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Introduction

The theory of comodule algebras is a new subject with roots
in the invariant theory of affine algebraic groups and in the Hopf
Galois theory of commutative, or non-commutative rings. The notion
of Hopf modules is & useful tool in this subject. Therefore the
theory and results on Hopf modules are surely of interest. This

notes is a study to this material.

In chapter I we give a self-contained introduction to the
homological theory of comodules over coalgebras and Hopf algebras.
Section 1 is an exposition of basic concepts such as cotensor
products, coflat comodules, injective comodules, projective
comodules and change of coalgebras. Hopf algebraic proofs are
obtained for some results of Cline-Parshall-Scott [3] on rational
modules over affine algebraic groups. Section 2 deals with the
representation theory of co-Frobenius coalgebras and coseparable
coalgebras. Simplified proofs are obtained for some results of
Larson [13] and Lin [14]. In particular, if C is a left co-
Frobenius coalgebra then an injective cover of a finite dimen-
sional right C-comodule is finite dimensional and every injective
right C-comodule is C-projective. Also for a Hopf algebra H
the following are equivalent: (1) H has a non-zero left (or
right) integral. (2) H is left (or right) co-Frobenius. Section

3 contains some results on the cohomology of coalgebras. Let C
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be a coalgebra, N a C-C-bicomodule (i.e., a left c°= ¢ & ¢°P-
comodule) and X an injective resolution

0 > C > XO > Xl < .
of C as left CS-comodule. The cohomology groups Hn(N, C) [resp.

Hoch™(N, C) ] of C with coefficients in N are the cohomology
groups of the complex Comce(N, X) [resp. N Dce X 1. The map
AL ——C, x(cmd) =ce(d) - ele)d, (w: C®C——>L the
cokernel of the comultiplication A of C ) is a universal
coderivation and the following are equivalent for the coalgebra C:
(1) ¢ is coseparable. (2) H'(N, C) = (0) for all n>1 and
all left CS-comodules N. (3) Every coderivation from any left
C®-comodule to C is inner. (4) A: L —— C 1is an imner coderi-
vation. Also we show that extensions D of C with D=CAC
correspond uniquely to elements of HE(D/C, C). These results are
used to give a proof of the Sweedler-Sullivan splitting theorem
[17] for coalgebras with coseparable coradical. We also derives

some related results for augmented coalgebras and Hopf algebras.

Tn chapter II we introduce and study the concept of (A, B)-
Hopf modules, where A 1is a Hopf algebra over a field k and B
is a right A-comodule algebra. These are A-comodules which also
have a B-module structure and where the comodule structures are
compatible with this module structure. Our approach to the subject
was inspired primarily by the paper of Takeuchi [25]. Our Hopf
module is a generalization of his Hopf module. After the defini-

tion we prove that B 1is an injective A-comodule if and only if

T



there is an A-comodule map A ——> B preserving the ldentity,
(it is called a total integral in chapter IV), and with these
equivalent conditions every (A, B)-Hopf module is an injective (or
equivalently a coflat) A-comodule. Using this we show that for
any Hopf algebra A' and any quotient Hopf algebra A of A',

if A' is a coflat (right or left) A-comodule, then it is faith-
fully coflat. In the latter part of this chapter we dualize the
results and give counterparts for [C, Al-Hopf modules with a

right A-module coalgebra C.

In chapter IIT we develope a Hopf module theory. TFor the
best results it is frequently necessary to assume that B has a
total integral , or even the stronger hypothesis that B 1s
cleft (that is, there is an A-comodule map in the units of the
convolution algebra Hom(A, B) ). Section 1 summarizes some pre-
liminary remarks on the category of Hopf modules. Section 2
studies (generalized) integrals and contains an application to
questions of splittings in Hopf modules. In section 3 we prove
the fundamental theorem about Hopf modules over cleft comodule
algebras. Section 4 gives a construction of a smash product #(A,B),
which plays an important role in the comodule algebra theory.

Throughout chapter I-III we work over a fixed field k. All
algebras, coalgebras and so on are over k. But in the last
chapter, all algebras and Hopf algebras will be over a fixed

comutative ring R.



In the final chapter we are concerned with the relationship
between a comodule algebra B over a fixed commutative ring R
and the invariant subalgebra C={ b eB | p(b) =bm1l }. We
give, 1in section 1, necessary and sufficient conditions for B
to have a total integral. From this we deduce a version of
Maschke's theorem for Hopf modules. When A is the dual Hopf
algebra of the group algebra of a finite group which acts as auto-
morphisms of B, the existence of a total integral is equivalent
to that of an element b in B such that ZXEGx(b) = lB.

Section 2 is devoted to a new exposition of the foundation of the
Hopf Galois theory. It turns out that the concepts of A-Galois
extensions with normal bases (Kreimer-Takeuchi [12]) corresponds
to our cleftness. We treat, in section 3, the case in which R
is a field and A, B are commtative. In this case we prove
that the following are equivalent: (1) The map R: BmCB-—*?EMA,
R(b be‘) = (b ®m Dp(b'), is surjective and B has a total
integral. (2) The category of (A, B)-Hopf modules is equivalent
to the category of right C-modules. (3) B is bijective and B
is a faithfully flat C-module. Using this we give an improvement
of Takeuchi's theorem on the correspondence between the set of

quotient Hopf algebras and the set of left coldeal subalgebras.

We freely use the terminology and results of Sweedler [19].



Chapter I

Homological coalgebra

Throughout this chapter, the field k 1is fixed.
Vector spaces over k are called k-spaces, and linear

maps between k-spaces are called k-maps.

§1. Coalgebras and comodules

A coalgebra over k 1is a k-space C together with
k-maps A: C » C®C and e: C ~» Lk such that
(I ®e)h=(e@®I)A=TI. If C is a coalgebra, a left
C-comodule is a k-space M together with a k-map

p:' M > CH® M such that (I ® p)p = (A ® I)p and

(e ® I)p I. If M and N are left C-comodules, a
comodule map from M to N is a k-map f: M -+ N

such that (I ® f)pM = pyf- The k-space of
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all comodule maps from ‘M to N 1is denoted by ComC(M;N) and the
category of left C-comodules is denoted by‘MF . Similarly, we

define éM‘, the category of right C—comoduleé.
1.1. Cotensor products and injective comodules.

If M 4is a right C-comodule and N 1is a left C-comodule,

the cotensor -product M Eb N 1is the kernel of the k-map

py @I -I@py: MEN > MECEN.
Given comodule maps f: M -+ M' and g: N - N'; the k-map
f%g : MEN » M'EN' induces a k-map

f 0,8 :M . N =~ M"GC N'.
It is clear that - C%-— is an additive covariant bifunctor from
MC XCM to M& , the category of k-spaces, and is left exact.
The mapping m®c -+ elc)m and ¢ @ n =~ _e(ec)n yield |
natural isomorphismé M Eh C =M and . C E% N = N. We shall usua-

lly identify these isomorphic k-spaces.

Let C and D be two coalgebras. Suppose that M in

addition to being a left C-comodule with structure map p
M =+ C®&M, is also a right D-comodule with . structure map
ot: M - M®D and that (I ®m p+)p“ = (p ® I)p+. We then say

‘that M 1is a (C,D)—biéomodule. If N 1is a left D-comecdule
then the map
PTEI:MEN > CEMAEN
gives a'left C-comodule structure to' M® N and .M Eﬁ N is
a C-subcomodule of M @& N. Similariy if L is a right C-comodule
then L EE M becomes a right D-comodule. With the structure.
described above we have the associativity of cotensor product:
(LO, M0y N = L ul (M.DD N).
"If N is a left C-comodule which is finite dimensional as a

* ..
k-space then the dual space N is a right. C-comodule with
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structure map
N¥ -+. Hom (N,C) = N*¥ @ C, n* -~ (I @ n¥)py.
If M is a right‘ C-comodule we haveAcanonically
M Ch N = ComC(N*,M).
Since every comodule is the union of its finite dimensional sub-
comodules, this implies that the functor M DC - from CML to M&

e

is exact if and only if so is the functor Comb(—,M) from M~ to

M& (cf. Takeuchi [o4]). A right C-comodule M is called

injective (or C-injeéctive) if the functor Comc(—gM) 1s exact,

and is called projective (or C-projective) if the functor
ComC(M,—) is exact.

By the flatness of injective comodules and the associativity
of cotensor products we have:

Proposition 1. Let L be a right C-comodule and M be a

(C,D)-bicomodule. If L 1is C-injective and M 1is D-injective

gggg‘ L ﬁ% M 1s D-injective.

We use the opposite coalgebra c®P  to convert a left (or right:
C-comodule V into a right .(or left) c°P—comodule. Every (C,D)~-
bicomodule M Dbecomes a left 4C ] DOp—comodule. Simiiarly M
may be regarded as a-left p°P @ C-comodule, a right c°P @ D-
comodule and a right D X C0p~comodule.

Let C, Dand E be coalgebras. For a (DOp,C)fbicomodule L,
a (C,E)-bicomodule M -and a (E,D°P)-bicomodule N, we have a
natural isomorphism |

(L E% M) th@E N = .L‘jCED (M E% N). |
Proposition 2. (1) Let L be a (D°?,c)-bicomodule. If

Ky

L 1is injective as a right C ® D-comodule then 1t is injective

as a right D-comodule.

(2) Let L be a right D-comodule and M be a right E-comodule.

If T Is D-Injective and M 1is E-injective then M ® N is

.‘_9_.



injective as a right D § E -comodule.
Proof. (1) Setting M =C and E = k 1in the above iscmor-
phism, yields

L O\ L DC(&D (C @ N).

This shows that the functor

the isomorphism for every left D-comodule N,

4

L ED “'-}s exact.

(2) Setting C = k, yields the isomorphism for every left D & E -

comodule N,

(L @ M) EBWE N o= L0 (M'DE N).

This shows that the functor (L ® M) DD&E - 1is exact. Q.E.D.

Let W be a right C-comodule. For every k-space X, X & W

is a right C-comodule with structure map

I ® pw : X@8W » X@W3JFEC,
which we denote (X) B W. (X)) @ W
W.

is a direct sum of copies cf

The next well-known result is fundamental.

Proposition 3. Let V be a right C-comodule and X Eﬁ

o

k-space. Then the map

b ComC(V, (X) ® Cc) -+ Hom(V, X)

given by ¢(F) = (I @ €)F for each F ¢ ComC(V, (X) @ C) 1is =&

k-isomorphism. The inverée y of ¢

=
~
o]

is given by ¥(f) = (f &
for each f ¢ HomyV, X). ‘ 4

Proof. Straightfoward.

A right C-comodule M 1s called free if there exists a

space X such that M = (X) ® C. as right C-comodules.

Corollary 1. Every free comodule is injective.

Note that an Injective comodule need not be free.

take C = C1 ] 02, the direct sum of coalgebras 'Cl and 02. Then

the C, 1s clearly not free, but is injective as a

For examrle,

C-comoduls=s.

In [24], Takeuchl showed that if C 1is cocommutative‘and irreduc-

ible then every injective comodule is free.

Corollary 2. Every comodule can be embedded 1

a free comocdul=.
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Proof. For every right C-comodule M, its structure' map pM
is a C—comoduie map from M to (M) ® C. Since (I & e)pM = I,
Oy is a monomorphism. ) | Q.E.D.

We note that a C-comodule V 1is injective if and only if

it 1s a direct summand of a free C-comodule. |

If ¢ 1s a coalgebra, then C* = Hom(C, k) 1s an algebra,
with multiplication defined by af = (a ® B)A : C ~+ k, where
&, B. e C¥., If V is a right C-comodule, then defining c*—v
= (IR c*)pv(v) for - c* € C*¥, v € V, makes V 1into a left C*f
module. In a similar fashion, left C-comodules have a right C¥*-
module structure. Fop,right C-comodules M, N‘we have

Com, (M, N) = Mod (M, N).
Thus MF may be regarded as a full subcategory of the category
of left C*-modules. It follows that if a right{ C~comodule M
1s injective (resp. projective) as a left C*—module then 1t is
injective (resp. projective) as a right C-comodule.

‘Proposition 4. Let M be a finite dimensional right C-comodule.

Then M 1is injective (resp. projective) as a left C¥*-module 1

and only if it is injective (resp. projective) as a right C-ccmcdule.

Proof. We need to show thé " if " part. Suppose_that M
is C-inJjective. Then the map
o » M & (maEc=ce ...8cC (finite times)
splits as right Cécomodules, and so as left 'C*—modﬁles.
Taking the dual, the map
C¥ @ l.. ® C* - M¥ -+ 0
splits as right C¥-modules. This means that M¥ 1is projective
as a right C¥-module. Therefofe M = M¥* 15 injective as a
left -C*-module.
Next we show that if M is' C-projective then it 1is prcjective
as a-left [LC¥-module. Since -M* is-injective as a left C-comodule,
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it follows from the above that M¥ 1is injective as a right C¥*-
module. Therefore M = M¥* is projective as a right C¥*-module.

This completes the proof.
1.2. Change of coalgebras.

We shall consider two coalgébras VC and D, and a coalgebra
map w: C =+ D.- Every right C-comocdule V may be treated as a
right D-comodule with .structure map

(r ®@I)p : V » VEC » VERD,
which we denote Vﬂ. Similarly for left comodules. In particular
C itself may be regarded as a left or a right D-comodule. Regar-
ding C as a '(D,C)-bicoﬁodule, we form the right C—comodule

W'o= W Cb C, where 'w is a right D-comodule,

which we call the induced comodule for W.

Proposition 5. The following are equivalent:

(1) The functor - [0y C from P to MC is exact.

(i1) C 1is injectiveigg a left D-comodule.

(iii) Every injective left C-comodule is injective as a left
D—comodule.>
Proof. The equivalence of (1) and (il) has already been
proved in 1.1. (ii) implies (1ii) by Proposition 1, and (iii)
implies (ii) since C 'is an injective left C-comodule. Q.E.D.
The next result is algeneralization_of{Proposition 3.

Proposition 6. Let V  be a right C-comodule and W be

a right D-comodule. Then the map

$: Comy(V, W') ~» Comp(V , W)

TT’

giyen.gz $(F) = T Q@ m)F, for each F s ComC(V, Wﬁ), is a k-

isomorphism*
T °

The inverse ¢ of ¢ 1is given El Yp(f) = (£ ® I)pv for each

f e ComD(V", w).

- 12 -



Proof. For F € CoqC(V, w"), the following diagram 1is

commutative:
v F _s>wogc L . wp@D ~ A
Lo L1Ea
vac —8L , woycac »l}ﬂﬁ - Lp
liar - J1bzam
vED —8 > W, C®D 1078l .,y D@D =W @D

"This implies that ¢(F) € ComD(Vw, W) .
Next we show that (f) e Com,(V, w") for f e Comp (V. W).
We have

(py B DIW(E) = (pyf 8 Doy = ((£ @ I)(I & mpy B Doy

o

(F B IR I)(Ilm T® I)(I R A)oV

(I ® (m @ I)A)(F @ I)pV = (I @ (v ® I)A)Y(F).

This concludes that the image of the map y(f) is contained in

W DD C. So () is clearly a C-comodule map ffom A\ inﬁo wTr

It is easily checked that (¢ I and ¢y = I.° : Q.E.D.

]

Corollary. If a right D-comodule W 1is injective then

m

W is injective as a right C~comodule.

A right C-comodule V is said to be T-injective if for
every exact sequence of C-comodules

0 » M' > M > M" -+ O
which splits as D-comodules, the sequence

0 - ComC(M", V) = ComC(M, v) = ComC(M', v) - 0
is also exact. Proposition 6 shows that W1T is w-injective for
every right D-comodule W. ZLet V = V1 B V2 » Where Vl and V2
are subcomodules of V. Then V is n~injec£ive if and only if
'Vl and V, are m-injective.

For every‘right C-comodule V, the strucgure map o méy be
regarded as a C-comodule map from V into (Vﬂ)Tr =V 0O, C.v The
composition

- 13 -



v & voye 8% vogop=v
is the identity, which shows that V map be treated as a direct
summand of (V GD C)Tr as a D-comodule, since IpTr is a

D-comodule map. This observation leads us to the following result.

Proposition 7. The following statements concerning a right

C-comodule V are equivalent:

(1) Vv is wm-injective.

(ii) Every exact sequence of C-comodules

o - VvV - M » N = O

which splits as D-comodules, also splits as C-comodules.

(iii) There exists a C-comodule map g: (Vﬂ)TT -~ V such that

pg = I, that is, V 1is a direct summand of (Vﬂ)Tr as a C-comodule.

Proposition 8. Let V Dbe a right C—comodulé. f V- 1is

m-injective and D-injective, then it 1s C-injective.

Proof. By Corollary of Proposition 6, V DD C 1is C-inJective.
Since V 1s w-injective, V 1s a direct summand of VI]D as

C
a C-comodule. Therefore V 1s C-injective. Q.=.0.

1.3. Comodules over Hopf algebras

A Hopf algebra over k 1s a 'k—space H . together with

k-maps A: H - H®H, €: H =+ kX, m: H®H > H, u: k - X
and S: H > H such that (H, A, €) 1is a codlgebra over Kk,

(H; m, u) 1is an algebra over k, m and u are coalgebra maps

and m(I @ S)A = ue = m(S ® I)A. The map S 1s called the_anticode

of the Hopf algebra. Let V, (1 = 1, 2) be right H-comodules with

i

py:'Vy > V., @H (41 =1, 2). Then the compo-

the structure map 1 1

sition
p = (IBIEmM(IELR (e, B py) VBV, + VB V,EH

- 14 -



gives Vl | V2 the structure of a right H—comodule, which we

call the tensor product comodule of V1 and V2.

Now we shall consider two Hopf algebras H and L, and a
Hopf algebra map w: H + L (i.e. m 1s both a coalgebra map and
algebra map, and ﬂSL = SHﬂ)- Using the fact that the antipode
is an anti-coalgebra map and an anti-algebra map, we have the next

result.

Proposition 9. Let V be a right H-comodule and W be a

right L-comodule. Then the map

p: vaw - (v_aw'

given by (L v @ w B h) = 5 v,y Bw B v yh (we urite py(v)

= I V(O) ] V(l) ) is an isomorphism of H~comodules. The inverse
Y of ¢ 1is given by Y(Z v @ w ® h) =2 V(o) B wiQ S(v(l))h.
Taking L = k, 7 = ey and W = k, we have:
Corollary 1. Let V be a right ‘H-comodule. Then there

exists an isomorphism

VEHE = (V) @H
as H-comodules.

Corollary 2. Let V be a right H-comodule and W be an

injective right H-comodule. Then the tensor product comodule

VEW is H-injective.

Proof. . Since W is injective; W is a direct summand of
(WE)€ = (W) ® H. Hence VB W 1is a direct summand of V @ (WE)E.
By the above Proposition, V & (WE)E = (VE )} we)e, and this impl-
les that V@ W d1is H-injective. Q.E.D.

An algebra map w: L -+ H 1s called a (right) cross-section
Of‘:ﬂ: H -~ L if it is a fight L;comodule map, that 15,.
(I ® n)AHw = (w & I)AL. Assume that there exlists a croSé—section.
Then, défining h« g = hm(l) for he H, £ € L, H makes into
‘a right 'L—module; We ¢ompute |

- 15 -



(I & m)A(h =~ 2) = (I ® m)A(h)<(I & m)A(w())

(L h( & ﬂ(h<2)))~(2 w(ﬂ(l)) ® Q<2))

1)
= Iohey 2Ry Balhgy)in,.

This shows that H 1s a Hopf module. So we can apply the struct-
ure Theorem of Hopf modules (Sweedler [19], p. 84) to obtain an
isomorphism of H to (H') @ L. as L-comodules, where H' =
{heH | (I ® m)ACh) = h® 1 }. Thus we have proved:

Proposition 10. Let w: H =+ L be a Hopf algebra map.

If there exists a right cross-section of =, then H 1is free as

a right L-comodule.

§2. A bilinear form for coalgebras.

2.1. Co-Frobenius coalgebras.

We shall consider a coalgebra C and a bilinear form b:
CxC ~» k. Then b induces two k-maps T: C @ C -~ k' and
8: C -+ C* by setting 1(c ® d) = b(c, d) and 6(d){e) = b(c, 4d),
for ¢, d € C. The next Lemma is clear.

Lemma 1. In the above situation, the following are eguivzl-

ent:

(1) T ciqyblepy, d) = I ble, diqy)d oy, for all ¢, d e C.

(i1) b(ec ~ c*, d) = b(e, c¥ »4d), for all ¢, d € C, c*¥ g C¥*.

li

(111) (I @ T)(A®I) = (t @ I)(I@A).

(iv) 6: C = C* is a left C¥-module map.

A bilinear form b: C x C =+ Lk 1s called C-balanced if
the above conditions hold.

Lemma 2. Let b: C x C =+ kX be a C-balanced bilinear

form and X be a subspace of C. Then we have:

(1) If X 1is a left coideal (i.e. A(X)C C ® X), then

X" ={deC | b(x, d) =0 for all x e X} is a right coideal.

(2) If X 1is a right coideal of €, then *X = {c e C | b(c, x)

- 16 -



= 0 for all x e X} 1is a left coideal.

Proof. Let X be a left coideal. Note that A(X) T C ¥ X
and X ~ C#¥ C X are equivalent. Now we have
b(X, C*¥ = X") = b(X « C¥*, X*V € b(X, X*) = 0.

L

Hence C¥ - XLc: XL, and so X is a right coideal. This comple-

tes the proof of (1). In the similar way we have the proof of (2).
Q.E.D.
A bilinear form b: C x C =+ k 1is called left non-

degenerated if ct = {0}, equivalently ©6: C =~ C* 1is Injective,

A coalgebra C 1is called left co-Frobenius if there exists a

bilinear form b: C x C -+ k which 1s left non—degenerated and
C-balanced, i.e. if there exists a left C*-monomorphism from C
to C¥*. We note that if a coalgebré‘ C 1s co-semi-simple then

it is left (and right) co-Frobenius. For we let C = @A CX where
: , ‘

-

¢, are simple subcoalgebraSof C. Since A, = CA* is a simple
algebra, we have Ax :.AA* as left Ax-modules. Hence we have
Cy = Ck* as left CA*—modules, and so as left C¥-modules. Thus
we have

C $A CA @x CX Cy HA CA* C
as left C¥-modules.

Theorem 1 (I-p. Lin). Let C be a left co-Frobenius cczlz-

ebra. Then we have:

(1) An injective cover of every finite dimensionl right C-comodule

is finite dimensional.

(2) Every injective right C-comodule is C-projective.

Proof. (1) Let M be a finite dimensional rigrht C-comcdule
and let o(M) = 8]_.S, be the socle of M (i.e. the sum of 21l
simple right C-subcomodules of M ). For the notion of socles
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and injective covers, we refer to Green[10]. It is easy to see
that an injective cover J(M) of M 1s isomorphic to $?=1J<Si)’
where J(Si) denotes an injéctive cover of Si' Therefore in order
to prove (1) 1t suffices to prove that J(S) 1is finite dimensi-
onal for each simple right C-subcomodules S of M. We may assume
that S 1s a minimal right coideal of C and J(S)C C. Let «x

be a non-zero element in S. Then we have S = C¥ = x. Since C

is left co-Frobenius, there exists an element ¢ 1in C such that
b(c, x) # 0. We claim that (c — C*YLK\ S = {0}. Suppose that
there exists a non-zero element y in S such that y 1lies in

(¢ — C*#'. Since - § = C*¥ =~ x = C*¥ >y there exists an element

c¥ in C¥ such that c¢*¥ =y = x. Then

b(c ~ c¥, y) = b(c, c¢c*¥ »>y) = b(ec, x) # 0.

But y g (¢ «~ C*IL implies b(ec « c¥, y) = 0. This is a contrad-
iction.

Since c¢ ~ C*¥ 1is a left coideal, (c — c*7 is a right
coideal, by Lemma 2. It follows that (c “-C*)L/W J(s) = {o0}.
In generally, 1f X 1is a finite dimensional subsrpace of C, .XL
is cofinite dimensional since X‘L is the kernel of the map
C + X¥* defined by ¢ + 6(c)|X. Thus we have that (c « C*f_
is cofinite dimensional. It follows that J(S) 1is finite dimen-
sional. Thus (1) 1s proved.

(2) Let V be an injective right C-comodule and let o(V) =

®» 51 be the socle of V. Then we have V = 8, J(SA). Since

J(SA) is finite dimensional it follows from Proposition 4 that
J(Sl) is an injective left C¥-module. The embedding

gs,)cc 8 o
yields that J(SA) is a directvsummand of .C* as a left C*-module.
Therefore J(SA) is a projective left C¥-module, and so is V.

Thus V 1s a projective right C-comodule. Thils completes the proof.
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Corollary 1. If C 1is a left co-Frobenius coalgebra then

C 1is projective as a right C-comodule.

Corollary 2. Let C be a left co-Frobenius coalgebra. Then

the category of left C-comodules has enough projectives.

Proof. We have to show that for each left C-comodule N
there exists an epimorphism P —+ N -+ 0 with P projective.
Without loss of generality, we may assume that N 1s finite dimen-
‘sional. Then we consider a monomorphism of finite dimensional right
C-comodules 0 =+ N¥ -+ J(N¥)., Taking the dual, we have an

epimorphism of left C-comodules J(N¥)¥ » N = 0. Q.E.D.

2.2. Integrals.

An augmented coalgebra is a coalgebra C together with a

coalgebra map u: k =+ C. Clearly u(l) 1is a grouplike element
of C. Using u: k = C we may convert any k—space X into a
left (or right) C-comodule uX (or Xu) by setting p(x) =

u(l) @ x (or p(x) = x @ u(l) ). In particular k has a left (or

right) C-comodule structure.

X € C* is called a left integral if x is a left C-

comodule map from C to k, i.e. I C(1)<Ks Crpy> = <x, c>ull
for 21l ¢ e C. We note that x g C¥ 1is a left integral if anrd

only if c¥*.x = <c¥, u(l)>x for all <c* ¢ C¥. An augmented cozl-

D

gebra need not have a non-zZero integral. However, 1f C is lef:

ot

co-Frobenius then C has a non-zero left integral. In fact, i

ct

is easily checked that b(—, u(l)) = 6(u(l)) dis a nonnéero lel
integral.

Proposition 11. Let C be an augmented coalgebra. £ C

is finite dimensional and left co-Frotenius then the k-space cf

left integrals i§ one dimensiocnal.

Proof. We have that C = C* as right C-comodules. Thers-
fore
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Com,(C, k) = C¥ O, k Q.E.D.

C C

Lemma 3. Let H be a Hopf algebra. I J a non-zero

o e
o |w

right ideal and a right coideal, then 'J 1is equal H.

—_— e

Proof. If €(J) = {0} then for all h e J,

h = ¢ e(h<l))h(2) =0 _(since' A(J) C J ® H ). Hence we must
have €(J) # {0}.. Thus | there exists an element h
in J such that e(h) = 1. Since 1 =e(h) = I hqyS(h5y) and

J*HCJ, we have 1 ¢ J. ‘ Q.E.D.

Theorem 2 (Lin;Larson—Sweedler-Sullivan). The following

statements concerning a Hopf algebra H are equevalent:

(i) H has a non-zero left integral.

(ii) H 1is left co-Frobenius.

(i1i) H has a non-zero right integral.

(iv) H 1is right co-Frobenius.

Proof. (i) => (ii). Let x be a non-zero left integral.
We define a bilinear form b: H x H -+ Lk as follows;
b(e, d) = <x, ¢S(d)>, for all c¢, d € H.

Then we compute

™

b(e, dkl))d(2) = I <x, cS(d(l))>d(2)

= B e)Sl8a)) e 0(2)308(1))17d(3)

= EeyElde) 9 e@)3ld))?

= L c(qy<x, cpy8(d)> = 'Z<é(l)b(c(2), d).
This shows that b: Hx H » k 1s C-balanced. Next we show that
Y (= {¢ ¢ H | b(ec, d) = 0 for all c e H} ) is zero. Let d & H
and _h e H. For all c¢ € H, we have |

b(ec, dh) = <x, ¢S(dh)> = <x, e¢S(h)S(d)> = b(eS(h), d) = 0.
"Hence dh e H , so - is a right ideal of H. Since x # 0, H“L
“is a proper righﬁ ideal. Also H* 1is a right coideal, by Lemma 2.
Therefore we have H' = {0}, by Lemma 3.

(ii) => (1ii). 1In the proof of Theorem 1, (1), we obtained that
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H‘ contains a proper right coideal of finite codimension.
Therefore, by (2.1”5 in Sweedler [20], H has a non-zero right
integral. |

(iii) => (iv). The proof is the same as (i) => (ii).

(iv) => (i). The proof 1s the same as (ii) => (iii).

2.3. Coseparable coalgebras.
Let C Dbe a coalgebra. For every right C-comodule V, we
have ComC(V, C) = V¥, by Proposition 3. If in addition V 1is a
(C, C)-bicomodule thén we have an isomorphism
Comy o(V, C) = {y e V& | (I8 Y)p” = (v & Dot 3,
T > ¢T
(Ie1)p” ¢—

A coalgebra C 1is called coseparable if there exists a

k-map T: CE®C - k such that (I @ t)(A ® I) = (1t 8 I)(I @ &)
and 1A = €. We have‘immediately frém the aboye isomorphism that
C 1is coseparable if and only if there exists'a (C, C)-bicomodule
map 7w: C 8 C -+ € such that wA = I. We note that A may be
viewed as a (C, C)-bicomodule map from C to C ® C. Thus we
may conclude that C 1is coseparable if and only if € 1is injective
as a C @ C°P-comodule.
Let C and D be coalgebras and let T: CB C -+ k be a
k-map such that (I ® t)(A @ I) = (t @ I)(I @ A). For any (C, D)-
bicomodule M, N and for each f e ComD(M, N), we define a k-map
fo: M > N
by setting f, = (1 @ IN(I® py )(T @ Doy . |
Lemma 4. In the above situation, fo is a (C, D)-bicomogdul

e

Proof. We can construct the following commutative diagram:
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M —P 3 CXM ____lgiiw_; CRN ___IEEE_Q.___:} CECEAN _1@.1________;
Lp , I8p I@p lI@IQQp o
p@I IRfRI I&pRI TRIRI

MRD ——— CEMED ———— CEN@D ————— CHCEN®D —————> N@&D

This shows that fc is a right D-comodule map. We also have a

commutative diagram:

M—L s cmm — I8 can — T80 cpomy —8L sy

lp LAEI lAEI ’D

. A\
cam 2805 cpogm LBIEC ., cgomn —IBIBR s cgomeomn 28BS cmy

This shows that fc is a left C-comodule. Q.E.D.

Lemma 5. Let L, M, N and P be (C, D)-bicomodules. For

each g ¢ COmC,D(L’ M), f e UomD(M, N) and h € ComC’D(N,'P), we
have (hfg)c = hfcg.
Proof. (hfg)c = (1 ® I)(I ® p; Y(I @'hfg)oi

[t}

(t ® I)(I @I ®h)(ITopy, £)(I Vgl

h(t @ I)(I @ oy floy & = hi 8. ' Q.E.D.

Lemma 6. Let C be a coseparable coalgebra. Let M and

N be (C, D)-bicomodules. If f: M - N is a (C, D)-bicomodul=

map, then fC = f,

Proof. f (1@ I)(I ® D§ f)o&

(t@I(TEIELIE oy oy

C

]

i

f(t @ I)(A & I)p;l'
fe B I}p& = f, Q.E.T.

Proposition 12. If C 1is a coseparable coalgebra and D

is a co-semi-simple coalgebra then C @ D 1is a co-semi-simple

coalgebra.

Proof. It suffices to prove that every (C, D)-bicomodule
M 1is completely reducible. Let N be a  (C, D)-subcomodule of M.
Since D 1s co-semi-simple, ﬁhere exists a D—comddule map f: M
+ I such that fi =‘I, where i:.N - M is‘the.inclusion.

We then have fi i = I ,by Lemma 4 and 5. Since fC is a (C, D)-
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bicomodule map, it follows that N 1s a direct summand of M as

{7

a (C, D)-bicomodule. Q.E.D.

Corollary. If a coalgebra C 1s coseparable then it is

co-semi-simple.

§3. Cohomology

Since QM is an abelian category and has enough injectives,
we can define the functor Extg(M, N) as the n-th right derived
functor of the functor ComC(—, N). Explicitly, we take an injec-
tive resolution X of a left C-comodule N:

0 ~ N » X5 -~ Xy > X > e
Then Extg(M, N) 1is defined as the n-th cohomology group of the

complex UomC(M, X).

3.1. Cohomology of coalgebras.

Let C Dbe a coalgebra and N be a (C, C)-~bicomodule.

€ c a c°P be the enveloping coalgebra of C. Then we

Let C
regard N as a left (or right) c®-comodule. 1In particular we
regard C as a left C®-comodule. Now we define the n-th cohe-

mology group of C ‘with coefficients in N as

HY(N, C) = Expge(N, c).
Thus we have Hn(N, C) = Hn(COmC,C(N, X)), where X 1s an injective
resolution of C as a left Ce—comodule. On the other hand,
consider the complex N Dce X and we define another n-th
cohomology group as

Hoch™(N, C) = H™(N O.e X).
We note that ir N 1is finite dimensional then H (N, C) =
Hoch” (N¥, C).

Next we shall describe a construction of a standard complex.

For each integer n > -1, let Sn(C) denote the (n+2)—fold
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tensor product of C. We convert s"(c) into a (C, C)=biccmcduls
by setting o (cO @e, @... 0 Cn+l> = A(co) @ey ®...8c

+ - kgl 1
and p (co @e, @...0 Cn+l) =cy @ ... Rc @ A(cn+l). Clearly
s(c) is injective as a left c®-comodule. We now define for

each n > 0 a c®-comodule map

a: sy - s%leo

n+1

= Ii-0

by dn(c0 e, @ ... e (--l)icO B ... R A(ci) B ... B¢

1 n+l)
We define for each n > 1 a right C-comodule map
s se) - "o
n —— fal
by s (cO | N W o... B cn+l)'" e(bo)cl ¥ ... 08 o1
One verifies directly that

LR L dn_lsn =1 ((n>1).

This shows that

-1 A

0 1
c=3s5%c) & % ¢

steey ¢
is an injective resolution of C as a left c®-comodule. We obs-
erve that SO(C) = C ® C coincides with ¢® = ¢ ® ¢°P? 4as a
c®-comodule. More generally we have s™(cy = ¢t ® C[n] as a
Ce—comodule, where C[n] is.the n-fold tensor product of C fcr
each n > 0, and C[O] = k.
In computing the cohomology groups we use the identifications:
Comce(N, s(c)) = Comce(N, ct @ C[n]) = Hom(N, C[n])
N Hee s7(C) = N Qe (c° @ clndy =y g cfnl,
Thus HY(N, C) are the cohomology groups of the ccmplex
{Hom(N, C[n])}n>o with differentiation
s gom(n, )y . Hom(n, cln*lly
by 8™(f) = (I & floy -~ (AEI@ .. )f + (I BAB...)F
- (I E ... BMOETF (£ E Doy
And Hochn(N, C) are the cohomology groups 6f the comlex
{N @ c[“]}n>o with differentiation

p": v acl?d o ygclntld
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py D(v @ ¢, @ ... Cn) = D+(v) e, @ ... 8c
0 (DTv e el B oL e B . B
+ (—l)n+l£ Vi) B cy @ ... & c, @ Vi_1)>
wheré we write p (v) = I Vi_1) ® Vigy € C ® N.
' We obtain that HO(N, C) = {y e N* | (I ® v)p = (y @& I)p+}
= ComC’C(N, C) and HochO(N, C) ={n g N | tp (n) = p+(n)}.

A k-map f: N » C froma (C, C)-bicomodule N into C
with the property Af = (I B £)p + (f ® I)p+ is called a

“coderivation from N into C. The coderivation f 1is called

an ;Qgggicoderivation provided that there exists a vy € N* such
that f = (I B y)p - (y & I)p+. Thus we have an exact sequence

0 - HO(N, C) ~» N¥* -+ Coder(N, C) - Hl(N, c) =+~ 0,
where Coder(N, C) denotes the k-space of all coderivations from

N into C.

We now introduce an universal coderivation. Let L be the

cokernel of A : C - C ® C. Then we have an exact sequence of

(C, C)-bicomodules
0. - ¢c % cac ¥ 1 » o.
We denote coc' = w(c B ¢') and we define a ﬁap
Az L » C
by A(cec') = ce(e') - e(c)e'. It is easily checked that )\ is
a coderivation from L into C. Moreover A is an univer-

sal coderivation in the follcwing sense:

Proposition 13. For zany (C, C)-bicomodule N, the mar

Com (N, L) =+ Coder(N, L)

c,C .
Sending ¢ to Ao, 1s an k-isomorphism.

Proof. Let f e Coder(N, C). Then w(f B I)p; e Com, C(N, L).
For any n € N, We have |
+ .
A (f & I)pN(n) =z xm<f(n(0)) ® n(l))
I f(n(o))e(n(l)) - Zke(f(n(o)))n(l) = f{(n),
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since ef = 0 for any coderivation f. Hence we have Aw(f & I)p;

= f.

Coversely, let o € Com (N, LY. Then we have

c,C
+ +’ X +
w(lo B I)pN = w(A ® I)pLo = g, since () B I)pL = T.
Thus the correspondence o =+ Xlo glves a k-isomorphism, and this
completes the proof.

Theorem 3. The following statements concerning a coalgebra

C are equivalent:

(1) C 1s coseparable.

(i1) For every (C, C)-bicomodule N, we have H'(N, C) = {0} for

all n > 1.

(iii) Every coderivation from any (C, C)-bicomodule into C is

an inner coderivation.

(iv) X: L > € 1is an inner coderivation.

Proof. (i) => (ii) 1is immediate from the fact that a
coseparable coalgebra C 1s injective as a c®-comodule.
(1i) => (iii) and (iii) => (iv) are obvious. Now we prove
(iv) => (i). Suppose that .\X 1is inner. Ther there exists a
vy € L¥ - such fhat A= (I ® Y)pi - (y ® I)pz . We define a (C, C)-
bicomodule map E: L » CWC by £=(IQvyDX I)(Qi & I)pz
Then we have

E=((n+ (y @ 1)@ @ 1>p;:

i

(A ® I)pz + (yEI®EID(IE A)pz

il

+ +
(A ® I)DL + Ay ® I)QL .
Hence we have wE = w() & I)pz = I. This means that the exact
sequence

£ cac ¥ 1 » o,

0O - ¢C
splits as a (C, C)-bicomocdule. Therefore we have that C is

coseparable, and the theorem is completely proved.
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3.2. Extensions of coalgebras.

Let C be a coalgebra. An extension of C 1s any coalgebpra
D which contains C as a subcoalgebra.
Now we coﬁsider an extension D of C with D = CAC, i.e.

AMD)C DR C+C®D (see Sweedler [19], p.179). 1In this case

we may regard the quotient space D = D/C as a (C, C)-blcomodule

by
ot:pLspagp 2RI 50
p : D AL spap L BP,pghD

- where p: D —> D denotes the natural projection, since we have
Imp"C DEC and Imp ¢ C & D.
Let ¢ be a k-map of D -+ C such that ¢|C = identity.

We then have that the following giagrams are commutative:
A A

D —2 SspED D —2 5@ D
Ip + doay o lvap
P —2 s5a3c D—L scm D

Define a map f: D » C B C by setting
f=(p & Y)A - Au.

Then f(C) = 0 and thus f. induces a k-map f: D =+ C ® C with

p = f.
- 5. ol23
Lemma 6. f 1is a 2-cocycle in Hom(D, C ).
Proof. We compute

§%(F)p = (1B oo - (AT I)Fp + (I8 A)TFp - (Fa

[ ]
-
©
o]

(b B F)A - (MA@ INE + (I ®A)F - (£ & VA

(v @@ y)(I @ AL - (v &APIAY - {(Ay B YA ~ (& @ I)AY}
(v @ ap)a - (T ® A)ag} - {((p @y 3 Y)(A ® I)A + (Ay 3 i»)‘A}

+

0.

Since p is surjective we have Gz(f) = 0, , G.E.D.
Let ¥, and ¥, be k-maps of D =+ C such that w1|C
= w2|C = identity. Construct the maps ?l and T

Lemma 7. fi and f, are cohomologous.

> as above.
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Proof. Let g = wl —.wz. Since g(C) = 0, g induces a

k-maps g: D + C with gp = g. Then

s1(Z)p

-, - — — +
(L@ g)pp -~ NAgp + (g @ I)pp

(v, @ gl - Ag + (g @ ¥ )b .

U

This implies that

T,p = (b, @ V)0 - A,
= ((v; - &) 8 (v, - 8))d - 8(¥y - g)
= {(py @ 9y )a - Ay} - {(yy B g) - dg - (g B ¥y)4)
= fp - sH(&)p.
Therefore ?2 = fl - al(gy, and this shows that fl and ?2 are
cohomologous. Q.E.D.

Summarizing, we find that an extension D of C with
D=CAC defines uniquely an element [f] = class of f, in
5% (D, C).

Theorem 4. Let D Dbe an extension of a coalgebra C with

D=CA C. Then we have that [F] = 0 in H(D, C) if and only

if there exists a coalgebra map ¢: D =+ C such that ylc = I.

Proof. Suppose that [f] = 0. Let ¢y be a k-map of D
+ C such that ¢|C = I. T can be viewed as the 2-cocycle asscc-
lated with . Since [f] = 0 there exists a g ¢ Hom(D, C)
such that f = 61(§). Set ¢' = ¢ - gp. Then v' is a k-map
of D -+ C such that p'iC = I. Let F' be the 2-cocycle

associated with ¢¢'. The proof of Lemma 7 then implies that

that is, ' is a coalgebra map.

The " 4f " part of the assertion 1is clear.
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Remark. More generally we can show that the second
cohomology group H2(M, ¢c) for a (C, C)-bicomodule M d1s in
one-to-one correspondence with the set of equivalence classes of
extensions over C with cokernel M

c 3 p B w
(that is, D 1is a coalgebra, 1 is an injective coalgebra map,
i(c)y ANi(C) = D, p 1is a surjective k-map which induces
D/i(C) = M as a (C, C)-bicomodule.) Two extensions

. -,
c ¥ p B M ana ¢ ¥ D' B M over ¢ with cokernel M

are equivalent if there exists a coalgebra isomorphism £ : D = D'

such that the diagram
Ay ?¥~Lﬂ .
NDW/P,)’

N

C

is commutative.

These results are used to give a proof of the

next theorem for coalgebras with coseparable.

Th
eorem 5 (Sullivan Eég)' For C a coalgebra with cosepa-

rable coradical R, there exists a coalgebra map ¢: C -+ R such

that w|R = I.
Proof. C has a filtration b
‘ Y subcoalge =
gebras R COCCl ..

i+l
where C, = AC'"R (1 = 0,1,2,...). Thus it is enough to construct
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a sequence wo, wl, ‘e suéh that wi is a coalgebra mép of
C;, » R and wilci—l = ¥, 1, for all i > 1. For since C =\JCi
there 1s a unique coalgebra map ¢: C + R which extends all
the ¢;. It is clear that y|R = I, therefore all is good.

To construct the sequence, assume inductively that we have
wo, wl, ceey wn for some fixed n > 1. Let Jn denote the kernel
of wn. CnJr.l/Jn can be viewed as an extehsion coalgebra of Cn/Jn'
Then it is easily checked that Cn+l/Jn = Cn/Jn A Cn/Jn and
C,/J, = R. It follows from Theorem 3 and Theorem 4 that there

i . = T
exists a coalgebra map f: C_ ,.,/J > C_ /J  with fI(Cn/Jn) I.

n+l
Now we define a coalgebra map wn+1: Cn+l + R by the composite
proj. f .
Cn+l e Cn+l/Jn —) Cn/Jn = R,

Then we have wn+licn = ¥, and this completes the proof.
Remark. Given two coalgebra maps ¢ and- ' with U|R
= Y'|R = identity, we can find a relation between ¢ and y'.

In fact, C becomes a (R, R)-bicomodule by

oorc 8 cmge BI, rmec
1
ofoc 8 cmc L BY, ¢agr.

Since R 1is a (R,‘R)-subcomodulerf c, C/R is an (R, R~
bicomodule. Since Y|R = y'|R, ¥ - ¢' : C — R induces a k-map
U -~ 9': C/R = R. Then it is easy to show that ¢ - ¢' 1is &
coderivation from a (R, R)-biccmodule C/R into R. It follcws
from Theorem 3 that there exists an element Yy in (C/R;¥* such
that 50(Y) =y - y'. Rewriting this equation, we have

| (b @ yp)& = (yp B $')6 = ¢ - y°

where p: C - C/R denotes the natural projection. Set d¥ =

e - yp (in C¥*). Then we obtain

p(a* ¢c) = Y'(c & ag%) for all c¢ e C.
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3.3. Cohomology of augmented coalgebras.

Let (C, u) be an augmented coalgebra (see 2.2). Then k
has a left C-comodule structure, and cohomology groups Extg(N, k)
are defined for every left C-comodule N.

Theorem 6. For every left C-comodule N, we have

Extg(N, k) = Hn(Nu, c).

Proof. We apply Proposition 6 to obtain that for every
(C, C)-bicomodule V,

ComC(N, ' UC k) = ComC,C(Nu’ V).
Therefore it suffices to show that the complex '{anjc k} is an
injective resolution of k as a left C-comodule, for each injec-
tive resolution of C as a Ce-comodule;
0 1 2

0 4 X1 d X2 d

c =+ X
Taking V = X" in the above isomorphism, we obtain that " DC k

is injective as a left C-comodule. Now let 7z = Ker gt = Im dn—1

(n > 1). Then we have the exact sequences of (C, C)-bicomodules;

0 -+ 2 + X > Z T =+ 0 (n > 1).

Since C and XO are injective as a left C-comodule, so is clearly
Zl. It follows by induction that 7™ (n > 1) 1is injective as a
left C-comodule, since from Proposition 2,(1) i (n > 0) is
injective as a left C-comodule. Therefcre we have the exact seg-
uences ;

o » "0,k » xX"O,k »~ 2O,k » o,
This shows that the comlex {anjc k} is an injective resoluticn
of k as a left C-comodule, and completes the proof.

Remark. Similarly, we can show foreveryright C-comocduls M
that Hochn(uM, C) coincides with the n-th cohomology group

H™ (M Ch X), where X is an injective resolution of k as a left

C-comodule, since we have that for every (C, C)-bicomodule V,
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M DC (v Cb k) = uM Cke V.

Now consider the particular case when C 1is a Hopf algebra.
We define a k-map
| v:ct=cmc® » ¢
by setting V(c ® d°P) = ¢S(d), where .S "is the antipode of C.
Clearly, V 1s a coalgebra map. Given g (C, C)-bicomodule
N we shall denote by N (or Nv) the k-space N regarded
as a left (or right) C-comodule by means of the map V. In part-

icular (Ce)v is a (c©

s C)—bicomodple. Assume that C is invo-
lutory, i.e. 82 = 1dentity. Then the map

a: (¢®), » cac |
defined by setting a(c & a°P) = s 1) b c(g)S(d) is a right
C—cdmodule isomorphism, where C & C regarded as a right C-comodulse
by p: C&C ——£—g~éﬁ_ C®CBEC. The inverse of o 1is given by
x 8y =+ I X(1) ® (S(y)xtz))Op. Therefore (Ce)V is free as a

right C-comodule. It follows that for each injective resolution

of k as a left C-comodule, k = XO -+ Xl + L.,
we have an exact sequence
€ e 0 %
(CT)g O k » (C)g B, X7~ ... . (%)

~ Moreover (Ce)vuC x? (n > 1) 1is injective as a left C®-comcdule,
by Corollary of Proposition 5. Sinéé (Ce).V DC k = C, it follows
that the sequence (¥) 1is an injective resolution of C as a 1§ft
c®-comodule. Thus we have:

Theorem 7. Let C be an involutory Hopf algebra. For every

(C, C)-bicomodule N, we have

Ext?(_N, k) = HY(N, C).

n
C(V
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CHAPTER IT

ON THE STRUCTURE OF RELATIVE HOPF MODULES

All vector spaces will be over a field k. Map always means k-
linear map, and the unadorned tensor product V f W is understood

to be V Qk W. We use the sigma notation. Thus, if C 1is a

coalgebra, we write A(c) = L c(l) R c(z), for ¢ e C. If M |is

a right C-comodule with comodule structure map p : M —>

MR C, we write for m ¢ M,

p(m) = ¥ m 8 m

(0) (1)~
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Throughout this chapter A  1s a Hopt algebra with antipode S.

Let B be an algebra and a right A-comodule. The comodule

structure map will be denoted by pg * BR——> B & A and for pB(b)

we write I h(O) f b(l)‘ B is called a right A-comodule algebra

if is an algebra map.

’B
A dis itself a right A-comodule algebra via A @ A—— A & A.
More generally, if B 1s a subalgebra and a right coideal of A

then B becomes a right A-comodule algebre. The ground field Kk

has a trivial right A-comodule algebra structure given by
u, : K————m A = k & 4.

Definiticn. Let B be a right A-comodule algebra. M 1is called

a right (A, B)-Hopf module if M is a right A-comodule and a

right B-mcdule such that the fellowling diagram commutes

Mg B = > M ——Fs M8 A
.
by B Pg | ey 81
M2 ARDBEA 1 8T8 5 vwagpegaasga

( wy 1s the B-module action of M, py is the A-comodule
structure map of M, MA is the multiplication in A, T 1s the
twist map).

The diagram can be expressed as

py(mb) = I megybegy B meqyby

for all m e M, b ¢ B.
We note that B is itself a right (A, B)-Hopf module via
P and MB : B B — B.
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Theorem 1. Let B be a right A-comodule algebra where there is
a right A-comodule map ¢ : A —— B with ¢(1A) = 1y. Then

every right (A, B)-Hopf module is injective as an A-comodule.

Proof. Let M be a right (A, B)-Hopf module. If M f A has
the right A-comodule structure given by I 8 A : MR A — >
(M & A) 8 A then the comodule structure map IV M—M&A
is an A-comodule map. We show that there is an A-comodule map
At MR A —— M with AQM = TI. Thus M 1is injective since
it 1s 1somorphic to a direct summand of M 8 A, an injective A-
comodule.

Define X : M 8 A ———> M as the composite

1
Mmepa L8 T omgaga L1888 T vonga 18 Avga

__I__QL_?L*;M@B____E__)M

so that A(m R a) = I m<o)¢(S(m<1>)a) for me M, a e A.

For any m e M,
ApM(m) = (I m(o) f m(l)) = I m(o)¢(S(m(l))m(2))
=z m(o)e(m(l))¢(lA) = m

so that Ap is the identity of M.

M
Next we claim X 1s an A-comodule map.

pMA(m 8 a) = pM(Z m(0)¢(S(m(1))a))

’-"—‘ )X m(o)(b(S(m(g))a)(O) 8 m(l)¢(s(m(2))a)(l)

The condition that ¢ be a right A-comodule map 1is e{acplyg B

Since the antipode S 1is an anti-algebra map the above expression
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equals
Imgyd(Stmegylaryy) @ meyySlmyyla,,

= I m(0)¢(8(m<2))a<l)) f E(m(l))a(Z)

i

T m(o>¢(8(m(l))a(l)) R a(2)

i

(A 8 I)(TI R AA)(m R a).
Thus X 1is an A-comodule map. q. e. d.
In case B = k, the above result reduces to [19 LEMMA 14.0.27.

Corollary. The following statements concerning a right A-comodule
algebra B are equivalent:

(1) B 1is an injective A-comodule.

(11) There is a right A-comodule map ¢ : A ——> B with

¢(1A) = 1g.

Proof. Consider the diagram of right A-comodules

Uy

0 > > A

K
l ug .o ¢
B

L/

If B is an injective A-comodule then the dlagram can be completed
by an A-comodule map ¢ to a commutative diagram. Thus we have
that (i) implies (1ii).

Since B may be regarded as a right (A, B)-Hopf module it

follows from Theorem 1 that (i1) implies (1). qg. e. d.

Let A, A' be Hopf algebras and f : A' ——— A be a Hopf
algebra map. Then A' becomes a right A-comodule algebra via

A'-“;A_“')A'ﬁA'—”‘I—‘@—Q*“)A'ﬁA.
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Theorem 2. Let f : A' ——> A Dbe a surjective Hopf algebra map.
If there is a right A-comodule map ¢ : A —— A' with ¢<1A)=1A'
then we have:

(1) A" 1is injective as a right A-comodule.

(2) For any left A-comodule V, the canonical map

AT DA Vv > A0, V=V

is surjective, where [ denotes the cotensor product over A.

A

Froof. (1) is clear by Theorem 1 and thus we need only show (2).
Since f is an A-comodule map, Ker f Dbecomes a right (A, A')-
Hopf module in a natural way. Thus we have from Theorem 1 that

Ker £ 1s an injective A-comodule. This implies that the sequence

g
=

0 ——— Ker f — A" > O

is a split exact sequence of right A-comodules. Cotensoring over

A by V yields the exact seguence

o———>(Kerf>DAv--——»A' DAV———)ADAV~——~90.

q. e.

Remark. The above Theorem shows that for surjective Hopf algebra
map f : A' ——> A, f 1is right coflat if and only if it is right

faithfully coflat.

We return to the first setting where B 1is a right A
comodule algebra.

Define the A-invariant subspace of B to be the set
By = {Db B | pp(b) = b &8 1, }.

It is clear that B, is a subalgebra of B.

-
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Let V Dbe a right BO—module. Then V @B B 1is a right B-

0
module in the usual way. It is also a right A-comodule with
comodule structure map p : V @BO byY——->1L v @BO b(O) f b(l)
(this is well defined). One easily checks that V @B B is a
0

right (A, B)-Hopf module.

Let M be a right (A, B)-Hopf module. Define the set

M, = {meM [ pM(m) =m@ 1, }.

For any m ¢ MO and b ¢ BO . we have mb e MO and thus MO

is a right Boumodule. Define

B b) =mb for m e My, b e B. It is then an (A, B)-
0

Hopf map, that is, an A-comodule map and a B-module map.

by a(m 8

Theorem 3. Let B be a right A-comodule algebra. If there 1s a
right A-comodule map ¢ : A ———> B which is an algebra map then

for every right (A, B)-Hopf module M,

is an isomorphigm of (A, B)-Hopf modules.

Proof. let P : M ——> M Dbe the composite

M — s mMea __l_@;§;ﬁ M R A%;_l_g_$_9 MeB—2 snM.

Explicitly P(m) = I m(0)¢(S(m(1))).

We claim P(M) < IM,:

oy () = m(0)¢<s(m(2))>(o> 8 m ey 8(S(m o)) (1)
- T m()#(S(mg3))) &m0 y)
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]

z m(o)¢(S(m(2))) 8 E(m(l))lA

= 3 m(O)d)(S(m(l))) 5] 1, = P(m) R 1y
Thus P 1is 1in fact a map M —— MO.
Define g : M ——— MO @B B by
0

We will show oBf =1 and PRBo = T

ap(m) a(X m(O)(b(S(m(l))) QB ¢(m(2)>>

0
= % mg)d(S(m qy))e(myy)

= I m(o)¢(S(m(l))m(2)) = m.

For m e M b ¢ B,

O)

Ba(m & b) = B(mb) = L P(mb(o)) @B ¢(b(1))

0

since I b(o)¢(5(b(1)>) € BO for any b ¢ B

]

T om @BO b<O)¢(S(b(l)))¢(b(2))

I}

I m @BO b<o)¢(€(b(l))1B) = m @BO b. q. e. d.

In case B A and ¢ = I, the above Theorem reduces to [ 19,

THEOREM 4.1.17.

We dualize Theorem 1, 2 and 3.

Let C be a coalgebra which is a right A-module. C 1is a

rigﬁth A-module coalgebra if the following hold for all c € c,

a € A :
(1) 8lea) = E e an) 8 cpaq
(2) e(ca) = e(c)e(a).
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A is itself a right A-module coalgebra via Mp ¢+ A 2 A —> A.
The ground field k has a trivial right A-module coalgebra struc-
ture.

Let N be a right C-comodule and a right A-module. N is

called a right [C, A]-Hopf module if the following folds for all

n € N, a € A
p{na) = Z n(o)a(l) f n(l)a(2).

Suppose that there exists a right A-module map $ : C — A

with eAw = €c- For any right [C, A]l-Hopf module N, define

A: N—>N R A as the composite

N—=P sngc—+8Y  yvea—L1282% svearnna
IRS8T .yoaaga w®8I sNnga
that A = )
Yo} a (n) z n(O)S(w(n(l))(l)) B w<“(1)’(2) If N R A has

the right A-module structure given by (N f A) # A _1&M, N R A

then X 1is an A-module map with wA = I. Thus N 1is a projective
A-module since it is isomorphic to a direct summand of N f A, a

free A-module.

We summarize this in the following theorem

Theorem 4. Let C be a right A-module coalgebra where there is
a right A-module map ¥ : C —> A with ey = e. Then every

right [C, A]-Hopf module is a projective A-module.

Remarks. If C 1is finite dimensional then $(C) 1is a non-zero
finite dimensional right ideal of A so that A must be finite
dimensional (19 , p.107). 1In case C = k, the above Theorem

reduces to [19, THEOREM 5.1.8].

We state without proof the dual of Corollary of Theorem 1 and
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Theorem 2

corollary 1. Let C be a right A-module coalgebra. The following

are equivalent :
(i) C 1is a projective A-module.

(ii) There is a right A-module map ¢y : C —— A with €y = €.

Corollary 2. Let H be a Hopf algebra and A a Hopf subalgebra.

I1f there is a right A-module map ¢ : H ——> A with ¢y = ¢
then we have
(1) H is a projective A-module.

(2) For any left A-module V, the canonical map
V = A QA Vv — H QA v

is injective.

Let C be a right A-module coalgebra. If A+ denotes the
kernel of € : A ——> k then cat is a coideal of C. Hence
C = C/CA+ has a unique coalgebra structure such that the projection
p: C———>C .is a coalgebra map.

Let N be a right [C, A]-Hopf module. Then the map p ind-
uces the right C-comodule structure of N

I2pP ,ypcC.

N —P > NpC

Na*  is then a C-subcomodule of N. Thus N = N/NAY has a unique
comodule structure p : N ——> N 2 C making the projection
N —> N a C-comodule map, that is, pm = (7 # p) Py -
the that we have ﬂ(nq) = n(n)s(a), for n ¢ N, a e A.
Since C has the left ’E~comodule structure induced by

c-fé——acgc pRI

>C R C

Lo



for any right

right [C, A]

W= C

C-comodule

c

-Hopf module via

C

WDE

I 8 A

CR A

For any right

I R

)WDECEC

W

N 8 C be the composite

N

——3> N 8 C

P

? W DE C

[C, Al-Hopf module N,

It is easy to see that o (N)

map N —> N Oz C

o is

c N Dé C. Thus

then a

W, W[l C 1is defined and it is a

define o : N ——>

@ 1is in fact a

[(C, A]l-Hopf module map.

In these terms Theorem 3 can be dualized as follows

Theorem 5.
right A-module map Y

for every right

Let

o

C be

a right

C——> A

[C, A]-Hopf module N,

: N —— N Og C

is an isomorphism of

Since the proof of Theorem 3

(C, Al

-Hopf modules.

include a proof of Theorem 5.

Proof. Let Q

N —P—3y N R

so that Qi(n)

For

Q(na)

n

€

C

]

N

A-module coalgebra.

If there is a

which is a coalgebra map then

is not so easily dualized we

N ——> N denote the composite

Y

I n

I n

I

7

I 8S

AN

N R A

7

% n(O)S(w(n(l))) for n ¢ N.

and‘

a € A,

(025 a)))

(0%

S“““(l)’a(z)’

. “(0) (1)8(3(2)) 80 (n 1))

z

n

(0)

(a)S (Y (n

NRA—Y >N



. + . —
Hence Q@ wvanishes on NA . Thus there is a map Q

commute. In particular, if we define Qg + € — C by QO(C)

]

o)

=

z C(l)S(w(C(z))) then Q, factors through C, that is,

map 50 : C ——> C with QO = Qop. Note that we have

w (QO g W)AC =1

C c™

Let B : N DE C ——> N denote the composite

inclusion

C >N R C Q8 Y s naa—2L 5.

For any n € N

Ba (n) = B(Z ﬂ(n(o)) R n(l))
= I n(o)s(w(n(l)))w(n(z))
= Enysingy)q))ving) )2
= X n(o)€W(n(l)) = I n(o)e(n(l)) = n.

For any 7{(n) ¢ N, c ¢ C

awN(G fY)(r(n) 8 c)

= (m & I)p(Q(n)¥(c))

1l

i

= I 'rr(n(o)) ! n(l)s(\b(n(z)))W(C)

= I W(n(o)) f Qo(n(l))w(C).

Let I m(n) B c e N Oz C, thus
- 43 -

z ﬂ(n(o))e(n(B))e(c(l)) 2 n(l)S(w(n(z)))w(c(z))

there is

(m & I)(Z n(O)S(w(n(3)))w(c(l)) R’ n(l)S(w(n(2)))W(c(2))



(0 8 I)(Z w(n) B c) = (I R p R IVI QA 7(n) 8 c).

Since om = (m R P)py we have

(T8 pf& Doy, #T(EnRc) = (I8p& I(IAAMETM Ac).
Applying (I 8 w.) (I 60 f y) to this, we have

% ﬁ(n(o)) R Qo(n(l))w(c) = X m{n) R c.

Thus we have shown that @B is the identity on N DE C. g.e.d.
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CHAPTER ITT

CLEFT COMODULE ALGEBRAS AND HOPF MODULES

In this chapter we develope our Hopf module theory over
comodule algebras. We work a fixed field k. All algebras,

coalgebras, and so on are over K.
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§1., The category Mg.

We begin by establishing our notation and summarizing backgr-
ound results; the facts here stated can be found in [7]. Throug-
hout, A denotes a Hopf algebra over a field k and B denotes
a right A-comodule algebra. A right (A,B)-Hopf module is a k-
module M which is also a right A-comodule and a right B-module
€ B, where ve M ———>M & A denctes the comecdule structure map
on M and we write pM(m) = 3 m(o) R m<l). If Ml’ M2 are right
(A,B)-Hopf modules and f ¢ Hom(Ml,Mg), then f 1is said to be a

Hopf module map if it is also an A-comodule map and a B-module

map. We denote by Mg the category whose objects are right (A,B)
-Hopf modules, and whose morphisms are Hopf module maps. Mg 1s

an abelian category.

Example 1.1. For a right B-module V, we have Vam A ¢ Mg via
p{lvea)=1va ac1) ® ap) and (v®a)b == vb<o) ® ab(l).
In particular we have Bm A ¢ Mi. Note that for M e Mg the

comodule structure map Pyt M—>Mg A is a Hopf module map.

Example 1.2. For a right A-comodule W, we have Wa B ¢ Mg via

plwmeb)=¢t w(o) ® b(O) ® w(l)b(l) and (wa@b)b!' =wam bb'.
Note that for M ¢ Mg the B-action ay: M B——>M is a Hopf

module map.
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let BO={beB{pB(b)=bc&lA} and MO={meM|pM(m)
=ma lA} for M e Mg. It is easy to see that B, 1s a subalge-

bra of B and M, is a right Bo—module. Let MB denote the
0

category of right Bo—modules. Then
R: My ——— Mg M — M,
0

is obviously a covariant functor. The functor R has a left adj-

oint L defined by L(V) =V o B for Ve MB where the right
‘ 0 0]
A-comodule structure is given by p(v EBO b) = L v EBOb(O) @ b(l)T
v @y B 1s a right B-module in the usual way and in fact L(V)

0
is a right (A,B)-Hopf module. The adjoint situation is as foll-

OWS;
Y X
ML) > M (V,ROD)
T by 0
(for g: L(V) ——— M put ¢V.Mg(v) = g(v o, 1) and for
’ 0
f: V——m——m R(M) take Uy Mf(v By b) = £(v)b.)
> 0
o = oy o) peny) V—— RL(V) = (V % Blg, VI vaol,
WM = wR(M),M(lR(M)): LR(M) = MO QJ.BO Be——>M, m mBOb —>mb.

Example 1.3. We consider B @ A ¢ Mg as in example 1.1. Since

{aeA| a(a) =aml} =k it follows that (B A)y = B. Ident-
ifying these isomorphic k-spaces it is easy to see that the map
¥g g Al IRB® A) ————>Ba A is equal to

: Bm., B
B BO —> B @ A, b EBO Cr——> 1 bC(O) & c(l)'
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§2. Generalized integrals.

Iet A be a Hopf algebra and B a right A-comodule algebra.

The element ¢ ¢ Hom(A,B) is called a generalized integral for B

if ppd = (¢ ® I)AA. Equivalently, ¢ is a right A-comodule map.
The ground field k has a right A-comodule algebra structure
given by u,: k —> A = k m A, and an element x ¢ A¥ = Hom(A,
k) 1s a generalized integral for k if and only if yx = y(1)x
for all y e A¥. The set of all generalized integrals for B will
be denoted by Com(A,B).

The following result is essentially theorem 1 and its corol-

lary in [7], however we include it for the convenience of reader.

Theorem 2.1. The follwing are equivalent;

(1) all right (A,B)-Hopf modules are injective as A-comodules,
(2) B is an injective A-comodule,
(3) there is ¢ ¢ Com(A,B) where ¢(1A) = 1,

(4) there is ¢ ¢ Com(A,B) where ¢(IA) is invertible in B.

Proof. Since B « Mg, (1) = (2) 4is clear. TFor (2) = (3),
we consider the following diagram of right A-comodules

U.A R

0 > > A

k
s
B.

If B 1is an injective A-comodule then there is ¢ ¢ Com(A,B)
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such that qbuA = U.B

(3) = (4) 1is trivial. Now suppose ¢ ¢ Com(A,B) where ¢(1A)
is invertible in B. Replacing ¢ by the map a +——> ¢(l)_1¢(a)
we have that ¢(1A) = lB and ¢ ¢ Com(A,B). Thus (4) = (3)
holds. Finally we prove (3) = (1): From example 1.1 it is
enough to show that for M e Mg, oyt M ——>Ma A splits as
A-comodules, since M a@ A is an injective A-comodule.

We define the map )‘M: MaA —~—————> M as the composite

I IeSawl

)\M:'M@A*&-E—)M&A@A

>Ma A aA

m w
18 A mga—L18¢ syap—B sy

(where S denotes the antipode of A and m, denotes the multi-

plication of A.) Thus we have for me M and a ¢ A,

AM(m ®a) =3I m(o)qJ(S(m(l))a).

It is straightforward to show that >‘M 1s an A-comodule map by
¢ ¢ Com(A,B). Moreover APy = I, by ¢(1A) = 1B (see [7]).

Thus M is an injective A-comodule. q.e.d.

Let M be a right (A,B)-Hopf module and N a right A-
comodule. For ¢ € Com(A,B) and f ¢ Hom(N,M), we define
$ = f ¢ Hom(N,M) by
A ,

PN fal M
¢ A fF: N——3NghA——=>3Mg A —> M.

Thus we have for n € N,

(6 = £)(n) = = £nyg)) (0y8(8(Eay) (1yIn(y)-

T



Lemma 2.2. Let ¢ e Com(A,B). Let M, P be right (A,B)-Hopf
modules and N a right A-comodule, f e Hom(N,M), g ¢ Hom(M,P).
(a) ¢ »~f 1is an A-comodule map.

(b) If cb(lA) =1y and f is an A-comodule map then ¢ S P =f,
(¢) If £ 1is an A-comodule map then ¢ = (gf) = (¢ =~ g)f.

(d) If g 1is a Hopf module map then ¢ = (gf) = gl¢ ~ ).

(e) If A and B are comutative, and if g is a B-module

map, then ¢ =g 1s a Hopf module map.

Proof. (a) It follows from the following commutative diagram

M
N 2 sNmA—LBL oypgp— " 5N
lp lIﬁA lI:sz lp
A @l

NeA—L22L snmaean T8 s vonga—" Ssmga

(b) ¢ ~f = AM(f @ I)pN = Apeyf = £

(c) ¢~ (gf) = (g @ I)(f @ Ipy = dplg @ Doyl = (¢ > g)f.
(d) We show that AP(g @ I,) =g\ Infact, for meM, acAh,

‘plg @ D(maa) = a(gm) = a) =1 g(m)<0)¢(8(g(m)(l))a)
=z g(mm))cb(s(m(l))a) = g(z m(0>¢(S(m(1>)a) = ghy(m & a).

Now we have

¢ ~(gf) = 2plga D(f @ Doy = gay(f & Dpy = gl ~ ).

(@) (8> mb) = 2p(g @ D(EmMgybgy BM(y)D(y))

1l

= 8M00)) (0)0(0) ¢ (S(8M0)) ()P (1) M1)P(2))
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= £ 90 0)) (0)P(0)¢ (8P (1))SEm )] (1yIm(1)D (o))

= T 80m()) (0)°(0)* (3 8M(0)) (1) M1y e(P2) )
(since A 1is commutative)

= I g('m(o))(o)cb(S(g(m(O))(l))'m(l))b (since B is commutative)

(¢ »¢)mb.
q.e.d.

Proposition 2.3. Assume that B is injective as an A-comodule,

and A, B are commutative. Let M, P be right (A,B)-Hopf modu-
lesand gt M —> P a Hopf medule map and f: P — M

a B-mcdule map such that gf =1 Then there is a Hopf module

p-
map h: P ——> M such that gh = IP‘

Proof. From theorem 2.1 there is ¢ e Com(A,B) where ¢(1) = 1.
If weput h=¢ >f then by lemma 2.2, (e), h is a Hopf module

map. Moreover, gh = g(¢ ~f) = ¢ = (gf) = ¢ = Ip = Ip. q.e.d.
The next result is a generalization of []5 Cor. 4].

Theorem 2.4, ILet A, B be as in above proposition and P a

right (A,B)-Hopf module which is projective as a B-nodule. If
¥p: PO EBO B——>P, Pg g b pr— pob, is surjective

0
then it is an isomorphism.

Proof. We consider P, @ B as aright (A,B)-Hopf module by

p(pg @ab) = L py @b, E‘b(l) and  (py @ b)b' =p, @ bb'. Thus
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the map PO @ B—>P, Py & b k~—————9‘pob becomes a Hopf
module map and 1s also surjective. Since P 1is B-projective this
map splits in Mg by proposition 2.3.

Since (PO ® B)O my B=PyaBymey B=P,aB we have that

0 0 0 BO 0
the adjunction ¥, M, mp B ———3> M 1is an isomorphism when
0
M= PO ® B, hence for M= P, g.e.d.

§3. Cleft comodule algebras.

If C is a coalgebra and B an algebra then Hom(C,B) has
an algebra structure by convolution ¥. TFor f, g e Hom(C,B) the
product f*g is mB(f B g)AC. The unit of Hom(C,B) is Upo -
Reg(C,B) denotes the multiplicative group of all invertible ele-

ments of Hom(C,B).

Definition. Let A be a Hopf algebra and B a right A-comodule

algebra. B is called cleft if there is ¢ ¢ Com(A,B) n Reg(A,B).

Notes. (a) A may be viewed as a right A-comodule algebra via
AA. IA: A ——> A 1is a A-comodule map which 1s invertible since
A has an antipode. Thus A 1s a cleft A-comodule algebra.

(b) If B is a cleft A-comodule algebra then it satisfies the

cordition (4) Of theorem 2.1, so B is an injective A-comodule.

Proposition 3.1. Let A be an irreducible Hopf algebra and B a

right A-comodule algebra. Then B is cleft if and only if it is



injective as an A-comodule.

Proof. LEMMA 9.2.3 of [19] and theorem 2.1 implies the result.

g.e.d.

For ¢ ¢ Reg(A,B) ¢_1 denotes the inverse of ¢ with resp-

ect to convolution ¥. Thus we have

mB(4> @ ¢"1)AA = uge, = mB(dfl a ¢)AA.

Lemma 3.2. If ¢ e Com(A,B) n Reg(A,B) then the following diagr—

am is commutative;

-1 0
A—t_ sp B spga
l? ‘T¢~lﬁ g (where T denotes the
Aw A T >A @A twist map)

Thus for a e A, ‘pB¢”1(a) = I ¢“1(a(2)) ® S(a(l)).

Proof. In the convolution algebra Hom(A, B @ A), we have

-1

-1 . .
PRt (ppt) since pg 1is an algebra mep

((¢ = I)AA)_l since ¢ ¢ Com(A;B)

-1

]

(¢ ~ =® S)’I‘AA by a direct calculation. q.e.d.

The above lemma is similar in sprit to [i8, Lemma 8.2 (b)].

The next result is a generalization of [7, Theorem 3].
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Theorem 3.3. Let A Dbe a Hopf algebra and B a right A-comodule

algebra. If B 1is cleft then for every right (A,B)-Hopf module M,

‘PM: MO EBOB————————}M, m@BObH&—?mb,

is an iscmorphism of Hopf modules.

Proof. Let ¢ ¢ Com(A,B) n Reg(A,B). We define a map p: M ——=

M by p(m)=7: m(o)q;—l(m(l)) fbr m e M. Then
DM(p(m)) = I m(o)cb—l(m@)) = m(l)S(m(z)) by lemma 3.2
=z m(o)cb—l(m(g)) ® e(m(l))lA = p(m) ® 1,-
Thus p isinfact amap M ——— MO’ Now define a map

XM: M — MO !&BO B

by XM(m) =3 p(m(o)) mBO qb(m(l)). Then for me M
- -1 - _
WMXM(m) =T m(o>¢ (m(l))¢(m(2)) = 3 m(o>e(m<l)) = m.

And for meMO and b ¢ B

0 0

-1
£ mb(o)cb (b(1>) ﬂBo ¢(b(2>)

it

1f

Im EBO b(0>¢_1(b(1))¢(b(2)) since b(o)qfl(b(l)) € BO.

i

m b.
CS‘ZBO

Thus we have shown that Xy 1s the inverse of \PM. g.e.d.
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We deduce several consequences.

Corollary 3.4. If B is cleft then the map as in example 1.3

g: B EBO B—> BgA, b EBO crH——> I bC(O) ® C(l),

is an isomorphism of Hopf modules.

Corollary 3.5. If B 1is cleft then every right (A,B)-Hopf mod-

ule M is a free A-comodule; this means that the map MO @ A
—> M given by m & ab——>m¢(a) is an isomorphism of A-

comodules. The inverse map is glven by mp———m—> m(o)¢~1(m(l))

e m(z).'

Corollary 3.6. If B 1is cleft , then it is faithfully flat as
a left Bo—module and the functor

Rt My ————> I
0
is an equilvalence of categories.
Remark. We can dualize the above theorem in the following;
Iet A be a Hopf algebra and C a right A-module coalgebra. If

there is an A-module map in Reg(C,A) then we have for every ri-

ght [C,AJ-Hopf module N an isomorphism

N = Nt O c.

o/cat

For the notation for dualization, see [7].
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§4. Smash products.

Let B be a right A-comodule algebra. We define the algebra
#(A,B) to be Hom(A,B) as a vector space. Multiplication # is

defined by setting, for f, g e Hom(A,B) and a ¢ A,

(f#g)(a) = ¢ f(g(a<2))(l)a(l))g(a<2))<o>.

A calculation shows that #(A,B) is an associative algebra with

unit UgE, - #(A,B) 1is called the smash product of B by A.

We note that if the comodule structure of B is trivial (that

is, pB(b) =ba lA for all b ¢ B), then the rultiplication fig
is equal to the convolution product f¥*g.

If A is finite dimensional then B has a left A¥-module
algebra structure in the natural way and the canonical linear iso-

morphism Hom(A,B) = B ® A¥ induces an isomorphism of algebras

#(A,B) = B#A%,

We list below some basic properties.

4.1. B and A¥* can be embedded in #(A,B) as subalgebras via

bt » (a+ ye(a)b) and x (e A¥) — (a2 — x(a)lB).

h.2. #(A,B) 1is a left A-module via (a.f)(d) = f(da) for a, d
e A and f ¢ #(A,B). In fact #(A,B) is a left A-module alge-

bra, i, e., A easures #(A,B) to #(A,B). Moreover,

{f ¢« #(A,B) | a.f = e(a)f, for all a ¢ A} = B.
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4,3. B is a left #(A,B)-module via f Ab =g f<b(1))b(0)'

Thus this induces the algebra map
m: #(A,B) —> Enng(B), n(f) = f &y,
where Ehdg (B) denotes the subalgebra of all right Bo—endomor—
0

phisms of B.

W4, If J 1s a subspace of B, then J is a #(A,B)-submodule

of B 1if and only if J 1is a left ideal of B and oB(J) c JmA.

Theorem 4.5. ILet A be a Hopf algebra with $°=1. Let B be

a cleft right A-comodule algebra. Then the map as in 4.3 is an

isamorphism of algebras.

Proof. The proof is similar in spirit to [26, Theorem 1.1.].
Define a map B':BmB B—>BgA by g8'(be, c)=

0 B
) b(o)c = b(l)‘ Then R' 1s a right B-module map where the B-
module structure on B @ A is defined by (b @ a)b' = bb' @ a.

Now we construct the following commutative diagram

#(A,B) . » Endg (B)
0

§ 5

1%
Homg(B ® A, B) 8

r
> Hom, (B &, B, B).
"B By

Thus we are done when we show that g' is a linear isomorphism.

This follows from the next lemma, since 8 as in example 1.3
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is a linear isomorphism by corollary 3..4.

lemma 4.6. let A be a Hopf algebra with 82 = I. Then
() Themap 6: Ba A—>Ba A givenby 06(b a a)
= I b(O) | b(l)a is an linear isomorphism. The inverse of 8
is given by e—l(b @ a) = I bgy @ S(b(l))a.
(b) 8' = 8(I ® 3)B.

Proof. Straightforward.
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CHAPTER IV

ALGEBRAS WITH TOTAL INTEGRALS

We freely use the sigma notation of Sweedler for coalgebras and
comodules. For a coalgebra the diagonal map is denoted by A and
the counit map by €. For a comodule the structure map is usually
denoted by p. For a Hopf algebra the antipode is denoted by S
and the composite-inverse to S is denoted by S if 4t exists.

Throughout R will be a fixed commutative ring , A will be a

given Hopf algebra over R and B will be an A-comodule algebras.

1. Total integrals

(1.1) By lVLg we denote the category of right (A, B)-Hopf modules

(see [7] and [8]); thus the objects are right B-modules M which
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i A-comeodules so that mb) = X b
are right s oy (70 M0)Proy B M(1yP(yy for
m in M and b 1n B. Morphisms are right B-module maps which
are A-comodule maps. Similarly we can define the category BMA
of left (A, B)-Hopf modules; the objects are left B-modules N
which are right A-comodules so that pN(bn) = I b(O)n(O) ] b(l)n(l)
for n in N and b in B. Morphisms are left B-module maps
which are A-comodule maps. Note that nowhere 1in the above

definitions has the antipode S appeared. But the antipode plays

an important role in this paper.

(1.2) The antipode S 1is not necessarily bijective. When S is
bijective, we denote by S the composite-inverse to S. Since S
is an anti-algebra, anti-coalgebra map, so is S. Also we have
for a in A, I a(2)§(a(l>) =e(a)l, = 2 §(a(2))a(1).

let BP denote the opposite algebra of B. To the Hopf algebra
A 1is associated a Hopf algebra AP as follows. As a coalgebra
AP 1s A and as an algebré AP is the opposite algebra of A
and the antipode for A°®P is T. Then the structure map

Pg  induces a right A% -comodule structure on B which is
also an algebra map of B°P to B ® AOp. Thus BOp is an A%P-
comodule algebra. We note that BMA = Mggg.
Remarks. If A 1is a finitely generated, projective R-module,
then the antipode is always bijective ([}2}, Prop.(1.1)). When A
is either commutative or cocommutative, the -usual proof in (0197,
Prop.4.0.1.) shows that SS = I. This means that S is bijective

an@ S = §.
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(1.3) Assume that the Hopf algebra A 1s finitely generated, pro-
jective as an R-module. Then A* = Hom(A, R) has a natural Hopf
algebra structure. An A-comodule algebra B 1is a left A¥*-module
algebra by the rule a*.b = a*(b(l))bm) for a¥ in A¥ and
b in B. We denote by B # A¥ the smash product of B with A¥;
‘thus B # A¥ is B m A¥ as an R-module, elements b m a*¥ will
be written- b # a¥, and the multiplication in B # A* is given by

(b # a¥)(c # a*) = ¢ b(a*(l).c) # a*( )d*. It is easy to see that

2
each N in BMA is a left B # A¥-module by the rule (b # a¥).n
=L a*(n(l))bn(o) for n in N. Conversely any left B # A¥-

module is a left (A, B)-Hopf module in a natural way. Thus we

= o
have BMA B#A*M’ the category of left B # A¥-modules.

(1.4) Iet D be a coalgebra over R. A right D-comodule W is

called a relative injective if, for every D-comodule map

i:U —> V for which there exists an R-module map p: V —— U with

pi = IU, and for every D-comodule map f: U ——W, there exists

a D-comodule map g: V————>W with gi = f. This is equivalent

to the existence of a D-comodule map A: W& D ——> W with Xpw

=L where the D-comodule structure on W& D 1is given by I @ A.

In fact, since e W——>WarD is a D-comodule map and

(I me)p=1I, it follows that if W 1s relative injective then
there exists a D-comodule map A: Wa D —— W with Xip = I.

Conversely, now suppose there exists such a map A. Let

U—25v—L50 and U——f—>w be as above. Define g by

Mfp ® I)py: V—>W. Then gi = AMfp & I)p A = A(fpal) (ial) oy
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= Mf » I)pU = Ap,f = . We compute (g @ I)pV =
AaI)(fprIw I)(pV ® I)DV = (A Dfpelel)Ic A)pv
= AeD(Ird(fpax I)pv.= owx(fp ® I)QV = o8- Therefore, g

is a comodule map. This completes the proof.

(1.5) Let A Dbe a Hopf algebra over R and B an A-comodule
algebra. By Com(A, B) we denote the R-module of right A-
comodule maps from A into B; thus
Com(A, B) = { ¢ e Hom(A, B) | p(¢(a)) =2 ¢(a(l)) B & o) }.
The elements of Com(A, B) are called integrals. An integral ¢
is called total if ¢(1,) =1y (see [(I3]).
let consider B ® A. We can view B m Ar‘as a right (of left)
(A, B)-Hopf module by b mar——ba Ala) and
(bma) b =1L bb'(o) ® ab'(l) or b'(bma) =1L b'(o)b = b'<l)a.
‘Note that the structure map p: B——>B g A 1is a morphism in Mg

(or M.

lemma. For any A-comodule algebra B, the map

Com(A, B) —--9E§ﬁKB ® A, B), ¢ +r—— (bma k~*——»2b(o)¢(8(b<1)a))
is an isomorphism of R-modules. The inverse is given by
F— (2 H—-9F%1B ®a) ).
If, in addition, the antipode S is bijective then the map
Com(A, B) ——~——9-Mg(B ® A, B), ¢ — (bma — 2 ¢(a§(b(1)))b(o))

is an isomorphism of R-modules.

The proof 1s easy, hence omitted.
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(1.6) Theorem. Let B be an A-comodule algebra. Then the
following are equivalent:

(1) There exists a total integral ¢: A —— B.

(2) There exists an integral ¢: A ———> B where ¢(1A) is
invertible in B.

(3) B is a relative injective A-comodule.

(4) Any M in ]\'% is a relative injective A-comodule.

(5) There exisﬁs amagp 6: B A-—>B in BMA with ©6p = IB.
If, in addition, the antipode S 1s bijective, these are equi-
valent to

(6) Any N in BI'IA is a relative injective A-comodule.

(7) There exists amap 6': Bm A ——>B in Mg with 6'p = I5.

Proof. (1) = (2); trivial. (2) = (1); put x = ¢(1). Then

D(X—l) = x L g1, Replacing ¢ by the map a h———ex_1<b(a), it

follows that ¢ dis a total integral. (1) => (5), (7); by Lemma.
(5) = (1) and (7) = (1); by definition (1.4). (1) = (&), (6);
suppose that ¢ 1s a total integral. Let M e r"% and N e« BMA.

Define )\M:MmA—-——-——>M and AN:NQA—--7N by

AM(m ®a) =1L m(o)cb(S(m(l))a), AN(n ®a) =1 ¢(a§(n(l)))n(o)-

Then it is easy to check that AMQ =1 A I. and )\M, A

M- M ANPN TN N
are A-comodule maps. Hence M is a relative injective A-comodule.

(1) = (3); by BeMi (6) = (3); by Be

suppose that B 1s a relative injective A-comodule. Consider the

(3) = (1); now

wnit map R—>A and uyt R——>B. Note that these maps

U.AI

are right A-comodule maps. The counit map €,: A ——R satis-
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fies €W, = IR. Since B 1is a relative injective A-comodule, it
follows that there exists a right A-comodule map ¢: A ——> B
with cbuA = uB Therefore, ¢ is a total integral.

This completes the proof of the theorem.
Remark. The above map Xy, (XN) is not necessarily a B-module map.
(1.7) Theorem. Iet A be a commutative Hopf algebra and B an
A-comodule algebra. Assume that there exists a total integral
$:A —> B with ¢(A) < cent(B), the centre of B. Then:
(1) For every M in Mg, the map >‘M: Mg A —>M given by
XM(m ma) =1 m(o)cb(S(m(l))a) is a right B-module map, where B-

actionon Mm A is (m@a)b =1 mb( ) @ ab( Consequently X\

0 1)°
is a retract in f"{é of pM: M—>Mm A. A similar result

M

holds for the category BMA .

(2) For every map i: M' —— M in r-'Lg for which there exists
a Bmodule map p: M —— M' such that pi = I, there exists
amap q: M — M' in Mg with gqi = I. A similar result

holds for the category MA .

Proof. (1) )\M((m ® a)b) = XM(Z mb(o) ® ab(l))

= I my0gy®(8me1yD(qy)abiny) = T migybgyd(S(bqy)Smeyy)ab )

=T m(o)bcb(S(m(l))a) (since A 1is commutative)

L}

KM(m ® a)b (since ¢(A) < cent(B) ).
(2) Define q = )\M,(p ® I)pM: M —— M'. It is easy to check that
q is an A-comodule map and qi = I. It remains to show that q

is a B-module map. We compute g{(mb) = XM,(Z p(m(o))b(o)m m(l)b(l))
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%M.((Z p(m(o)) ® m(l))b) = XM'(Z p(m(o)} ® m(l))b (since Ay

is a B-module map by (1) ) = g(m)b. g.e.d.
Remark. We obtain, .under the assumptions of the above theorem,
that B # A*¥ 1is semi-simple if A 1is a finitely generated, pro-

jective R-module and B is semi-simple.

(1.8) Example 1. Let G Dbe a finite group with identity element

denoted by e. ILet A be the free R-module with basis G. Sett-

ing (zrx)(c: sxx) =LrsxXx, e( T rxx) =r,, and for xeG,
‘ XeG xe@ xeG xeG
Ax) = I ymz =Ixzmez , s(x) = x* , A is a cormuta-

X=y2Z zeC

tive Hopf algebra. The identity element in A is I x. Note that
A 1is the dual Hopf algebra of the group algebra R[éi? Let B bel
an R-algebra and p an R-module map of B to B A where we
write p(b) = I x(b) ® x. Then B is an A-—comodule algebra with
respect to pxegf and only 1f G acts as a group of autombrphisms
of the R-algebra B. Moreover, a left (A, B)-Hopf module N is
Just a left B-module and a left G-module such that x(bn) =
x(b)x(n) forall x in G, b in B and n in N.

Now let ¢ be in Hom(A, B) = Map(G, B). It is easy to check
that ¢ e Com(A, B) if and only if ¢(x2™%) = 2(¢(x)) for x, zeC,
equivalently, ¢(x) = x“1(¢(e)) for x ¢ G. This shows that the
map of Com(A, B) to B given by ¢ ——> ¢(e) is bijective.

A total integral ¢ corresponds to an element b in B such that

2 x(b) = lB‘ Moreover, ¢(A) c cent(B) <= b « cont(B).’ In
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particular, if lG{’l ¢ B, there exists a total integral ¢ with
- '
$(A) < cent(B) (say b = |G]7" ). 7Thus theorem (1.7) is a ver—

sion of Maschke's theorem for Hopf modules.

Example 2. Suppose R 1s a ring of prime characteristic p, and

q-= pn for some positive integer n. Iet A be the free R-
module on basis { s Cqs > Cqa }. Define
_ i L i s
¢3¢ ( 5 )Ci+j if i +j <aq, ¢4y 0 if i+ j2>q
z i
¢y = lA’ A(cr) =iioci BC s, e(ci) = 51,0’ S(ci) = (-1) ey -

Then A 1s a commutative and cocommutative Hopf algebra. Let B
be an R-algebra and p an R- module map of B to B ® A where

we write p(b) = Zg;% d;(b) mc,. If B is an A-comodule algebra

with respect to p then d0 IB’ d1 is a derivation of B with
dlq = 0 and di = dl:L for 2 <1 <qg. Conversely, if d is a

derivation of B with dq

It

O, then B becomes an A-comodule

fl

algebra as follows; p(b) Z?;é di(b) @c, for b in B.

A left (A,B)-Hopf module N is just a left B-module with an
R-module map &6: N —> N such that dq =0 and for all b in
B, n in N, 6(bn) = bé(n) + d(b)n.

Now let ¢ be in Hom(A, B) where we denote ¢(ci) = bi’
i=0,...,9-1. Then it is easy to compute that ¢ ¢ Com(A, B) if

and only if d(bi) = by (1<1i<qg). Thus the existence of a

-1
total integral ¢ 1is equivalent to the existence of an element b
in B such that dq_l(b) =1 (say b= ¢(cq_l) ). Moreover,

$(A) < cent(B) if and only if the corresponding b is in cent(B).
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Exarple 3. Again suppose R 1is of prime characteristic p and
q = pn for some positive integer n. Now let A be the Hopf alge-
pra R[X1/(xY) = R(x], where x is the residue class of X and
Ax) =x@ 1l+1rwx, ex) =0 and S(x) = -x. This is the dual
of the Hopf algebra in the previous example. In this case an A-
comodule algebra is such an R-algebra B with {DO=I’ Dl,...,Dq_l},
a set of iterative higher derivations of B, by the rule
p(b) = Zg;é Di(b) ) xi. Where "iterative higher derivations" means

that D,(bc) = Iy o D;()D, .(c) forall 1<r<g, and

i=0 71 i
_ i+ o s S ir i+
DiDj ('i )Di+j if 1i+3j<aq, DiDj 0 if 1i+j2>gq
let ¢ be in Hom(A, B) where we denote ¢(x') = bi (0<i<q).
Then ¢ dis an integral if and only if
= (J : . . _ o .
Di(bj) (i)bj—i if 1<3, Di(bj) 0 if i > j.
It follows that if there exists an element b in B such that
Dq_l(b) =1 then B has a total integral. In fact, putting
t = _Dq—2(b> we have Dl(t) =1 and Di(t) =0 for 2<1ic<q.
Therefore we obtain (by induction) that
D, () = (D' tor 125 and D) =0 for 1.

Thus the R-module map ¢: A ———> B given by the rule ¢(xJ) = tj

for 0<J < q is a total integral.

2, Invariant subalgebras and the map B8

(2.1) Let A Dbe a Hopf algebra over R and W a right A-

p
—_—
o we denote the kernel of W — Wm A, where
p 1s the structure map of W and i(w) =wg 1l for all we W.

camcdule. By W
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Thus W, ={weW | pw =wal)}. Wesay that W, is the inva-

0
riant subspace of W.

0

For an R-module V, V ® A has a right A-comodule structure
via vea —>valAa). Let I v, B a, be an element in the

invariant subspace of V & A. Hence I vi bid A(ai) =7 vi ® ai ® 1.

Applying to I @ e ® I to both sides of this equation, we conclude

that I v, Bay = ) e(ai)vi ® 1. This shows that (V & A)O = V.
In particular, AO = R.

If V is a flat R-module, then we have for any right A-

comodule W that (V @ w)o =V g wo.

Note that for a family of A-comodules, |{ Wy }ieI’
(& W, Jg=~ & (W)

iel iel 0

(2.2) Let B be an A-comodule algebra. By C we denote the
invariant subspace of B. C is a subalgebra of B, which we call

the invariant subalgebra of B. In the examples of (1.8), C =

{ceB| x(c)=c forall xeGl}, {ceB]|dc)=01} and
{ceB| Di(c) =0 for 1<1i<ql respectively.
Tet M e Mg, meM, and < eC. Then oy(me) =me @ l. This

shows that M, dis a right C-module. Similarly, N, is a left

0 0
C-module for any N ¢ BMA. Thus (—)O: Mg __”_9'MC is a covariant

functor, where MC denotes the category of right C-modules. It

has the left adjoint L: M, —> Mg defined by L(V) =V m. B,

C

| - 1
where (v mcb)b ve bb', va,b—>IL v 2, b(O) ® b(l)’

C C
The adjunctions are as follows; for V ¢ MC and M ¢ Mg,

QV: V — (V 2 B)O, ViV &, 1
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WM: MO ®, B——>M, mzn,brH——m.

C
A similar adjoint situation holds for ( BMA, CM ); for U cCM, NEBMA
1 .
o) oL U——> (B @ UJO, ur— 1 @ u
W'N: B 2o NO ——> N, b IR a— bn.

(2.3) Recall that Bm A cM ana ¢ g (see (1.5)). Ve denote
. . . . .
by B (resp. R') the adjunction ?B&A (resp. Vv BﬂA>' Identi

fying (B @ A)O with B, we get

: B ! !
B: B m —> B r A, bg.b'———7I bb 0) ® b'(l)

C C

1. 1 1

Note that B (resp. R') is not only a map in Mg (resp. in BMA)

pbut also a left (resp. right) B-module map in the natural way.

Proposition. If the antipode S of A is bijeétive, then the
map o: BRA——>B® A givenby albma) =12 b(O) ® b(l)s(a)
is an R-~module isomorphism. The inverse of o 1is given by

aB holds. In bar—

a"l(b ®ga) =2 b(O) R §Ka)b(l). Moreover R'
ticular B is injective, surjective, or bijective, respectively,

if and only if B' is injective, surjective, or bijective.

The proof is easy, hence omitted.

Remark. For any subalgebra D of C we can consider the map
. : t 1§ ! : l
%D' B @ B —-———§»B ® A, D = b' ——> L bb (0) ® b (1) It is

verified in the SanE way as (3], 4.2 Lemma) that if BD is bi-
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jective and B is a faithfully flat right D-module then C = D.

(2.4) For an A-comodule algebra B, define the maps =, 7', w
and w' as follows:

m': Hom(A, B) — End (B), 7'(£)(b) =% £(beyy)0 0,

(1)?7%0)
w': Com(A, B) —— Homg_(B, ©), w'(9)(b) = 5 b (1$(5(d1))).

fl

w: Com(A, B) —— Hom (B, C), w(¢)(b) = % ¢(S(b
Observe that the map m obtains as the composite
Hom(A, B) = HomB_(B ®& A, B) —— HomB_(B o B, B) = Endc_(B)
and 7' obtains as the composite

¥
Hom(A, B) = Hom (B @ A, B) —S Hom (B @, B, B) = End_,(8).
Also the map w obtains by lemma (1.5) as the composite

* s -

Com(4, B) = M(B @ 4, B) ——-—B——“)M‘g(B @, B, B) 25Nt Hom_(8, C)

and the map w' obtains as the composite

com(a, B) = M@ a4, B) —£5 w8 w, B, B) —=— Hom,_(B, C).

Proposition.  Iet A be a Hopf algebra with bijective antipode and
B an A-comodule algebra. Assume that the map B is bijective.
Then: (1) The above 7, 7', w and w' are bijective.
(2) The following are equivalent;

(1) there éxiSts a total integral ¢: A —> B,

(1i) C 4is a direct summand of the right C-module B,

(iii) C is a direct summand of the left C-module B.
(3) There exists a total integral ¢ with ¢(&) < ZB(C), the

centralizer of C in B, if and only if C is a direct summand
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of the (C, C)-bimodule B.

Proof. (1) follows from the above observation. (2) and (3) follow

from (1).

(2.5) Theorem. Let A be a commutative Hopf algebra which is a

projective R-module. Iet B be an A-comodule algebra. Assume

that there exists a total integral ¢: A——> B with ¢(A) < cent(B)
and the map R: B 0 B——->BgA is surjective. If either

B is a flat R-module, or B is a flat right C-module, then

M.®& B——>M 1is an

B 1is bijective and the adjunction WM: e

isomorphism for all M in Mé.

Proof. We first show that B8 is bijective. The proof 1s similar
in spirit to ([8], Theorem 2.4 ). Suppose that B is flat as a
right C-module (or as an R-module). Noting (B 8o B)O =B (or
B = B)O = B ), it is easily verified that the adjunction " is
an isomorphism for M = B & B (or M =B B where the right

(A, B)—Hopf module structure on B B is bzmb' — b & oB(b‘)
and (b @ b")b" =b & b'®" ). We claim that B @ A is projective
as a right B-module. This willcomplete the proof because B & A
is isomorphic to a Mg—direct sumand of B @ B (or Ba B) by
theorem (1.7), (2) and. ¥p , = 8. Recall that the right B-module
- structure of Bw A is (b ma)b' =1I bb‘(o) ® ab'(l). But B & A

also has a right B-module structure via the first facter, and it

is B-projective (since A is R-projective). It is easily checked

- 71 -



that the two B-module structures of B @ A are isomorphic by the
correspondence T(b m a) = L gy @ S(b<1))a and T (b @ a) =
T b(O) bid b(l)a (since A 1s commutative). This completes the
prootf’ that £ 1s bijective.

Now let M be any object in Mg By theorem (1.7), (1), M is
a M‘g—dir'ect sutmand of M & A. The adjunction WM@A factors as

follows: (M & A)O B B =M B, B = M&B (B B, B)

1ef >Mm, (BaA)=Ma i
Therefore, since B dis bijective, WM&A is an isomorphism. Thus
‘{’M is an isomorphism for all M in Mg. q.e.d.

(2.6) Let A Dbe a Hopf algebra and B an A-comodule algebra.
For f, g ¢ Hom(A, B), define f¥*g =mB(f® g)AA where my is
the multiplication map B ® B ——> B. Then this product * makes
Hom(A, B) into an associative algebra with identity Up€p - The
set of ¥-invertible elements is denoted by Reg(A, B). Note that
Mg(A, B) < Reg(A, B).

We say B is cleft if there exists an integral in Reg(A, B).
let ¢: A ——> B Dbe an integral in Reg(A, B). If y: A——>B
denotes the #-inverse of ¢ then I cb(a(l)W(a(z)) = e(a)lB =
z \p(a(l))cb(a‘(é)) for all a in A. Inparticular ¢(1)¥(1,) =
1y = ¥(1,)¢(1,). Now define § ¥ : A——>B by &(a) = ¥(1)e(a)
and U(a) = v(a)eé(l). Then & is a total integral and ¢*Y = Ug€a
= §*F. Thus we obtain that B is cleft if and only if there exists
a toﬁal integral in Reg(A, B).

Consider the exanple 2 mentioned in (1.8) and let f, g be
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in Hom(A, B). Since (f*g}(cr) = Z§=Of<ci>g(cr-i) and
(uBEA)(cr) =0 for r >0, (uge,llcy) = 1y, it follows that

f ¢ Reg(A, B) if and only if f(co) e U(B), the set of units of B,
Therefore, 1in this case we have that if B has an total integral
then B 1s cleft.

We note that if A 1s a finitely generated, projective R~
module then the algebra Hom(A, B) is isomorphic to B & A* and
this induces Reg(A, B) = U(B ® A¥). It follows that B as in the
example 1 of (1.8) is cleft if and only if there exists an element
b in B such that ZGx_l(b)x is an unit in the group algebra B[G].

Xe
(2.7) Lemma. lLet ¢: A —> B be an integral in Reg(A, B) and
we denocte by Y the *-inverse of ¢. Then:
(1) pg¥ = (y ® S)TA holds, where T: A A —>A @A is the
twist map.
(2) If the antipode S 1is bijective then the map uS: A°P——s BOP

is an integral for the AP _comodule algebra B  and YS is in

Reg(A%P, B°P)y.

Proof. The proof of (1) is found in ([8], Lemma 3.2).

(2): We have pB(w’sT) = (y ® S)TAS by (1)

]

(v 2 3)(S e 4 since § is an anti-coalgebra map

(YS ® I)A.

This shows that ¢S is an integral for B and so for the A°P_

comodule algebra BP. e also compute .
TS & 95)A = my(6S @ YS)T,6 = my(¢ m Y)AS = ($*Y)S = uge,.

- 73 -



Similarly, we have mBTB(¢§'m YA = uge,- This shows that ¢S

is the inverse of 8 in Reg(a®P? BP) g.e.d.

(2.8) Theorem. For the next statements concerning an A-comodule
algebra B, (1) k= (2) => (3) holds:
(1) B is cleft.
(2) (i) TFor every M in N@, Yy MO B, B = M.
(11) There exists a left C-module, right A~comodule iso-
morphism between C & A and B.
(3) (i) B: Bm,B=Bam A
(11) as (2)(i1).
If, in addition, the antipode S 1is bijective, then (3) = (1)
holds and @hese are equivalent to
(4) (i) For every N in BMA; W'N: B @, Ny = N.
(i1) There exists a right C-module, right A-comodule iso-
morphism between C & A and B.
(5) (1) B':Bm,B=BagA.

(i1) as (4)(ii).

Proof. (1) => (2)(1) may be verified in the same way as [8], Th.3.3.
(1Y =» (2)(ii). Now suppose that ¢: A ——> B is an integrallin
Reg(A, B). It is easy to check that the map F: Ca@ A ——> B

given by F(c ® a) = c¢(a) is a right A-comodule map which is a
left C-module map. Define the map G: B——> C & A by G(b) =

_ y L
)X b<0)w(b(l)) ® b(2)’ where 1V denotes the inverse of ¢.

Since I b(O)w(b(l)) e C by lemma (2.7)(1), G is in fact a map
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of B into C ® A. It is easy to show that GF =1 and FG = I.
(2) = (3) dis clear since B = Yomn
(3) = (1). Suppose that B 1is bijective and there exists a left
C-module isomorphism F: C @ A —— B which is also an A-comedule
map. Define ¢: A ——> B by ¢(a) = F(lB ® a). Then ¢ is an
integral and F(c m a) = cp(a) forall ¢ in C, a in A. We
will show that ¢ e Reg(A, B). Denote the inverse map of F by
G.and put g = (I®€A>G. Since G: B—>C ® A is a left C-
module, right A-comodule map, we have that g e HomC_(B, C) and
G=(gm I)pB. Since w': Com(A, B) = HomC_(B, C) (see (2.4)),

there exists an integral n: A —— B such that

g(b)

i

Eb(o)n(S(b >)) for 211 b in B.

(1
GF(ZLC ® a) = G(¢(a)) =L g(fb(a(l)) @ ac

B
Y]
L

Applying I ® € we have that for all a in A,
E(a)lB = T ¢(a(l))n(8(a(2))).

This shows that ¢*nS = g€, -

It remains to show that nS¥¢ = g€y - Using FG = IB’

This shows that m(nS*¢) = I where 7 is as in (2.4). Since

B
'n(uBEA) = I’B and T 1is bijective it follows that nS*¢ = Up€ -
This completes the proof of (3) = (1).

We note by lemma(2.7) (2) that B 1is cleft if and only if BoP
is cleft as an A°P—comodule algebra. Also BMA is naturally
isomorphic to P*“gg. Therefore (1) <=> (4) <=> (5) are obtained

by applying the above proof to 5P, g.e.d.

- 75 -



Remark. The condition (3) is nothing but the definition of A-
Galois extensions with normal bases ([2]).

When A 1s projective as an R-module, a cleft comodule algebra
B is a projective left C~module by (2)(ii) and is then a faith-
fully flat left C-module by lemma (2.4)(2). It follows that the
V——> (Vg

adjunction ¢ B)0 is an isomorphism for any right

v
C-module V (consider

C

&y 2. B and apply (2)(i) ). Thus in this

case the functor (~JO: Mg — MC is an equivalence of categories.

3, When R is a field

Throughout this section it is assumed that R 1is a field.

(3.1) Proposition. ILet A Dbe a Hopf algebra over a field R and
B an A-comodule algebra with invariant subalgebra C. If B has
a total integral then for any right C-module,

o V——>(V 85 B)O, ViV a, 1
is an isomorphism.

Proof. Let O > M! >M ———> M" ——> 0 be an exact

seguence in Mé. Since R is a field it is split as an A-comodule

sequence by theorem (1.6). It follows that the sequence

0 > M > M ve M"O > 0 is also exact. Thus the

0 0
functor (—00: Mg _— MC is exact. (This means that B is a
projective object in Mg.)

‘Now let V Dbe any right C-module. Take an free presentation
(I (I

C —>C -V > 0. By the right exactness of tensor
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product and the exactness of (-JO, we get a commutative diagram

) 5> ¢l > V— 50 :exact
I ! o
.
a8, —s P e B, — 5 Ve B — 0 -
C O C O C O cexact

This shows that @V is an isomorphism by the Five-Lemma. q.e'.d.

(3.2) Theorem. Let A be a commutative Hopf algebra over a field.
let B Dbe an A-comodule algebra which is commutative as an algebra.
Then the following are equivalent:
(1) (i) B: B @ B——=>Bw A is surjective.

(ii) B is an injective A-comodule.
(2) The functor (—JO: F@ -———4>Nb is an equivalence of categories.
(3) (1) B is bijective.

(i) B is a faithfully flat C-module.

Proof. (1) => (2): Imnmediate from theorem (2.5), proposition (3.1).
(2) => (3): Clear.
(3) = (1): It suffices, by [24], A.2.1., to prove that the
functer B DA — of the category of left A-comodules to the
category of R-vecter spaces is exact. For any left A-comodule U,

B &, (B 0y U) = (B &q B) 0, U= (BmA) 0, U

= Bm (A DA U) =B aU.

Since B is a faithfully flat C-module this shows that the
functor B [0, — 1is exact. This proof is due to Takeuchi 22].

-g.e.d.
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Remark. This gives a purely Hopf-algebraic proof of (Oberst [16],

Pt

Satz A).

(3.3) Wnhen B is a commutative Hopf algebra and A is a

quotient Hopf algebra of B

Iet B Dbe a commutative Hopf algebra over a field R. Let
f: B—>A be a given surjective Hopf algebra map and make B
an A-comodule algebra by defining py = (Iwm f)AB. Then

C={beB|IbD )mf(b ))=bml}. C is a left coideal

(1 (2
of B, that is, AB(C) c Ba C. We note that the map

C C
is surjective. In fact, 1t is enough to show that the. composite

BeB—>3>BaB—12% spga

is surjective, where &(b ® b') = I bb’< ® Db! But & 1is

1) (2)
an automorphism ( E‘l(b @b') = I bS(b'(l)) ® b'(z) ). Hence,

the above composite is surjective because f 1s surjective.

Now assume that B 1is an injective A-comodule. Then B is a
faithfully flat C-module by theorem (3.2). Viewing A as a right
(A, B)-Hopf module by a ——> AA(a) and a.b = af(b), we get,
by theorem (3.2), (2), that R &, B = A. Applying ~ g, B to

+
the exact sequence O > C > C £ 5R— 0, we have

B—> Ca B————)RmCB——%O:.

C C

Thus R m, B = B/C™B, and hence A = B/C'B (as Hopf algebras).

+
an exact sequence C

Conversely, let D be a left coideal subalgebra of B. Since
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D+B is a Hopf ideal of B, B/D+B is a Hopf algebra, where
p" = {d ¢ D eB(d) = 0}. The automorphism £: Be@ B —>B @ B
induces

BeyB = B&B/DB, b @y b' —> I bb' 4y 8D .
Noting that D 1s contained in the invariant subalgebra of the
B/D+B —comodule algebra B, it follows from the remark in (2.3)
and theorem (3.2) that if B is a faithfully flat D-module then
B is an injective B/D+B ~comedule with invariant subalgebra D.

Thus we have proved:

Theorem (Takeuchi). Let B be a commutative Hopf algebra over a

field R. Then there is a bijective correspondence between the
set of quotient Hopf algebras B ——> A where B 1is an injective
right A-comodule and the set of left coideal subalgebras D c B

over which B 1s a faithfully flat module.

Remarks. (1) It is known in [77), Theorem 2 that for any Hopf
quotient B —> A, B 1is injective as a right A-comodule if and
only if it is faithfully coflat. Hence the above theorem 1s essen-
cially the same to ([25], Theorem 3.).
(2) If D dis a Hopf subalgebra of B then the D-module B is
always faithfully flat ([21], THEOREM 3.1.). Hence B 1is an
injective B/D+B —comodule. If, moreover, B/D+B is irreducible
as a coalgebra (this is equivalent to " cbradical(B) <D,
see [25], lemma L4), then B is cleft as a B/D+B ~comedule

algebra by [8], Prop.3.1. In particular B 1is a free D-module.
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