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Coherent Singular Complexes in Strong Shape Theory

Akira Koyama

1. Introduction.

In[ 2 ] Borsuk introduced the concept of shape theory for
compacta, and many authors investigated and extended the theory
to more general spaces. Afterwards several authoré introduced
a stronger concept of the theory, which is called strong (or
fine) shape theory. The origin may be found in Christie [ 7]
or Quigley [31]. Various approaches were given by Edwards and
Hastings [11], Bauer [ 1], Lisica [15], Kodama and Ono [13],
Dydak and Segal [ 8 ], Calder and Hastings[ 4 ], Cathey and Segal
[5)], and Lisica [16]. In particular, [11],[ 1), [ 5] and [16]
considered one for arbitrary spaces. Note that those approaches
are equivalent for compacta.

Current interest stems from recent development in coherent
prohomotopy theory, sometimes called Steenrod homotopy theory.
The relation which strong shape theory bears to Steenrod homotopy

theory is entirely analogous to that which shape theory bears to



Cech homotopy theory. Lisica and Marde$ié [19 ] developed the
coherent prohomotopy category CPHTOP, and described the strong
shape category SSH of arbitrary spaces by using the category
and ANR-resolutions defined by Marde$ic [24 ] (see [18 ] for
the summary).

In this paper we investigate the coherent prohomotopy

category and construct the coherent singular complex functor

SC: CPHTOP

KAN. For inverse systems X of spaces we

define the canonical coherent maps Tyt ISC(§)| — X

which have the property;

If X is dominated by a CW-complex in CPHTOP, then Ty

induces an isomorphism in CPHTOP.

Hence we have the stability theorem in coherent prohomotopy
theory. Corresponding a space X to the rudimentary system
X = (X), the homotopy category can be considered as a full
subcategory of CPHTOP. Then for each space X, we have the
natural isomorphism Oy’ Sc(z) ~—— S(X) and the commutativé

triangle;

s (X)| ———— [|s(X)]

\/

where S is the usual singular complex functor and the canonical

map |S(X)|] ——— X (see [27] and [28]).

X:



The idea to consider So(z) goes back to Bauer [1].

However, he used a less satisfactory coherent procategory.

Next, for inverse systems (X,x) of pointed spaces we

define the i-th coherent homotopy groups ni(x,x), which is an

invariant in CPHTOPO. Then the canonical coherent map T(X x):

ISC(X,X)I — (X,x) induces a weak equivalence. That is;

T(_X_,_x_)#: ni(ISC(Z(_ch_)I) & wi(}_,_}g) for all i > O.

As another algebraic invariant in CPHTOP, we introduce the

coherent singular homology theory Hi by using the functor SC,

and show that

. . ~ c . 1
Tﬁ*' Hi(|SC(§)|.G) = Hi(g.G) for all i > O,

where H, is the usual singular homology theory. Hence we
have the Hurewicz isdmorphism theorem between coherent
homotopy groups and coherent singular homology groups.

Moreover we show that coherent singular homology theory
is different from Steenrod-Sitnikov's one even on inverse
sequences of compact polyhedra. By the proof we can see
that Bauer's assertion, (1], Theorem 7.7, is not wvalid, ahd
that the S-C homology theory defined by Ono [30] is also
different from the Steenrod-Sitnikov's one. The general
description of Steenrod-Sitnikov homology theory was given
by Lisica and Marde$ic [17] (see [22] and [23] for more

details).



Let (X,x) be an inverse sequence of arcwise connected
spaces. Modifying Edwards and Geoghegan's way [9], we
introduce another construction of the pointed CW-complex
E(X,x) and the coherent map p(X,x): E(X,x) — (X,x)

which also have the property;
o (x,x)# Ti(E(X.x)) = 7{(X,x) for all i > O.

Then we have the map $(X,x): E(X,x) — ISc(X,x)l and the

following triangle which is commutative up to coherent

homotopy
Y(x,x)
E(X,x) - s _(X,x)]|
P T
(X, x) (X,x)
(X, x)
Hence w(x x) is a weak‘equivalence.
I 7

Moreover our results in CPHTOP are summarized in strong

shape theory.

In this paper we will assume that readers are familiar
with shape theory and prohomotopy theory. [26] is a good
reference for those theories. Throughoﬁt this paper spaces
are topological spaces, and maps are continuous functions.
ANR means an absolute neighborhood retract for metrizable

spaces.

I wish to express my sincere appreciation and gratitude

to Professor Y. Kodama.



Notations: For each n > 0O, let A" pe the standard

n-simplex, i.e.,

n
A" = {(to,...,tn) e pi+! [ t; 2 0 for every i, _Elti =
1=
For each i, 0 < 1 < n, let e, be the i-th vertex of AT,
Ifn>0and 0 < j < n, the j-th face operator 8?:
201 —— A" ig defined by
3 (t t_ ) = (t t 0,t t )
J- O,-n-, 1"1—1 - O;aao, j—lg 9 J.,ooog n_la
Ifn >0 and 0 < j < n, the j-th degeneracy operator o?:
Al A" is defined by
n .
cj(to,...,tn+1) = (to’""tj—l’tj+tj+1’tj+2"“"tn+1)'

I = the unit interval [0,1].



2. Coherent prohomotopy.

Throughout this paper we consider only inverse systems of
aces and maps X = (Xk,le,,A) over directed cofinite sets.

In this section we shall introduce the coherent prohomotopy
tegory defined by Lisica and Mardedic¢ [19]. By a system map

X

Y = (Yp,qpu,,M) we mean an increasing function

M ——— A and a collection of maps fp: X y — Y ,

¢ (p "

M, satisfying

(1) fup¢(u)¢(u') B quu'fu" for w <u' in M.

A coherent map f: X —— Y is defined as follows;

sonsists of an increasing function ¢: M ——— A and of maps

n n ‘
Ao X¢(un) Ypo’ L (Uo"°-’un) € M, n >0, which
tisfy
(2)  £,(a5(8),x) = q £ (t,x), if j =0,
= worr o

fu (t,x), if 0 < J < n,

-J
f (t,p (x)), if j = n,
Hn ¢(un_1)¢(un)
n-1
where x &€ X , t & 2 , n >0,

oCu)

(8) £, (o5(t),x) = £ ;(t,x), for 0 <J <m,
- B

where x &€ X , t é~An+1, n > 0,
oCn )



n

here M, n > O denotes the set of all increasing sequences

B = (po,...,pn) in M, and Ej = (pO,eoogujﬁlguj+lgono,pn) and

EJ - (uo’._,,pj,pj,...,pn) for B = (po,euo,pn) e Mn and O < J < n.
Every system map f: X — Y can be viewed as a coherent map from

X to Y by putting fu(t,x) = f p

uo ¢(po)¢(un)(x) for B = (onnnvyun)

n
and (t,x) € A" «x X¢(un).

A coherent homotopy from f to f' is a coherent map F:

X xI= (Xx x I’pxx' x 1,A) — Y, given by ¢ > ¢,¢', and Fu

such that
/fw

(4) Fﬂ(t,xso) = fﬂ(t’p¢(un)¢(pn)(X))’

Fﬂ(t,X,l) = f'l{(t’pq,. (un)q,(un)(x)):

n

where x € X t €A°, n>0,

q) 9
(r)
which is written by F: £ = £'.

Next we define the composition gf of f and

|

g:
N). In the case f is a system map f: X —

i

Z = (Zv;rvv{s

(5) (gf),(t,x) = g\,(t,fq,(\, )(X))g where
- - n

_ n > & A",
= (vo,...,vn) &N, n>0, x & X¢$(vn) and t

Hence if X and Y are rudimentary systems (X) and (Y),
respectively, and f is a map from X to Y, then (gf)v(t,x) =

g,(t,£(x)), for x €X, t €%, vy €N, n > 0.



To define composition in the other case, one decomposes A

into subpolyhedra

n

_ n 1
Pi - {(toglolgtn) é A I to+°°.+ti—-l 5. é i to+°°n+ti},
0 < i < n, and considers maps a?: P? An_i,
n, ,n i n _
By* Pi ~—— A", where ai(t) = (#,2ti+l,a,ng2tn),
6?(t) = (2t0’°'°’2ti—l’#)’ # = 1 - sum of remaining terms.
Then
6 £) (t,x) = n n
(6) (g )x( »X) g(vos-.-,vi)(Bl(t)’f(w(vi%«mw(vn))(“l(t)’x”
where v = (v v._) €& NY, n> 0, x €X t € P
— O,-oo, n ] iy 9 q”p(vn)? iy

0 1 <n.

We define the coherent identity map 1X: X —— X by

putting for any A = (AO,...,ln) € An, n >0,

P

(7) e =,

(8) 1X(t,x) = Py (x), where x & Xx and t € a".
- On n

In [19] Lisica and Mardesié showed that inverse systems

of spaces and maps over directed cofinite sets and coherent

homotopy classes of coherent maps construct a category. They

call this category the coherent prohomotopy category and denote

it by CPHTOP. We note that our definition of composition of

coherent maps is slightly .different from the original one in



f19], but by the proof of [19], Lemma I.9.7, the coherent
homotopy class of our composition coincides with the one of
the original composition. Hence we have the category CPHTOP.
Similarly, considering inverse systems of pointed spaces,
Ppairs of spaces or pairs of pointed spaces and suitable maps,
we have the suitable coherent prohomotopy categories. We
denote those categories by CPHTOPO, CPHTOP2 and CPH’I‘OP2 0’

9

respectively (c.f. [21]).
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3. Coherent singular complexes.

1l

Let (X,XO) ((Xx’xox)’pxx"A) be an object of

CPHTOP,. Put X = (X = (X

2 0
For each i > O let Si(§> be the set of all coherent maps from

A) and X | XOx"A)°

l!px)\l! O)\9p)\x0

A% to X. For each 0 < k < i, i > 0, we define the functions

d, = di: 5,(X) — 85, ,(X) and s = si: s, (X) (X)

Si+l

by formulas;

i i
(1) d(h) = hsp , and s, (h) = ho

. for h & 5,(X).

Then the triple (Si(g),dk,sk) is a semi-simplicial complex,

which is called the coherent singular complex of'§, and 1is

denoted by Sc(g). Similarly we have the coherent singular

complex of X Then it is clear that Sc(go) is a subcomplex

0
of Sc(g); We denote the complex pair <SC(§)’SC(§O)) by

SC(X,XO). Then we have the following elementary facts.

-

3.1. Proposition. (1) The complex pair SC(X,XO) is a

Kan complex.

(2) If (X,X,) is the rudimentary system ((X,X5)), then

SC(X,XO) is naturally isomorphic to the usual singular

complex pair (S(X),S(XO)).

Proof. For convenience, we consider only the absolute case.
(1) Let fo,fl,...,fJ_l,fj+l,...,f1+l be i-simplexes of Sc(§>

such that d f* = 4 _f¥

K o1t k < 2, kK #j, ¢ # j. Namely, by (1)
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and the definition of compositions, if k < &, k # j, and g £ 3,

i i

[} P n
fl(lAn x 3y) = f_):(lAn x az_l) for every A & A°. n > 0.
Hence, for each A = (AO,..,,xn) &€ An, n > 0, we can define
the map fxz At x U a;+l(fﬂ —_— X by
A K# *o
~ i+l k i n
fx(t’ak (z)) = fk(t,z) for z € A~ and t &€ A,

~

Then the collection of the maps %x induces a coherent map f:

N\ 3;*}(Al) —— X. Therefore for a fixed retraction r:
k#j

(a'), defining the coherent map f:Al+1 —_— X

Al+1 VU, 311{+l
k#J

by £ = fr, we have an (i+1)-simplex f of SC(K) such that

dkf = fk for all k # j. That is, SC(K) is a Kan complex.

(2) Suppose that the rudimentary system (X) has the trivial

index set Ay = {r5}. Then for.each n > 1, the set Ag
consists of only one degenerate element (xo,xo,n,,,xo),

Hence for every i-simplex f of SC(E),

n

i n
?A(t,z) = f(xo)(eo,z) for all (z,t) € 4~ x A ,A_ezyo,

Hence if f corresponds to the map £ oat ——+ X given by

f(z) = f(x )(eo,z), we have a natural isomorphism from
0

5, (X) to S(X).
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In the latter part of this paper, if (X,Xo) is the
rudimentary system ((X,XO)), we frequently identify SC(X,XO)
with (S(X),S(XO)) by the above isomorphism.

Let f: (x,xo)f——-——* (¥,Y,) = ((YM,YOH), q M) be a

ppt’
coherent map. For each i > O we define the function

8;(£): 8;(X) — §,(¥) by
(2) Si(f)(h) = fh for h & Si(é)a

Then Si(f)(Si(zo))CZ Si(XO) for every i > 0, and by the

definition of composition the collection of Si(f), i>0, is
a semi-simplicial map from SC(E) to SC(X). Hence we have the
semi-simplicial map Sc(f): SC(X,XO) R SC(Y,Y:)° We call

Sc(f) the semi-simplicial map induced by f.

We have the following.

3.2. Theorem. The corresponding SC induces a functor

to the category KAN

from CPHTOP of Kan pairs and homotopy

2

classes of semi-simplicial maps.

2

The proof of Theorem 3.2 consists of the following three
lemmas. The three lemmas are actually dependent on [19], §I.
For convenience, in those lemmas we consider only inverse
systems of absolute spaces. The proofs can be immediately

applied to the relative case.
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3.3. Lemma. Let f,f': X — Y be coherent maps. If

f = f', then Sc(f) is homotopic to Sc(f').

Proof. Let F: X x I —— Y be a coherent homotopy

connecting f and f'. For each h €& Si(§), i > 0, we define

the coherent map R(h): At x I

Y by R(h) = F(h x 1). Then

(3) R(h)(ai x 1) R(hai), and R(h)(cli{ x 1) = R(hci).

i

For s = 0, 1, the map %;: 2t ——— At x I is defined by
zg(z) = (z,s8) for z & At. Then by (3) the functions
gl: 8.(X) — S, (¥) given by g (n) = R(h)ig induce the
semi-simplicial map g8g: SC(E) _ SC(X).

For each k, 0 < k < i, let ek: A1+l — 2t x I
be the linear map given by

= , i < j <
(4) ek(ej) ;(ej,O) if 0 < J £k,

(ej_l,l) if k < J < i+1.

Defining functions Gi: Si(ﬁ) — 5, ,,(¥), 0 <k <1, i2>0,

as follows;
i
(5) G (h) = R(h)e, for h € 8, (X),

by (3), the collection {Gi} gives the homotopy connecting

go and gl .
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In the case h is a system map, go(h) = fh and gl(h) = f'h.
That 1is, {Gi} is the homotopy connecting Sc(f) and Sc(f').

Assume that h is not a system map,

(6) go(h)ﬁ(t)z) = (F(h X 1))u(tyzso)

g n
= f(pO’.'.’“j)(Bj(t>’p¢(uj)¢(uj)h(¢(pj),e,,9¢(un))(dj(t)gz)).

n n
(7) (fh)ﬁ(t’Z) = f(PO9’°'9uj)(8j(t)9h(¢(pj)9'°°9¢(un))(aj(t),2))

~

where y = (ug,-+eouy) € M, n 20, 2 €47, t € P,

By the same way as [19], P.19 and P.20, we define a
decomposition of I x Ai into subpolyhedra Ti, 0 <k <i,

by putting (s,t) & Ti whenever

(8) Cpq Toeet ty < s < b+l s

and define maps ei: T; — A by

i
(9) ek(s,t) = (to,...,tk_l,(tk tooot tn) - s,

s ti).

(to tooat tk) - (1= 8), T qseeenty

Now we give the coherent map P(h): Al x I —— Y Dby

(lO) P(h) (t,Z,S) = f( )
u po,..a,pj

n
(Bj(t)’h(¢(gj)’...,¢(Pj+k)g¢(uj+k)’""Q(un))

(e I(s,a5(8)),2)),
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n
9

where p = (uo,...,un) & Mn, n>o0, z & Al, t & PJ

(s,a?(t)) € 179, 02k <nj, 0<J<n (see [19], P.20).

Then by the definition and [19], Lemma I.3.3,

i _ i i _ i
(11) P(h)(aj x 1) = P(haj) and P(h)(oj x 1) = P(hcj),

(12) P(h)ag

I

fh = Si(f)(h),

Il

(13) P(h)e; = g,(n).

In the case h is a system map, go(h) = fh. Hence the
coherent map P(h): a* x I — Y is defined by fh.

Then by the same way as the first part the correspondence
P induces a homotopy connecting Sc(f) and g5°

Similarly we can find a homotopy connecting Sc(f') and gq-

Therefore Sc(f) is homotopic to Sc(f'),

3.4. Lemma. S_(1,) is homotopic to 1g

JX)

Proof. Consider the decomposition of I x A™ defined in

[19], P.28, which is formed by certain polyhedra L? C I x A%,
0 < j £ n:
L7 = {(s,t) € T x a7 | £, +...+ t < IS <t 44t
j ‘ o *rt Y1 =2 = Yo i
We define maps y?: L? —a"J, 0 < j < n, by putting
n 2 ’ 2
(14) Yj(sst) = (#s T:gtj+1’ °9TI§ n)-
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If h & Si(g), i > 0, is not a system map, we define the

coherent map R(h): At x T — X by

_ n
(15)  R(n),(t,z,s) = p*o*jh(*js°°°s*n)(yi(s’t)’2))’

where X = (Ag,...,r ) € 47, z € 8%, (s,t) € LrJ? (see [19],

P.29).

Then by the definition and [19], §I.5,

i i i i
(16) R(h)(aj x 1) R(haj), and R(h) (o x 1) = R(hoj),

(17) R(h)%o = 1§p Sc(lX)(h)’

(18) R(h)m1 = h = 1SC(§)(h).

If h is a system map, 1Xh = h. Hence we define the

coherent map R(h) by h.
. . i, .
We define functions Gk' Si(ﬁ) —_— Si+l(§), 0 <k < i,
i > 0, by the formula;

i
(19) Gk(h) = R(h)ek for h & Si(§)°

Then the collection {Gi} induces a homotopy connecting Sc(lx)

and 1
5, (X)

3.5. Lemma. Let f: X —— Y and gt ¥ —— Z =

(Zv,rvv,,N) be coherent maps. Then Sc(gf) is homotopic to

s.(8)8,(f).
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Proof. By the same way as in [19], P.23, we define a

decomposition of I x A" into subpolyhedra M?k, 0<Jj<k<n,

which consists of all points (s,t) € I « Itk satisfying

(20) £ +.o+ ty_ g < 222 <t ey £y

(21) tk+l toeot tn < l%ﬁ < tk Fooat tn
For each O < J < k < n, define a map e?k: M?k —_— An by
putting e?k(s,t) = t' = (t4,...,t}), where

(22) £} = 52 tgs o.es £ = e tyq s

(23) £} =t + 5 - sty +aeet t5_1)

(24) €40 = tigs ees BLg o=t

(25) e T%E k+l? 't ta T T%E Ty o

(26) t) =1 - (t] +ooet th_q) = (B, +eoot EL).

If h & Si(z), i > 0, is not a system map, we define the

coherent map R(h): At x T ——— Z as follows;

(27)  R(h) (t,2,5) = (g(fn)) (s5,(s,t),2),

n i n
Where_\_)_= (\)O,-.-,\)n)éN 9 n_>_0, ZéA 9 (S,t)éMjk

(see [19], P.27).

Then by the definition and [19], §I.4,

(28) R(n)(a} « 1) = R(hs3), and R(h) (o} x 1) = R(ho3),
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(29) R(h)&, = g(fh) (5,(g)8,(£))(h),

i

(30) R(h)2; = (gf)h = S_(gf)(h).

If h is a system map, g(fh) = (gf)h. Hence we define
the coherent map R(h) by g(fh).
. . i,
Now we define functions G : S;(X) — 8, ,(2),
O< k<i, 1 > 0, by the formula;

i
(31) Gk(h) = R(h)ek for h & Si(z(_)°
Then by (28), (29) and (30) the collection {Gi} induces a

homotopy from Sc(g)Sc(f) to Sc(gf).

3.6. Remark. kBy the same way we have functors on CPHTOP

and CPHTOPO. We also denote those functors by Sc‘
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4. The canonical coherent map ty: |8 _(X)| —— X.

Let | * |: KAN CW be the geometric realization

functor, where KAN is the category of Kan complexes and
homotopy classes of semi-simplicial maps, and CW is the
category of CW-complexes and homotopy classes of maps (see
[27], Chapter III). Let (X,X,) = ((X ;X ),p,, ,,4) be an
object of CPHTOP

Now the coherent map =t lsc(§)| — X

X:

o°
is defined as follows:

n

n .
For » = (Ags--+s2 ) € A, n > 0, the map oA IS (X) 1

— X is given by
2o
(1)« (t,In,z]) = h (t,2), where (h,z) € S;(X) x &™,

i>o0, te .

Indeed, for each A & A", n > 0, T, is well-defined and

continuous, and rl(lsc(ﬁo)l)c: XOAO° Moreover,

(2) =, (%), Ih,2]) = h, (35(1),2)

h, (t,z)

h, (t,z)
=J

{l P, 5, T, (t,lh,z[) if j =0,

01 -0
LY (t,lh,z]) if 0 < j < n,
—J
where (h,z) & Si(ﬁ) x ot i >0, t & An—1’ 0<J<n,
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(3) TA(US}(t)sIh,Z‘) = h&(cg}(t)yz) = h j(tsz> =T j(tslhazl)’

.

i n+1

where (h,z) € Si<§) x AT, 1> 0, t &2 , 0 < J < n.

n
|

We note that maps LY AT x ISC(K)E actually induce the

coherent map Ty ¢ ISC(KO)I R EO’ and therefore 1, is the

X, X

coherent map from (ISC(z)I,ISC(go)l) to (X,X:) as pairs.

We call Ty the canonical coherent map of (X,XO).

For convenience, we denote the CW-pair (ISC(§)I,ISC(§O)|)
and the pointed CW-complex (|Sc(§)|’l({cn})l) by ISC(X,XO)I
and |SC(X,x)|, respectively, where c : At — X, n> O,

is the constant coherent map.

4.1. Proposition. Let f: (X,XO) —_— (Y,YO) be a coherent

map. Then fTﬁ = rXISC(f)I.

Proposition 4.1 is easily obtained by definitions. By
Theorem 3.2 and Proposition 4.1 we have the following theoremn,

which is called the stability theorem in coherent pfohomotopy

theory (see [10] or [28]).

4.2. Theorem. Let (X,XO) be an object of CPHTOP,.
If (X,XO) is dominated by a CW-pair (P,PO) in CPHTOPZ, then

(x,xc)

the canonical coherent map ty: ISC(X,XO)I

induces an isomorphism in CPHTOP,.
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) ———

Proof. Let f: (X,XO) —n—wa-(P,PO) and g: (P,PO

(X,XO) be coherent maps such that gf = By

1 .
(X,X4)

Proposition 4.1 we consider the following diagram. We

remark that if Y is the rudimentary system (Y), then

SC(X) = S(Y) and Ty is the canonical map NY: |s(Y)| —— Y.
s (£)] Is.(g)]
5 (X.%,) | ~ |S(P,B)] ERCH'SY
K
\
\\
PP T
T— vy | x
!
|
f Vv / g ¥
(nyo) * (PsPO) - -+ (X’XO)

Since (P,PO) is a CW-pair, it is well-known that wp is a

homotopy equivalence. Hence wp has a homotopy inverse »p.

Then we have

(4) (1S (g)|ef)ry = IS ()] euglS_(£)]

= |8 (g) IS (£)] =1 ,
C C ISC(nyo)!

(5) (IS (e)lef) = gupof = gf - (X,X )

Therefore 7T, induces an isomorphism in CPHTOP

X 2

4.3. Corollary. Let (X,XO) be an object of CPHTOP,.

Then the following are equivalent conditions;
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(a) (X,XO) is dominated

(b) (X,XO) is equivalent

(c) (szo) is equivalent

topology in CPHTOPZ,

(d) (X,X,) is equivalent

topology in CPHTOPZ,

(e) (X,XO)LE§ equivalent

t

to

%o

to

by a CW-pair in CPHTOP,,

a CW-pair in CPHTOPZ,

a simplicial-pair with weak

a simplicial pair with metric

an ANR pair in CPHTOP,.
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5. Coherent prohomotopy groups ni(x,x)°

Let (X,x) be an object of CPHTOP For each i > 0, we

0

denote the set of all coherent homotopy classes of coherent
i

maps from (S ,so) to (X,x) by wi(x,x). If 1 > 1, by using

H-cogroup structure of Sl, wg(x,x) igs a group. Indeed, if

c .
n> 2, ﬂi(X,x) is an abelian group. We call ni(x,x) the

i-th coherent prohomotopy group of (X,x).

For a coherent map f: (X,x) —— (Y,y) we define the

function f#: “2(545) _ WE(X;X) by
(1) f4([e]) = [fo] for each [¢] € n5(X,%).

Clearly f# is a group-homomorphism for i > 1, and depends
only on the coherent homotopy class of f. We call f# the

homomorphism induced by f.

Similarly, for an object (X,A,x) of CPI—ITOPZ,O and a
coherent map f: (X,A,x) — (Y,B,y), we can define the
i-th coherent prohomotopy group "i(z;éLﬁ) of (X,A,x) and
the homomorphism fy: ni(zLéif) —_— WE(XLELX) induced by f.

Then we easily have the following.

5.1. Theorem. The following statements hold;

. c |
(a) for i > 1 the correspondence n; induces a functor

to GR, and for i > 2, induces a functor from

——

from CPHTOP

0

CPHTOP2 0 to GR, where GR is the category of groups and

homomorphisms,
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(b) for an object (X,A,x) of CPHTOP we have the

2,0
following natural exact sequence,
C i
s c
(2) e v (KA — 2 (A% — P R S(Kx)

Iy

s (XA, %) — ..t

where i: (A,x) —— (X,x) and j: (X,x) —— (X,A,x) are

natural system maps induced by inclusions, and 3© is the

boundary homomorphism given by the restriction.

Next we will consider the relation between ni(ISC(X,x)l)

and n?(x,x). By Theorem 5.2, when we investigate coherent

1—_.
prohomotopy groups, we can widely use the usual homotopy

theory. A direct application will appear in Theorem 6.2.

5.2. Theorem. Let (X,x) = ((X,,x,),p,,,,4) be an object

of CPHTOP Then the canonical coherent map t.: !SC(X,X)l

0

— (X,x) induces isomorphisms

X

(1)t 7 (IS (X,x)]) = n3(X,x) for all i > O.

The proof is given by a modification of [34], and is long

but mechanical. Hence we show only the outline of the proof here.

Outline of the proof. Let (Z,zo) be a compact polyhedron

and let T = (K,t) be its triangulation such that K is an

ordered simplicial complex and zZq is its vertex. For each
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~-si = < > i i
kK-simplex s Vn(O)’ ’Vn(k) of K, the linear homeomorphism

Pyt [ — |s| is defined by

) for each j, 0 £ j £ k.

(3) ps(ej) = Vh(j

Let f: (Z,zo) — (X,X) be a coherent map. The function

¢T: (Z,=z

£ O) —_— ISC(X,X)I is defined as follows:

For any point z € Z there is a simplex s of K such that

z € |s|, where s = <vn(o),...,v )>. Now we define

n(k

(4) 0?(2) = Ifos,pgl(Z)I-

Obviously °£ is well-defined and continuous, and ¢§(zo) =

T
I({cn})l. Moreover T§°f = f.

Indeed, for A = ( g, ...,2 ) € A", n >0, z € [s]|C

N

and t € a™,
<r§«>§>}_(t,z> = 7, (£,99(2)) = 7, (£, 1200 M (2)])
= (£o ), (t,001(2)) = £, (¢,2).

i 1 -
If (Z,z,) = (87,s4), i > 0, by the above result, (15)#.
TTi(|SC(X,x)|) _— WE(X,X) is surjective. The injectivity
of (TX)# will be immediately obtained by the following two

claims.

Claim 1. Let T = (K,t) and T' = (K',t') be triangulations

2§ (Z,zo) by ordered simplicial complexes such that K' is a
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subdivision of XK and z, is a vertex of K. Let f,f': (Z,z

— (X,Xx) be .coherent maps. If f = f', then ¢£ = Qg: .

o)

Claim 2. Let T = (K,t) be a triangulation of (2,25) by

an ordered simplicial complex K with its vertex Zq¢ Then the
following holds;

o) = g for every map g: (Z2,z.) —— |S (X,x)].

T8 0 c ==

Proof of Claim 1. For each s =0, 1, let 25: 7 ———

Z x I be the map defined by ls(z) = (z,s) for z & Z.
Then TO = (K,Lot) and Ti = (K',zlt‘) are triangulations of
Z x {0} and Z x {1}, respectively Now we have the triangulation

T* = (T*,t*) of Z x I which satisfies;

(1) every vertex of T* is either one of TO or of Ti,
(ii) T* contains both TO and T{ as subcomplexes, and

{zo} x I as a l-simplex.
Moreover T* can be ordered such that;

(a) every vertex of T. is before any vertex of Ti,

0

(b) Dboth Lot and zlt' are order-preserving.

Let F: (Z,zo) x I ——— (X,x) be a coherent homotopy

*
connecting f and f'. Then we consider the map ¢§ 2 x I

. T*
_— |SC(X,X)|. By (ii) and the construction of L
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T*
@F ({zo} x I) = |({cn})|. For any z €& lS( = 'Vn(o)’°°°’vn(k)l’
. 220 3* -—
by (i) and (ii), (z,0) & |SO | = |(Vn(0)’o)”"’(Vn(k)’o)|‘
ok .
Moreover pso*. AT — lso*l is given by o L(u) = (ps(u),O)
for u & oK. Hence p_l(z) = phl*(z,O), and
S S

(Foso*)_x_(t’u) = Fy(t05(0),0) = £, (£,0 () = (fo), (£,0),

where A = (xo,...,xn) € An, n>0, ué€ Ak, t € a" Therefore

T+ -1 -1 T

QF (Z)O) = |Fps *,pS *(Z,O)I = prS’pS (Z)l = Qf(z)s

0 0

. T* :

That is, ¢F'| Z x {0} = ¢£..
. T * T
Similarly we have that g | 2 x {1} = L
T*, T _ T

Therefore QF R I

Before proving Claim 2, we introduce the concept of
simpliciality of maps. Let T = (X,t) be an ordered triangulation
of a polyhedron Z and let ¢: Z — ISC(§)| be a map. If for

each simplex s of K, there are h € Sc(ﬁ) and an order-

preserving simplicial map agt |s| —— AQ(S), where
q(s) = dim hs’ such that
(5) o¢(z) = Ihs’ as(z)l for each z & |s]|,

¢ is said to be simplicial with respect to T. Then we have;
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Claim 3. If a map ¢: Z — |Sc(§)[ is simplicial

with respect to T, then ¢ = ¢.

Proof of Claim 3. Let s be any k-simplex of T. Then

(rg (el 18D, (8,2) = =, (£,0(2)) = =, (t,Ing,a (2)])

]

(ng), (e (2)) = (hea)), (t,2),

s s’A
where X = (Ag,...,A ) €A, n>0, z &|s|, t &a".
Moreover @ Pt R — AQ(S) is induced by a monotone
function A[n] —— aA[q(s)]. Hence for every z & |s|,
0T (2) = |(ty8)o 0 (2)] = |(hoa e o2 (2)]
TX¢ X s'Ps s*s’Pg?Ps
= [h (age sz (2)] = lh e (2)] = ¢(2)
s'\%sPs’/Ps s’"s ’
T
Therefore ¢ = ¢.
TX¢

By a slight modification of [34], P.103, we have the

following.

Fact. Let T = (X,t) be an ordered triangulation of a

compact polyhedron (Z,zo) such that z, is a vertex of K. Then

for any map g: (Z,zo) —r ISC(X,x)I there are a subdivision

T' of T and a map ¢: (z,zo) —_— ISC(X,x)I such that

(i) ¢ is simplicial with respect to T,

(i1) g = ¢ as maps (Z,z5) — ISC(XsX)l-
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Proof of Claim 2. For any map g: (Z,zo) —_— ISC(X,X)I,

by Fact, there are a subdivision T' of T and a map ¢: (Z,zo)

—_— ISC(X,X)I such that

(6) ¢ is simplicial with respect to T',

(7) g = ¢ rel. ZO.,

By (7) and Claim 1,
T 1
(8) of _ = or .
%8 Tx ¢

By (6) and Claim 3,

T 1
® .

(9) o,

= ¢.

Hence by (8), (9) and (7), we have

(10) oF  « g.

'rzgg
Therefore the proof of Claim 2 is completed. That is, we
complete the proof of Theorem 5.2.
%

By the same way as the proof of Theorem 5.2 we can show

the next result, which is the relative version of Theorem 5.2.

5.3. Corollary. For an object (X,A,x) of CPHTOP, ., the

canonical coherent map Ty ISC(X,A,X)I —+ (X,A,x) induces

isomorphisms

_ . .
(rx)#: ni(ISC(X,A,x)I) = wi(X,A,x) for all i > 1.
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6. Coherent singular homology groups Hi(_)g:G)°

Let (X,A) = ((X,,A)),p,,,»A) be an object of CPHTOP, and

let G be an abelian group. For each i > 0, we define
c
(1) HI(X,A:G) = H; (S (X,A):6),

which is called the i-th coherent singular homology group of

(X,A) with the coefficient group G. If G is the additive group

of all integers Z, then we denote HS(X,A:Z) by HL(X,A).

Let f: (X,A) —— (Y,B) = ((Yu’Bu)’quu"M) be a coherent

map. Then we have the homomorphism f,: Hi(X,A:G)

HS(Y,B:G), defined by
(2) £, = 5_(D), .

We call f, the homomorphism induced by f.

Considering CPHTOP as a full subcategory of CPHTOPZ, we
define HE(E:G) and f,: Hi(g:G) — Hi(z:G) for a coherent

map f: X Y. We‘note that if (X,A) is a rudimentary

system ((X,A)), then Hi(X,A:G) is the usual singular homology

group H,(X,A:G).

6.1. Theorem. (a) The correspondence Hi induces a

functor from CPHTOP2 to GR.

(b) For an object (X,A) of CPHTOPQ, the following is a

natural exact sequence;
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(3) ... — HS

l+1(X,A:G)

C Lx c
Hi(é:G)————~+ Hi<§:G)

e .
, Hi(X,A:G) R

(c) For an object (X,A) of CPHTOPZ, the canonical

coherent map =

x: ISC(X,A)I (X,A) induces isomorphisms;

(Té)*: Hi(ISC(X,A)I:G) = HE(X,A:G) for every i > O

and every abelian group G.

Proof. Both (a) and (b) are immediate consequences of

Theorem 3.2 and well-known results. We will show only (c).

A semi-simplicial map n y ,y° 5. (X,A) S(ISC(X,A)!)
3

is given by

(4) ni(h)(u) = |h,u|l for h & Si(g) and u & Aia
Then by [27], Proposition 16.2,

(5)  (ny, a))ai H{(LAIG) = Hy (IS (X,A)]:6).

n
>0, A& A, n>0,

On the other hand, for any h & Si(g), i

(SC(TE)n(ELA))(h>L(t’u) (SC(TE)H(§Lé)(h))A(t’U)
= Cogn g, ay (D), (E,w)
= Ti(t’n(_}g’_‘p‘.)(h)(u))

= T)\(t, ‘h,U.|)

= hi(t,u),
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where (t,u) € A" «x Ai.

Hence sC(Tz) =1 Therefore by (5) we have

(x,4) S (X,A)"

Cc —

-~

(TX)*: Hi(|SC(X,A)|:G) o HE(X,A:G) for every i > 0.

For an object (X,x) of CPHTOPO we define the function

®%§L§): WE(ELE) Hg(E) by the formula;
(6) ¢%EL£)([h]5 = h,(1) for every [h] € n§(§45)0

Then the following square is commutative;

(te)y .
(1S (X,x) ) - 1S (X, %)
i i
MENC S * (%, x)
H, (s (X)) - H; (X)
(ty)x

where ¢ is the usual Hurewicz homomorphism of |S_(X,x)]|.
ISC(X3X>I CcC —

We will can Q%X %) the i-th coherent Hurewicz homomorphism
3

of (X,x). By Theorem 5.2 and Theorem 6.1(c) we have

6.2. Theorem (Hurewicz isomorphism theorem in coherent

prohomotopy). Let (X,x) be an object of CPHTOP,. Then
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. c
(a) if = (X,x) = 0 for every k, O < k < i-1, where i > 2,

i . .¢C . C
Q(X,x)' ni(X,X) = Hi(ﬁ),
and @?;lx) is an epimorphism,
- LA T T

(b) if m (X,Xx) = 0, then o

%X x) is an epimorphism and its
Ay X

kernel is the commutator subgroup of wi(x,x).

Similarly, for an object (X,A,x) of CPHTOP , We can

2,0
i

define the i-th coherent Hurewicz homomorphism @(X A x):
9 3

ng(X,A,x) E— HE(X,A:G). Then we have the following, which

is the relative version of Theorem 6.2.

6.3. Theorem (relative Hurewicz isomorphism theorem in

coherent prohomotopy). Let (X,A,x) be an object of CPHTOP, -

Then if nﬁ(X,A,x) = 0 for every k, O < k < i-1, where 1 > 2,

and ni(A,x) = 0, then

n

c c
‘ll'i(stsx) Hl(X’A)"

X,A,x)"

In [17], Lisica and Marde$ic¢ defined a strong homology

of inverse systems, which is an invariant of coherent prohcmotopy:

For an abelian group G they associate with X = (Xx’pxx"A> a

chain complex C#(E:G), defined as follows. A strong p-chain
. n
of X, p > 0, is a function x, which assigns to every ) & A
a singular (p+n)-chain x}_é'cp+n(XxO:G)" The boundary operator
d: C l(X:G) _— Cp(X:G) is defined by the formula
p+1'= =
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(7) (~1)n(dx>l = (—1)jx)\ .

0 =J

I &3

a(x, ) - p (x, )
N Aorq# A j
here 3 denotes boundary of singular chains. By definition,

S - — -
(8) HJ(X:G) = Hy(Cyu(X:6)),

which is called the p-th strong homology group of X with the

coefficient group G.

With a coherent map f: X — Y = (Yu’quu"M) they

associate a chain map f#: C#(E:G) —_— C#(X:G), given by

n
(9) (f#(X))E = iiof(

i
Rt A CI TS FRP N (D) Bl

where u € M', n > 0, x € C,(X:G).

Then f# induces a homomorphism f,: H;(E:G) — HS(X:G) for

each p > 0. f, is called the homomorphism induced by f. For

more details, see [22] and [23].

For every coherent singular i-simplex h & Si(z), i> o,

we define a strong i-chain g(h) of X by the formula

n i n
E(h)i = ﬁl#(A x A~) for A & A, n > 0,

here o™ x At is the singular (i+n)-chain of A" « a' described
in [23], §3 (c.f. [32]), §5.3). Then the correspondence ¢
induce a homomorphism from Ci(SC(E)) to C,;(X), which is also

denoted by &¢. The homomorphism § have the following property.
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6.4. Proposition. d% (h) = £(d°h) for h & 5. (X),

where dS

and d° are boundary operators of strong chain

complex and coherent singular complex, respectively.

Proof. For every x = ()

3 (¢ (h)y)

n
O,...,xn) EAr, n> 0,

1l

oy 407 87)) = n 4G (% x 2 7))

::hx#@An x AT 4 (1) x aaty

i
= ( z ( 1)Ja D (An Ly wat p e 1 (-
A# k=0
2 L(at7hy)

n . .
J n n-1, . A1
jio<--1> hy 425877 < a%)

N 2k (8171

e e

(-1)%n, (a7
k=0 -

n o~

=p)‘>\#)\#(A xAi)+

Jj=1

i—l)

I o

(-1)%(nag), (a7 x

k=0

(-1)j§(h)A
1 =J

I &3

i .
+ ()™ (-1)¥emad)
k=0 K'A

(—1)jh)\ #(An—l
—J

iz 1,

l)k n
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Hence by (7) and the definitions,

(-1)¥E (nd
0

(-1

I

||

<—1>“d~°’<a<h>>l )y

o

k

(-1)"e(
k

i B

O(—l)khaf;)l = (-1)%e(a®(n)), -

By Proposition 6.4, we have the natural homomorphism

gy: H;(X:G) — HJ(X:G) for each i > 0.

Then the following natural problem is posed;

Problem 1. Under what conditions of X and G is the

. i, .
homomorphism EX isomorphism?

We note that there is an inverse sequence X of compact
polyhedra such that Eiz Hi(é) —_— Hi(g) is not surjective.

The details will be discussed in the next section.
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7. Fundamental singular complexes.

Let X = (Xn’pnn+1) be an inverse sequence of spaces and
maps. For each i = 1,2,..., let K;(X) be the set of all

strong fundamental sequences from At to X in the sense of

Lisica [15]. That is, every h € K, (X) consists of maps h:
Ai ——— Ym and of maps hmm+1: I x Ai — Ym such that
(1) h__ .(0,u) =h_(u),
(2) hmm+1(1’u) = pmm+1hm+1(u)'

For each i > O and each k, O < k < i, the k-th degeneracy

d.: K (X) — K, .(X) and the k-th face

operator dk

operator S, = s;: Ki(g) —_— Ki+l(§) are defined as follows;
(3) (), = hmai and dy () g = Py (1 ai)’
(4) s (b)_=h ol and s (n)__ . =h (1 x o).

Then we have a semi-simplicial complex K(X) = (K (X),d ,s;).

The proof of Proposition 3.1 (1) essentially shows that

K(X) is also a Kan complex. We call K(X) the fundamental

singular complex of X. Moreover by the same way &s §4, a

canonical strong fundamental sequence vy: K(X) | X

can be defined by

(5) v _(lh,ul) = h (w),

(6) me_'_l(t’(_l}’ul) = hmm+l(t’u)’
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where (h,u) € K, (X) x 47, 1> 0, t € L.

With every h & Si(§), i > 0, we associate a strong

fundamental sequence h G'Ki(z) by considering maps hm:
AT —— X and h « I x At — x s, where we have
m mm+1 m

1 by identifying t € I with (1-t,t) € AL,

identified I with A
Then by (3.1), (3) and (4) the above correspondence induces
a semi-simplicial map f: S_(X) — K(X). Using the method

of [20], we can show the following.

7.1, Theorem. The semi-simplicial map f induces an

isomorphism in KAN.

In order to prove Theorem 7.1 we rewrite from [20],

the proof of Lemma 1.1, the concept of the standard

extension h' of a strong fundamental sequence h: At —— X.

Let Li C 2™ denote the l-simplex connecting € 1 to € and let

n n
L —Ll\/LZ\J....\/LnCA.

Then there are a retraction 't AR — Ln and a homotopy

D I x A ——— A" such that

(7) D7(0,t)

I
ct

1l

'1
o]

ct

(8) D7(1,t)
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By induction on n > O we will define maps h': a" x 4% —r X
0

for m = (m ..,mn) € N

o’*

Assume that m is non-degenerate. For each j, 0< j < Kk,

let w?: I —— Lk(: Ak be the linear map which takes 0 to
€3-1 and 1 to €y Put ¢(m) = m - my. We define a map
oM L4l L x by

m me

(10) (ot (e),u) = p

(),
2 Mo:™o

+j—1hmo+j—1,mo+3

t €I, 1< J<e(m).

We consider the linear map -v AT — A%(E) which takes
the vertex e, of A™ to the vertex e -m of A%(E). Now
i70
the map h': A" x A ———+ X is defined by
m My

(11) hr'n(t,u) = hm(r“m)vm(t),u), u & Ai, t € a".

If m is degenerate, m = EJ for some k = Nn*1 and some J,
0 < Jj<n-1. Then we define
(12) h'(t,u) = hf{(c?_l(t),u), u €& at, t e

Proof of Theorem 7.1. By definitions, the standard
extension of strong fundamental sequences induces the semi-

simplicial map g: K(X) —— Sc(g). By the definition,

(13) fg = 1p(x)-
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For any h €& Si(ﬁ), i>o, gifi(h) is the standard
extension of the strong fundamental sequence fi(h) associated
with h. Now we define the coherent map R(h): Ai x I —— X

as follows (see [20], Lemma 1.2);

(i) if m = (mo,...,mn) is non-degenerate, we define R(h)m by

(14) R(h), (t,u,8) = h (0B (a,v (£)),u),

+2,¢..,M m1+1,...,m ).

0

where m* = (mo,mo+1,m 1

n

(ii) if m is degenerate, m = k7 for some k € N1 ana

some j, O < j £ n-1. Then we put

(15)  B(n) (t,u,s) = R(h>5<o§‘1<t),u,s>, t € A

Then by the definition of composition of coherent maps
R(h)(ag.l x 1) = R(harJ?) and R(h)(o? x 1) = R(ho?).
Moreover,

R(h)mo = h = )(h) and R(h)z1 = fi(h)‘ = gifi(h).

1
s, (X

Hence by the same way as §3, the correspondence R: Sn(z)

i i and gf.
-— Sn+l(§) induces a homotopy connecting 1SC(§) g

Similarly we have the relative and the pointed versions
of Theorem 7.1. We denote the Kan pairs of an inverse
sequence (X,x) of pointed spaces and an inverse sequence

(X,X

O) of pairs by K(X,x) and K(X,XO), respectively.
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7.2. Corollary. f,: Hi(ﬁ:G)-————+ H,(K(X):G) for every

abelian group G.

7.3. Corollary. The map |f]: ISC(K)I-——*—+ IK(X)| is

the homotopy equivalence with |g| as its homotopy inverse.

7.4. Corollary. The canonical fundamental sequence

2(x,x)" |K(X,x)| ——— (X,x) induces isomorphisms
ket Mk

(X(ELE))#: m, (IR(X,x) ) = ;i(X,X) for every i > O,

where ?i(X,x) is the i-th strong homotopy group of (X,x)

defined by Lisica [15].

Proof. Let h: (Sl,so) ——+ (X,x) be a strong fundamental
sequence and h': (Si,so) — (X,x) be its standard extension.
Then by Theorem 5.2 there is a map ¢ ,: (Sl,so)'————+ |SC(X,X)I

such that

(16) 1y, =h'.

Since v )[f| is the strong fundamental sequence associated

(X, x

with = , the strong fundamental sequence (X(X,x)[f|)¢h'

(X,x)

@ Hence by (16)

X"h'"®

X(X,x)(lf|¢h') is associated with =
ch—(lf'q)hl) = ‘h-

Let a,B8: (Si,so) —— |K(X,x)| be maps such that
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We note that t,|g| is the standard extension of v .
X = (X,x)

Hence TXigla and rxlgls are standard extensions Of'X(X,X)a

and_g( )B, respectively. By (17) and Theorem 5.2,

X,Xx
(18) lgle = [gl8.
Hence by Corollary 7.3 we have that

a = |[f|lgle = |f]|]|gl8 = B.

Therefore we have Corollary 7.4.

Next we introduce the Steenrod-Sitnikov homology of an

inverse sequence X &= (Xm’pmm+1) (c.f. [16] and [22]). For
each i > 0, a s-s i-chain is a function x which assigns to
every m a singular i-chain x(m) & Ci(xm:G) and to every
(m,m+1) a singular (i+1)-chain x(m,m+1) & Ci+1(xm:G). The
set of those s-s i-chains is denoted by Ci—s(ng). The
boundary operator d: Cizi(E:G) e Ci_s(ﬁzG) is defined

by the formula;

(19) (dx)(m) = 3(x(m)), and

(20) (dx)(m,m+1) = pmm+l#(x(m+l))—X(m)~a(X(m,m+l)),

where 3 denotes the boundary of singular chains. Then we

define
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(21) H;%(X:6) = Hi(cZ‘S(gc_:G)) for each i > 0.

S-S
For each m > 1, leta : C; "(X:G) — Ci(Xm:G) be the
chain map given by am(x) = x(m). Then the family {a } 1nduces

).

a homomorphism a: Hi“s(ng) ——*~*-l;m(Hi(Xm),p

mm+ 1%
Concerning o we have the following.
7.5. Proposition. o is an epimorphism and there is an
isomorphism g: %i?l(Hi+1(Xm)’pmm+1*) ——— Ker o . That is,

the following sequence is exact;

0 — lim‘(H, (X_),p ) —8— HIT3(x:6)

i+1 mm+1%*

a .
—_— ]:-Jﬁl<Hi(Xm) ' P

) —— 0.

mm+1*

Each strong fundamental sequence h: A — X can be

identified with the s-s i-chain of X by the formula;

h(m) = h_, and h(m,m+1) = h ..

Then we have a natural homomorphism c;: Hi(K(ﬁ)) —_—

S-S, . -
Hi (X:G).
On the other hand, each strong i-chain of X can be

considered as a s-s i-chain of X. Hence there is the natural

homomorphism 6x: HY(X:G) — HJ °(X:G). By the definitions



—44-

f*
H; (S, (X):6) - B, (K(X):6)
x I x
H (X:G) ‘ - HO7S(x:6)

ol
X

By [22], §8, e; is an isomorphism. Hence by Corollary 7.2,

if c; is not surjective, the g; is also not surjective. Next
we will show that there is an inverse system X of l-dimensional

compact polyhedra such that ;; is not surjective.

7.6. Example. Let {Si} be a collection of pairwise

disjoint copies of the 1l-sphere Sl° Let Xq be a point which

does not belong to i\{ 1 Si' For each m > 1, put

(22) Xm = {xo}\vzsl\/ oo \/Sm,

and define the map Prm+1 Xm+1 —_ Xm by

(23) Prome1 | X =14 and p

m

(s ) = {x.}.

mm+1 ]

m+1

We will show that the inverse system X = (xm,p )} has the

mm+ 1
required property. We note that X is movable, and

(24)  Lim(H (X)), 1)

mm+1* H1(Sm)’

Il
m> 1

for Hy(X,) = Hi(8.) % wuus x H,(8,) for each m > 1.
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Assume that cl is surjective. Let z = (%n)é

X Hl(sm)

il
m> 1
be an element such that zm # 0 for all m > 1. Then by

Proposition 7.5 there is an element x é'Hl(K(K)) such that

(25) aci(x) = z.

That is,

(26) amci(x) = (zl,...,zm) for every m > 1.

Teke integers a,, 1 < i < n, and El & Kl(ﬁ), 1 <1i<n,

such that

(27) a;n'+...+a p" € 2,(C4(K(X))) represents x in H, (K(X)).

Then

1 1 n
(28) an+lc§(x) = [alhn+1+"‘+anhn+1]’

where [h] is the homology class of h & Zl(X ).

n+1
. 1. . :
In fact, since A~ is connected, for each i, 1 < 1 < n,

there is k(i) € {1,2,...,n+1} such that
i
(28) hy 4 € Z;(S(4))-

By (28) and (29), we have that

n+1l
)C 1
-+ j=1

).

n+1l

n'm 3

1
(30) an+lc§(x) é-l 1Hl(Sk(i) Hl(Sj) = H (X

But it contradicts the assumption that zm £ 0 for all m > 1.
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It follows that ¢ is not surjective.

[ =

Note that Hl(K(E)) =
@®Zz and H °(X) = 1 Z.

Finally we will consider a condition under which ¢y
is an isomorphism.

7.7. Theorem.

Let (X,x) be an inverse sequence of

pointed compact polyhedra. If Fk(x,x) = 0 for every Kk,

O < k< i-1, where i > 2, then

H

n

i
eyt Hy (K(X))

T o(X).

Proof. We may assume that Xl is a singleton. The

following sequare is commutative.

i

P IR(X,x) |

L (KX, ) ) - H, (K(X))

, i

O x, %) # °x
% ) )
4 X, X
TI’i(M) - HS-—S(X) ]

i

where ¢|K(X <) | is the Hurewicz homomorphism of |K(X,x)| and
b

%x ) is the homomorphism defined in [12]. Since T .(X,x) =0
for every k, 0 £ k £ i-1, by Corollary 7.4, the usual Hurewicz
i
isomorphism theorem and [12], Corollary 3, both ¢|K(X,x)| and

W%X x) are isomorphisms. Therefore g; is an isomorphism.
ot Bnkel X
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7.8. Remark. By [33] and [14], the condition Fk(x,x) =0
for every k, 0 £ k £ i-1, is equivalent to the condition that
(X,x) is approximatively (i-1)-connected and pointed S'-movable.

Hence we may call [12], Corollary 3 the Hurewicz isomorphism

theorem in strong shape theory.

7.9. Remark. Our definitions of K(X) and H ° are slight
generalizations of [1] and [30]. But our method may be more
useful in order to generalize the construction to more general
spaces and investigate its algebraic properties.

Problem 1'. What condition of X implies that ¢, is an

o< b

isomorphism?
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8. The CW-complex E(X,x).

In this section we assume that (X,x) = ((Xm,xm),pmm+1) is

an inverse sequence of pointed arcwise connected spaces. Then

by the way of Edwards and Geoghegan [9], we construct a pointed

CW-complex E(X,x) and a strong fundamental sequence %X,x):

E(X,x) =™ (X,x) as follows; o
By [9], Lemma 2.2, we have the following diagram;

p P P
1,2 2,3 3,4
(Xl,x1)+———*—————(X2,x2) <“_“—"""(X?),)(B)“_“'““““ e e

q q Q
_ 1,2 + 2,3 3,4
(Yl’yl)—(xl,xl) (Yz,Y2) (Yaiys) e o8

such that for each m=1,2,...,

(1) t p

m"mm+1 d

mm+1tm+l

]

(2) t, is a homotopy equivalence, and

(3) aq is a fibration (see [32], Theorem 2.8.9).
mm+ 1
For each m > 1, let u (Ym,ym) —_— (Xm,xm) be a

homotopy inverse of tm‘ Then by (1), there is a homotopy

: EE— h that
Ymme1 (Ym+1’ym+l) (Xm’xm) Suc

(4) q * p

:u u
umm+1 m mm+1 mm+1 m+1
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The collections {um} and {u } induce the strong fundamental

mm+ 1

sequence u: (Y,y) = ((Y_,y ),q .,

) —— (X, X).
Let S: TOP —— KAN and | * |: KAN —~ bw be the

usual singular-complex and geometric realization functors

(see [27]). Then we have the inverse sequence S(Y,y) =

AP

and the strong fundamental sequence w: |[S(Y,y)| —— (Y,y),

(s(Y_,y,),S(q )) and |S(Y,y)| = (Is(¥_,y )I,Is(q

mm+ 1 mm+ 1

which is induced by canonical maps w_: IS(Ym,ym)[-————+ (Ym,ym).

Let gq = {Q&}i lim S(Y,y) — S(Y,y) be the projection.

Now we define

(5) E(X’X) = I;ﬂn S(Y:Y)la and
(6) o (X,x) = uw|gl: E(X,x) — (X,x), where [q| = {[g_[}.

In [ 9], Edwards and Geoghegan proved that, if (X,x) is

dominated by a pointed CW-complex and each (Xm,xm) has a

homotopy type of a pointed CW-complex, then °(X,x) induces

an isomorphism in pro-HTOP In this section, without an

0"

additional assumption of (X,x), we shall show the following

property of p(x x)*

8.1. Theorem. (p(ELE))#: wi(E(glE)) s Fi(X,x) for all

i > 0.

The other pointed CW-complex and strong fundamental

sequence having the same property were obtained in Corollary 7.4



by a quite different way. But » is more constructive

(X,x)

than v and may be effective for calculating ?A(X,x).

—(X,x)’

A comparison of the two constructions will be discussed in
the next section. The key tools of the proof of Theorem 8.1
are the following two lemmas.

8.2. Lemma ([6]). Let (Z,z) = ((Zm,zm),r ) be an

mm+1

is a Serre fibration.

inverse sequence such that every .

Then there is the following short exact sequence;

.1 B .
* —— lim (nn+l(zm,zm)rmm+l#)-————* wn(llm(Z,z))

o) : —_— *®
— > MmO (2 z) s g)

In particular, in the case n = 0, g: lim “1(Zm’zm)’rmm+1#)

=~ Ker o.

8.3. Lemma ([33]). There is the following short

exact sequence;

.1 = -
¥ — lim (“n+l(xm’xm)’pmm+l#) - “n(zLE)

0

. +*
S llm(nn(Xm,x

),P

) —

m mm+ 1

{r)

.1
In particular, in the case n = 0, lim (nl(Xm,Xm),p )

mm+1#

z Ker o.
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Concerning the relation between exact sequences of

Lemma 8.2 and Lemma 8.3 we have the next result.

8.4. Lemma. Let (Z,z) = ((Zm,zm)r

n in
mm+1) be a verse

sequence such that every r is a Serre fibration. Then

mm+1

the following diagram is commutative;

.1 . .
*— Lim (v (Z0,20)) —F v (Lim(Z,2)) —— Lim(r (Z 7)) — *
N H
* — liml(w . (Z ,z ) —£ .7 (2,2) © » 1lim(x_(2_,z ) ) —— *
= n+l'"m’“m n' === ' n""m™m ’

where r is the strong fundamental sequence induced by the

projections ot %;m(z,z) ~———+-(Zm,zm), m > 1.

Proof. Since er = a clearly holds, we will show
—#
R . . n+l .
only the equation E#B = E, Identify S with

n

s? x 1/8" x (0,1} v {sy} x I, where s, is the base point

= 8

n )
of . Let ([fm]) be a given element of m_lnn+1(zm,zm).

For each m > 1, put

(7) g, = £, | s™ x (1/2r: (87,8,) —— (Z.,z;)
(8) G, = (£, | s™ x [0,1/2]):

I S [l/?’l])*(rmm+1fm+1

(Sn,s ) x I —— (Zm,zm).

0
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o~ >
0 roms18me 1 rel. S for every m2> 1. Now put

(9) gl = gl’ and

~ . n ~ _
(10) G, : (s ,so) x I — (lezl) by Gl(x,t) = gl(X)-

Assume that we have already defined maps ék: (Sn,so) —

~ . n ~ .
(Zk,zk), Gk‘ (S ,so) x I ——* (Zk’zk) and Gk—l,k‘

(s",s.) x I x I — (2 ) for all k < i, which

0 k-1’%%k-1

satisfy the followings;

(1)k Gk: g % 8 rel. Sy and

G

k-1 “k-1,k° k-1  Tk,k-17k-1 ’

G 1 1 (x,0,%) = g _,(t) and &, L (x,1,t) = G _,(x,¢).

-~

Note that (i)1 holds. Since Gi*Gi: g; % Tii,18i41 rel. S

and rii+1 is a Serre fibration, there is a homotopy Gi+1:

n R ——_—
(s ,SO) x I (Zi+1’zi+1) such that

G G.*G.

(A1) ry5,96541 = GGy

~ n _
(12) Gi+l | 8 x {1} = g

i+l°

Now we define the map §i+l: (Sn,so) —_ (Zi+1’zi+1) by

”~ ~ n
(13) 8;,4 = G;,q | 87 x (O},

Moreover it is easily see that there is a homotopy @i iv1’

(Sn,so) x I x I (Zi,zi) satisfying the condition (ii)i‘



-53-~

h ~ o~ . o 3 > 3 -
Hence we have maps g Gl and Gi,i+1 for all i1 > 1, satisfying

conditions (i)i and (ii)i.

Thus we have strong fundamental sequences g = (gm,Gm)

and g = (ém,ém,m+1 | s™ x {0} x I): (S

Tisg) — (2,2)

such that g = g and r = éi for every i > 1.

ii+1gi+1

Then by definitions

(14) s (C([£, 1) = [Lim(§ )],

(158) =({([f D) =[gl=1[g] where {(([£])}
is the equivalence class of ([£]) in Lim'(v (2 ,2.),P 0 1)
Hence

T8 (((L£, D) i ry([Limig 11) = [(g,,6' )= [g]= (£ 1)}),

. n ——— . : :
where G' : (s ,so) x I (Zm,zm) is the homotopy given by

G'm(x,t) = gm(x). Therefore E#B = E.

Proof of Theorem 8.1. By Lemma 8.3 and the five Lemma,

we have

(16) uy: ?D(Y,y) x ?n(X,x) for every n > 0, and

(17) Wy ?n(lS(Y,y)I); ?n(Y,y) for every n > O.
Let r = {r}: lim |S(Y,y) | —— [S(Y,y)| be Fhe

mm+l)ilq
there is the map s: |lim S(Y,y)| — 1lim [S(Y,y)| such that

projection. Since [S(q m+1| = lam| for every n > 1,
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(18) r.s = lqml for every m > 1.

For each n > 0, we consider the following diagram, where the

third row is the Cohen's exact sequence in KAN, (see [ 3 ],

2

Theorem IX.3.1), and ¥ and Wm are natural isomorphisms
defined by [27], Lemma 16.3.
See the diagram in the next page. Then by Lemma 8.4, the

upper squares of the diagram are commutative. Hence
(19) Ty m (lim Is(Y,y)])) = n (¥,y) for every n> O.
. .1 ~ ™~ ~ .1
= = s lim™y = S, ¥B.
Since E#B(llm ¥ o) lgl#we ryusy ¥E, by (19), 8 ( o) 4
= im ¥ )a
By (18), as#W (1im m)a. Hence we have that

(20) sy¥: 7w (lim S(L,y)) = v (lim |[S(Y,y)|) for

every n > 0O,

Since Y: nn(lim S(Y,y)) = ﬂn(IL;m S(Y,y)|) for every n 2 O,

by (18), (19) and (20),

It

(21)  1@ly: v (1Hm S(Ly) | = v (IS(Ly)]) for
every n > 0.

Therefore by (16), (17), (21) and (6) we have shown that

p(x x) satisfies the desired property.
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9. The comparison of E(X,x) with |K(X,x)].

In this section we will consider only an inverse seqguence

(X,x) = ((Xm,xm),p ) of pointed arcwise conhected spaces.

mm+ 1
The purpose of this section is to define a weak homotopy

equivalence f: E(X,x) — |K(X,x)].

For each 1 > 0, every element x & (lim S(Y,y))i is a

collection of maps X_: at — Ym such that g

X = X
m mm+1"m+1 m

for every m > 1. Hence we may consider x as a strong
fundamental sequence X: Al — Y. That is, the
correspondence induces a function G.: (lim S(Y,y)), ——

i — 2L
K(X)i. Then it 1is clear that

i i

i+l i
= S

G.d = d, G and G,

19 ki1 1+1Sk G. for every k, 05 k< 1i.

k71
Hence we have a semi-simplicial map
G = {G.}: lim S(Y,y) — K(Y).
1 P —_— —

i . i, i -
Let ¢- be an element of (1im S(Y,y))i such that cm(A ) = {ym}
for every m > 1. Then by definition, Gi(cl) = c. € K(X)i
for every i > 0. Hence G is a semi-simplicial map from

1lim S(Y,y) to K(Y,y). Therefore G induces a map

|1im S(Y,y) | — [K(¥Ly)l.

——

(1) g = |Gl: E(X,x)

k3
Ko}

9.1. Lemma. X(Y, )g =



E(X,x) = |lim S(¥,y)| g - 1K(Y,y) |
g | 2(Y,y)
Is(¥.y)| T - (L.y)

Proof. For any x € (lim 5(Y,y));, 1 > 0 and any t € Ai,

(3 (v, 58 a1 E1) = v (6 (), 81) = (6,0 (%) = x,(¢), and

(wiah) (=, t1) = w (13, (x),t]) = w (Ix ,t]) = x (t).

Hence (v for every n > 1.

(¢,y)8n = 18Dy

Similarly we can see that (X(Y y)g) (wlal)

nn+l - *—='="'nn+1

for every n > 1. Therefore Viy,y)8 = wlgl.

We define a function K(u): K(Y,y) — K(X,x) by
(2) K(u);(h) = uh for every h € K(Y); and every 1 > O.

Then it is easily seen that K(g) is a semi-simplicial map and

X(x,x)lK(E)l = Wiy vy Therefore, defining the map

(3) £ = [K(u)lg: E(X,x) —— |K(X,x) ],

by Corollary 7.4, Lemma 9.1 and the proof of Theorem 8.1 we

have the following.
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9.2. Theorem. The map f: E(X,x) — |K(X,x)] is a

weak homotopy equivalence.

g |K(u) |
E(X,x) + |K(Y,y) | " K (X,x) |
i ]
|S(Y,y) | - (Y,y) r (X,x)

Is
[

9.3. Corollary. If FO(X,X) = 0, then the map f: E(X,x)

—— |K(X,x)| is a homotopy equivalence.

By Corollary 9.3 and [14 ], Corollary, the following is

obtained.

9.4. "Corollary. Let (X,x) = ((Xm,xm),p

e an inv
mm+1) be an inverse

sequence of pointed compact connected polyhedra. If (X,x) is

pointed 1-movable, then the map f: E(X,x) — |K(X,x)| is

a homotopy equivalence.

Problem 2. For every inverse seqguence (X,x) = ((Xm,xm),

P ), is the map f: E(X,x) — |K(X,x)| a homotopy

mm+1

equivalence?
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10. Summary in strong shape theory.

In [ 25 ], MardeSi¢ defined resolutions of pairs of spaces.

A system map p = {p,}: (X,A) (X,A) = ((X,A,),p,,,,4)
A XL AT Py

is a resolution of the pair (X,A) provided that the following

conditions are satisfied for any ANR-pair (P,Q), that is, a
pair of ANR's such that Q is a closed subset of P, and for
any open covering V of P;

(R1) for every map f: (X,A) —— (P,Q), there are
» €A and a map g: (X, ,A,) — (P,Q) such that gp, and
f are V-near maps,

(R2) there exists an open covering V' of P such that
whenever » € A and g,g': (XA,AA) —— (P,Q) are maps such
that the maps gp, and g'px are V'-near, then there exists
A' > 1 in A such that 8P, 1 and g'plk, are V-near maps.

If all (XX,AX) are ANR-pairs, p is called an

ANR-resolution of (X,A).

If A, Ax and Q are all empty sets or singletons, from
the above definition, we have the definitions of (ANR-)

resolutions p: X —— X = (Xx,p A) of a single space

aat’?

X or p: (X,a) — ((Xk,a )’pxx"A) of a pointed space

A
(X,a), respectively (c.f. [24]).

In [19], Lisica and MardeSic defined a strong shape.
category SSH whose objects are all spaces. Morphisms F:

X — Y are given by triples (E,g,[f]), where p and g are
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ANR-resolutions of X and Y, respectively, [ f] is a morphism in

CPHTOP. Two triples (p,q,[ f£]) and (p',q',[£']) are equivalent

if

(1) [£li]l="0311,
where [i]: X — X' and [j]: Y —— Y' are unique morphisms
in CPHTOP such that [i]{p] = [p'] and [jllq] = [q']. We define

e,

F the equivalence class of (p,

o

Let F and G be morphisms in SSH given by triples (p,g,[f])
and (3',2,[g]), respectively. Then the composition GF is given
by the triple (p,r,[gjf]), where [j] is the unique morphism in
CPHTOP such that [jllg]l = [g']l. Note that we may assume that
a=2a9".

The identity morphism on X is defined by (E’E’[lx])-

Lisica and Marde3ic¢ [21] investigated CPHTOPE, and defined
a strong shape category of pairs by using ANR-resolution of
pairs. In this paper, although we use their results, we leave

the details.

In this section we will summarize our results in strong

shape theory. First, by §3 and §4 we have the followings.

10.1. Theorem. If a space X is dominated by a CW-complex

in SSH, then X is equivalent to the CW-complex |S_(X)| in SSH,

where p: X — X is an ANR-resolution of X.
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10.2. Corollary. The following are equivalent conditions;

(a)

I

space X is dominated by a CW-complex in SSH,

(b) X is equivalent to a CW-complex in SSH,

(¢) X is equivalent to a simplicial complex in SSH,

(d) X is equivalent to an ANR in SSH.

For a pointed space (X,x) we define the strong shape group

"2 (X,x), i 2 0, by
S C
(2) “i(x’x) = "i(x)x)s

where p: (X,x) — (X,x) is an ANR-resolution of (X,x). The
morphism F: (X,x) — (Y,y) given by a triple (p,q,[f])

defines the homomorphism F#: W§(X,x) ——t w?(Y,y) by
c c
(3) Fy = Ty T (Xx) — n(Y,y).

F# is called the homomorphism induced by F.

Then by §5, n? is a functor from SSHO to GR. Similarly,
by using ANR-resolutions of pairs, we can define the relative
strong shape group w?(X,A,x). If A is P-embedded in X, by
[25], Theorem 3, there exists an ANR-resolution p: (X,A,x)

—+ (X,A,x) such that p | (A,x): (A,x) - (A,x) is an

- ANR-resolution of (A,x). Hence if A is P-embedded in X, the

following sequence is exact;
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S 9 S i S
L, — 1ri+l(X,A,X) —_— Tri(A,x) # Tl‘i(X,X)

J
_L,. ﬂi(X,A,X) —_—

© o o ]

where i: (A,Xx) (X,x) and j: (X,x) —— (X,A,x) are

inclusion maps.

Let p: (X,x) — (X,Xx) be an ANR-resolution of (X,x).
Then we call the strong shape morphism given by the triple

(1’2’[T(X,x)])) the canonical strong shape morphism, and

denote by T(X,x)" |SC(X,X)| — (X,x). Similarly, we can
define the canonical strong shape morphisms of an absolute
space or a pair of spaces. By Theorem 5.2 the next theorem

is obtained.

10.3. Theorem. The canonical strong shape morphism of

a pointed space (X,x) induces isomorphisms;

Tkt T8 (KX = nS(X,x) for all i > O.

We note that, if (X,x) is a pointed compactum, the
strong shape group wi(X,x) is naturally isomorphic to the

approching group gi(x,x) defined by Quigley [31].

For each space X we define the coherent singular

homology group of X by

(4) HE(X,G) = Hi(g:G) for an abelian group G,
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where p: X—— X 1s an ANR-resolution of X.
The morphism F: X ——— Y given by a triple (p,g, [f]) admits

the homomorphism F,: HE(X:G)-————+ HE(Y:G) defined by

- C - .
(5) F, = f,: H;(X:G) Hg(X.G).

We call F, the homomorphism induced by F. Then by §6, Hg

is a functor from SSH to GR.

Similarly we can define the relative coherent singular
homology group Hi(X,A:G) of a pair (X,A) of spaces. Then if
A is P-embedded in X, the following sequence is clearly exact;

o i

—— 1 (X,A:G) —— uS(A:G) —— HS(X:G)
. i1 (KA i (A i (X:

Jx

R Hi(x,A:G)-——-—+

Moreover by Theorem 6.1 we have the following.

10.4. Theorem. The canonical strong shape morphism

of a pair (X,A) induces isomorphisms;

. . = C . TR .
(X, A) H, (IS (X,A)[:G) = Hy(X,A:G) for all 120

Let p: (X,x) — (X,x) be an ANR-resolution of a

) S
pointed space (X,x). The Hurewicz homomorphism ¢i: ni(x,x)

_— Hi(x) is defined by

i C
(6) 0, = oy yyf mp(Xx) — Hy(X).
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Then we have the following Hurewicz isomorphism theorem
between strong shape groups and coherent singular homology

groups.

10.5. Theorem. (&) If mp(X,x) = O for all 0 < k < i-1,

n

. S ,
where i > 2, then ¢i: ﬂi(X,x) H?(X), and Qi is an

1 == =

epimorphism.

(b) If n5(X,x) =0, then ® : w2(X,x) HJ (X) is

1:

surjective and its kernel is the commutator subgroup of 1TT(X,x).

Let X be a compactum and let X = (Xm,p ) be an inverse

mm+1
sequence of compact polyhedra whose limit is X. Then the

collection p = {pm} of projections is clearly an ANR-resolution

of X. Hence by Theorem 7.1 and Corollary 7.2

10.6. Theorem. There is a natural isomorphism from
¢

HE(X:G) to H,(K(X):G) for every abelian group G.

Therefore we identify HS(X:G) with H (K(X):G). Moreover,
it is known that Hins(ng) is the Steenrod-Sitnikov homology

group Hi:i(X:G)' It follows that the natural homomorphism

i, ,C/y. S-S
iy Hi(X.G) —— H

l+l(X:G) is given by

(7) z}i(= 4

>4

i

X is not even an epimorphism, in general.

Then by Example 7.6 ¢
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More exactly, using Example 7.6, we will show that Hi is

different from the Steenrod-Sitnikov homology theory.

10.7. Exapmle. For each n=1,2,..., define

)]
I

2 1,2 2 _ 1 2
{(x,y) € R® | (X”'ﬁ) +y = {m} }, and

>
I

{(0,0)} v Sn'

Then we have the planar l-dimensional compactum

X = U X_.
n>1 n
Moreover lim diam(Xn) = 0. Hence if Hi is the Steenrod-
n

Sitnikov homology theory, by [29], it must be that the

homomorphism w: Hi(x) — 1 H (X ) = H*(Xn) given by
=1 n=1

(8) w(a) = (rl*(a),rz*(a),..,) for each a & Hi(x),

where r : X — X _is the retraction such that r (\JS.) =
n n n j#n J

{(0,0)}, is an isomorphism.

On the other hand, if * = 1, the homomorphism w is equal

to the homomorphism acl defined in Example 7.6. Hence w 1is

X

not an epimorphism. That is, Hi is not the Steenrod-Sitnikov

homology theory.



-66-

10.8. Remark. In [30], Ono defined the S-C homology
theory on the class of compacta. By Example 10.7, we easily
see that the S-C homology theory is different from the
Steenrod-Sitnikov homology theory. Similarly, Example 10.7
shows that Bauer's result, [1], Theorem 7.7 is not valid.

i

X we have the next

Concerning the natural homomorphism

result by Theorem 7.7.

10.9. Theorem. If m-(X,x) =0 for all k, 0 < k < i-1,

Cos i, ,¢ o S-S
where i > 2, then Tyt Hi(X) = Hi+1(X).
Problem 1". Under what condition of X does iﬁ hold that

i, . .
CX is an isomorphism?

Finally we consider a pointed contunuum (X,x). Let

(X,x) = ((Xn,xn),pnn+1) be an inverse sequence of pointed

compact connected polyhedra, whose limit is (X,x). Properties

of E(X,x) are summarized as follows;

10.10. Theorem. (a) There is a strong shape morphism

p(x,x)‘ E(X,x) — (X,x) such that

Px ) "1 (BXX)) = ﬂ?(x,x) for all i 2 0.
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(b) There is a weak homotopy equivalence F: E(X,x)

—— Is_(x,x)].

In particular, if (X,x) is pointed l-movable, F is a

homotopy equivalence.

Related to Theorem 10.10 (b), we pose the following

problem.

Problem 2'. Is the map F: E(X,x) — ISC(X,x)I a

homotopy equivalence?
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11. Problems in the coherent singular homology theory.

Steenrod-Sitnikov and lech homology groups of a
k-dimensional compactum vanish in dimensions greater than k.
In this section, for each integer k > 2, we will construct a
k-dimensional movable continuum X(k) such that Hgk_l(x(k):Q) # 0.
Hence we can also see that the coherent singular homology
theory is different from Steenrod-Sitnikov and Cech ones
(¢c.f. Example 10.7). First, we will show the next lemma.

11.1. Lemma. Let (X,x) be an object of CPHTOP., such that

0
wg(x,x) = ni(x,x) = 0. Then for a €& WE(X,X), where 1 > 2,

“’%x x)(@) = 0 if and only if there exist a pointed finite
2

polyhedron (K,k) of dim K < i and a coherent map f: (X,k)

— (X,x) such that o & f#(wi((K,k))).

Proof. By Theorem 5.2, there exists a map h: (Sl,so)

E— |SC(§L§)1 such that o = (tx)#([h]). Then
(et Ts (x| IRD = 00y o (rglln]) = o(y y(@) = 0.
£ o\t La2 = ELE R

Hence by Theorem 6.1(c), ¢TS (X x)I([h]) = 0. Therefore
c == .

there exists a map g: (Sl,so) —_ ISC(X,X)I such that

g = h rel. s I(l_l)°

o» and g(s7) C I8, (%)

(i-1)

. . i
Take a finite subcomplex K CZISC(§)| including g(S7).
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Then the pair (K,I({cn})l) and the coherent map T, | K:

X

(K,[({cn})l) — (X,x) satisfy the desired condition.

Let (Am,*) and (Bm,*), m=1,2,3,..., be simply connected

compact ANRs with the base point satisfying the followings;
(i) 4if m # m', then Am/\ Am' = {*} = Bm(\ Bm" and

(i1) (v AN/ B ) = {*}.
m >1 m m >1 m

For each m > 1, define the simply connected comapct ANR
(Xm:*) = ((Als*)\/ (Bl’*))v e e o \/((Ams*)\/ (Bm3*)))

and the map p (X *) —~—--(Xm,*) given by

mm+1° m+1’

—_ —_ 3
pmm+1(x) = x for x & Xm’ and pmm+1(Am+1\/ Bm+1) = ¥},

)

Thus, we have a movable inverse sequence (X,*) = ((Xm,*),pmm+1
of simply connected compact ANRs. Then by Lemma 8.3,

0: nn(X,*) = lim("n(xm’*)’pmm+1#) for every n z O.
Let k, ¢ > 1 be fixed integers and let i =k + & -1.
We will use the following notation: for o € nk(Y,y) and

B & wE(Y,y), [a,B] & ni(Y,y) is the Whitehead product of

o and 8. For every m > 1, let o & "k(Am’*)’ B é:"g(Bm’*)
al’ld Ym = [al,sl] +oeot [Otm,Bm} é ﬂi(xm9*)° Then (Ym) é

i i i lement
%&m(ni(xm,*),pmm+1#) and there is the unique elem

Yy & ﬁi(X,x) such that e(y) = (vy)- By using Lemma 11.1 and
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the analogous way of Barratt and Milnor (Proc. Amer. Math. Soc.
13 (1962), 293-297), Theorem 2, we have the following;
11.2. Th . 0 i
corem. @ (v) £ 0 if ¢o(a ) # 0 and ¢ (8 ) # O

for infinitely many m > 1, where ¢_ and ¢ . are compositions

Q Q
- T
™ (X, %) ~ Hi(X:Z) — H;(X:Q), and
¢
ry(ry) —BX oy (viz) —— B (Y:Q)

of suitable Hurewicz homomorphisms and coefficient

homomorphisms induced by the inclusion Z —— Q, respectively.

We note that in the proof of Theorem 11.2, we need the

*
notion of the coherent singular cohomology groups HC(E:G)

and the functional cup-product of coherent maps.

11.3. Example. Let k > 1 be a fixed integer. For each
m> 1, let

1,2 2 2
xl—ﬁ) + X T 4.+ X =

k+1
R |« 2 k+1

X(k’m) = {(Xls-'-3xk+l) é
Defining
X(k) = v X(k,m) and x = (0,...,0) € X(k),

m > 1

we have the k-dimensional pointed movable continuum (X(k),xk)



-71-

in R 1. Then by Theorem 11.2, we can easily see that

Hy, _, (X(k):Q) # 0.

Example 11.3 also shows that the coherent singular
homology theory Hg does not satisfy the wedge axiom.
Concerning axioms of homology theories, the following

problems aré posed.

Problem 4. Does the theory Hi satisfy the excision

axiom?

In particular, does a relative homeomorphism between

: . . c . :
compacta induce an isomorphism of H. for each dimension?

Problem 5. Let X;, X, be closed subsets of a compactum

2
and let X

X with X = Xl\J X2, 0

following Mayer-Vietoris sequence exact?

= Xlr\ X2. Then 1is the

1 2
c (K™, k") c c
ces TF Hi(XO:G) + Hi(Xl.G)ia Hi(Xz.G)

JL*-!L* 3

C . -9 . C .
——— H;(X:G) H 1 (X5:6) — ...,

where ki: XO —_— Xi and zi: Xi —— X (i=1,2) are suitable

inclusion maps, and 3 is the boundary homomorphism of the

pair (X,XO).
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