh of (3.5)> 4¥-3%-6r-3q,

(2) In case ii), coh(G,EN)= coh of (3.6)> 25+1-35-l,

(3) In case iii), coh(G,EM)= coh of (3.7)> 25%1-3s-1.

Proof: (3) follows from (2). For (2), we may assume n,>...>n

v

S

2. If s<3, then (2) is trivial. Suppose s>3. If Ni2n, - N,

then we denote f(nl,...,n )= dim pC(nz---nS)-dim SU(nZ)x...xSU(

s
_ 2 2 2. 2, _ 2 42 2
ns)— n,“--.n_"-ny,"-...-n T+s-1. Then af/Sni Zn.l(n2 ce iy Peeng
-1) or 0 >0. If ny<n,-ceng, then we denote f(nl,...,ns)=
2 Z

. n; ns_ . - .« e - - -
dim C g...gc dim U(nl)xSU(nz)x...xSU(ns) an n _-n;"-...ong

+s-1. Then af/ani= Z(nl---ﬁi---ns-ni); 2(n2-'~ns-n1);0.
Therefore coh(3.6)2 £(ny,...,n)2 £(Z,...,2)= 257 -3s-1.

(1) Suppose s=2r+q<Z2. If r,q<l, then (1) is trivial.
If r=0, gq=s=2, then (1) follows from Prop.3.3. If s=3, then
(1) follows from Prop.3.4. Assume s>4. Suppose r=0: Then we

may assume nl;...;n5;3. If n 20, n, then denote f(nl,...,ns)

1
= 1 * o 0 b 1 —A 2.. 2 * o - 2
= dim pR[n2 ns) dim SO(nz)x...xSO(ns)— (n2 ‘n T+, n -n,
2
T...oDng +n2+...+n5)/2. Then Bf/ani= ni(n22-~-ﬁi2---nsz—1)+

(nz---ﬁ.---ns+l)/2 or 0 20. If ny<n,--+n_, then denote

1 1=

£(ny,...,n )= dim Rnlﬁ...ﬁgns-dim S0(n;)x...xS0(n )= n1-°-ns‘(n12
2 3 . o o - » = -

*o.otng )/2+(n1+...+ns)/2. Then af/eni— ny ﬁi n, ni+1/2;

nz---ns-n1+1/2; 1/2. Therefore coh(3.5)> f(nl,...,ns);
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f(3,...,3)=‘35-35= Sq-Sq. Suppose q=0: Then we may assume

.>n_>2. If nlnzins'--ns, then denote g(nl,...,ns)=

) . _ 2.... 2 e
dim pR(n3~--ns)—d1m Sp(nS/ZJx...xSp(ns/Z)— (n3 n “+ng n_

ny>..

-n32-...—n 2-ns—...—ns)/z. Since ag/ani;O (i=1,...,s), coh(3.5)

S
_ »28-5_,,5-3_ 9y =
> g(nl,nz,ns,...,ns); g(nl,nz,z,...Z)- 2 +2 3(s-2)

er(zzr-s+2'3)-6r+6; 4¥-6r. If n.n. <n -.n_, then denote h(ng,

172="3"
,n )= dim Hnl/zm...ans/ -dim Sp(nl/Z)x...xSp(nS/2)= Ny
H H
—(n12+...+n52+nl+...+ns)/2. Since ah/ani= nl---ﬁi-e-ns-ni—l/z;
e o 2 cd4-7- : -
n, n -n, 1/2> nyn,"-n; 1/2> 2-4-2-1/2>0 (i=1,...,s), coh(3.5)

> h(nl,...,ns); h(ns,ns,ns,n4,...,ns); h(n4,n4,n4,n4,n5,...,nsj

> h(2,...,2)= 25-3s= 4% -67. Finally suppose r,q>1: Then we may

assume ny>...>n, >2 and n, . >.. >3. If nyn,>ng...n_, then

= 2r+q
denote g(nl,...,ns)= dim pR(nS---ns)-dlm Sp(n3/2)x...x8p(n2r/2)

_ 2 2 2 2
2r+q)_ (n3 °-'Ils +n3"'ns ns RN IIS ns
r+q)/2 Since ag/an 20 (i-l,...,s), coh(3.5)>

2r-5 -5)+6—

xSO(n .xS0(n

2r+1) %

TNyt Rorert

g(ny,...,n )2 g(ng,n,,2,...,2,3,...,3)= 227,39

6r-3q> 4 'Sq—6r—3q. If nno<ng-- ns, then denote h(nl,...,ns)=

dim Hnl/zn...ﬂanr/szn2T+1m...mRn2r+Q—dim Sp(n1/2)x...x5p(n2r/

— * o » - 2 2 -
2r+q)_ n, n, (n *ooatng +n1+...+nZr

Since ah/an 2 n,-+-n -M ~1/2> n, (n -1)-1/2

.3q+2

2)xSO(n2r+l)x...xSO(n

n2r+1-...~n2r+q)/2.
;2(22-1)—1/2>0, coh(3.5)> h(nl,...,ns); h(ns,ns,ns,n4,...,ns);

h(ng,n )2 h(2,...,2,3,...,3)= 47 -39-67r-3q.

40y My gy e -
Q.E.D.
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4. Orthogonal transformation grouns
of cohomogeneity at most 3
(I) Let (G,EN) be a real irreducible o.t.g. of type I.

. . N, .
Proposition 4.1 coh(G,EN);3 if and only if (ayla,R ) is

equivalent as real representation to one of the followings:
coh=1: none,

coh=2: none,

coh=3: (1) (Alel,(ZAl)rﬁ(ZAl)r,Rsts),
R R

(2) (AgxA A.Tac2a) T, R%RYY,
R R

1’

5

(3) (C,xA;,A."8(200) 7, R°aR%),
R R

1)

(4) (Rpxap, A, T8 (20 T, RPN aRY) s K23,
R R

2%

(5) (D xA

MTR(20) TR 3R3): k>4,
R

(6) (BSXA

l,ABTﬁ(ZAI)r;RBKRs) s
R R

8mRs); i=3,4,.

(7) (DyxA
4 R

1,AirﬁC2A1)r,R
R

Proof: Suppose coh(G,EN);S. Then Ca,ia,RN) is equivalent as
real representation to (1),...,(6), or (7) owing to Prop.3.3(2)
(4), Prop.2.17, Lemma3.6(1) (F=R, i=0, n=3), 32doh(G,EN)2d,+3,
Prop.2.1(dy<3), doh(AkxAl,CA1+Ak)T§(2A11r,RdimAk §R3]=2dimAk-3;13

(k;Z),‘Prop.Z.S, doh(CkxAl,(2A1)rﬁC2A1)r,Rd1ka mR3]=2dika«3;17
R R

[(k22), doh(CpxA A, 8(201) 7, R2KE2 aR?) =4k (k+1) -6218 (k23] , Prov.
R R = |

1’
2.8, doh(ByxA,,A,"8(201) 7, RZK+1C25R%)=2dinB, ~3239 (k23), doh(B,x
R R - T T4

A

nTa(2a) T, ROeRY =9, Prop.2.11, doh (D xA,,
R

nTR(2A) T, RIIMDy g
R

' R

by

R5)=2dika-3;53(k;4), the equivalence of o.t.g.'s O(D4xA1,

4-1
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A, Ta(200) 7, R%aR%) for i=1,3,4 (cf. Remark 2.13), Prop.2.15,
R R

Remark2.16, 2dimE -3> 25,

-32> 2dimE,-3> 2dimE;-3> 2dimF,-3> 2dimG

8 7 6 4 2
doh (F,xA,,AsT8(20:1) 7, R*OaR3)=23, doh(G,xA. A, &(2A1)7,R &R™)=4.
4771 R R 2771
R R
Conversely if (G,EN) is induced from (1),...,(5), or (7),

then (G,EN) can also be induced from (SO(nl)xSO(K),idﬁid,RnlmRS)
R R

for some n1# 4. So coh(G,EN)=3(cf. Prop.3.3(2)(4)). An o.t.g.
induced from (6) is of coh 3. 1In fact Spin(7)xSO0(3) acts on
R(8,3) through 1 by the action(3.2)(cf. Prop.3.3 Proof), and the

isotropy subgroup at

, where Ixil (i=1,2,3) are non-zero distinct real numbers, is
locally isomorphic to SU(2)(cf. Yokota[24, Theorem5.27, Theorem5.?2
1). 0.E.D.
(II) Let (G,EN) be a real irreducible o.t.g. of tyne II.
" Proposition 4.2 coh(G,EN);3 if and only if (a,ia,RN) is

equivalent as real representation to one of the followings:

coh=1: (8) (Ale

l,AlﬁAI,HﬁH),
H H

(9) (C, xA ,AlﬁAl,Han); k>2,
KAy 2
H H ,
coh=2: (10) (C.xC,,MfA,H'sH?); k22,
H H =
(11) (ApxA;, 308, HogH),
H H

coh=3: (12) (CoxC.,A184, ,H gH); k>3,
KXz MR BHT); k2
kan?): x22.

(13) (CyxA
k H

1:A1§3A1:H
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Proof: Suppose coh(G,EN);S. Then nZ;S(cf. Prop.3.3(1) (4)).
Assume n2=3. Then (az,pg,an) is equivalent as complex
representation to (CS,Al,HS] owing to Prop.2.20 and coh(Sp(nl)x

A,,id85A B 'aH®) >doh (A} ,pH(3))=12(cf. Prop.3.3(1)). So
H H
(E,ia,RN) is equivalent as real representation to (12) owing to

Lemma3.6 (1) (F=H,i=2,m,=n,,n=n.=3,d,+k{2> "1 (k-3)+1}=d,+3),32doh (G
2=y ,0=N,=35,d4 2 z

16

ENy>d.+3,Prop.'s 2.4, 2.7, 2.10, 2.14, doh(D,xC.,A.8A,,H 0aH>)=
=2 p 6773771 H

105(i=5,6), Prop.2.15, Remark2.16, doh(E,xCy,As8A1,H 8§H3)=171.
H

Assume n,=2. Then (az,pz,an) is equivalent as complex
representation to (CZ,AI,HZJ or (Al,SAl,Hz) owing to Prop.Z2.20,
degpr=2n >4 (c£. Prop.2.20 and doh(Alel,3A1§3A1,H2§H2)=10). So
[a,ia,RN) is equivalent as real representation to (10) or (13)

owing to Lemma3.6(2) (F=H,i=2,m,=n >n=n,=2), 32doh(G,EN) 2d,+2,
L6452y

degpi1>4, Prop.'s 2.4, 2.7, 2.10, 2.14, doh(D.xA,,A.83A,,H
671 iy H

16 44%y=52(i=5,6), Prop.2.15, Remark 2.16,
H
28

doh(E7xA

L heR30,H mHz)Zdoh(E7xC2,AsﬁA1,HZSEH2)=59-
H H H H

Assume nz=1. Then (az,pz,an) is equivalent as complex
Tepresentation to (Al,A1,H) by Prop.2.20. So (E,ia,RN) is
equivalent as real representation to (8),(9) or (11) owing to

Lemmas.e(l)(F=H,i=2,m2=nl,n=1,di+n{zi'1(n-3)+1}=d2-3), 3>doh (G,EN)
10

>d,-3, Prop.2.4, coh(AsxA A38A, ,H "mH)=4(cf. The linear isotropy
H H

2 1’
representation of the symmetric pair (E6,SU(6)-Sp(1)) of rank 4
is characterized as a real 40 dimensional irreducible almost
faithful representation of ASXA1 owing to Section‘Z), Prop.'s

2.7, 2.10, 2.14, Remark 2.13, coh(D6xA1,AiﬁA1,H16SH]=4(i=S,6)(cf.
H



The linear isotropy representation of the symmetric pair (E7,
Spin(12) -Sp(1l)) of rank 4 is characterized as a real 64
dimensional irreducible almost faithful representation of D6xA1
owing to Section 2), Prop.2.15, Remark 2.16, coh(E7xA1,A5§A1,H28
wH) =4 (cf. The linear isotropy representation of the symmetric
pair (E8,E7-Sp(1)) of rank 4 is characterized as a real 112
dimensional irreducible almost faithful representation of E7xA1
owing to Section 2).

Conversely an o.t.g. induced from (8) or (9) is of coh 1
by Prop.3.3(1)(4)(F=H,n2=l,K=Sp(l)). An o.t.g. induced from (10)

is of coh 2 by Prop.3.3(1)(4)(F=H,n,=2,K=Sp(2)). An o.t.g.

2

induced from (12) is of coh 3 by Prop.3.3(1)(4)(F=H,n,=3,K=5p(3)).

2
An o.t.g. induced from (11) is of coh 2(cf. The linear isotropy
representation of the symmetric pair (62)80(4)) of rank 2 is
characterized as a real 8 dimensional irreducible almost faithful
representation of Alel owing to Prop.'s 2.1, 2.2, 2.4). If (G,
EN) is induced from (13), then coh(G,EN)=coh(Al,pH(Z));@oh(Al,
pH(2))=3 (c£.Prop.3.3) and coh(G,E")<coh (A, hH(2))=coh(A;,078(40)"
,ROR’)=1+coh (A, (44:)7,R%)=3(c£. The linear isotropy
representation of the symmetric pair (SU(3),S0(3)) of rank 2 is
characterized as a real 5 dimensional irreducible representation

of Al owing to Prop.'s 2.1, 2.2, 2.4), where the action of A1 on

pH(2) is given as Prop.3.3 and Lemma 3.2. Q0.E.D.
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(III) Let (G,EN) be a real irreducible o.t.g. of type III.
Proposition 4.3 coh(G,EV)<3 if and only if (&,id,RY) is

equivalent as real representation to one of the followings:
coh=1: none,

coh=2: (14) (RxA,xA ,tﬁAlﬁAl,Cka+lmC2); k>1, t in RY.
k™1 c ¢ C =

coh=3: (15) (RxA.xA, tﬁA1ﬁA1,Cka 1xc3); k>2, t in RX.
c ¢
(16) (RxCpxA, ﬁﬁAlﬁAl,CmCkaCz); k>2, t in RS,
k c c c ¢ =

Proof: Suppose coh(G,E )<3. Then nZ;S(cf. Prop.3.3(1) (4)).
Assume n2=3. Then (&2,p2,cn2) is equivalent as complex
representation to (AZ,Al,Cs) owing to Prop.2.18, Remark 2.19 and

coh(U(ny)xA, ,1dﬁ2A1,Cn1mC )>doh(A;,pC(3))=6. If p1 is 'real!
\C
and n;26, then coh(c )= =coh (U(1)xG,xA, ,idfp &N, ,CaC™luC’)=
c c ¢ C

coh(alx(U(l)xAZ),plrﬁ(idﬁAl)R,Rnlm(CmC )g)2coh (80 (n)xU(3),
R C R C o
idfidp,R™'wC’ )= coh(U(3),pR(6))2doh (U(3),pR(6))= 12(cf. Prop.3.3
R

R
). So (El,pl,cnl) is not 'real' or ny<5. Then (a,iH,RN) is

equivalent as real representation to (15) owing to Lemma 3.6(1)

(P=C,i=1,m1=n

'real' of degree 6), Remark 2.3, doh(RxAkxAZ,ﬁﬁZA;ﬁAl,CﬂCk+2C2HC
C C C C

=(k+1) (2k-1)-8>27(k>4), Prop.2.6(N2(k=2) is 'real' of degree 11),

doh (RxC XA, ﬁﬁAlﬁAl,CmC4mC =5, coh (RxC,xA,,t8A 84, ,CuCo5mc3y>
2 cC C K72t e e ¢ T

Zkgc -dlmeCkxA2+d1ka_3=6(cf. Any isotropy subgroup

,n=n,=3), 3>coh(G,EN)>d.+3, Prop.2.2(As(k=3) is
1°0°0, 2 2d;

3

dingC
contains C _3), Prop.2.9(Ay (k2>3) is 'real' of degree>7), doh(Rx

,t8A 81, ,CeC% wC3) =325 1 2%2 Kk-9518(k>3), Prop.2.12(A; (k>4)

A - = Tk, .

is 'real' of degree>8), doh(RkaxA , CRA. ﬁAl,CmC wC)=3-2"-
clic ¢ C

k(2k-1)-9>11 for i=k, k-1 (if k>4), Prop.2.15, Remark 2.16,

B
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£8A18A,,CaC% aC>) =75, doh (RXE,xA, £AAs8A;,CaC>0rC7) =

c c ¢ C c c ¢ ¢

doh (RxE_ xA

672

194.
Assume n2=2. Then (az,pz,cnz) is equivalent as complex
representation to (Al,Al,CZ) by Prop.2.18. If (%l,pl,cnl) is

'real' of degree n1>4 then coh (G, EN)=coh(U(l)xa xA ,id&p18A,,

C C
cacMimc? )= coh(a x(U(1)xA;), et ﬁ(ldﬁA1)R,R m(CnC )g)2coh(SO(nqy)x
C C C C
U(2),ideidy RMigc? g)=coh (U(2), pR(4))>doh(U(2) pR(4))=6. So

R

(&l,pl,cnl) is not'real' or nI;S. Then (&,18,R ) is equivalent
as real representation to (14) or (16) owing to Prop.2.18, Lemma

3.6(2) (F=C,i=1,m =n,>n=n,=2), 52coh(G,E")2d +2, Prop.2.2(A;(k=53)

17™M
is 'real' of degree 6), Remark 2.3, doh(RxAkxAl,ﬁﬁAzﬁA1,Cka+1C2
c ,C C
8C%)= k%-4212(k24), doh(RxA,xA;, 820184, ,Cack*2028C%) = (k+1) (k+3) -
C C C C C
3>5(k>1), Prop.2.6(A2(k=2) is 'real' of degree 11), Prop.Z2.9(A:(
k>3) is 'real' of degree>7), doh(RxB,xA,,£8A ﬁAl,CmCZ ECZ)=2k+2—
= = k™1 k
cC °C C C
k(2k+1)-427(k>3), Prop.2.12(A;(k>4) is 'real' of degree>8, Ai(k=4)
k-1

for i=3,4 are 'real' of degree 8), doh(RkaxA £RA. ﬁAl,CmCZ mCZ

SRR c c C C

J=2k+1_k(2k-1)-4;15 for i=k-1,k(if k>5), Prop.2.15, Remark 2.16,

dOh(RXE6XA tﬁA1ﬁA1,CmC2 EC2)=26, dOh(RXE7XA tﬁAsﬁA1,CEC56 2)=
C C c ¢ c C c cC

87.

Conversely an o.t.g. induced from (14) (resp. (15)) 1is of
coh 2(resp. 3)(cf. Prop.3.3(1)(4)). If (G,EN) is induced from

(16), then coh(G,EN)=coh(U(1)kaxA1,idﬁA1ﬁA1,CxCkaC )=coh (U(1)x
c c ¢ ¢

(CkxAl),idﬁ(AlﬁAl)C,Cm(Hka)C)=coh(SO(2)x(CkxA1),idﬁ(AlﬁAIJ,Rzm(
cC H C H R H R

Hka))=coh(Ckx(SO(2)xA1),A;ﬁ(idﬁAl),Hkm(RzmH))=coh(SO(2)xAl,pH(2))
H H R H R

=coh(S0(2) ,pR(2))+coh (A, (2A,)7,R%)=2+1=3(c£. Prop.3.3).  Q.E.D.
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(IV) Let (G,EN) be a real irreducible o.t.g. of type IV.
Proposition 4.4 coh(G,EN);3 if and only if (a,ia,RN) is

equivalent as real representation to one of the followings:

coh=1: none,

coh=2: (17) (ApxA;,Mi8hy,c 1ac?); k22,
C C

coh=3: (18) (A.xAy,M8A1,C " 1mc®); K23,
C c

Proof: Suppose coh(G,EN);S. Then (a,ia,RN) is equivalent as

real representation to (17) or (18) owing to Prop.4.3. In fact

(CpxAp, Ay, P ac?) (k22) and (Alel,AlﬁAl,szCZ) are 'real’,
C C C C

so they are not real irreducible, and coh(AzxAz,AlﬁAl,C°mC3)=4
C

Z,idﬁAlﬁAl,CmcsmCS) is equivalent to the linear
cC C C C
isotropy representation of the Hermitian symmetric pair (SU(6),

since (U(l)xAzxA

S(U(3)xU(3))) of rank 3 whose restricted root system is of type
C(cf. Tasaki-Yasukura{22], Helgason[7]).

Conversely an o.t.g. induced from (17)(resp. (18)) is of
coh 2(resp. 3) since (U(l)xAkxAl,id?AlgAl,Cng+1gC2) of k>2(resp.
(U(l)xAthZ,id?AlgAl,CgCh+lgC3) of h>3) is equivalent to the linear
isotropy representation of the Hermitian symmetric pair (SU(k+3),
S(U(k+1)xU(2))) of rank 2(résp. (SU(h+4),S(U(h+1)xU(3))) of rank
3) whose restricted root system is of type BC(cf.[22], [7]).

Q.E.D.
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(V) Let (G,EN) be a real irreducible o.t.g. of type V.
Proposition 4.5 coh(G,EN);S if and only if (a,iH,RN) is

equivalent as real representation to one of the followings:

coh=1: (19) (A, (280)7,R%), (20) (Ag,027,R%),
(21) (C,,h2",R%), (22) (B, Mm%, R k23,
(25) (D, M7, RE); k24, (24) (D,,0,7,R%); 1734,
(25) (B, 0s",R%) (26) (B,,0.,R0),
(27) (6,027 ,R),

coh=2: (28) (A,,(M+A2)T,R%),  (29) (A}, (400)7,R%),
(30) (Cq,027,RMY), (31) (Cy, (200)7,RY),
(32) (6,,M7,RY), (33) (F,, 0T, R0,

coh=3: (34) (A5, (M+ns)T,RY%),  (35) (Cy, (20007, R%D),
(36) (C4. 02" ,R%TY, (37) (Bg,02",RPD).

Proof: Suppose coh(G,EN);S. Then (a,ia,RN) is equivalent as
real representation to one of (19)~(37) owing to Prop.Z2.1,
coh (A, (Ar+A )T, RY™AK) =k, Prop.2.5, coh(Cy, (281) T, Ry =k,
con(Cy,ha T, R (K )y gy cee oey, 0,7, RICFD 2Dy 560

equivalent to the linear isotropy representation of the symmetric

pair (SU(2k),Sp(k)) of rank k-1), Prop.Z2.8, coh(Bk,Azr,RdimBk)=k

, Prop.2.11, coh(Dk,Azr,Rdika)=k, the equivalence of O(D4,Air,

R®) for i=1,4,3, Prop.2.15, coh(F,,M",R°%)=4, coh (Eg,As",R"°

coh(E,, M7, R1*%)=7, con(Eg,n,T,R%*E

)=6,
)=8.

Conversely an o.t.g. induced from one of (19)v(24) is
equivalent to (SO(n),id,R™) for some n#4, which is of coh 1.
An o.t.g. induced from (25),(26) or (27) is of coh 1(cf. Yokota
[24,Theorems 5.27, 5.50, 5.3]. O.t.g.'s (28)v(33) are equivalent
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to the linear isotropy representation of the symmetric pairs
(SU(3)xSU(3),SU(3)), (SU(3),sU(2)), (SU(6),Sp(3)), (Sp(2)xSp(2),
Sp(2)), (szGz,Gz), (E6,F4) of rank 2 respectively(cf. Prop.'s
2.1, 2.5, 2.15). O.t.g.'s induced from (34)~(37) are equivalent
to the linear isotropy representations of the symmetric pairs
(SU(4)xSU(4),SU(4)), (Sp(3)xSp(3),Sp(3)), (SU(8),Sp(4)), (SO(7)x
S0(7),S0(7)) of rank 3 respectively(cf. Prop.'s 2.1, 2.5, 2.8).
They are also characterized by their degrees among 'real' complex

irreducible representations. Q.E.D.



(VI) Let (G,EN) be a real irreducible o.t.g.

Proposition 4.6

of type VI.
coh(G,EN);S if and only if (a,ia,RN) is

equivalent as real representation to one of the followings:

coh=1:

coh=2:

coh=3:

(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)

(54)

(RxAk,tﬁAl,Cka+1); k>1, t in RX,
C
(Rka,ﬁﬁAl,CmC Ky, k>2, t in R,
C
(Rka,tﬁAl,CmC2k+l); k>3, t in R,
c ¢
(Rka,tﬁAl,CmCZR); k>4, t in RY,
c ¢
(RXD4,tﬁAi,CmC8); i=3,4, t in R%,

ci’c
(RxAl,tQZAl,CmCSJ; t in RY,
C

(RxAs,tﬁAz,CmCG); t in RX,
C

C

(Rsz,fﬁAz,CmCS); t in RY,
c C

(RxG,,t8,,CaC’); t in R,
c C

(RXBS,fﬁAa,CmCS); t in Rx,
C C

(RxDS,tﬁAs,CgCIG); t in RY,

(RxA, ;t81,,Cac'?); ¢ in R¥,

(RxAZ,tQZAI,CmC y; t in RY,
C C

(RxA, fﬁAz,CECls) t in RY,

C

(RxAg tﬁAz,CmC21) t in RX,
c C

(RxB4,tﬁAu,CmC16) t in RY,

(RxEg tﬁAl,CnC27) t in R¥.

C

4-10
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Proof: Suppose coh(G,EN);S. Then (G,id,RN) is equivalent as

real representation to one of (38)~(54) owing to Lemma3.6(1) (F=C,

i=1,n=1), Prop.2.2, Remark2.3, coh(U(l)xAk,idﬁAz,CﬂCk+1c2)=[(k+1)
C C

/2] (c£. (U(l)xAk,idgAz,Cng+1C2) is equivalent to the linear
isotropy representation of the symmetric pair (SO(2k+2),U(k+1))

of rank [(k+1)/2]), [(k+1)/2]1>4(k>7), Prop.2.6, Prop.2.9, Prop.

2.12, Remark2.13, coh(U(1)xDg,id8As,CuC 2)24(cE. (U(1)xD,id8ks,
C C C
cuc??
C
symmetric pair (E7,Sp(1)-Spin(12)) of rank 4), Prop.2.15, Prop.

) is contained in the linear isotropy representation of the

2.16, COh(U(l)XF4,idﬁAq,CEC26J;7(Cf. Each isotropy subgroup
C
contains a group which is isomorphic to SU(3) in G,CSpin(7) C

Spin(8) F4 by Yokota[24, Prop.'s 5.45, 5.48, Thm's 5.33, 5.27,
5.21), coh(U(l)xE7,id§As,CgC56);4(cf. (U(l)xE7,idgAe,CgC56
contained in the linear isotropy representation of the symmetric

) is

pair (Eg,Sp(1)-E,) of rank 4), doh(U(1)xG,,id8A:,Cact*)=13, doh(
c... ¢C
U(1)xF,,idfA:,CaC %) =51, doh(U(1)xEy,idfiAs,CaC "
c ¢ C

idg&A, ,CmC )=132, doh(U(l)xES,idﬁA7,CmC
C C C C

Conversely coh(38)=coh(39)=1 since SU(k+1l) and Sp(k) are

)=77, doh(U(l)xE7

133 248

)=247.

transitive on hyperspheres in the representation spaces. (40)n
(45) are equivalent to (SO(Z)XSO(n],idﬁid,Rszn)for some n#4 of
R R

coh 2. The o.t.g. induced from (46) is equivalent to O(SO(Z)XGZ,

'idﬁAzr,Rsz7) and the isotropy subgroup at [ o ] in R(2,7)=
R B

R
RZHR7(a>B>0) is isomorphic to SU(2) by Yokota[24, Example5.1], so
R

coh(46)=2(cf.Prop.3.3(1)(4)). The o.t.g. induced from (48) is

equivalent to the linear isotropy representation of the symmetric

4-11
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pair (E6,U(1)-Spin(10)) of rank 2 by Prop.2.12 and Remark2.13
since it is characterized by its degree up to equivalence. Since
[(k+1)/2]=2 for k=4, coh(49)=2. The o.t.g. induced from (50) is
equivalent to the linear isotropy representation of the symmetric
pair (Sp(3),U(3)) of rank 3 by Prop.2.2 and RemarkZ.3. Since
[(k+1)/2]=3 for k=5 or 6, coh(51)= coh(52)= 3. The o.t.g. induced

from (53) is equivalent to O(SO(Z)xSpin(Q),idﬁAqr,Rszl6). Any
R R
element of R(2,16)=R*mR® to the form [« 0 0...0 0 0 0 0...0
R 0 B 0...0y 6 € 0...0
. .. . . 2,.2,. 2, .2
, and the isotropy subgroup is isomorphic to SU(3) if o #B"+y " +§

+$2 owing to the use of the mapping f in Lemma 3.2 and Yokota[24,
Theorems 5.51, 5.27, 5.2]. So coh(53)=3. The o.t.g. induced from
(54) is equivalent to the linear isotropy representation of the
symmetric pair (E7,U(1)-E6) of rank 3 by Prop.2.15 and Remark 2.16.
So coh(54)=3. Q.E.D.
(VII) Let (G,EN) be a real irreducible o.t.g. of type VII.
Proposition 4.7 coh(G,EN);S if and only if (%,ia,RN) is

equivalent as real representation to one of the followings:
coh=1: (55) (A, A1,C"" )5 ket,
(56) (Cp,01,C%)5 K22,
coh=2: (57) (Ds,As,Ct0),
(58) (a,,h2,C10),
§0h=3: (59) (A

4-12
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Proof: Suppose coh(G,EN);S. Then (a,ia,RN) is equivalent as
real representation to (55)~(58) or (59) by Prop.4.6. 1In fact
(B, An,C28 Y, o, 00,078, A, 200,0%), (ag,02,C0), (C,un0,C0),
(GZ,AZ,C7), (BS,Aa,C8), (B4,AR,C16) are 'real' and not real
irreducible, so they are not of type VII, and coh(Az,ZAl,C6)=
coh(AS,Az,C15)= coh(E6,A1,C27)= 4 since the restricted root
systemsof (Sp(3),U(3)), (SO(12),U(6)), (E7,U(1)-E6) are of type
BC(cf. [7], [22]).

Conversely coh(55)= coh(56)= 1 is evidént. O0.t.g.'s induced
from (57), (58) are of coh 2 since the restricted root systemsof
(E6,U(1)'Spin(10)) and (SO(10),U(5)) are of type BC. The o.t.g.
induced from (59) is of coh 3 since the restricted root system
of (S0(14).U(7)) is of type BC (cf. [7] and [22]). Q.E.D.

Now we have the following result.

Theorem 4.8 Let (G,EN) be an o.t.g. such that
the identity representation id:G—SO(N) is real irreducible.
Then coh(G,EN);S if and only if (a,ia,RN] is equivalent as real
representation to one of the followings:

coh=1: (IX), (VIII), (8), (9), (19), (20), (21), (22), (23),
(24), (25), (26), (27), (38), (39), (55), (56).

coh=2: (10), (11), (14), (17), (28), (29), (30), (31), (32),
(33), (40), (41), (42), (43), (44), (45), (46), (47,
(48), (49), (57), (58).

coh=3: (3.7), (1), (2), (3), (4), (5), (6), (7), (12), (13],
(15), (16), (18), (34), (35), (36), (37), (50), (51),
(52), (53), (54), (59).

4-13
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Proof: Unifying (3.7) of Theorem 3.5, Propositions 4.1n 4.7 and
type VIII, IX in Section 3, we have the result. Q.E.D.

Remark 4.9 O.t.g.'s induced from (25), (26), (27), (39),
(55), (56), (17), (46), (47), (57), (58), (6), (18), or (59) are
not maximal. O.t.g.'s induced from (13), (16), or (53) are not
obtained from the linear isotropy representations of any
Riemannian symmetric pairs. Others are equivalent to the linear
isotropy representations of some Riemannian symmetric pairs of
rank at most 3 if they are maximal. (26) is obtained from the
linear isotropy representation of (F4,Spin[9)). The o.t.g.
induced from (24) (resp. (42), (7)) 1is equivaleﬁt to one from
(23) (resp. (41), (5)) of k=4.

Remark 4.10 O.t.g.'s induced from (13) or (16) are missed
in the Theorem 7 of Hsiang-Lawson[ll] if k and 3 are relatively
prime and k>4, since the dimension of the representation spaces
of (13) or (16) is 8k and the others of cohomogeneity 3 are of

dimension 3m for some integer m except (53) of dimension 16.

4-14
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