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Introduction

The concept of shape was introduced by Borsuk [Bo;| as a generalization of
homotopy theory. In many studies, shape theory has been developed as a big
branch of geometric topology (cf. [Bos], [Bos, [MS;]). Using Hilbert cube man-
ifolds (@-manifolds) theory, Chapman [Cha;] established the so-colled comple-
ment theorem, that is, two Z-sets in Q have the same shape type if and only
if their complements are homeomorphic.

On the other hand, Menger manifold (4™*!-manifolds) were introduced and
investigated by Bestvina [Be]. From many studies (cf. [Chi4], [Chis], [Dr] etc.),
it has become clear that y™**-manifolds are “(n + 1)-dimensional” analogues
of @-manifolds. In [Chi,], Chigogidze introduced the concept of n-shape for
compacta and proved the n-shape version of the complement theorem, that is,
two Z-sets in u™t! have the same n-shape type if and only if their complements
are homeomorphic. One can see a survey on p™*'-manifolds in [CKT]. The
complement theorems are surveyed in [Shy] and [Shs].

In this paper, we introduce some variations of n-shape theory and investi-
gate the relation between them. These results were obtained in [Aka;], [Akas],
[Akas], [Akay] and [AS].

In Chapter 1, we give terminology and notation, and present some basic
properties which will be needed in the sequel. The n-homotopy extension
theorem is strengthened for pairs.

We discuss p"ti-manifold pairs in Chapter 2 and adapt the Z-set approx-

imation theorem and the Z-set unknotting theorem to pairs.
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The concept of shape was extended to compact pairs by Borsuk [Bos] (cf.
[Bo4|) and by Mardesié¢ and Segal [MS;] (cf. [MSs]), but their definitions do not
coincide (see [Ma]). The shape of pairs in the sense of Mardesié¢-Segal is defined
by using inverse systems, but it can be also defined using the Borsuk approach
(cf. [KO]). In [Fe], Felt tried to generalize Chapman’s complement theorem to
compact pairs by using the definition of shape in the sense of Mardesié-Segal.
However, his proof contained a gap, which was recovered in [Sa]. In Chapter
3, we give the definition of n-shape of compact pairs with dimension at most
n+1 by Marde§i¢-Segal’s method and generalize the Chigogidze’s complement
theorem for compact pairs.

Property UV arose in the study of cellularity and is connected with shape
theory through the result that a compact metric space X has UV if and only
if X has the shape of a singleton. Property SUV* was introduced by Hartley
[Ha| as a noncompact variant of property UV°°. In [Sh;], Sher defined property
SUV™ as a finite-dimensional variant of property SUV®, and proved that if a
closed connected subset X of a piecewise linear n-manifold has SUV™, then X
has SUV*®. In Chapter 4, we define the notion of proper n-shape for locally
compact spaces and proper n-shape category n-SH,LK. Using this notion,
we give the characterization of property SUV™. As a corollary, strenthening
Sher’s result [Sh,], if a locally compact connected space with dimension at
most n has property SUV™, then it has property SUV .

In Chapter 5, we give the other approach to proper n-shape and proper
n-shape category n-SH,LK(n + 1) whose objects are locally compact spaces
with dimension at most n + 1. Let n-SH,LK(n + 1) be a full-subcategory
of n-SH,LK whose objects are at most n + 1 dimensional. We construct a
categorical embedding from n-SH,LK(n + 1) to n-SH, LK(n + 1). Moreover,
strengthening n-shape of compact pairs, we introduce the notion of relative
n-shape. Then we prove that if two locally compact spaces with dimension at

most n+ 1, whose quasi-component spaces are compact, have the same proper
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n-shape type, then their compact pairs of Freudenthal compactifications and
the spaces of ends are relative n-shape equivalent. Using the result of Chapter
4, we conclude that if a locally compact space with dimension at most n + 1
has SUV™, then its Freudenthal compactification has UV™.

In Chapter 6, applying proper n-shape, we consider Z-sets in ©"*!-manifolds
and prove a y"*'-manifold version of the result of [Shy], that is, if two Z-sets
in p™*l-manifolds are proper n-shape equivalent, then they have arbitrarily

n+1

small homeomorphic p" ™ -manifold closed neighborhoods.



Chapter 1

Preliminaries

The purpose of this chapter is to introduce basic notation and terminology. In

particular, we discuss the n-homotopy extension theorem for pairs.

1.1 The results of y"-manifold theory

All spaces in this paper are assumed to be separable and metrizable, and maps
to be continuous. Let w = {0,1,2,...} denote the set of natural number. Let
@ = [0,1]“ be the Hilbert cube and y™*! the (n + 1)-dimensional universal
Menger compactum. A p"*'-manifold (resp. a Q-manifold) is a topological
manifold modeled on p™! (resp. Q). A closed set A in a space X is called a
Z-set if the identity map idy : X — X is approximable arbitrary closely by
maps f: X — X \ A

A pair (of space) (X, Xo) means that X is a space and X is a closed set in
X. Let f,g9: (X, Xy) — (Y,Ys) be (proper) maps of pairs. By f ~ ¢ (f ~, g),
we means that f is (properly) homotopic to g. We say that f,g: (X, X,) —
(Y, Ys) are (properly) n-homotopic and denote f ~" g (f ~7 g) if fa ~ go
(fa ~, ga) for any (proper) map o : (Z, Zy) — (X, X,) of a pair (Z, Zy) with
dim < n.

Next theorems are obtained by Bestvina [Be].
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Theorem 1.1.1 (The Z-set unknotting theorem: estimating version)
Let M be a u™*'-manifold. For each open cover U of M there exists an open
refinement V satisfying the following. If f : A — B is a homeomorphism be-
tween Z-sets in M which is V-close toid 4, then f extends to a homeomorphism

f: M — M such that f is U-close to idy. O

Theorem 1.1.2 (The Z-set unknotting theorem:n-homotopy version)
Let M be a ™' -manifold and f : A — B be a homeomorphism between Z-sets
in M. If f ~p ida in M, then [ eztends to a homeomorphism f:M—> M

with f ~7 idpy. O

Theorem 1.1.3 (The Z-set approximation theorem) Let M be a p™ti-
manifold, X a locally compact space with dim < n+ 1 and A a closed set in
X. If f: X — M is a proper map which restricts to a Z-embedding on A,
then f is approzimable a Z-embedding g : X — M such that f|a = gla. O

A map f : X — Y between spaces is called n-invertible if for any map
a: Z — Y from any space Z with dimZ < n to Y, there exists a map
&: Z — X such that f& = «. It is easy to observe that if f and « are proper,

~then & is also proper.

Theorem 1.1.4 ([Chis]) There is an (n + 1)-invertible UV™-surjection f :

n+1

i — @ such that the inverse image of a Z-set in Q is a Z-set in p™t!

and the fibers are homeomorphic (=) to u™*. Moreover, the inverse image of

Qo = {(z:) € Q| z; = 0} is homeomorphic to pu"*1. O

n+1

Let ug™ be a Z-set in u™** and homeomorphic to g™ and M = p™*!\

p3tt. By the Z-set unknotting theorem, we may assume f~'(x) = up*! for
some * € @ (a point is a Z-set in Q). The following follows from Theorem

1.1.4.

Proposition 1.1.5 There is an (n + 1)-invertible proper UV™-surjection f :
M — Q\ {*} such that the fibers are Z-sets and homeomorphic to y™**. O
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Theorem 1.1.6 For eachn > 0, there exists an n-invertible UV ™ '-surjection

fa (W 13) = (Q, Qo). O

Remark. Let (X, X;) be an arbitrary pair of spaces. We can assume that
X C Q and Xo = X N Qo. Then we have a pair (Z, Zp) = (f71(X), £71{Xo))
of spaces with dim < n and an n-invertible proper UV " !-surjection o =
fulz.20) © (Z,2Z0) — (X, Xo). It is easy to see that f ~" g for two maps
f,9: (X, Xo) — (Y, Yo) if and only if fa ~ ga.

1.2 The n-homotopy extension theorem

In this section, we treat pairs of spaces instead of spaces. Therefore, we need
to extend some well-known results to pairs. A pair of LC™ spaces is simply

called an LC™-pair.

1.2.1 The extension theorem for pairs

Lemma 1.2.1 Let (X, Xq) be a pair of spaces with dim < n + 1 and (Y,Y})
an LC™-pair. Let (A, Ag) be a closed pair in (X, X,) with Ag = ANXo. Then
every map [ : (A, Ag) — (Y, Yy) has an extension F : (U,Uy) — (Y,Yy), where
U is a neighborhood of A in X and Uy = U N Xo. Moreover if (Y,Ys) is a
C™ N LC™-pair, then f has an extension F : (X, Xo) — (Y, Y).

Proof. Since dim Xy < n+1 and Yy is LC™, the map f|4, : Ao — Y extends to
amap g : Uy — Y;, where Uy is a neighborhood of A in X, [Hu]. Note that Uy
is closed in (X \ Xo)UUp. Since Y is LC™, the map gU f : UyUA — Y extends
to a map F : U — Y, where U is a neighborhood of Uy U A in (X \ Xo) U Up.
Then Uy = UN X,. Consequently, (U, Up) is the desired neighborhood and F'is

the desired extension of f. The proof of the additional statement is similar. O



Preliminaries 4

Lemma 1.2.2 Let (Y,Y)) be an LC™-pair. Then every open coverU of Y has
an open refinement V of U such that if (X, Xo) 1s a pair of dim < n then any
two V-close maps f, 9 : (X, Xo) — (Y, Yy) are U-homotopic.

Proof. Since Y is LC™, every open cover U of Y has an open refinement V such
that for any two V-close maps f,g : X — Y of a space X with dim X < n,
any V-homotopy h : Xo x I =Y from f|x, to g|x, extends to a U-homotopy
H:XxI—Y from fto g [Huy, p.112]. Moreover, since Yj is also LC™, there

exists an open cover V; of Yj such that if f|x,, glx, : Xo — Y5 are V,-close, then
we can find a V-homotopy h : Xq x I — Y connecting f|x, to g|x,- Now let
fr9: (X, Xo) — (Y, Yp) be maps. If f and g are V-closein Y and f|x, and g|x,
are Vo-close in Y, then there exists a I{-homotopy H : (X, Xj) x I — (Y, Yp)
connecting f and g. For every V' € V), there exists an open set ¥V’ in Y such
that V.=V'NY,. Put Vi ={V' |V €V} U{Y \ ¥o}. The common open

refinement of V and Vj is the desired cover of Y. O

Corollary 1.2.3 Let (Y,Yy) be an LC™-pair. Then there exists an open cover
U of Y such that any two U-close maps defined on an arbitrary pair of spaces

are n-homotopic. O
The following is due to Chigogidze [Chi;, Proposition 2.1]:

Proposition 1.2.4 LetY be LC™. Then every open cover U of Y has an open

refinement V satisfying the following condition:

(%), For an arbitrary space X with dim < n + 1 and any two V-close maps
from a closed set in X, if one of them extends to a map from X, then
the other also extends to a map from X, which is U-close to the former

extension.

Remark on the proof. In [Chi;], spaces are separable completely metriz-

able. However the proof of Proposition 2.1 in [Chi,] is valid without the as-
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sumption of complete metrizability since every space can be embedded in a
linear subspace of the Hilbert space ¢, as a closed set.

As a corollary we have the following:

Lemma 1.2.5 Every open cover U of an LC™ space Y has an open refinement

V satisfying the following condition:

(§)n Suppose that f,9 : X — Y are V-close maps, o : Z — X is a map,
dim Z <n, A is closed in X, ¢ : o™ (A) x I'— Y is a V-homotopy with
o = fala-1(ay and ©1 = ga)o-1(4). Then ¢ extends to a U-homotopy
@:Z4xI— M with @y = fa and @, = ga.

Proof. Let W be an open star-refinement of /. By Proposition 1.2.4,
W has an open refinement V satisfying (x),. We extend ¢ to the map ¢’ :
a M (A) x TUZ x {0,1} - M by ¢'(2,0) = fa(z) and ¢'(z,1) = ga(z) for
each z € Z. Since ¢ is a V-homotopy and g is V-close to f, ¢’ is V-close to
the restriction of the map fapry : Z xI — Y, where pry : Z x I — Z is the
projection. By (¥),, ¢’ extends to a map @ : Z x I — Y which is W-close to
fapry. It is easy to see that ¢ is the desired homotopy. O

1.2.2 The n-homotopy extension theorem for pairs

The n-homotopy extension theorem was established by Chigogidze [Chi,, Propo-
sition 2.2]. We strengthen it by including a covering estimate, which might
be useful in some applications. Although we have not used the covering esti-
mate, we give a detailed proof, which will help those who have some difficulty

concerning the first sentence in Chigogidze’s proof.

Theorem 1.2.6 (The n-homotopy extension theorem for pairs) Suppose
that (Y,Yy) is a locally compact LC™-pair, (X, Xo) is a locally compact pasr
with dim < n+1 and f,g: (A, Ay) — (Y, Yo) are proper maps of a closed pair
(A, Ay) in (X, Xo) with Ay = AN Xy which are properly n-homotopic. If f
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eztends to a proper map f (X, Xo) — (Y,Yy), then g also extends to a proper
map §: (X, Xo) — (Y,Yy) which is properly n-homotopic to f.

To prove the n-homotopy extension theorem for pairs, we first generalize

the standard trick of bridge maps (cf. [Hul).

Lemma 1.2.7 Let Xy, -+, Xy be closed sets in X such that X¢ = Nieo X 1S
LC™ for any C C {1,---,k}, where Xg = X. Then each open cover U of X

has an open refinement V satisfying the following condition:

(a), Bach V €V is contained in some U € U such that every map f: S —
VNXe (0<i<nCC{l,---,k}) estends to a map f : B+ — UnXg.

Proof. Let W be an open star-refinement of &{. For each C C {1,...,k},
X¢ is LC™, hence we have an open cover Ve of X such that each V € V. is

contained in some W¢g € W satisfying

(a)nc each map f: 5" — VN Xe (i =0,---,n) extends to a map f : B! —
We N Xe.

Let V be an open cover of X which refines all Vo (C C {1,...,k}). Then Vis
the desired refinement of 4. In fact, let V € V. For each C C {1,...,k}, V is
contained in some W € W satisfying (a)nc. Since W is a star-refinement of

U, Uccq,..ky We is contained in some U € U. Then (a), is satisfied. O

Lemma 1.2.8 Let Xi,..., Xy be closed in X. Then each open cover U of X

has an open refinement V such that
) VAN{X;| X;nV #£ 0} #0 for each V€V with V N Niee Xi # 0,
and V s locally finite if so 1s U.
Proof. For each C C {1,...,k}, let

VCZ{U\ UXJ|UEU,Uﬂsz7A@}7
j#C ieC
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where Vp = {U e U | UNUL, X; = §}. Then V = Uccqi,xp Ve is the
desired refinement of /. In fact, for each V € V, choose C C {1,...,k} so
that V € Vo. In the case C = @, VN UL, X; = 0. In the case C # 0,
by the definition of Ve, VN Niec Xi # 0 and VN X; = 0 if § € C, namely
C ={i] X;nV # 0}. Thus (b) is satisfied. The additional statement is

clear. O

Lemma 1.2.9 Let dim X < n+ 1 and X;,---, X} be closed in X such that
Xe = Niec Xi ts LC™ for any C C {1,...,k}, where Xy = X. Then for each
open cover U of X, there exist a locally finite simplicial complex K with dim <
n + 1, subcomplezes K1, -+, Ky of K, mapsp: X — |K| and ¢ : |K| — X
such that p(X;) C |K;|, ¢(|K;|) C X; and gp is U-close to idx.

Proof. By Lemma 1.2.7, we have a sequence of open covers of X as follows:

U=, Ly S0, 2y, DLy,

where U (a>)j V means that V is a refinement of U satisfying (a); in Lemma
1.2.7 and U > V means that V is a star-refinement of /{. Since dim X < n+ 1,
YV, has a locally finite open star-refinement V of ord V < n + 2 satisfying (b)
by Lemma 1.2.8. Let K = N(V) be the nerve of V and K; = N(V;) nerves
of V;={VeV|VnX;#0}(j=1,---,k). Note that K is a locally finite
simplicial complex with dim < n + 1 and Kj’s are subcomplexes of K. Let
p: X — |K]| be a canonical map. Then p(X;) C |K;| foreach j =1,---,k.
We construct ¢ : |[K| — X by the skeleton-wise induction. For each V €
V=KO let Xy =N{X;| X;nV # 0}, where Xy = X if VNUL, X; = 0.
Then V N Xy # 0 by (b). By choosing a point ¢®®(V) € V N Xy for each
V € KO we can define ¢ : [K(®| — X. For each 7 € KW, let X, = N{X; |
¢©(87) C X;}, where X, = X if¢®(0r) ¢ X;foranyi=1,---,k. Then there
exists V € V, such that ¢©®(87) € V0 X,, By (a)o, ¢¥s- can be extended to

amap g, : 7 — UNX, for some U € U,. Then we can extend ¢ to a map
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g® : |[K®| — X such that ¢V (|K"|) € X foreach j =1,-- -, k and ¢ maps
each 7 € K® intosome U € U,. Assume that ¢ : |K®)| — X has been defined
such that q(i)(]KJ(-i);) C X, for each j = 1,---,k and ¢ maps each 7 € K®
into some U € Uj_co. For each 7 € K0 let X, = N{X; | ¢?(07) C X},
where X, = X if ¢©(8r) ¢ X; for any i = 1,---,k. Since Uiy < V;,
¢ (dr) ¢ VN X, for some V € V;. By (a);, ¢P|s, can be extended to a
map ¢, : 7 — U N X, for some U € Uy. Then we can extend ¢ to a map
g+ - |K0+)| — X such that q(i“)(\K](»iH)D C X, foreach j =1, -,k and
g%+ maps each 7 € K(*+Y into some U € Uj. Thus we can obtain the desired
map ¢ = ¢V : |K| - X. O

We use the following well-known fact:

Lemma 1.2.10 Each k-dimensional metrizable space X can be embedded in
a k-dimensional LC*~1 metrizable space E(X) as a closed set, where if X is

locally compact then E(X) can be locally compact.

Proof. For completeness, we give a proof. In the proof of [Ko, Theorem 1],
Kodama constructed a (k + 1)-dimensional ANR M(X) = M U X, where X
is closed in M (X) and M is a cell complex. Replacing M with the k-skeleton
M®) | we obtain a k-dimensional subspace E(X) = M® U X of M(X). Then
M®) is an ANR. which is open in E(X). To see that E(X) is LC*! at
each z € X, let U be a neighborhood of z in M(X). By the definition of
the topology for M(X), U contains a neighborhood W of z in M(X) such
that 7N W # 0 implies 7 C U for any cell 7 of M. Since M(X) is locally
contractible, W contains a neighborhood V of z in M(X) which contracts in
W. Then each map f: S* = VNE(X) (i=1,---,k—1) extends to a map
g: B — W. For each (k + 1)-cell 7 of M, choose a map f, : g~*(r) — o7
so that fr|g-1(ar) = glg-1(9r). We can define a map f: Bt - UNE(X) by
f lg-1(r) = fr for each (k +1)-cell 7 € M. Clearly f is an extension of f. Thus
E(X)is LC*1. O
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Now we prove the following n-homotopy extension theorem:

Theorem 1.2.11 Suppose that Y is an LC™ space, U is an open cover of Y,
X is a space withdim < n+1, a: Z — X is an n-invertible map from a space
dim < n, A is closed in X and f,g : A — Y are maps such that folo-104)
is U-homotopic to gal,-1(4). If f extends to a map f:X =Y, then g also

extends to a map §: X — Y such that foz and jo are stSU-homotopic.

Proof. We divide the proof into three cases. In each case, let ¢ : a7'(A4) x
I — Y be a Y-homotopy such that @y = fa|a-104) and @1 = ga|a-104)-

Case 1: (X, A) is a polyhedral pair. Let K be a triangulation of X with
L a subcomplex triangulating A such that f maps each simplex of K in some
member of U, and ¢ maps each simplex of L in some member of /. Since
dim Z < n, we have a map o : Z — |K(™| which is contiguous to o, hence «
and o are homotopic by a homotopy whose each homotopy track is contained
in some simplex of K. By the n-invertibility of o, we have amap v : |[K(™| — Z
such that oy = id. Then ¢’ = ¢(v]a-104)Xid/) : |L™|x] — Y is al{-homotopy
such that ¢y = f|zem) and ¢} = g|jLm). Since Y is LC™, ¢ extends to a U-
homotopy 9’ : [K(™|xI — Y with 9§ = f| ;x| Thus, we have a -homotopy
Y= (¢ xid;): Z x I — Y such that 1o = fo/ and ¢, = 1a/. Now, we can
extend g toamap §: X — Y as follows: gl g =] and gl = (¥'Uf x{0})h,
for each n-simplex ¢ € K\ L, where h, : ¢ — 0o0Uo x {0} is a homeomorphism
such that h(z) = (z, 1) for each x € do. By the definition, § maps each simplex
of K into some member of st?l{, whence ¥; = go/ is st? UY-homotopic to Jo.
On the other hand, since f maps each simplex of K in some member of I/,
Yo = f o/ is U-homotopic to f «. Therefore foz and o are st® {-homotopic.

Case 2: (X,A) is an LC™-pair. Since YV is LC™, U has an open refine-
ment W such that any two W-close maps from a space with dim < n are
U-homotopic. By Proposition 1.2.4, W has an open refinement ) satisfying

(*)n. Using Lemma 1.2.9, we have a countable locally finite simplicial complex
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K with dim < n+ 1, a subcomplex L of K, and maps p : (X, A) — (|K]|, |L]),
q: (|K|,|L]) — (X, A) such that ggp|4 is V-close to g and fgpo is U-homotopic
to fa. Let §: Z' — |K| be an n-invertible map, where dim Z’ < n. By the
n-invertibility of 8 and «, we have maps & : Z — Z’ and B :Z — Z' such
that po = B& and g8 = af. Since faBlg—qr) = faﬁlﬁ—l(m) is U-homotopic
to ga;@lﬁ—quD and fq| 7| extends to the map fq, it follows from Step 1 that
9qliz; also extends to a map ¢ : [K| — Y such that fqB is st3U-homotopic
to ¢’. Then § = ¢'p : X — Y is an extension of ggplsa : A — Y. Since
gqp|a is V-close to g, g also extends to a map § : X — Y such that go is
U-homotopic to jo. On the other hand, fa is U-homotopic to fapa = fqﬁ&,
which is st3l/-homotopic to ¢’8& = ¢'pa = ga. Consequently, fa and o are
st*l/-homotopic.

General Case. We can embed (X, A) in an (n + 1)-dimensional LC™-pair
(E,F) as a closed pair such that A = X N F. (In fact, first embed A in
some F' as a closed set and then X U F in some E as a closed set.) Since YV
is LC™, we may assume that f and g are defined on an open neighborhood
V of Ain F and f is defined on an open neighborhood W of X in F such
that WNF = V. Let f: 2/ — E be an n-invertible proper map, where
dim Z' < n. (The existence of such a map follows from results in [Dr]. Refer
the proof of [Chi;, Proposition 2.1] and Remark on the proof of Proposition
1.2.4.) Then we have maps &@ : Z — Z' and 8 : f71(X) — Z such that
o= fa and flg-1(x) = a,@. Since Y is LC™ and @ is proper, the {{-homotopy
P = (B x id;) : B7H(A) x I — Y extends to a I{-homotopy extends to a U-
homotopy @ : f71(A’) x I — Y such that Gy = fB|s-1(an and ¢; = 98|-1(a),
where A’ is an open neighborhood of 4 in V. Let X' = W\ (F'\ A). Then
(X', A") is an LC™-pair with dim < n+ 1, f and ¢ are defined on A’, the
extension f of f is defined on X/, fBlg~1(ary is U-homotopic to gf|s-1(a). By
Case 2, g extends to a map § : X' — Y such that f8 and j8 are st?U-

homotopic, whence fa = fB& and 980 = jo are also st®//-homotopic. This
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completes the proof. O

Remark. In the above theorem, if X and Y are locally compact, o, f, g
and the homotopy from fal,-1(ay to gala-1(4y are proper, then the homotopy
from fodaa(A) to goq-1(4) can be proper. In fact, subdividing K in Case
1, we may assume that for any two contiguous maps from a locally compact
space to |K|, if one of them is proper then the other is also proper. Then
all maps and homotopies are proper. In case 2, take an open refinement U/’
of U such that any map from a locally compact space to Y is proper if it is
U'-close to a proper map, and let YW be an open refinement of /' such that
any two W-close maps from a space with dim < n are U’-homotopic, whence
if one of two W-close maps is proper then the other and the homotopy are
also proper. Hence all maps and homotopies can be proper. In General Case,
embed (X, A) in an (n + 1)-dimensional locally compact LC™-pair (E, F) as
a closed pair such that A= XN F, and B : Z’' — E be proper. Then X' is

locally compact and all maps and homotopies can be proper.

The n-homotopy extension theorem for pairs can be proved by replacing

spaces with pairs in the proof of Theorem 1.2.11.

Theorem 1.2.12 Let (Y,Y}) be an LC™-pasr, U is an open cover of Y, (X, Xo)
is a pasr with dim < n+1, a: (Z,Zy) — (X, Xo) ts an n-invertible map from
a pair with dim < n, (A, Ay) 1s a closed pair in (X, Xo) with Ag = ANXy, and
f.g9: (A, Ap) — (Y,Yy) are maps such that fola-1(a),a-1(40)) i U-homotopic
to gorl(a-1(a),0-1(40))- If f extends to a map f:(X,Xo) — (Y,Yp) then g also
extends to a map §: (X, Xo) — (Y, Y0) such that fa is stU-homotopic to jou.

Proof. When spaces are replaced by pairs, we verify that all maps and
homotopies in each cases are relative.

In Case 1, K and L are also replaced by pairs, whence the maps o, v
and ¢ can be relative. Now remark that o and o are relatively homotopic

by the same homotopy. Since (¥,Yp) is an LC™-pair, we can extend ¢’ to a
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relative homotopy ¢’ : (JK™), |Ké")l) x I — (Y,Yy). Thus the homotopy
is also relative. By the definition, § is naturally relative and fo! is relatively
homotopic to go'. Since the homotopy from « to o is relative, the homotopies
from foz to foz’ and from Fo to jo' are also relative. Consequently, fa and
ga’ are also relatively homotopic.

In Case 2, let W be an open refinement of U/ satisfying the condition of
Lemma 1.2.2, whence any two W-close maps from a pair with dim < n are
relatively ¢/-homotopic. Using Proposition 1.2.4 twice, we have an open re-
finement V of W satisfying (*), for pairs. Then it is easy to see that all maps
and homotopies are relative when all spaces, K and L are replaced by pairs.
Lemma 1.2.9 guarantees that all spaces, K and L can be replaced by pairs in
this Case 2.

In General Case, first embed (4, Ap) in an (n + 1)-dimensional LC™-pair
(F, Fy) as a closed pair such that Ay = ANFy, and then embed (X UF, XoUFy)
in in an (n + 1)-dimensional LC™-pair (E, Ey) as a closed pair Xo U Fy =
(X UF)N Ey, whence X N F = A and Xo N Fy = Ay. Then similarly to
Theorem 1.2.11, the general case can be reduced to Case 2. O

Remark. Similarly to Theorem 1.2.11, if (X, Xp) and (Y, Y;) are locally
compact, o, f, g and the homotopy from fo|a-1(4)a=1(40)) 10 9|(a=1(4),a~1(40))
are proper, then the homotopy from fal(a—l( A)a=1(Ag)) 10 J0|(a-1(4),0~1(4,)) CBT

be proper. Thus we have Theorem 1.2.6.



Chapter 2

1 l-manifold pairs

In this chapter, we study Z-pairs in p™*'-manifold pairs and adapt the Z-set

approximation theorem and the Z-set unknotting theorem to Z-pairs.

2.1 Z-pairs in p"!-manifold pair

Let uf™ be a Z-set in ™! which is homeomorphic to ™. We call (4, Ag)
a Z-pair in (X, Xp) if A and Ay are Z-sets in X and Xj, respectively, and
Ay = AN X,. For a pair (X, Xp) of spaces, X, is assumed to be a closed set
in X.

A pair (M, M) is said to be a u"*l-manifold pair if M and M, are p"*!-
manifolds and M, is a Z-set in M. For example, (u™+?, u2**) is a y™**-manifold
pair. We say (A, Ag) Z-pair in a pair (X, Xo) if A and Ay are Z-sets in X and
Xy, respectively, and Ag = A N X,.

An embedding f : (X, Xy) — (M, My) is a Z-embedding if (f(X), f(Xo)) is
a Z-pair in (M, Mp).

Lemma 2.1.1 Let (4, A) and (B, Bo) be Z-pairs in (u™*, ug™) and let f :

(A, Ay) — (B, By) be a homeomorphism. Then f extends to a homeomorphism

B (urth gty — (gt

13
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Proof. By the Z-set unknotting theorem, f|4, : Ag — By extends to a home-
omorphism A’ : pg* — pgt. Then fUMK : AU T — BU It is a
homeomorphism between two Z-sets. Again, by the Z-set unknotting theorem,

fU A extends to a homeomorphism A : (u™+!, ud™) — (u*+1, uo™™). O

Proposition 2.1.2 Let (M, My) be a "™ -manifold pair and (X, X,) a closed
pair in (M, My) such that X is a Z-set in M. Then for any open cover U of M
there exists a homeomorphism h : M — M such that h and idy are U-close,

h’|Xo = idXo and h(X) N MO = Xo.

Proof. By [AHW, Lemma 3], M \ X, has an open cover I/’ such that if a home-
omorphism h : M\ Xo — M\ X; is U'-close to id M\X, then A can be extended
to a homeomorphism k : M — M by h|x, = idx,. Let V be a common open
refinement of /N (M \ X,) and U’. By the Z-set unknotting theorem, V has an
open refinement W such that if g : Z; — Z, is a homeomorphism between two
Z-setsin M \ X, and g is W-close to idz,, then g extends to a homeomorphism
g: M\ Xy, — M\ X, which is V-close to idpn x,- Since Mg \ Xp is a Z-set
in M\ Xo, it follows from [Be, 2.3.6, 2.3.8] that there exists a Z-embedding
f1: X\Xo — M\ X, which is W-close to idx\ x, and fi (X \Xo)N(Mo\Xo) = 0.
Then the homeomorphism f; : X \ Xo — f1(X \ Xo) extends to a homeomor-
phism f, : M \ Xo — M \ X, which is V-close to idas x,. By the property of
U', there exists a homeomorphism f, : M — M such that fo|anx, = f» and
Falx, = idx,. Since fo(X \ Xo) N (My \ Xo) = 8, we have fo(X) N My = Xo.
Then f, is the desired homeomorphism. O

By Proposition 2.1.2 and the Z-set approximation theorem, we have the

following:

Corollary 2.1.3 Every compact pair (X, X,) of dim < n+1 can be embedded

in (u, patt) as a Z-pair. O
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Mn
Proposition 2.1.4 Let (X, X;) be a Z-pair in (u"*, ugtt). Then for every
open neighborhood (U, Uy) of (X, Xo) with Uy = UNud™, there exists a compact
p"tt-manifold pair (M, My) such that X C M C U, Xo C My C Uy and
My =M N pd™t.

Proof. Since dim X < n+1, it can be assumed that (X, Xp) C ([2n+1+2 [2(n+1)+1)
and Xo = X N *+D+1 By Lemma 2.1.1, we can assume that (ut!, ud+?)
is obtained from (I2(n+1)+2 [An+l)+1) by the construction of [Be, Chap.2] so
that (X, Xo) C (p™*1, ui*?). Take an open pair (V, Vp) in (J3nH+1)+2 [2(n+1)+1)
such that U = p"*' NV and Uy = ug™ N V;. Then there exists a regular
neighborhood (R, Rp) of (X, X) in (I2(r+1+2 12n+1)+1) guch that R C V and
Ry = RN V. Consequently, the desired (M, My) is obtained from (R, Ry) by

the construction of [Be, Chap.2|. O

Proposition 2.1.5 Let (X, X,) be a compact pair with dim < n + 1 and
(M, My) a compact p*+*-manifold pair. Let (Y,Yy) be a Z-pair in (M, My)
and f : (X, Xo) — (M, My) a map. Then for any € > 0 there exists a Z-
embedding h : (X, Xo) — (M \Y, My \ o) with d(f,h) < €.

Proof. By the Z-set unknotting theorem, there exists 6 > 0 (§ < €/2) such that
if @:Zy — Z5 is a homeomorphism between Z-sets in M with d(a,idz) < 6,
then o extends to a homeomorphism & : M — M with d(a,idy) < /2.
Since (Y, Y)) is a Z-pair in (M, M), there exist Z-embeddings gy : Xy —
My\Yy € M\Y and g : X — M \'Y such that d(go, flx,) < 6/2 and
d(g, f) < 6/2 (< €/2), hence d(gog ™" |y(x0), 1dg(x0)) = d(g0, 9lx0) < d(g0, flxo)+
d(flx0,9x,) < 6. Then the homeomorphism idy U gog™|gxo) : ¥ U 9(Xo) —
Y U go(Xo) between Z-sets in M extends to a homeomorphism A’ : M — M
with d(h/,idas) < /2. Observe that h'g(X) C M\ Y and h'g(Xy) = go(Xo) C
My \'Yy. By Proposition 2.1.2, there exists a homeomorphism A" : M — M
such that d(h”,idpy) < €/4, W'lwgixy) = idpgxo) and R"(Rg(X)) N My =
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H’n
h'(h'g(Xo)). We obtain the desired Z-embedding b = h"h'g : (X, X;) —
(M, My) because

d(h, f) < d(h"h'g,h'g) + d(K'g,g) + d(g, f) <e/d+e/2+¢e/d=¢. O

Proposition 2.1.6 Let (Z, Zy) be a compact pair with dim < n and (M, M)
a compact p"t-manifold pair. Let (Y,Yy) be a Z-pair in (M, My) and H :
(Z, Zy)xI — (M, My) a homotopy such that Hy(Z)NY =0 and H(Z)NY = 0.
Then for each € > 0 there ezists a homotopy H : (Z, Zo)x I — (M\Y, My\ Yp)
such that Hy = Hy, Hy = H, and d(H, H) < «.

Proof. Since (M \'Y, M, \ Yo) is LC™-pair, by Lemma 1.2.2, there exists an
open covering V of M \ 'Y such that two V-close maps from (Z, Zp) to (M \
Y, Mo \ Yy) are €/3-homotopic. Since Hy(Z) U H;(Z) is compact in M \ 'Y,
there exists a Lebesgue number § > 0 (§ < £/3) such that d(z,y) < §, where
z € Hy(Z)UH(Z) and y € M \Y, implies that z,y € V for some V € V. By
Proposition 2.1.5, there exists a Z-embedding H' : (Z, Zy)xI — (M\Y, My\Yo)
which is 6-close to H. Then there exist £/3-homotopies F®) : (Z, Zy) x I —
(M\Y,My\ Yp) (i = 0,1) such that F\ = Hy, F\¥ = H}, F{" = H! and
F® = H,. Since Z is compact, there exists o > 0 such that diamH ({z} x
[0,%0]) < g/3, diamH({z} x [L — to,1]) < ¢/3, diamH'({z} x [0,%0]) < /3
and diamH'({z} x [1 — to,1]) < €/3, for each z € Z. We define the desired
homotopy H as follows:

;

FO(z, 2t) 0<t<®,
H'(z,2t —tg) (B2 <t <tp),
H(z,t)=1{ H'(z,t) (to <t <1—tp),
H'(z,2t +tg— 1) (I-ty<t<1-14),
| FO(z,5(t-1+1) (1-%<t<1)
To see that d(H, H) < €, let (z,t) € Z x I. If 0 < t < t,/2, then

d(H(z,t), H(z,t)) < d(F(O)(x,%t),F(O)(x,O))—l»d(H(a:,O),H(z,t))

< g/3+¢/3<e.
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If t0/2 S t < to, then

d(H(z,t), H(z,t)) < d(H'(z,2t—t0), H'(z,0))
+ d(F®(z,1), FO(z,0)) + d(H(z,0), H(z, 1))

< €/34+¢/3+e/3=¢.

If 1 -t <t <1, we conclude that d(ﬁ(m,t),H(z,t)) < € by the same

arguments. If £ <1 <1 — tg, then
d(H(z,t), H(z,t)) = d(H'(z,t), H(z,t)) < § <e/3 <e. O

Corollary 2.1.7 Let (X, Xo) be a compact pair and (M, My) a compact p"*!-
manifold pair. Let (Y,Yy) be a Z-pair in (M, My) and f,g : (X, Xo) — (M \
Y, My \Yy) maps. Then f ~™ g in (M, My) implies that f ~™ g in (M\Y, Mp\
Yy). O

2.2 The Z-pair approximation theorem
In this section, we extend Theorem 1.1.3 to the Z-pair approximation theorem.

Theorem 2.2.1 Let (M, My) be a p™-manifold pair, (X, X,) a locally com-
pact pair with dim < n+1, (A, Ag) a closed pair in (X, Xy) with AN Xy = Ag
and let f (X,Xo) — (M, M) be a proper map such that f|a .4, %5 a Z-
embedding. Then for any open cover U of M, f is U-close to a Z-embedding
g (X,Xo) — (M, My) such that fla,a) = 9lia,40) and for any proper map
a(Z,2y) — (X,Xo) of a pawr with dim < n, there is a proper U-homotopy
v : (2, Zy)xI — (M, My) such that oo = fo, p1 = go and @s|(a-1(4)0-1(40)) =
fal(a-1(a),a-10a)) for all t € I, namely, fa ~y go rel. (a7 (A),a™'(4)). In

particular, f is relatively properly n-homotopic to g.

By Lemma 1.2.5, we can easily prove the absolute case of Theorem 2.2.1,

which strengthens the Z-set approximation theorem.
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Theorem 2.2.2 Let M be a p™t'-manifold, X a locally compact space with
dim <n+1, A a closed set in X and let f : X — M be a proper map such
that f|a is a Z-embedding. Then for any open cover U of M, f is U-close to
a Z-embedding g : X — M such that f|la = gla and if a: Z — X is a proper
map and dim Z < n then there is a proper U-homotopy ¢ : Z x I — M with
0o = fa, @1 = ga and @¢la-14) = fat|o-104) for allt € I, hence fo ~y go
rel. o Y (A) and fa ~, ga rel. a71(A).

Proof. Replacing U by a refinement, we may assume that, if one of two
U-close maps from any locally compact space to M is proper, then the other
one is also proper. By Lemma 1.2.5, I/ has an open refinement of V satisfying
(f)n. By the Z-set approximation theorem, f is V-close to a Z-embedding
g : X — M such that f|a = g|la.- Applying (#)» to f, g and the constant
homotopy fapra-1(4y: @ '(A) x I — M, we can obtain the desired homotopy
@. O

Now, we can prove Theorem 2.2.1.

Proof of Theorem 2.2.1. As in the proof of Theorem 2.2.2, we may assume
that if one of two U-close maps of a locally compact space to M is proper
then the other is also proper. By Lemma 1.2.5, ¢/ has an open refinement
V satisfying (#),. Let Uy be an open star-refinement of V. By Proposition
1.2.4, U, has an open refinement V; satisfying (%),. By Theorem 2.2.2, f|x, is
V;-close to a Z-embedding go : Xo — Mj such that f|a, = gola, and there is
a Vi-homotopy ¢ : Zg x I — My such that @y = fa|z,, ¢1 = got|z, and

(pt'a‘l(Ao) = fala‘l(Ao) forallt e 1.

Then goUf|4 : XoUA — M is a Z-embedding because f(4) C go(Xo)Nf(A) C
F(A)YN My = f(Ap). Since go U f|4 is Vi-close to f|x,ua, go U fla extends to a
map fi1 : X — M which is U;-close to f. By the Z-set approximation theorem,
fi is Us-close to a Z-embedding g1 : X — M such that g1]|x,ua = filxeua =
go U fla. It should be remarked that g, : (X, Xo) — (M, Mp) is an extension
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of f and both g, : X — M and g1]x, = g0 : Xo — M are Z-embeddings but
g1 is not the desired one, because it can happen that g;(X) N My # g:(Xo).

By [AHW, Lemma 3], we have an open cover W of M \ ¢1(4) (= M \
f(A)) such that, if h : M \ g1(A) — M\ g:(A) is a homeomorphism W-
close to idang,(a), then h Uidg ) : M — M is a homeomorphism. We may
assume that W refines U;. By Proposition 2.1.2, we have a homeomorphism
h: M\ g1(A) — M\ g1(A) W-close to idpp\g,(a) such that kg, xe) = idg, (xo)
and h(g1(X)) N My = g1(Xo). Let g = hgr = (X, Xo) — (M, M), where
h = hUidg, 4y : M — M. Then g is the desired Z-embedding. In fact, g is 14-
close to g;. Recall that g; is U;-close to fi and f; is Uj-close to f. Consequently,
g and f are stl{;-close, hence they are V-close. Since I-zlg( Xoua) = id, we have
9lxoua = hg1lxeua = gilxoua = go U fla. On the other hand, the homotopy
¢ can be extended to a homotopy @ : (ZoU a™'(A)) x I — M by @ifa-1(a) =
fala-1(a) for all ¢ € I. Then @ is a V-homotopy such that

Yo = f04|ZOUa—1(A)&11d951 = (go U flA)QIZOUa—l(A) = galZOUa_l(A)'

By using (#),, we can extend @ to the desired homotopy ¢. O

2.3 The Z-pair unknotting theorem

In this section, we prove the Z-pair unknotting theorem as an extension of

Theorem 1.1.2.

Theorem 2.3.1 Let (M, M) be a p™"'-manifold pair and f : (A, Ay) —
(M, M) a Z-embedding of a Z-pair (A, Ag) in (M, My). If f is relatively
properly n-homotopic to id( 4q) in (M, My), then f extends to a homeomor-
phism f : (M, My) — (M, My) which is relatively properly n-homotopic to

id(M,Mo) .

Proof. Step 1. In this step, it is not asserted that f is properly n-homotopic
(=) to idu,u). Let a: (Z,Zy) — (M, M) be an n-invertible proper map
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of a pair with dim < n. By Theorem 1.2.6, f extends to a proper map f :
(M, My) — (M, M) which is properly n-homotopic to id(ar,az). By Theorem
2.2.2, there exist Z-embeddings go,g: : My — My such that go|la, = ida,,
Gilao = fy 900z, ~p alz, rel. a1 (Ag) and gialz, ~, folz, rel. a(Ay).
Since gy =7 idag in Mo and g =2 flu, =2 idag in My, by using the Z-
set unknotting theorem, we have a homeomorphism h : My — M, such that
hgo = g1. Then hla, = hgola, = g1la, = fla, and halz, >, hgor|z, = 910z,
rel. a7} (Ag). Since h(Mo) N F(A) = f(A)N My = f(Ao), hRUf: MyUA — M
is a Z-embedding. Observe that

(RU falzoua-104) 2 (91 U F)e|zeua-104) ~p f@|zgua-1a) rela™(4),

hence, h U f =~ idprua. Using again the Z-set unknotting theorem, we have
a homeomorphism f : M — M such that f[MgUA =hUF,ie., flMo = h and
fla=F. Then f: (M, My) — (M, My) is the desired homeomorphism.

Step 2. By Theorem 1.2.6, f extends to a map f : (M, M) — (M, M)
which is properly n-homotopic to id(a,a,). By Theorem 2.2.1, we have Z-
embeddings fo, f1: (M, My) — (M, My) such that

fola,a0) = 1d(a,a0)» fo =2 i), filiaaoy = F and fi =5 f 7 id(ar,mo)-

Applying Step 1 to the Z-embedding fi £y : (fo(M), fo(My)) — (M, M;), we
have a homeomorphism h : (M, My) — (M, M) such that hfy = f1. Then his

the desired homeomorphism. In fact, k(4 4,) = hgol(4,40) = 91](4,40) = f and
ha hfo= fi =0 idaasg i (M, M), O

Remark. In our approach as above, we can’t give a covering estimate
to Theorem 2.3.1. The problem remains to establish the Z-pair unknotting

theorem with a covering estimate like in Theorem 2.2.1.



Chapter 3

The complement theorem in
n-shape theory for compact

pairs

The concept of shape was introduced by Borsuk [Bo;]. In many studies, shape
theory has been developed as a big branch of geometric topology (cf. [Bos],
[MS,]). Using @Q-manifold theory, Chapman [Cha,| established the so-called

complement theorem, that is,

Theorem A If X andY are Z-sets in Q), then X and Y are shape equivalent
if and only if Q\ X and Q\'Y are homeomorphic. O

At the same time, he introduced the notion of weak proper homotopy and

proved the following theorem:

Theorem B Let S denote the category of Z-sets in Q@ and shape morphisms,
and let P denote the category of complements of Z-sets in Q@ and weak proper
homotopy classes of proper maps. Then there exists a category isomorphism T

from S8 onto P such that T(X) = Q \ X for each Z-set X in Q. O

21
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On the other hand, y***-manifolds were introduced and investigated by
Bestvina [Be]. From many studies, it has become clear that p™*!-manifolds
are “(n + 1)-dimensional” analogues of @-manifolds. In [Chi;}, Chigogidze
introduced the concept of n-shape for compacta and proved the n-shape version
of Theorem by using p™*! manifold theory.

The concept of shape was extended to compact pairs by Borsuk [Bos] (cf.
[Boy] ) and by Mardesi¢ and Segal [MS;] (cf. [MS,]), but their definitions do not
coincide (see [Ma]). The shape of pairs in the sense of Mardegi¢-Segal is defined
by using inverse systems, but it can be also defined using the Borsuk approach
(cf. [KO]). In [Fe], Felt tried to generalize Chapman’s complement theorem
to compact pairs using the definition of shape in the sense of Mardesi¢-Segal.
However, his proof contained a gap, which was recovered by [Sal.

In this chapter, we introduce the notion of weak proper n-homotopy and
prove the n-shape version of Theorem B. Moreover, we generalize Chigogidze’s
complement theorem to compact pairs.

Let ug™ be a Z-set in p™™! which is homeomorphic to p™tt. We call
(A, Ag) a Z-pairin (X, Xp) if A and Ap are Z-sets in X and X, respectively,
and Ay = AN Xg. For a pair (X, X,) of spaces, X is assumed to be a closed
set in X. A pair (M, Mp) is said to be a p™*'-manifold pair if M and M, are
p™+1-manifolds and My is a Z-set in M. An embedding f : (X, Xo) — (M, M)
is a Z-embedding if (f(X), f(Xo)) is a Z-pair in (M, My).

The following is our main theorem in this chapter.

Theorem C There exists a categorical 1somorphism VU from the n-shape cat-

egory ST, of Z-pairs in (u™, ug™) to the weak proper n-homotopy category
Pl of complements of Z-pairs such that U(X, Xo) = (" \ X, pg™ \ Xo),

for each Z-pair (X, Xo) in (u™, pugth).

Theorem D For any two Z-pairs (X,Xo) and (Y,Yp) in (u™, ug™), n-
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Sh(X, Xo) = n-Sh(Y,Y,) if and only if

(BTN X, ug N\ Xo) & (WY, gt Vo).

3.1 The n-shape of compact pairs and weak
proper n-homotopy

An inverse sequence of LC™-pairs (X, Xo) = {(X;, X0:),p:T*} is called an LC™-
sequence. In case dim X; < n + 1 for each 4, (X, Xy) is called an LC™(n +
1)-sequence. We say that (X,Xg) is associated with (X, Xy) if (X, Xo) =

lim, (X, Xy). The following is an easy consequence of Proposition 2.1.4.

Proposition 3.1.1 Let (X, Xy) be a Z-pair in (u™*, ut*'). Then there exists
an LC™(n + 1)-sequence (X, Xo) = {(X;, Xo:),pi™} associated with (X, Xy)
such that each (X;, Xy;) is a compact p™t'-manifold pair which is a neigh-
borhood of (X,Xo) with X;41 C intX;, Xo; = X; N ud™ and each pitt -
(Xiy1, Xoiv1) — (Xi, Xoi) is the inclusion. O

For every compact pair (X, X,) with dim < n + 1, Corollary 2.1.3 and
Proposition 3.1.1 guarantee the existence of an LC™(n+1)-sequence (X, Xy) =
{(Xs, Xos), o1} associated with (X, Xo).

Let (X,Xo) = {(Xi, X0:),0iT'} and (Y, Yo) = {(V;, Yo:), ¢} be LC™-
sequences. An n-morphism £ = (f,{f;}) : (X, Xo) — (Y, Yo) consists of an in-
creasing function f : w — w and a collection {f;} of maps f; : (X4, Xosu) —
(Y;, Yy;) such that fip;g)) ~n q{fj in (Y;, Yo:), for each 4,5 € w with j > 4.
The identity map idx x,) : (X,Xo) — (X, Xo) is defined by id, : w — w
and 1d(x; xo;) © (Xs, X0i) — (Xi, X0:). The composition of two n-morphisms
f=(f,{fi}): (X,Xo) = (Y,Yo) and g = (g,{g:}) : (Y, Yo) — (Z,Z) =
{(Z;i, Zo;),7i™} are defined by fg = (fg, {gifes})- Observe that fg forms an

n-morphism.
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Two n-morphisms f = (f,{fi}),g = (g.{g:}) : (X, Xo) — (Y,_fYp) are
said to be n-homotopic (notation: f ~" g) if for each 7 € w there exists
J > f(2),g(i) such that fip}(i) o~ gipg(i) in (V;,Y0:). It is clear that the
relation ~™ of n~morphisms is an equivalence relation. The equivalence class
of fis denoted by [f]..

By the same argument as in [MS;], we have the following proposition which

corresponds to theorem 12 in [MS4].

Proposition 3.1.2 Let (X,Xo) and (Y,Yo) be LC™(n + 1)-sequences asso-
ciated with (X, Xo) and (Y,Yqy) respectively. Then (X, Xo) ~™ (Y,Y,) implies
(X,Xg) ™ (Y, Yo). O

Corollary 3.1.3 If (X, Xp) and (X', X}) are LC™(n—+1)-sequences associated
with the same compact pair (X, Xy), then (X, Xo) ~™ (X', X§). O

Corollary 3.1.3 implies that every compact pair (X, Xp) of dim < n +1
determines an n-homotopy type of an LC™(n+1)-sequence (X, X,) associated
with (X, Xo), which is called the n-shape of (X, Xy), and is denoted by n-
Sh(X, Xo).

Let (X, X) and (Y, Y5) be compact pairs with dim <n+1 and let (X, Xp)
and (Y,Yo) be LC™(n + 1)-sequences associated with (X, Xp) and (Y,Y)),
respectively. The n-shape morphism from (X, X,) to (Y,Yy) is represented
by the n-homotopy class of n-morphisms from (X, Xy) to (Y, Yy). For more
information about n-shape, refer to [Chi,].

Two proper maps f,g : (X, Xy) — (Y, Y,) are said to be weakly properly
homotopic (notation: f =,, g) if for any compactum D in Y there exists a
homotopy H : (X, X,) x I — (Y,Y;) connecting f and g and a compactum
C in X such that H(X \ C, X, \ C) € Y \ D,Y; \ D). Two proper maps
frg: (X, Xo) — (Y, Yy) are weakly properly n-homotopic (notation: f ~7  g)
if fo ~y, ga for any proper map « : (Z, Zg) — (X, Xo) of a pair (Z, Z;) with
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dim < n. Observe that f =~ g if and only if fo ~,, ga for some n-invertible
proper map « : (Z,Zy) — (X, Xo) of a pair (Z,Zp) with dim < n (see the

remark after Theorem 1.1.6). Moreover, we have the following:

Proposition 3.1.4 Let f,g: (X, Xo) — (Y, Yo) be proper maps. Then f ~7,,
g if and only if for each compactum D in'Y there exists a compactum C in X

such that flox\e.xo\c) =" 9lx\exo\o) in (Y \ D, Yy \ D).

Proof. Let a : (Z,Zy) — (X,Xo) be an n-invertible proper map of a pair
(2, Zy) with dim< n. First, assume f ~p g. Since fo ~,, go, for each
compactum D in Y, there exists a compactum F in Z such that folz\ g z\5) =
galz\ezo\) in (Y \ D,Y5\ D). Then C = o(E) is the desired compactum.
Conversely, assume that for each compactum D in Y there is a compactum C
in X satisfying the condition. Then E = o~ }(C) is a compactum in Z and
foliz\ezo\B) ~ 9¢lz\E,z0\5) in (Y \ D,Yy\ D). Thus, fa ~,, ga, which
implies f ~7, g. O

By the definitions, we have f ~} g = f ~} g = f =" g. Clearly the
relation =~  is an equivalent relation. The weak proper n-homotopy class of

a proper map f is denoted by {f}..

3.2 A categorical isomorphism from S7; to PJ;,

Let S™

pair

be the category of Z-pairs in (u"*%, ug*') and n-shape morphisms.

Let P, be the category of complements of Z-pairs in (u™*!, uf™?)

pair and weak

proper n-homotopy classes of proper maps. In this section, we will construct

n

a categorical isomorphism ¥ : §7.; — Ppa;;.

pair

Let (X, Xp) and (Y, Y)) be Z-pairs in (u™*!, ud*') and let
(X’ XO) = {(XhXOi):p:ﬁ-*-l} and (Y,YO) = {(}’;,}/01)7 q::"‘l}

be nested sequences of compact p"*l-manifold neighborhoods of (X, Xj) and

(Y,Y,) in (u™L, ug™) respectively, which are obtained by Proposition 3.1.1.
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An n-morphism f : (X, Xo) — (Y, Yo) is called a nice n-morphismif fi(X )N
Y = 0, for each i € w.

Lemma 3.2.1 For each n-morphism g = (g,{g:}) : (X, Xo) — (Y, Yo), there
ezists a nice n-morphism £ = (f,{fi}) : (X,Xo) — (Y, Yo) such that each
fi o (Xr@y, Xogy)) — (Y3, Yui) is a Z-embedding, f = g and f; ~™ g; in (Y3, Yo),

hence f ~" g.

Proof. Recall that (X;, Xo;) and (Y;, Y;) are compact p™*'-manifold pairs.
Take &; > 0 such that two &;-close maps into (Y;, Yy;) are n-homotopic. Let i €
w be fixed. By Proposition 2.1.5, there exists a Z-embedding f; : (Xyz), Xog)) —
(Y:\Y, Yo \Yo) with d(fi, gi) < ;. Then £ = (g, {f:}) is the desired n-morphism.
In fact, since g is an m-morphism and g; ~" f;, we conclude that fipgg)) ~n qf fis
for each j > 4. O

For each nice n-morphism f : (X, Xg) — (Y,Yy), we say that a proper
map f: (X, ut T\ Xo) — (urtt\ Y, uftt \ YY) is associated with f
provided

f1(x,(i)\x,xof(i)\xo) =" fil o\ X Xosw\Yo) 10 (Vi \ Y, Yo \ Yo), for each i € w.
By Lemma 3.2.1, we have the relative case of Lemma 4.2 in [Chi].

Lemma 3.2.2 Let (X, X,) be a Z-pair in (u™*, ud™). Then there ezists a
nice n-morphism @* = (id,, {p¥}) : (X,Xo) — (X, Xo) such that ¢ is a
Z-embedding, ¢ ~™id(x, xo) 1 (Xi, Xoi), hence, ¢* =™ id(x x,). Moreover,

the identity map id(#nﬂ\ XU\ Xo) is associated with X, that is,
QD'€C|(X£\X7X0i\XU) = id(Xi\X,XOi\Xo) mn (Xz \ X, Xoi \ XO)) for each i € w.

Proof. The first statement is a direct consequence of Lemma 3.2.1. To see
the additional statement, let o : (Z, Zy) — (Xi, Xo:) be an n-invertible proper

map of a pair (Z,Z;) with dim < n. Remark that Z is compact. Since
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@ ~™ id(x; xo) in (Xi, Xoi), there exists a homotopy H : (Z,Zy) x I —
(X;, Xo;) such that Hy = ¢fa and Hy = a. Let fi = ¢fa and j > 2
fixed. Since Z is compact, there exists a sequence 1 > t; > t3 > ... > 0
such that H({z} x [0,t;]) < 277, for each z € Z. By Lemma 1.2.2, there
exists §; > 0 (6; < 27772) such that any two 6;-close maps from (Z, Z;) to
(Xi, Xo;) are 279~2-homotopic in (X;, Xo;). By Proposition 2.1.5, there exists
a Z-embedding f; : (Z,2Zy) — (Xi \ X, X0 \ Xo) such that d(f;, Hy;) < 6.
Then there exists a 27~2-homotopy G’ : (Z, Zy) x I — (X;, Xy;) such that
G} = Hy, and G} = f;. We can define a homotopy F7 : (Z, Zo) x I — (Xi, Xo:)

connecting f;4; and f; as follows:

Git1(z,1 — 3t) (0<t<1/3),
Fi(z,t) = { H(z,3(t; — ti)t + 2t — ;) (1/3 <t <2/3),
G(z,3t — 2) (2/3 <t <1).

By Proposition 2.1.6, there exists a homotopy F7 : (Z, Zg) x I — (Xi\ X, Xo; \
Xo) such that ] = FJ, F/ = FV and d(F7, F7) < 2774, Note that F7 is a

277+t homotopy. In fact,

diamF/({z} x I) < 2-2777% +diamF’({z} x I)

< 27978 492.27973 1 2.2 ¢ diamH ({z} x [tjt1,t5])
< 279 4o g g7l 4 00

Again by Proposition 2.1.6, there exists F! : (Z, Zg) x I — (X; \ X, Xo; \ Xo)
such that F} = f, and F! = f;. By using a linear homeomorphism s; :
[tii1,t;] — I, we can define a homotopy H : (Z, Z5) x I — (X;, Xo:) such that
Hy = o and I;T|(2,Zo)x(0,1] = Ujew Fio (id(z,25) X S;5)-

It is clear that H is continuous on Z x (0,1]. To prove the continu-
ity of H at (,0) € Z x {0}, let € > 0. Then there exists m € w such

that 27™*2 < ¢/2. For each z € Z, there exists a neighborhood U of z
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in Z such that d(a(z), a(z)) < €/2 for each 2’ € U. For each t € (0,1,
choose j > m so that ¢ € [tjy1,¢]. Since f; — «, d(H(z,1),a(z’) =
d(F9(a', 55(2)), le”)) < d(FI(2', 55(8), fian(2)) + Tingd(file'), fin (@) <

27mtl 4 9™ 4 =2""F < /2. Thus, for each (z',t) € U x (0,1,
d(H(z',t), H(z,0)) < d(H(2',t), a(z')) + d(alz'), a(z)) < e/2+¢/2 = ¢.
Observe that H(Z x (0,1]) N X = @, which implies

07 al(2\a1 (X, Zo\em 1 (X0)) = Al(Z\am1 (%), Zo\a1 (X)) 1 (X \ X, Xoi \ Xo). O

Lemma 3.2.3 For each nice n-morphism f : (X,Xo) — (Y, YY), there exists
a proper map § : (W™ \ X, ub N\ Xo) — (utI\ Y, pit\ Yy) associated with
f.

Proof. Because of similarity and bothersome notation, we prove only the ab-
solute case. Note that f;(Xsu)) € ¥i\ Y. Since p»*\ Y is C* N LC™, by
Lemma 1.2.1, the map f; : Xpqy — Y1 \Y C g™\ Y has an extension
hy s gttt — prti\ Y

Assume now that we have constructed h; : p™™t — p"*1\ Y such that

L. hilxs, = fi
2i' hil/,l.""'l\intXf(i_l) - h‘i—l|,u"+1\intXf(i_l)7

3;- hi|Xf(i—1) ~" fi—lle(i-n in Yi \ Y.

We will construct by : p"™ — p™1\ Y. Consider the map fir1 U filba X
Xyi+1) Ubd Xy — Yi \ Y. Since fis an n-morphism and Y is a Z-set in ¥;,
we have fi’Xf(i-}—l) U fi|bde(i) o~ fi U fi‘bde(i) in ¥;\Y. By Lemma 1.2.6,
there exists an extension Fiy; : X5u) — Y; \ Y such that F;| Xiiry = fis1,
FIi-&-llbde(i) = fi|bde(i) and Fi+1’Xf(i) ~™ f,in ¥; \ Y. We can define the map

hip1 : umtt — u™ L\ Y as follows:

hi(z)  for z € p™\ int Xy,
hisi(z) =
Fipi(z) for z € Xy
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Observe that h;y; is well defined and satisfies 1;41-3;+;. By the induction, we
have a sequence of maps h; : u"*! — p"t\ Y.

Now, we define amap f : g™\ X — p™*'\Y by f = limijeo hi- By 2, f
is well defined. Indeed, f | m1\int Xpay = hilﬂnﬂ\intxﬂi). For every compactum
D in p»\ Y, p»™'\ D is a neighborhood of Y. Then there exists ¥; such
that Y C ¥; € p™1\ D. Let C = ™\ int X Since (™ \ X)\ C C Xyq)
and f(Xu \ X) C Y, it follows that f((u»™'\ X)\ C) C Y;. Therefore
F((uv**\ X)\ €) N D = §. Thus f is a proper map. Moreover, by composing
the m-homotopies of 3;, it is easy to see that f|X,(,.)\X =" filx,ox 0 Vi \Y

foreach 7 e w. O

Lemma 3.2.4 Let f,§ : (™1 \ X, 45" \ Xo) — (01 \ Y, 4% \ Ya) be
proper maps associated with nice n-morphisms £ = (f,{f:}), & = (9,{%:}) :
(X,Xo) — (Y, Yo), respectively. Then f ~" g if and only if f ~r G-

Proof. By the same reason as in Lemma 3.2.3, we prove only the absolute
case. First we prove the “only if” part. For each compactum E in y**1\Y,
there exists an i € w such that ENY; = (. Since f ~" g, f and g are nice
n-morphisms and Y is a Z-set, by Proposition 2.1.6, there exists j > f(3), g(2)
such that fi|x, =" glx, in ¥ \ Y. Since f and § are associated with f and
g respectively, we have flxj\x " filxpx 2 gilxpx =" Jlxpx in i\ Y.
Note that D = p™+!\ int X; is a compactum in p™™\ X, (u**\ X)\ D C
X;\X and ¥; \ Y C (u***\ V) \ E. Then it follows that f|jm+1\x)p ="
Glumxonp in (" Y) \ E. Thus we have g

To prove the “if” part, assume f ~n §. For each i € w, E = pu™*\ intY;
is a compactum in g\ Y. Then we have a compactum D in p™*!\ X such
that flmsnxnn = Glmnap in (W Y) \ E. Take j > f(1), g(¢) such
that X; C p"*!\ D. Let ¢* be a nice n-morphism obtained by Lemma 3.2.2.
Then ¥ (X;) C X;\ X and ¢} ~"idx; in X;. From the definition, it follows
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that

filx, =™ fiollx, =™ Foflx, = 0T |x, =" g0f |x; 2" gilx, in Y.

Consequently, f ~" g. O
We define the functor ¥ : §”. — P2,

pair = Ppaie by WX, Xo) = (0 \ X, g™\
Ys) and U([f],) = {f}a, where f is a proper map associated with a nice n-
morphism which is n-homotopic to f. By Lemmas 3.2.1, 3.2.3 and 3.2.4, ¥ is
well-defined.

Now we prove Theorem C, that is,

Theorem 3.2.5 ¥ : 87, — Pp;, is a categorical isomorphism.

Proof. By the same reason as in Lemma 3.2.3, we prove only the absolute case.

Step 1 (¥ is functorial). First, we prove that ¥([idx],) = {idun+1\x }n- Let
o~ be a nice n-morphism obtained by Lemma 3.2.2. It suffices to prove that
@ =~ i n+1\x, for a proper map ¢ associated with ¢*. For each compactum
D in g™\ X, there exists ¢ € w such that X; N D = §. Since @ is associated
Flxax in X; \ X. By Lemma 3.2.2, ¢ |x,\x =" idx,\x
in X;\ X. Let E = p™* \intX;. Since (p*™'\ X)\ E C X;\ X and
X\ X C (u'\ X)\ D, we have @|(un+1\x)\£ =" idmtnxpg in (W X)\D,

which implies @ ~7  id;n+1\x-

Next, let f = (f,{fi}) : X = Yand g = (g, {g:}): Y = Z = {Z;,7;*'} be
n-morphisms. We prove that ¥([f],[g].) = ¥([f]»)¥([g]»).- By Lemma 3.2.1,
we can assume that f and g are nice n-morphisms. Then gf : X — Z is also a
nice n-morphism. Let f, g and h be proper maps associated with f, g and gf
respectively. For every compactum £ in p™*t1\ Z there exists ¢ € w such that
o =" g in Z;\ Z for all
7>, and foulx,,, =" fiin Y \'Y for all j > g(4), by the definition of an

Z;N E = 0. Since Y and Z are Z-sets in p™™, g;

n-morphism. It follows that

ﬁleg(,.)\x " gifo@)x,0\X = Gilv,o\¥ fati) X g \X
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> Gy, o\ Flxg, e\ i Zi \ Z.

Put C = p™*\int Xyy;. Then ?l|<#n+1\X')\C ~" gfl(#nﬂ\x)\c in (p"t\ Z)\E,
which implies §f ~p h.

Step 2 (¥ is an isomorphism). By Lemma 3.2.4, ¥ is a monomorphism, so it
suffices to see that ¥ is an epimorphism. To this end, let f : p**1\ X — p**1\V
be a proper map. For any i € w, E = p"*'\int Y] is a compactum in p"*!\ Y.
Then D = f~Y(E) is a compactum in "'\ X. Thus we can take n; € w such
that X, ND = @, hence f(X,, \ X) C ¥;\ Y. We have an increasing map
f :w — w such that f(i) > n;. Using the nice n-morphism % in Lemma
3.2.2, we can define the map f; = fgojf(i) : Xy — Yo\ Y C Y;. Thus, we
obtain the n-morphism f = (f,{f;}). In fact, for each i,j € w with ¢ < 7,
Ol =" Ohg) in Xpa)\ X, because ¢* is an n-morphism and X is a Z-set
in Xf@;). Then we have fip]fcg)) = ﬁP%)IXf(,-) o~n fcpf(j) =gl f;in Y;. Thus, f is
an n-morphism. By Lemma 3.2.2, f|x, \x =" f@ﬁiﬂxﬂi)\x in ¥;\ Y, which

implies that f is associated with f. Consequently, we have U([f],) = {f}n. O

3.3 The complement theorem for Z-pairs

Let (X,X,) and (Y,Y;) be Z-pairs in (u™*!, ug*™'). By Proposition 3.1.1,
we have LC™(n + 1)-sequences (X,Xo) = {(X;, X0:),p™'} and (Y,Yo) =
{(Y;, Yos), ¢} associated with (X, Xp) and (Y, ¥p) (i-e., (X, Xo) = lim. (X, Xo)
and (Y,Y;) = lim_(Y,Yy)) such that all (X;, Xo) and (Y;,Yy;) are com-
pact p"*l-manifold pairs which are neighborhoods of (X, X) and (Y7, Yy:) in

i+1 i+1

ntl respectively, and all p7™* and ¢;"" are inclusion maps. By Propo-

(u*, mp ™)
sition 1 in [She], we may assume that all (X, Xo;) and (Yj, Yp;) have Z-pairs

(6X;,6X,,) and (6Y;,6Y0 ;) respectively, such that

bd”n-HXi C 6X;, bd#g-i-i)foi C 6Xoi,
bd,~+Y; C 0Y; and bdu3+1Y¢ji C 6Yy;.
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Throughout this section, we use these notations. The next lemma is the rela-

tive version of Lemma 4.1 in [Chi,].

Lemma 3.3.1 Let £ : (X,X) — (Y,Yp) and g : (Y,Yo) — (X,Xo) be

n-morphisms such that gf ~™ idxx x,). Assume that h : (p"*', pg™) —

(u™*, gt is a homeomorphism and iy € w such that

(1) (int”n+1h()(io>),intpg+1h(X0-jO)) D (Y, Yy) and
(2) A Hwve) =" Giolvive) 1 (Xigs Xoio)-

Then there erists a homeomorphism k' : (u™*%, pud™) — (u™*1, ugtt) with

Jo > o such that

(0) Pl umra\ sy g\ Xaig) = Plium 1\ X g\ Xoig)?
(1) (int#n—{-l h()(—,'o), intugﬂ h()(o,'o)) D] (Y}oa YOjo) D)
(int“nﬂigo,int#gﬂyajo) 5 (W(X), K(Xo)), and

(2)/ h,l(X,Xo) ~" fjo'(X,Xo) wn (Y}or Yz)jo)'

Proof. Let o : (Z,Z) — (™, u3™') be an m-invertible map of a compact
pair with dim < n. By (2), there is a homotopy ¢ : (a7} (Y),a"}(Yp)) x I —
(JX'iO,XOiO) with Yo — h“lal(a—l(y)’a-l(yo)) and Y = gioa‘(a-l(}f)7a~1(yb)). By

Lemma 1.2.1, we can find 4; > ¢ such that
(Yg(i1)7 Y()g(i1)> C (int“n-n h(XiO), int“3+1 h(XOiD))

and ¢ extends to a homotopy @ : (™ (Ygy)), & H(Yogti))) X I — (Xigs Xoio)
with

Qo = h—la‘(a_1(Yg(il)),a“l(YOg(il)))andLﬁl = gioal(a"l(Yg(ig)sa‘l(Yt)g(il,3))'

-1 ~T g ; . V. Y. . . _
Hence, h I(Y_q(il):Y(}g(il)) ~ gzoi(Yg(il),logul)) in (Xj,,Xoi,)- Since g is an n

] -1 ~ 3 & ¢ .
morphism, we have 2™y, | voo,)) =" 9ir 10 (Xigy Xoig)-
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By Theorem 2.2.1, we have a Z-embedding f’ : (X, Xo) = (Yy(1), Yoe(ir))
which is n-homotopic to fyaylox,x0) I (Yy(ir), Yogay))- Since gf ~™ id(x x,), it

follows that

— on -1 -
A7 o™ BT faan |, x0) = BT w000y, Yoteg) Fatin) 6, X0)

™ giy Fotin) | (x,x0) =" 1d(x,x0) 10 (Xig, Xaio )

which implies that f” - f/h‘ll(h(X),h(Xo)) ~n id(h(X),h(Xo)) in (h(Xio), h(XOio))-
Observe that

F" U idaisxg)msxor)) = (M(X U 6Xi0), M(Xo U 6 X)) — (h(Xio), h(Xoio))

is a Z-embedding which is n-homotopic to id in (h(X;, ), 2(Xoi,)). By Theorem
2.3.1, this extends to a homeomorphism A" : (h(Xy,), h(Xoiy)) — (R(Xi,), h(Xoi,))-

Since R |(n(s Xig):h(6X0s)) = 1d, We have the homeomorphism

B = B Uit © (BT 08T = (s

ML gt

Let ' = h"h and jy = g(i1) > 4. Observe that 7'|x,x,) = R"Alx.x0) =
F"hl(x.xo) = f'- Then it is easy to see that h' and jo satisfy the required
conditions. O

Proof of Theorem D. Since the “only if” part follows from Theorem C, it
remains to prove the “if” part.

We may assume that (X3, Xo1) = (", ugt'). Using the same argument of
[Chi;], we construct homeomorphisms A; : (u™, ugth) — (u™+, ug™) (@ € w)
by induction. Since g1v;vp) 2" id(vvp) in (u™*, poth), we apply Lemma 3.3.1
to obtain a homeomorphism Ay : (", uf™) — (u™*L, ug™) with j1 € w such

that

(1) (intun+1le,intu3+1Y0jl) D (hl(X),hl(Xo)) and

(2) halexxe) =" finlox,xo) in (Y1, Yor).
By Lemma 3.3.1, there exists a homeomorphism A’ : (g, pg*') — (u™*?, pgth)

with 79 > 7; such that
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(0 Bl gumnny, g vwesy) = B lmnng, g\, )

(1) (it (it Yy, ), by (inten Yoi,)) D (X, Xog,) D
(int Xy, inb a1 Xoj, ) D (0'(Y), 1'(Y)), and

(2) " Wlvye) =" Gilvive) I (Xjy, Xojs)-

Let hy = A'~L. Then

(0) B3 lgumsryi, Vo) = BT lGumon\ v, i 165,

(1) (intyees Yy, int e Yo )  (ha(X5,), ha(Xes)) O
(it By (X, ), 10t it ha(Xoz)) O (Y, Yo), and

(2) h2 M lvve) =" il vive) i (Xias Xoga)-

Again by Lemma 3.3.1, we have a homeomorphism Az : (u™+!, ugt?) — (u+?, ugth)

with j3 > j such that

(0) halgumen\ s, i\ Xoz) = P2l g\ 05,
(1) (hg(iﬂt#n+1Xj2),hg(intﬂgﬁ-lXojz)) D) (ijYﬂjs) D
(int#n-a-les, intugﬂYoj?,) D (hg(X), hs (Xo)), and

(2) h’3|(X,X0) = fjsI(X,Xo) in (YijOJ's)'
Similarly to ks, we can obtain a homeomorphism hy : (u™+!, uf™) — (u+, pg™)
with js > j3 such that

—1 =1
(0) ™l umsry vy ¥ \Wogg) = 13 lumtn\ v i3
(1) (mtﬂ“*lyjs’mtug"'lYOja) » (h4<Xj4)a h4(X0j4)) 2

(intymr by (X5, ), intaen b (Xi,)) D (Y, Yo), and

(2) hi'lvve) =" Gielivive) in (X5, Xoj,)-
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Thus, we define inductively homeomorphisms A, : (u"+, ug*t) — (u™*1, pgtt)

n+l , n+l

with j;. Similarly to [Chi;], we can define a homeomorphism h : (", ug™") —

1, n+l
(u™*t ug™) by
hl(”n+1\xj2ia#3+l\xoj2i) = h2i|(”n+1\Xj2i y#3+1\X0j2,-)'
Hence the inverse of h is given by

-1 _ =1 O
h |(N"+1\szi-1’”3+1\Y01'2i—1) - h2"1|(»“"+1\szi—1’“8+1\Y01'25—1)'



Chapter 4

Proper n-shape and

property SUV"

Property UV arose in the study of cellularity and is connected with shape
theory through the result that a compact metric space X has property UV if
and only if X has the shape of a singleton. Property SUV* was introduced by
Hartley [Ha] as a noncompact variant of property UV®. Generalizing shape
theory to locally compact spaces, Ball and Sher introduced the notion of proper
shape [BS]. In [Sh;], Sher proved that a locally compact metric space X has
property SUV® if and only if X has the proper shape of a tree (i.e., a locally
finite, connected and simply connected simplicial 1-complex). He also defined
property SUV™ as a noncompact variant of property UV™ and proved that, if
X € SUV™ is a closed connected subset in a piecewise linear n-manifold, then
X e SUV®™,

On the other hand, the concept of n-shape was introduced by Chigogidze
[Chi;]. He discussed the relation of n-shape and property UV™. In particular,
a compact metric space X has property UV™ if and only if X has the n-shape
of a singleton. In this chapter, we introduce the notion of proper n-shape and

give a characterization of property SUV™, that is, X has property SUV™ if and

36
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only if X has the proper n-shape of a tree (Theorem 4.2.3). As a corollary, the
above result of Sher can be strengthened as follows: if X € SUV™ is connected

and dim X < n, then X € SUV* (Corollary 4.2.4).

4.1 Definition of proper n-shape

Let X and Y be locally compact spaces. Recall that a propermapa: X — Y is
said to be properly n-invertible if for any locally compact space Z with dim Z <
n and any proper map [ : Z — Y there is a proper map ¢ : Z — X such
that ap = . By Theorem 1.1.4 and considering one-point compactification,
for any locally compact space X, there exists a proper n-invertible surjection
«:Z — X withdim Z <n.
Two proper maps f,g : X — Y are properly n-homotopic (written by
~7 g) if, for any proper map o : Z — X from a locally compact space Z
with dim Z < n into X, the compositions fa and go are properly homotopic
in the usual sense (fa ~, ga). Note that we may only prove when « is a
properly n-invertible.
If there exist proper maps f : X — Y and g: Y — X such that fg ~7

> idx, then X and Y are said to be properly n-homotopically

idy and gf ~
equivalent (written by X ~7 V). If only the first relation is valid, then it is said
that X properly n-homotopically dominates Y, or Y is properly n-homotopically
dominated by X (written by X >2 Y, or ¥ <7 X).

Suppose that X and Y are closed sets in locally compact AR’s M and N,
respectively. Let A = (A, <) be a directed set. A net f = {f\ | A € A} of maps
fr: M — N is called a proper n-fundamental net from X to Y in M and N if,
for every closed neighborhood V of Y in N, there exist a closed neighborhood

U of X in M and an index Ag € A such that

Alv 25 froluin V for all A > A
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One should remark that each fy need not be proper but fi|y is proper for
some closed neighborhood U of X in M (cf. [BS, Lemma 3.2]). We denote
that f: X — Y in (M, N).

The identity n-fundamental net is defined by ix = {idy} : ¥ — X in
(M, M).

Let g = {gs | 6 € A} be a proper n-fundamental net from Y to Z in IV
and P, where A is a directed set and P is a locally compact AR containing Z
as a closed set. Then the composition of f and g is defined by gf = {gsf\ |
(A, 0) e Ax A} : X — Zin (M, P), where A x A is the directed set with the
order (A, 8) > (Ag,80) & A > Ag, 6 > 8.

Letf ={filAxeAlg={g|6€A}: X — Y in (M,N) be proper
n-fundamental nets. We say that f and g are properly n-homotopic (writ-
ten by f ~7 g) if for each closed neighborhood V' of ¥ there exist a closed

neighborhood U of X and (Ag, 6) € A x A such that
fAlU 2; grS|U in V for all (/\, 5) Z ()\0,60).

If there exist proper n-fundamental nets f : X — Y in (M,/V) and g :
Y — X in (N, M) such that gf ~7 ix and fg ~} iy, then X and Y are
said to be properly n-fundamentally equivalent in M and N. In this case we
write X ~7p Y in (M, N). If only the relation fg =~} iy is valid, then we
say that X properly n-fundamentally dominate Y in (M, N) or Y is properly
n-fundamentally dominated by X in (N, M), and write X >7r Y in (M, N) or

Y <pp X in (N, M). The following is easy to see.

Proposition 4.1.1 Let X,Y and Z be closed subsets of locally cornpact AR’s
M,N and P, respectively. If X >0 Y in (M,N) and Y 255 Z in (N, P),
then X >0p Z in (M,P). If X ~pp Y in (M,N) and Y >~z Z in (N, P),
then X ~pp Z in (M, P). O

Let f : X — Y be a proper map and f : X — Y in (M, NN) a proper n-
fundamental net. We say that f is generated by f (or f generates f) provided
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f = falx forall A € A. Since N is an AR, each proper map f has an extension
f:M — N. By [BS, Lemma, 3.2], we have the following.

Lemma 4.1.2 Fach proper map f : X — Y generates a proper n-fundamental

netf={f}: X —=Y in(M,N). O

Two proper maps f,g : X — Y C N are said to be weakly properly n-
homotopic in N if they are properly n-homotopic in each closed neighborhood
of Y in N. It is clear that any two properly n-homotopic maps from X to YV

are weakly properly n-homotopic in N.

Lemma 4.1.3 Let £, g be two proper n-fundamental nets from X toY in M
and N generated by f,g : X — Y, respectively. Then f and g are weakly
properly n-homotopic in N of and only if £ ~7 g.

Proof. Suppose that £ ~7 g. Then for each closed neighborhood V' of ¥ there
exist a closed neighborhood U of X and (Ag, 6) € A X A such that

Alv =3 gslv in V for all (A, 6) > (Ao, bo).

Thus, f = falx ~5 gslx =g in V.

Conversely, suppose that f and g are weakly properly n-homotopic in V.
Let V and V; be closed neighborhoods of Y in NV such that Vi C intV. Since f
and g are properly n-fundamental nets, there exist a closed neighborhood Uy

of X and (Ag, &) € A x A such that
Floy =5 frolv, and gslu, =5 gselv, In Vi for all (X, 6) > (Ao, &o).
It follows from the assumption that
Folx = f =5 9= gslx in V.

Let o : Z — M be an n-invertible proper map with dim Z < n. Then there
exists a proper homotopy H : o '(X) x I — Vi such that Hy = fy,ofa-1(x)
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and Hy = gs,0tfa-1(x). Let f= froe and § = gs,«. By [BS, Lemma 3.4], there
exists a closed neighborhood W of a™*(X) in Z such that f|w ~, jlw in V.
Since « is proper, we can find a closed neighborhood U of X in M such that
U C Uy and o }(U) € W. Hence, f|a-1(U) ~p §la-1ry in V, which implies
that

Ilv 25 faolv =3 gsolv =5 gslv in V. O

Observe that X <PV (or X ~p V) implies X <77 YV (or X =7 Y) in
(M, N) for any locally compact AR’s M and N containing X and Y as closed
sets, respectively. In fact, then we have twomaps f: X - Y andg:Y — X
such that gf ~7 idx. By Lemma 4.1.2, f and g generate proper n-fundamental
netsf: X - Yin (M,N)andg:Y — X in (N, M), respectively. Then gf is a
proper n-fundamental net generated by the composition gf. Since gf ~7 idx,
we have gf ~7 ix by Lemma 4.1.3. (Similarly, fg ~7 iy.) In particular, if X is
homeomorphic (=) to X', then X ~pr X' in (M, M") for any locally compact
AR’s M and M’ containing X and X’ as closed sets, respectively. Then the

following holds from Proposition 4.1.1.

Proposition 4.1.4 Let X, X", Y andY" be closed sets in locally compact AR’s
M,M',N and N’', respectively. Suppose that X =~ X' and Y ~ Y'. Then
X 2pp Y in (M, N) if and only if X' 225 Y' in (M',N'); and X =2, Y in
(M, N) if and only if X' ~pp Y" in (M',N'). O

This proposition shows that the relations of proper n-fundamental domi-
nance and proper n-fundamental equivalence do not depend on the choice of
ambient AR’s. We can define the proper n-shape as follows: locally compact
spaces X and Y are the same proper n-shape (written by n-Sh,(X) = n-
Sh,(Y')) if and only if X ~77 YV in (M, N) for some locally compact AR’s M
and N. Analogously, X is said to properly n-shape dominate Y, or Y is properly
n-shape dominated by X (written by n-Sh,(X) > n-Sh,(Y), or n-Sh,(Y") < n-
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Sh,(X)) if and only if X >7- Y in (M, N) for some locally compact AR's M
and N.

Let LK be the class of locally compact spaces. We define the proper n-shape
category, n-SH,LK, whose objects are in LK and whose morphisms are the

proper n-homotopy classes of proper n-fundamental nets.

Suppose that X is rim-compact (i.e., any point has arbitrary small neigh-
borhoods with compact boundaries). Then the Freudenthal compactification
of X, here denoted by F'X, is defined as the least upper bound of all compact-
ifications ¥ of X such that ind(Y \ X) =0. We call EX = FX \ X the space
of ends of X. It is known that F'X is metrizable if and only if the space QX
of quasi-components of X is compact, where £ X is homeomorphic to a closed
set of the Cantor set.

Let ¥ = {X | X is locally compact and QX is compact }. Suppose that
X,Y € ¥ and that f : X — Y is a proper map. Then f has the unique
extension F'f : (FX,EX) — (FY,EY). If g: X — Y is a proper map and
f ~, g, then Fflgx = Fg|gx. Also, the assignment f — Ff is functorial;
that is, F'(idx) = idpx and F(fg) = (Ff)(Fg) for proper maps f : X —» Y
and ¢ : Y — Z. For details, refer to [BS].

Lemma 4.1.5 Let X be a closed set in a locally compact ANR M with dim X <
nand f,g: M — Z be proper maps from M to any space Z. If f ~7 g, then
there exists a closed neighborhood E of X in M such that f|g ~, g|5.

Proof. Since M is a locally compact ANR, M has an open covering I such
that any two U/-close proper maps of an arbitrary space to M are properly ho-
motopic ([Mi, Theorem 5.1.1} and [Chasy, Theorem 4.1(2)]). By [Mi, Theorem
5.1.4], there exists an open refinement V of I such that for every locally finite
simplicial complex 7 and every subcomplex & of 7 containing all vertices of
T, every partial realization of 7 in M relative to (S,V) can be extended to a

full realization of 7 in M relative to U{. Let V' be an open star-refinement of
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V. Since dim X < n, there exists an open covering W of X in M such that
W refines V' and the order of W is at most n (cf. [Mi, Theorem 4.3.5]). Let
E C JW be a closed neighborhood of X in M.

Let » : E — K be a canonical map from F to the nerve K of WN FE
and (@ : KO — M be a map defined by ¢(O(z(W)) € W for each W € W.
Since ¢ is a partial realization of K relative to (K(®),V), there exists a full
realization ( : K — M relative to . By the proof of [Mi, Theorem 5.1.8],
we conclude that idg and (7 are U-close, which implies that (7 is proper

homotopic to idg. Since dim K < n and f ~} g, we have

f|E ~p fén Zp 9¢n Zp g’E- O

Remark. Let pu* = M2t C [***! be the n-dimensional Menger com-
pactum constructed in the (2n + 1)-dimensional cube I*"*! [CKT]. Since
dim FX < n and by the Z-set unknotting theorem [Be], we can assume that
FX is a closed set in p™ and EX = FX N I* x {1}, which implies that
XcCcpur\EX CI*™x][0,1) =M. Let f,g: M — Z be proper maps from M
to any space Z and f|v =~} g|y for some closed neighborhood of X in M. Then
there exists a closed neighborhood U = U,¢, B; of X in V', where B; are similar
figures to B = {(z1, -, Zant1) € I*™1 | there exists (y1,- -+, Yans1) € P such
that |z; — v;| < 1/3 for some ¢ € {1,---,2n+1}} and P = {(y1, -, ¥Y2ns1) €
Py, i, € {0,141 <4 < -0 < dpgy < 20+ 1} There exists a
deformation retraction from B to the n-dimensional subcomplex P of B, so
we obtain a proper deformation retract §: U — L from U to n-dimensional

subcomplex L of U. Let v : L — U be an inclusion. Then idy ~, 78 in U,
which implies that fly ~, fv8 ~, 978 =, glv.
Proposition 4.1.6 If Sh,(X) = Sh,(Y), then n-Sh,(X) = n-Sh,(Y); the

converse holds in case dim X,dimY < n.

Proof. First statement is obvious since a proper homotopy is a proper n-

homotopy.
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In case dim X,dim Y < n, suppose that X and Y are closed sets in locally
compact ANR’s M and N, respectively. If n-Sh,(X) = n-Sh,(Y"), then there
exist proper n-fundamental nets f : X — Y in (M,N) and g: Y — X in
(N, M) such that gf ~% iy and fg ~7 iy. Let V be a closed neighborhood of
Y in N. Then there exist a closed neighborhood U of X in M and Ay € A
such that fily =3 falv in V for all A > Ag. Note that intU is a locally
compact ANR. By Lemma 4.1.5, there exists a closed neighborhood W of X
in U such that filw 2 fa,|w in V for all A > Ag. Thus, we conclude that f is
a proper fundamental net. Similarly, g is a proper fundamental net, gf ~, iy

and fg ~, iy. The proposition is proved. O

4.2 Proper n-shape and property SUV"

Let X be a closed set in a locally compact ANR M, and n € w. We say that
X has property SUV™ in M [Sh,] if, for each closed neighborhood U of X in
M, there exists a closed neighborhood V of X in U such that the following
holds;

For any proper map h : S* X w — V (1 <4 < n) there exists a proper

map h : B! x w — U such that A

Sixw — h.

One should note that 7 # 0 in the above condition. (If ¢ = 0, then the above
condition implies £X = one-point.) It is easy to see that property SUV™ is
independent of the choice of M. We write X € SUV"™ if X embeds into some
locally compact ANR as a closed SUV™ subset.

Suppose X € ¥. A sequence « of points of X is said to be admissible in X
[Ba] if (1) no subsequence of a converges to a point of X and (2) no compact
subset of X separates in X two infinite subsequences of a. Two admissible
sequences « and J in X are equivalent if no compact subset of X separates an

infinite subsequence of & from an infinite subsequence of 3. This relation is an
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equivalence relation of the set of all admissible sequences in X. The equivalent

class of & is denoted by [a].

Lemma 4.2.1 Let T be a tree and X € ¥. For proper maps f,g : X — T,

the following are equivalent:
(i) Fflex = Fglex;
(i) f~=g;
(iii) f ~p g for alln € w;
(iv) f zg g.

Proof. The implication (i)=-(ii) follows from [Sh;, Theorem 2.3] and the im-
plications (ii)=>(iii)=-(iv) are trivial.

To see the implication (iv)=>(i), suppose that f :::2 g. By [Ba, Theorem
2.5], an end e € EX may be considered to be the equivalence class [3] of an
admissible sequence § in X. Consider 3 as a proper map from w to X. Then
fB ~p g8 by (iv), which implies Ff(e) = [f8] = [98] = Fg(e). Thus, we
conclude that Ff|gx = Fglex. O

Lemma 4.2.2 Suppose X € SUV?! and X is a closed set in Q x [0,1). For
each closed neighborhood U of X there ezists a closed neighborhood V' of X
such that two proper maps f,g: T — V of a tree T are properly homotopic in

U if Ffler = Fgler-

Proof. Since X € SUV?, for each closed neighborhood U of X there exists a
closed neighborhood V' of X such that any proper map h:S* x w — V has a
proper extension A : B xw — U. We can assume that V' is a Q-manifold. Let
V = U2, C;, where C; is compact and § = Cy C C; C Cy C ---. Since f and g
are proper, there exists a sequence ' =17 D Ty D T3 D -- - of subcomplexes of

T such that ET; = ET foreach i € w, N2, T; = 0 and f(T3;)Ug(T;) € V\Ci_1.
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For each v € T, let i(v) = max{i € w | v € T;}. Take an admissible sequence
(2})jew which is in the same component of v in Ty). Since Ff|pr = Fyglgr,
(f(x?))jew and (g(2?))jew are equivalence, there exists an index k(v) such that
f(z},)) and g(z},)) are in the same component D, of V' \ Cy). Since V' is
locally path-connected, D, is a path-component. Hence, there exists a path
v :I — D, connecting f(z},)) and g(z},). Let §: I — Ty, be a path such
that #(0) =v and f(1) = Th(y)> and define a path oy : I — V'\ Cyyy by

fB(3t) for 0 <t < 1/3,
oy(t) =< (3t —1) for1/3 <t <2/3,
98(3—13t) for2/3<t<1.

Then o4,(0) = f(v) and a,(1) = g(v) for each v € T(®. We define a map
H:Tx{0}uTO® xTUT x {1} =V by

f(z) fort=0,
H(z,t) = ¢ oy(t) for z € TO),
g(z) fort=1.

Observe that H is a proper map. Let {7; | # € w} be the set of all 1-simplices
of T and ¢; : B2 x {i} — 7, x I (i € w) be homeomorphisms. Then the proper
map h: S xw — V defined by h|sixqiy = Hes|s1xqiy extends to a proper map
h: B2 xw — U, which induces the proper extension H : T x I — U of H such
that A B2x{i} = H #;. Since H is a proper homotopy from f to g in U, we have

the lemma. O

Theorem 4.2.3 Let X € ¥ be connected. Then the following are equivalent:
(i) n-Shy(X) = n-Sh,(T) for any tree T such that EX ~ ET;
(ii) n-Shp(X) = n-Sh,(T) for some tree T

(iif) n-Shp(X) < n-Sh,(T) for some tree T;



Proper n-shape and property SUV™ 46
(iv) X e SUV™

Proof. Since (i)=-(ii)=>(iii) are trivial, we show the implications (iii)=(iv)=>(i).

(iii)=-(iv): Let M be a locally compact AR with X C M as a closed set.
Suppose that there exist proper n-fundamental nets f = {fA | A€ A}: X =T
in (M,T) and g = {gs | 6 € A} : T — X in (T, M) such that gf ~7 ix. Then
for each closed neighborhood U of X there exist a closed neighborhood V' of
X and (Ao, 8) € A x A such that

gsfalv =5 idy in U for all (A, 6) > (Ao, do)-

Let h: S*xw — V (1 <4 < n) be a proper map. Then T; = fy,h(S* x
{j}) ( € w) are compact subtrees of T and {7} | 7 € w} is locally finite in

T. Since each T; is an AR, we have an extension h; : B**! x {j} — T; of

Frohlsixgsy- Define a proper map k : B! X w — T by A|givixqj; = hj. Then
9501 sixw = Gsofroh =p b in U since dim S* x w < n. By Borsuk’s homotopy
extension theorem for a proper maps (cf. [Shs, Theorem 3.1}), h has a proper
extension f : B! x w — U.

(iv)=-(i): We can assume that X C @ x[0,1) = M is a closed set such that
clgxp,jX = FX. Let T be a tree such that there exists a homeomorphism
f: EX — ET. By [Sh;, Theorem 2.3], there exists a proper map f:X->T
such that Ff|gx = f. Then f generates a proper n-fundamental net f = {f}
X —Tin (M,T) by Lemma 4.1.2.

Let A ={V C M|V is a closed connected neighborhood of X in M which
is a @-manifold and EV = EX}. Note that A is the directed set with the
order V>V &V CV'. Let U € A. Since X € SUV™, we have a sequence

U=Va1 DV, D - D Vi =Vyin A satisfying the following;

(¥) Any proper map h: S* x w — V; (1 < 7 < n) has a proper extension

o
R B xw — Vigy.

Observe that V5 D V] satisfy the condision of Lemma 4.2.2.
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By the Triangulation Theorem for @-manifolds [Chas], we can regard Vi =
K x @, where K is a locally finite simplicial complex. Letn: Vy = K xQ — K
be the projection and ¢ : K — K x {0} C K x @ the canonical injection. Let
T}, be a maximal tree of K such that EK = ET}; and let Ty = ((T) be a
closed tree in V. Note that ETy = EVy = EX. By [Sh;, Theorem 2.3],
there exist proper maps ky : Vy — Ty C Vy and gy : T — Ty C Vy such
that Fky|py, = idgy, and Fgylpr = f~' : ET — EX = EVyy = ETy. Then
g = {gv | U € A} is a proper n-fundamental net because if U’ > Vy;, then
Fgyler = f~! = Fguler, hence gy ~, gy in U by Lemma 4.2.2. Since
F(fgu)ler = (Ff)(Fav)ler = ff' =idpr, foy =" idr in T forall U € A
by Lemma 4.2.1, which implies that fg ~7 ir.

Since Vi is path-connected and F(kuQ)|ery, = (Fkv)(FQ)|er, = F¢ler,,
by the same argument of the proof of Lemma 4.2.2, we have a proper homotopy
HO . KO x T — V, such that HY = ¢|xw and HY = ky(|xm-

Assume that a proper map HG-D : KG-1 x T — V; (2 < 4 < n) has
been constructed so that Hgi_l) = (|xu-» and Hl(i_l) = ky(|g-n. By using
(%), we can extend H¢Y to a proper map H® : K® x I — V., such that
HY = (|xe and HY = ky(
K® x I — Vi = U such that H™ = (g and H™ = ky(|wm. Let

x@. We have inductively a proper map H™ :

B : Z — Vi be a proper map with dim Z < n. By the standard trick of bridge
maps, there exists a proper map v : Z — K™ such that 53 ~, v in K.! Since
~p, (B =, (v in Vy, we have

(n) ]
idy, 8 2, (7 =, kuCy =, kuf in U,

which implies that idy, ~2 ky in U. Note that idy,, ~p kyr in U for all
U > vy.

!Note that v is contiguous to 7.



Proper n-shape and property SUV™ 48

Since F(gUf)’EVU = (FgU)<Ff)lEVU == f*lf = idEVU = FkU’EVU) we have
gUﬂVU ~7 ky in Ty by Lemma 4.2.1. Then

idy,, ~2 kyr =5 gurflv,, in U for all U' > Vi,

which implies that gf ~7 ix. The theorem is proved. O

Now we can strengthen Sher’s result [Shy, Theorem 4.1] as follows:

Corollary 4.2.4 Let X € ¥ be connected. If X € SUV"™ and dim X < n,
then X € SUV®.

Proof. By Theorem 4.2.3, there exists a tree T such that n-Shy,(X) = n-Sh,(T").
It implies that Sh,(X) = Sh,(T) by Proposition 4.1.6. By [Sh;, Corollary 3.5],
we conclude that X € SUV>. O

The following table shows the relations of UV -properties and shapes.

X : compact;

X eUV® <« Sh(X)=Sh(1) [Bog, Theorem 9.1]
$ dim X < n [Chi,, Corollary 2.17]
X eUV"™ & n-Sh(X) =n-Sh(1) [Chi,, Proposition 3.1].

X : locally compact;

X € SUV*® <« Shy(X) = Sh,(T), 3T : tree [Shy, Theorem 3.1]
{$ dim X < n (Corollary 4.2.4)
X € SUV™ < n-Shy(X) = n-Shy(T"), 3T" : tree (Theorem 4.2.3).

Proposition 4.2.5 For any two trees Ty and 15,
(1) Ty :3 Ty if and only if ETy = ETy;
(2) Ty 20 Ty if and only if ET, embeds in ET.

Proof. We only prove (1). Note that (2) follows from the proof of (1).
First, we prove the “only if” part. Suppose that there exist two proper maps

f:T1— Ty and g : T, — T such that gf ~J idp, and fg ~? idz,. By Lemma
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4.2.1, (Fg)(F f)ler, = F(9f)lery = F(idn)|er, = ider, and (Ff)(Fg)|er, =
F(fg)lgr, = F(idr,)|er, = ider,, which implies that ET, ~ ET5.

Next, we prove the “if” part. Let A : ET} — ET; be a homeomorphism. By
[Sh;, Theorem 2.3], there exist two proper maps k: 7y — Ty and 1 : T — T}
such that & = Fk|pr, and h~! = Fl|pr,. Then F(Ik)|pr, = (F1)(FE)|sn =
h~'h = idgr, and F(kl)|gr, = (Fk)(Fl)|gr, = hh™! = idgr,. By Lemma
4.2.1, we conclude that lk ~) idy, and kI ~0 idg,. O

By [Shi, Corollary 2.6] and Lemma 4.2.1, we have the following.
Corollary 4.2.6 Let T1 and Ty be trees. Then Ty >0 T, or Tp >3 Ty, O

Corollary 4.2.7 Suppose X1, Xy € SUV"™. Then
(1) n—Shp(Xl) e 'n-Shp(Xg) Zf and only Zf EXl = E.XQ;
(2) n-Sh,(X1) > n-Shy(X2) if and only if EXs embeds in EX;.

Proof. We only prove (1). note that (2) follows from the proof of (1).

Let T; and T3 be trees such that FX; ~ ET, and EXy; = ET,. Then
n-Shy(X1) = n-Sh,(T1) and n-Sh,(X>2) = n-Sh,(T3) by Theorem 4.2.3. If n-
Sh,(X1) = n-Shy(X5), then n-Sh,(T) = n-Shy(T3). Since 7y and T3 are AR’s,
this implies that there exist two proper maps f : Iy — Ty and g : T — T} such
that gf ~7 idp, and fg ~7 idr,. By Proposition 4.2.5, we have BT, ~ ET,
hence FX; ~ EX>.

Conversely, if EX; =~ EX,, then FTy ~ ET,. By Proposition 4.2.5 and
Lemma 4.2.1, we have Ty ~p Ty, hence n-Shy, (X)) = n-Shy(T1) = n-Shy,(T2) =
n-Sh,(X5). O

Corollary 4.2.8 Suppose X1, Xy € SUV™. Then n-Shy(X;) > n-Sh,(Xs) or
n-Sh,(X5) > n-Sh,(X7). O



Chapter 5

Proper n-shape and Freudenthal

compactification

In this chapter, we give another approach to proper n-shape and proper n-
shape category n-SH, LK(n +1).

For a class M of spaces, M(n) denotes the subclass of M consisting of
spaces with dim < n. Let ¥ = {X | X islocally compact and QX is compact }.

In [BS], Ball and Sher studied the relation of proper maps and the Freuden-
thal compactifications, defined the notion of proper shape and proved that
for X,Y € %, if Sh,(X) = Sh,(Y) then Sh(FX,EX) = Sh(FY,EY) rel.
(EX,EY) [BS, Corollary 4.8].

By n-SH,LK(n + 1) (n-SHp,E(n + 1)), we denote the full-subcategory of
n-SH,LK whose objects are in LK(n + 1) (X(n +1)). The proper n-shape of
locally compact spaces with dim < n + 1 is also defined by using embeddings
of them into locally compact (n+ 1)-dimensional LC™ N C™-spaces. We denote
such a proper m-shape category by n-SHl’DﬁlC(n + 1). It is not clear that n-
SH,LK(n + 1) and n-SH, LK(n + 1) are categorical isomorphic. However we

can prove the following:

Theorem A There is a categorical embedding ® : n-SH,LK(n +1) — n-

50
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SH,LK(n + 1) such that ®(X) = X for each X € LK(n +1).

Let K%*(n + 1) be the class of compact pairs with dim < n + 1 and n-
SH,Y(n + 1) be the full-subcategory of n-SH,LK(n + 1) whose objects are
in £(n + 1). We also define the relative n-shape category n-SH,qX*(n + 1),

strengthening n-shape category of pairs, and prove the following.

Theorem B There is a functor ¥ : n-SH, % (n+1) — n-SH,aK?(n+1) such
that V(X)) = (FX,EX) for each X € E(n+ 1).

So we conclude the following corollaries.

Corollary 1 There is a functor © : n-SH,E(n+1) — n-SH,qK*(n+1) such
that ©(X) = (FX,EX) for each X € E(n+1).

Corollary 2 For X,Y € E(n+ 1), if n-Sh,(X) = n-Sh,(Y) then
n-Sh(FX,EX) =n-Sh(FY,EY) rel. (EX,EY).
Corollary 3 If X is connected, SUV™ and dim X < n+1, then FX € UV™.

For each X € LK, let CX = X U {oo} be the one-point compactification
of X. Considering (CX,{c0}) instead of (FX,EX), we have the following

similarly to Theorem 2.

Theorem C There is a functor ¥ : n-SH,LK(n + 1) — n-SHyqK*(n + 1)
such that ¥(X) = (CX, {o0}) for each X € LK(n+1).

As a corollary, we have the following.

Corollary 4 Let u2tt = pm\ {x}, where x € p"*1, and let X, Y C pzdt be
Z-sets. If n-Sh,(X) = n-Sh,(Y) then pt \ X ~ per\ Y.



Proper n-shape and Freudenthal compactification 52

5.1 The proper n-shape theory by using AFE(n)’s

Suppose that X and Y are closed sets in (n + 1)-dimensional locally compact
LC™ N C™-spaces M and N, respectively. Let A = (A, <) and A = (A, <) be
directed sets. A net f = {f\ | A € A} of maps f\: M — N is called a proper
n-fundamental net from X to Y in M and N if, for every closed neighborhood
V of Y in N, there exist a closed neighborhood U of X in M and an index
Ao € A such that

Falv =5 faply in V for all A > Aq.

One should remark that each f) need not be proper but f\|y is proper for
some closed neighborhood U of X in M (cf. [BS, Lemma 3.2]). We denote
that f: X — Y in (M, N).

Letf={fi|AeAl,g={gs]| 6 € A} : X - Y in (M,N) be proper
n-fundamental nets. We say that f and g are properly n-homotopic (writ-
ten by f ~ g) if for each closed neighborhood V' of ¥ there exist a closed
neighborhood U of X and Ag € A, § € A such that

f)\lU 2;’ 95|U in V for all A Z /\0 and 6 2 60.

The proper n-homotopy class of f is denoted by [f]7.

By the same argument of previous chapter, we can define the notion of
proper n-shape for (n + 1)-dimensional locally compact spaces by using em-
beddings of them into (n + 1)-dimensional locally compact LC™ N C™-spaces.
The proper n-shape category with dim < n + 1, n—SH;,UC(n + 1), is the cat-
egory whose objects are in LK(n + 1) and whose morphisms are the proper
n-homotopy classes of proper n-fundamental nets. If X,Y € LK(n + 1) are
isomorphic in n-SH, LK (n + 1), then we denote n-Shy,(X) = n-Shy(Y).

Proposition 5.1.1 Let X,Y € LK, X be an LC™-space, f : X — Y be a
proper UV™-surjection and U be an open covering of Y. Suppose that two

proper maps ¢ : Wy — X and o : W — Y such that f¢ = 1|w,, where
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W € LK(n+ 1) and Wy is a closed subset of W. Then there erists a proper
map v : W — X such that v|w, = ¢ and fry is U-close to .

Proof. By [Da, Theorem 16.11}, Y is LC™. Let U; be a double star-refinement
of U. By [Chiy, Proposition 2.1}, there is an open refinement U’ of i, satisfying
the following; for any two U’-close proper maps g,h : A — Y from a closed
subset A of a space B with dim < n + 1 such that g has a proper extension
G : B — Y it follows that A also has a proper extension H : B — Y which
is U;-close to G (cf. [Chag, Theorem 4.2(2)]). By [Hu, p.156], there exists
an open refinement V of U; such that, for any simplicial polytope K with
dim < n+1, every partial realization of K in Y relative to V extends to a full
realization of K in Y relative to ;. Let W be a canonical cover (cf. [Hu, p.51])
of W\ W, with order < n + 1 such that 9(W) is a refinement of V. By the
nerve replacement trick [Hu, p.53] and the definition of V, we have a proper
map ¥ : W* — Y such that +'p is Uj-close to ¥ and ¥'|w, = ¥|w,, Where
W* = NOW)U W, and p : W — W* is a canonical map with p|lw, = idwy.
Since ¢'|w, = f¢ and X is LC™, ¢ extends to a proper map é: W' — X, where
W' is a closed neighborhood of Wy in W* and W'\ W, is a subpolyhedron of
N(W), such that f@ is U'-close to 9'|w+. Then f é has a proper extension
W' : W* — Y which is U;-close to 7. Note that f§5|W'\W0 = @L"W'\Wo' By the
lifting property [La, Lemma A] (cf. [Be, Proposition 2.1.3]), we have a proper
map 7' : N(W) — X such that v'|waw, = lwnw, and fv' is Uy-close to
Y'|now)- Then v = (7' U ¢)p is the desired proper map. O

By Proposition 1.1.5, we may assume that each X € LK (n+1) is embedded
as a closed set into an AR-space My € LK and an LC™ N C™-space My €
LK (n+1), and there is an (n+1)-invertible proper UV™"-surjection oy : My —

My such that ax|x = idy.

Lemma 5.1.2 Let X, Y € LK(n+ 1). Then any proper n-fundamental net
f={fi|A€A}: X =Y in (Mx, My) in the sense of Chapter 4 induces a
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proper n-fundamental net £ = {fi | X € A} : X =Y in (MY, My) such that
fHhax = ayfy for each X € A.

Proof. Since ay is (n + 1)-invertible, for each map fy : Mx — My thereis a
map f} : My — My such that firax = ayfi. We show that f' = {f | A €
A} : X =Y in (M%, My) is a proper n-fundamental net. Since ay is proper,
for each closed neighborhood V' of Y in My, there is a closed neighborhood
Vi of Y in My such that ay'(int V3) € V'. Note that o' (int V}) is LC™. Let
V C intV; be a closed neighborhood of Y in My. Then there are a closed
neighborhood U of X in Mx and an index Ay € A such that

Flu =~ Frolv in V for all A > Ap.

Let U' = ax'(U) and fix A > )q. Since ay fi|or = facx|yr, we have fi(U') C
oyt (V) C ay'(int V1) € V'. Let @' : Z — U’ be a proper map from Z € LK(n)

to U’. Since f,\lU ﬁz f)\olU in V,

HlvaxB' =~ Holvaxf in 'V,

i.e., there is a proper homotopy H : Z x I — intV; such that Hy = fi,|lvaxf’
and Hy = filvaxB. Let b : Z x {0,1} — o3'(intV;) be the map defined
by hlzxioy = fi |8 and hlzxpy = filwB'- Since Hlzx{o1} = avh, by
Proposition 5.1.1, there is a proper map h:ZxI— o5 (int V) which is an

extension of h. We conclude that f}|gr =3 f3 |vr in oyt (intVi) Cc V. O

Lemma 5.1.3 Letf ={fi | A€ Al,g={gs | 6 € A} : X =Y in (Mx, My)
be proper n-fundamental nets and suppose f,g induce proper n-fundamental
nets f' = {fi | X € A},g ={g; | 6 € A} : X = Y in (M, My,) such that
frax = ay fi and gsax = aygs for each A € A and § € A. Then f =~} g if
and only if ' ~7 g'.

Proof. Suppose that f ~7 g. Since ay is proper, for each closed neighborhood

V' of Y in Mj there s a closed neighborhood V of Y in My such that ot (V) C
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V'. By the argument of Lemma 5.1.2, we may assume that o3 (V) is LC™.
Since f ~ g, there are a closed neighborhood U of X in Mx and indices

Ao € A and 6y € A such that
f)\'U 2; g&lU in V for all A > )\0 and 6 _>_: 50.

By replacing fx and fi, to f and gs in Lemma 5.1.2, we can conclude f’ ~7 g'.
To prove the contrary, suppose that f' ~7 g’. Let V be a closed neigh-

borhood of ¥ in My. Since f = g/, for V/ = ay' (V) there exist a closed

neighborhood U’ of X in MY% and indices Ay € A, 6y € A such that

f,,\|U' 23 g:s’U’ in VI for all A Z )\0 and 6 Z 60.

Since ax is proper, there is a closed neighborhood U of X in Mx such that
ax'(U) c U'. Let f: Z — U be a proper map from Z € LK(n) to U. By the
invertiblity of ax, there is a proper map 8 : Z — ax'(U) such that 8 = ax('.
Then

AluB = Hhlvaxf = ay filaz: @B = avgslazranf = gslvaxf’ = gslufin V
for all A > Ag and 6 > &, which implies £ ~7 g. O

Theorem 5.1.4 There is a categorical embedding ® : n-SH,LK(n +1) — n-
SH,LK(n + 1) such that ®(X) = X for each X € LK(n +1).

Proof. For a proper n-fundamental net f : X — Y in (Mx, My), we define
®([f]) = [f']7, where £’ : X — Y in (M}, My) is induced in Lemma 5.1.2.
By Lemmas 5.1.2 and 5.1.3, we may only prove that ® is functorial, that is,
®([glo[f1n) = @([f]7)@([g]p) for each proper n-fundamental nets f : X — Y in
(Mx,My)and g : Y — Z in (My,Mz). Let f : X — Y in (MY, My) and
g Y — Zin (M, M}) be proper n-fundamental nets induced from f and g.

For each A € A and § € A, since fiax = ay f} and gsay = azgs,

gsfrax = gsay fi = azgsfi,
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which means that g'f’ = {g;f1 | (\,8) € A x A} is induced from gf = {gsf |
(A, 6) € A x A}. Therefore,

o(glp[f]) = 2([ef];) = [g'T']; = B[ = 2([sl;) 2 (7). O

5.2 The Freudenthal compactification and com-
pact pairs

In this section, we recall the Freudenthal compactification and study the rela-
tion between proper maps and compact pairs.

Suppose that X is rim-compact (i.e., any point has arbitrary small neigh-
borhoods with compact boundaries). The Freudenthal compactification of X,
here denoted by F'X, is defined as the least upper bound of all compactifica-
tions Y of X such that ind(Y \ X) =0. We call EX = FX \ X the space of
ends of X. It is known that F'X is metrizable if and only if the space QX of
quasi-components of X is compact, whence EX is homeomorphic to a closed
set of the Cantor set.

Let X,Y € ©. Then each proper map f : X — Y has the unique extension
Ff:(FX,EX)— (FY,EY). If g: X — Y is a proper map and f ~J g, then
Fflgx = Fg|px (cf. [Ba, Lemmas 2.3 and 2.7]). Also, the assignment f — F'f
is functorial, that is, F\(idx) = idrpx and F(fg) = (Ff)(Fyg) for proper maps
f: X —Yandg:Y — Z. For details, refer to [BS] and [DM].

Lemma 5.2.1 Let f,g: Z — FY be maps from a compact space Z to FY and
C a closed set in Z. Suppose that f(Z\C), g(Z\C) C Y and f(z) = g(z) € EY
for each z € C. If flz\c ~p glzzc in Y, then f >~ g rel. C in FY.

Proof. Let H : (Z\ C) x I — Y be a proper homotopy such that Hy = f|z\c
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and H; = g|z\¢. Define the homotopy H': Z x I — FY by

H'(z,1 :{ H(z 1) forz€ Z\C,
f(z) =g(2) forzeC.

We prove that H' is continuous. Let {(z;,;) }icw be a sequence in (Z\C)xI
such that (2;,t;) — (20,t0) € C x I as 1 — oo. Let V be a neighborhood of
f(z) = g(20) in FY. Since dim EY = 0, there exist open sets Vg, Vi in FY
such that Vp CV, EY C Vo UV and VyNVy =0. Then L=Y \ (LU W) =
FY \ (Vo UV;) is compact in Y, so H™Y(L) is compact in (Z \ C) x I. Let
U= Z\pH L), where p : Z x I — Z is a projection. Then U is a
neighborhood of C and H(U x I) C Vo U V. Since (z;,t;) — (20,%0), there
exists mp € w such that {z,} x I C U x I for each m > my. Note that
H({zn} xI) c H{U x I) C Vo UV;. By the continuity of f, H({zn} x 0) =
f(zm) € Vo. Then H({zm} x I) C Vo C V since Vo NV} = 0. In particular,
H(zm,tm) € V for each m > mg, which implies that H’ is continuous. O

Let f,g: X — Y be maps and A C X a closed set. We denote f ~™ g rel.
Aif fa ~ ga rel. a™*(A) for any map o : Z — X with dimZ < n. To see
f =™ grel. A, it suffices to verify the condision in case that « is an n-invertible

surjection. By using this notation, the following holds from Lemma 5.2.1.

Corollary 5.2.2 Let f,g : X — Y be proper maps. Then f ~7 g implies
Ffom"Fgrel EX. O

Remark. As is easily observed, the above is valid for maps between pairs.

We call (M, My) a p™*1-manifold pairif M and M, are p™*'-manifolds and
My is Z-set in M.

Lemma 5.2.3 Let f,g : U — V be proper maps such that f ~7 g. Suppose
that (FU,EU) and (FV,EV) are embedded in compact p**-manifold pairs
(M, My) and (N, Ny), respectively, such that EU = FU N M, and EV =
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FV N My. If f has an extension f : (M, My) — (N, Ny) with f~Y(EV) = EU,
then g has also an extension §: (M, My) — (N, Ny) such that g~*(EV) = EU

and f ~" g rel. EU as maps between pairs.

Proof. By Theorem 1.2.6 and its remark, we can extend ¢ to a proper map
g: (M\ EU,My\ EU) — (N\ EV,Ny \ EV) such that § =" f|ngv,p0\50)-
Since My is Z-set in M, F(M \ EU) = M by [No, Corollary 1|. Then we have
g= F(g): (M,My) — (N, Np) which has the desired property by Corollary
5.2.2. 0

Remark. In the above, g U J;|M0 :UUMy — VUDN, is a map which is

n-homotopic to f|yun, rel. My. Then we can obtain § satisfying §la, = f|ae-

Lemma 5.2.4 Let f,g : (M,M,) — (Y,Y,) be maps from a compact pair
(M, My) to an LC™-pair (Y,Yy) and A C X be closed sets in M and X, =
X N0 M. If flex,xo) =™ 9lix,xo) el A, then there exists a neighborhood pair
(U, Uy) of (X, Xo) in (M, My) such that flwu) ~" 9lwuve) rel A.

Proof. Let o : (Z,Zy) — (M, M,) be an n-invertible UV ™-surjection from
an n-dimensional compact pair (Z, Zy) to (M, My). By the assumption, there
exists a homotopy H : (o '(X),a (X)) x I — (Y,Y;) such that Hy =
fol1x),0-1x0))> H1 = 90 (a-1(x),a-1(x0)) 80d Hila-1(a) = fat|a-1¢ay for all
t € I. By 1.2.2, there exists a neighborhood pair (W, W,) of (Z, Z;) x {0,1} U
(@ H(X),a " (Xo))xIin (Z, Zy) %I and an extension H' : (W, W) — (Y, Y;) of
H. Since « is proper, we can find a neighborhood pair (U, Uy) of (X, X,) such
that (o« (U),a " (Uy)) x I C (W, W,), which implies that f|w,v) =" glw,ue)
rel. A. O
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5.3 Proper n-shape and relative n-shape for
compact pairs

Let K? be the class of compact pairs. In this section, we define the relative
n-shape category for compact pairs with dim < n+1, n-SH,X?(n+1), which
is different from Chapter 3 and we construct a functor ¥ : n-SH; X (n+1) — n-
SH,K2(n + 1).

Let (X, Xo) be a Z-pair in (u"1, u2*?) and let (X, Xo) = {(Xi, Xo:), pi™}
be an LC™(n + 1)-sequence associated with (X, Xp), where each (X;, Xo;) is
a compact p™*!-manifold pair which is a closed neighborhood of (X, Xj), and
bonding maps are inclusions (Proposition 3.1.1). For convenience sake, we
assume that (X1, Xo1) = ("1, ug*'). We call such an LC™(n + 1)-sequence
an inclusion sequence associated with (X, Xy). Let (Y,Y;) be a Z-pair in
(1, ue Y and (Y, Yo) = {(¥, Yai), ¢; 7'} be an inclusion sequence associated
with (Y;Yp). An m-morphism h = (h, {h:}) : (X,Xo) — (Y, Yy) is said to
be a relative m-morphism if h,ng)) ~n q{hj rel. Xy for any 4,5 with 7 > 1,
and we denote h : (X,Xo) — (Y,Yy) rel. Xy. Two relative n-morphisms
g,h : (X,X,) — (Y,Yp) rel. Xy are relative n-homotopic (g ~™ h rel. X) if
for each ¢ € w there is an index j > g(3), h(2) such that g;|(x;,x0;) =" hil(x;, %05
rel. Xo. By Lemma 5.2.4, g ~™ h rel. X; if and only if g;|x ~™ h;|x rel. Xo. The
class of relative n-homotopy of the relative n-morphism h is denoted by [h|7,;.
The relative n-shape category for compact pairs n-SH,qK%(n + 1) is defined
as a category whose objects are in X?(n + 1) and whose morphisms are the
relative n-homotopy classes of relative n-morphisms. If there exist two relative
n-morphisms f : (X,Xg) — (Y,Yy) rel. Xp and g : (Y, Yy) — (X, Xo) rel.
Yy such that gf ~™ ixx,) rel. Xo and fg ~" iy y,) rel. Yo, we denote n-
Sh(X, Xo) = n-Sh(Y,Yy) rel. (Xo,Yp). The relative n-shape for compact pairs
is stronger that the n-shape for compact pairs in the sense of Chapter 3, that

is, n-Sh(X, Xo) = n-Sh(Y, Yp) rel. (X, ¥o) implies n-Sh(X, X) = n-Sh(Y, ¥p).
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Suppose that X and FY are Z-sets in p"*!, EX = FX Nud*™, EY =
FY npgtt and M = p\ w2t (X, Xo) = {(X3, Xo:), 2} and (Y, Yo) =
{(Y;, Y:), ¢;t'} are inclusion sequences associated with (FX, EX) and (FY, EY),
respectively. For each proper n-fundamental net f = {fx | A€ A}: X -V in
(M, M), we construct a relative n-morphism f = (f, {f}) : (X, Xo) — (Y, Yp)
rel. EX as follows:

Let Vi D Vi, D --- be closed neighborhoods of Y in M such that ¥ =
Nicw Vi, EV; = EY and FV, C intY;. Choose closed neighborhoods Ulf D
Uf > --- of X and indices A; < Ay < --- such that X =, U/, EU/ = EX
and

Falys 225 Failys in Vi for all A > A,

Since (Y1, Yo) is an LC™ N C™-pair, F(filyy) : (FU{,EUl) — (FVi,EV}) C
(Y1, Yo1) has an extension fl : (X1, X01) — (Y1,Y01) by Lemma 1.2.1. Since
Pralug 5 falyy in Vi and i lys has an extension f1 with EU{ = fl_i(EVl),
by Lemma 5.2.3, f)‘2|U2f has an extension fy : (X1, Xo1) — (Y1, Yo1) such that
fo o™ fiin (Vi, Vi) rel. BU{ = EX. Note that fo(FUJ) C FV, C intYs.
Then there exists a y"*'-manifold neighborhood pair (U4, Ud,) of (FU{, EUJ)
such that f(0f,08) C (Ya, Yoy). Take £(2) € w such that (Xse), Xose) C
(Tf,04,) and let f, = f2|(xf(2),xof(2)) : ( X2y, Xogz)) — (Ya,Yea). Observe
that f2 ~T f1|(Xf(2)1Xof(2)) in (Y1,Yy) rel. EX. Assume that we obtained an
extension f; : (U7,0%) — (Yi, Yu) of falys for i > 2 such that (Uf, L) is
a p**l-manifold neighborhood pair of (FU/, EU/) and f; ~ ﬁ_ll(Uij7ﬁ&) in
(Y;, Yoi) rel. EX. Since f,\i+1|Ulf+1 ~7 f,\ilUif-’.l in V; and f/\iIUif—i—l has an exten-
sion f; with EU/ = ffl(EVi), by Lemma 5.2.3, f>\i+1|Uif+1 has an extension
Fforr 2 (O, UL) — (Y3, Vo) such that fiy =~ f; in (V;, Vi) rel. EX. Note that
fir1(FUL ) € FViyy C intYy;. Then there exists a y"*'-manifold neigh-
borhood pair (U7, 0f,1) of (FUL,, BUZ,) such that Finr (UL, U8 ©
(Yie1, Yoirr). Take f(i+1) € w such that (Xjar1y, Xogasn) € (O, Oigr)
and let fiy = ]Ei+1|(X,~+1,Xo,-+1) : (Xgi+1), Xog+r)) — (Yira, Yoin). Observe
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that fi+1 o~ ﬁ'(Xf(i+l)xX0f(i+1)) in (V;, Yy) rel. EX. By the induction, we have
a sequence f = (f, A (X,Xg) — (Y,Yy). It is easy to see that fisa

relative n-morphism. In fact, for each j > 1,

dfi=10 = fimtletsg Xops i (Yi-1,Yoj-1) rel. EX

~" fj_z!(Xf(J')’XOf(j)) in (Yj-2,Yo;-2) rel. EX
= fi\(xﬂj),xom)) = ff(j)p;%’,g)) in (V;,Yg) rel. EX

The above construction of f is denoted by £ = {V;, U7, A;, fi, U7, (i)} ().

Theorem 5.3.1 There is a functor ¥ : n-SH;Y(n + 1) — n-SH,aK%(n + 1)
such that ¥(X) = (FX,EX) for each X € £(n +1).

Proof. Let f = {fa | A€ A} : X — Y in (M, M) be a proper n-fundamental
net. By the conmstruction £ = {Vi, U/, \i, fi, U, F())}(f), we have a relative
n-morphism f : (X, Xo) — (Y, Yo) rel. EX. We define T([f]?) = [f]7,;.

First, we prove that ¥ is well-defined, that is, if f ~7 g for another proper
n-fundamental net g = {gs | § € A} : X — Y in (M, M), then f ~" §
rel. EX. By the construction g = {V/,U?,6;, G, U, g(i)}(g), we have a
relative n-morphism g = (g,{%}) : (X,Xo) — (Y,Yy) rel. EX such that
Gi = Gil(x,0), X050 20d Gilus = gelvs. Since f ~7 g, there exist a closed

neighborhood W of X in M, A € A and 6§y € A such that
Plw =5 gslw in VU V/ for all A > )\ and 6 > 6.
Let W' =W NUS NU?. For each A > A, \; and 6 > &, §;, since
Plwr =5 falwe in V; and gslwr =2 g6, |w in v,

we have

w! in V; UV;’.

Ialwr = Palwr =25 gslwr =3 g,
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Since f; and §; are extensions of f,

wr and gs,|w, by Corollary 5.2.2,

filrx =" Gilrx rel. EX in Y},

which implies f ~" g rel. EX. Therfore, ¥ is well-defined.

Next, we show that W is functorial. Letf: X — Y in (M,M)andg:Y —
Z in (M, M) be proper n-fundamental nets and (Z,Zo) = {(Z, Zo:),7i'}
be an inclusion sequence associated with (FZ,EZ). By the constructions
£ = (Vi, Uf, 2, £, O, FO)E) and g = {W3, Vi, 6, 3, Vi, 9()}(§), we have
relative n-morphisms f : (X,Xo) — (Y,Yo) rel. EX and g : (Y,Y,) —
(Z,Zo) rel. EY. Observe that Vyuy C Yy C V7. Since gf = {gsfr | (A, 6) €
AxA}: X — Zin (M, M) and &f = (fg,{3:fy0}) : (X, Xo) — (Z,Zo), it is
easy to verify gf = {W;, Ug(i), (6, /\g(i)),gifg(i), U;(i),fg(i)}(gf), hence

U([gtly) = [&f]7 = [Blralflra = T(l) U ([f7). O
Combining Theorems 5.1.4 and 5.3.1, we have the following.

Corollary 5.3.2 There is a functor © : n-SH,X(n + 1) — n-SH,4K*(n + 1)
such that O(X) = (FX,EX) for each X € £(n+1). O

As a direct consequence of the above, we have

Corollary 5.3.3 For X,Y € 3(n + 1), if n-Shp(X) = n-Sh,(Y) then n-
Sh(FX,EX) = n-Sh(FY,EY) rel. (EX,EY), hence n-Sh(FX,EX) = n-
Sh(FY, EY) in the sense of Chapter 3 and EX ~ EY. O

Corollary 5.3.4 If X is connected SUV™ and dim X < n + 1, then FX €
uvn.

Proof. By Theorem 4.2.1, there exists a tree T such that n-Sh,(X) = n-
Sh,(T). By Corollary 5.3.3, n-Sh(FX, EX) = n-Sh(FT,ET) rel. (EX, ET).
In particular, n-Sh(FX) = n-Sh(FT). Since FT is contractible, n-Sh(FX) =
n-Sh(1), that is, FX € UV™ (cf. [Chi;, Proposition 3.1]). O
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5.4 Proper n-shape and the one-point com-
pactification

In this section, we consider the relation of proper n-shape and the one-point
compactification.

Let CX = X U {oo} be the one-point compactification of X € LK. It
is known that CX is metrizable. For a proper map f : X — Y between
X,Y € LK, there is an unique extension Cf : (CX, {oc0}) — (CY,{o0}). If
f,g : X — Y are proper maps and f =~, g, then Cf ~ Cg rel. {oco}. It is
easy to see that the arguments of Section 5.3 are valid for the pairs (CX, {o0})
and the maps Cf. By replacing FX by CX and EX by {co} in the proof of

Theorem 5.3.1, we can obtain the following.

Theorem 5.4.1 There is a functor ¥’ : n-SH;L'IC(n-I— 1) — n-SH,qK%(n+1)
such that ¥'(X) = (CX,{o0}) for each X € LK(n+1). O

Combining Theorems 5.1.4 and 5.4.1, we have the following.

Corollary 5.4.2 There is a functor ©' : n-SH,LK(n+1) — n-SH,qK*(n+1)
such that ©'(X) = (CX,{o0}) for each X € LK(n+1). O

As a direct consequence of the above, we have

Corollary 5.4.3 For X,Y € LK(n + 1), if n-Shy(X) = n-Sh,(Y) then n-
Sh(CX,{c0}) = n-Sh(CY, {oo}) rel. ({co},{oo}), hence pointed compacta
(CX,{c0}) and (CY, {oo}) have the same pointed n-shape. O

Corollary 5.4.4 Let pt' = pm1\ {x}, where x € u*! and let X,Y C p2f!

be Z-sets. If n-Shy(X) = n-Shy(Y) then p2i* \ X ~ p2it \ Y.

Proof. We can assume that CX,CY C p™*! as Z-sets with {*} = {co}. By
Corollary 5.4.3, we have n-Sh(CX, {oo}) = n-Sh(CY, {cc}) rel. ({oo}, {oo}).
In particular, n-Sh(CX) = n-Sh(CY). By the complement theorem, pzf!
X = prt I\ CX = pr I\ CY = 2\ Y. O



Chapter 6

Homeomorphic neighborhoods

n+1

in p""*-manifolds

In this chapter, we prove a p"*!-manifold version of the result of [Shs], that is,
if X and Y are Z-setsin p"**-manifolds M and N respectively, and n-Shy (X) =
n-Shy,(Y), then X and Y have arbitrarily small homeomorphic p"*t-manifold
closed neighborhoods. Here, we use the notion of proper n-shape for (n + 1)-
dimensional locally compact spaces by using embeddings of them into (n +1)-
dimensional locally compact LC™NC™-spaces (see Section 5.1). As a corollary,
if X is a connected Z-set in a u"*!-manifold and X € SUV™, then there exists
a tree T such that X has arbitrarily small closed neighborhoods homeomorphic
to the Apq-product TA, . p™ of T and p™*'. Here, the A,qi-product is
defined in [Iwa] which plays the rule of the Cartesian product in the category
of y**tl-manifolds. For a locally finite polyhedron P, PA, u"*?t is the p**i-
manifold having the same proper n-homotopy type of P.

6.1 Homeomorphic neighborhoods

We denote putt = pm+1\ {x}, where * € y". Recall that two proper maps

f,9: X —Y are properly n-homotopic (written by f ~7 g) if, for any proper

64
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map « : Z — X from a space Z with dim Z < n into X, the compositions
fa and go are properly homotopic in the usual sense (fo ~, ga). A p"*i-
manifold M lying in a y™*-manifold N is said to be n-clean in N [Chis] if M
is closed in IV and there exists a closed p™"*-manifold §(M) in M such that

(i) (N\M)Ub(M) is a p™*l-manifold;
(i) 6(M) is a Z-set in both M and (N \ M) U §(M); and
(iii) M\ 6(M) is open in N.

Remark 6.1.1 Let P be a PL-manifold and L a submanifold in P such that
BdL = Bd(P \ L). By [Chiy, Theorem 1.6], there exists a proper UV™"-
surjection f : N — P from a p"*'-manifold N satisfying the following condi-

tions:
(a) f7Y(K) is a p™**-manifold for any closed subpolyhedron K of P; and

(b) f7XZ) is a Z-set in f~(K) for any Z-set Z in a closed subpolyhedron
K of P.

Then it is easy to see that M = f~(L) is an n-clean submanifold of NV with
§(M) = f~YBdL).

Lemma 6.1.2 LetY be closed in a locally compact C"NLC™-space N. Assume
that v : Vo — Y is a proper retraction of a closed neighborhood Vi of Y in
N. Then for each closed neighborhood V. of Y in N there exists a closed
neighborhood V' of Y in N such that V! C V NV, and idy =3 7|y in V.

Proof. Let YW be an open cover of V N V; such that if one of any two W-close
maps from arbitrary locally compact space is proper, then the other is also
proper. Since int (V N Vp) is LC™, there exists an open cover U of int (V NVp)
such that any two I-close maps from a space with dim < 7 to int (V' N Vo) are

W-homotopic. By the continuity of 7, for any U e UNY ={U e U | UNY #
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0} and z € UNY there exists a closed neighborhood V; of z in N such that
Vz, C Uand r(V;) CUNY. Since Y is locally compact, {V; |z € Y} has a
locally finite refinement V'. Then V' = |V’ is the desired neighborhood. O

Let X and Y be closed sets in locally compact C™ N LC™-spaces M and
N respectively. Recall that a proper n-fundamental net £ = {f) | A € A} :
X — Y in (M, N) is generated by a proper map f : X — Y (or f generates
f) provided f = fi|x for all A € A. The proper n-homotopy class [f] of f is
generated by f if f generates some f’ € [f].

Proposition 6.1.3 If Y s a locally compact LC™-space, then the proper n-
homotopy class of any proper n-fundamental net £ : X — Y in (M, N) is
generated by a proper map f : X — Y.

Proof. Since Y is LC™, there exist a closed neighborhood V5 of ¥ in IV and a
proper retraction r : V5 — Y by [BS, Lemma 3.2]. By Lemma 6.1.2, for each
closed neighborhood V of Y in N there exists a closed neighborhood V' of ¥ in
N such that |y =P idy in V. Then there exist a closed neighborhood U’ of X
in M and A € A such that fylyr =5 faler in V' forall A > Ag. Let . N—N
be an extension of r and f{ = r'f),. Note that f' = {f}} is generated by
f=rhlx, Le, filx = f. Since filvr = ' frolvr =5 frolv =5 Alp in V for

all A > Ao, f' =7 £. O

Lemma 6.1.4 Let X be a Z-set in a u"*'-manifold M. Then there erists a
closed embedding F : M — u™! such that F(M) is a neighborhood of F(X)
in 1+ and F(M) is n-clean in u™tt with 6(F(M)) ~ M.

o0

Proof. By [Chi;, Theorem 9], there exists a proper (n + 1)-invertible UV™-
surjection f : M — P from M to a locally finite (n+1)-dimensional polyhedron
P. We can assume that P is a closed subpolyhedron in (I2("+D+1 x {0}) \ {x},
where * = (0,---,0) € I*"+1+2_ Then there exists a proper (n + 1)-invertible

UV™surjection f : N — I?(v+D+2\ {4} from a p"+!-manifold N as same as
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Remark 6.1.1. Since I2™)+2\ {4} ~n yn+l and f is proper UV™, we have
N = p2 (cf. [Chiy, Theorem 1.3]). Let N(P) be a regular neighborhood
of P. By Remark 6.1.1, M’ = f}(N(P)) and M" = f~BdN(P)) are
p"*t1-manifolds in N and M’ is n-clean with §(M’) = M". Since P is a Z-
set in N(P), it follows that N(P) ~p BdN(P). By [Chi;, Theorem 1.4],
there exist homeomorphisms ¢ : M — M’ and ¢ : M — M". By the Z-set
unknotting theorem, there exists a homeomorphism A : M’ — M' such that

h(g(X)) N M" = 0. Then F = hg is the desired closed embedding. O

Theorem 6.1.5 Let X and Y are Z-sets in u* T -manifolds M and N respec-
tively, such that n-Shy(X) < n-Shy(Y). Then, for each neighborhood U of
X in M and each neighborhood V of Y in N, there exists an open neighbor-
hood V' of Y such that for every u™*'-manifold closed neighborhood S of Y in
V' NV, there ezists a pu™**-manifold closed neighborhood R of X in U which

is homeomorphic to S.

Proof. By Lemma 6.1.4, we can assume that M = N = p%™ and U is n-
clean. Let f : X — Y in (ux,pn) and g ={gs | 6 € A} : Y - X in
(', untt) be proper n-fundamental nets such that gf ~7 iy. Let U’ be a
closed neighborhood of X such that U’ C int U. Then there exist 6y € A, A €
A and a closed neighborhood W of Y with W C V such that gsfilx =~ idx in
U', gslw ~p gs,lw in U’ for each § > 6o, A > Ag. By the Z-set approximation
theorem, there exists a Z-embedding g5, : W — intU approximating gs,-
Note that g5, |v is properly n-homotopic to the inclusion in p. By the Z-set
unknotting theorem, there exists a homeomorphism A : u2t — p* such that
hgs,ly = idy. Let V' = A(intU) and S C V' N V' be a closed u"tl-manifold
neighborhood of Y. Then S’ = h™(S) is a p"*!-manifold closed neighborhood
of g5, (Y) lying in intU. Let W’ be a closed neighborhood of Y lying in int S
so that gj, (W') C intS". Then there exists A > Aq such that H(X) cW'. By

the Z-set approximation theorem, we can assume that fy is 2 Z-embedding.
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Note that gj fr(X) C g5, (W') C intS" and g, falx =~ gs/falx =5 idx in

U’ C intU. By the Z-set unknotting theorem, there exists a homeomorphism

n+1
[ee]

Then R = h/(S") is the desired neighborhood. O

W oopldt — plft such that h'gs filx = idx and A/|prpp = idnsynp

For A, i-product, refer to [Iwa).

Lemma 6.1.6 Let P be a locally finite polyhedron embedded in p™t' as a

oo

"*+omanifold

closed set. Every neighborhood U of P in ™t contains a p
closed neighborhood V of P such that V is n-clean in pt and V =~ §(V) =

PApyrp™t

Proof. We can assume that P C (I200+D+0 x {0})\ {#} € I2(HD+2\ {x} = M
as a closed subpolyhedron and p™t! is obtained from M by the Lefschetz
construction [CKT, 2.1, II]. Let £ be a combinatorial triangulation of M
and U7 be a neighborhood of P in M such that U = p2' N U. By White-
head’s theorem [Wh], there exists a subdivision £’ of £ such that L' re-
fines {M \ P} U {U}. Let N(P,sd L") be a regular neighborhood of P ob-
tained from the barycentric subdivision sd £’ of £’ and let V be a u"*!-
manifold obtained from N(P,sd L) by the Lefschetz construction. Then V
is n-clean in p?F? such that §(V) = pi' NBAN(P,sd L) and V \ 6(V) =
pt N int N(P,sd £'). Now there exists a proper deformation retraction
r: N(P,sd L) — P, we have a proper UV"-retraction r|y : V — P. Since
there exists a proper UV -surjection PA, . u"t* — P [Iwa], and by [Chiy,
Theorem 1.4], V and PA, ™! are homeomorphic. Since P is a Z-set in
N(P,sd L"), N(P,sd L") ~7 Bd N(P,sd L"), which implies §(V)) ~ V by [Chis,
Theorem 1.4]. O

Theorem 6.1.7 Let X be a Z-set in a p™*'-manifold M and P an (n +1)-
dimensional locally finite polyhedron such that n-Shy,(X) < n-Shy(P). Then
X has arbitrarily small closed neighborhoods U,, o € A, such that
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(1) each U, is n-clean in M,
(2) Uy = 6(U,) = PApy1p™ and
(3) for each o, B € A there exists a homeomorphism h : Uy, — Up fizing X.

Proof. By Lemma, 6.1.4, we can assume that X and P are closed sets in u%t.
Let f: X — P and g: P — X be proper n-fundamental nets in (u?F, umtt
such that gf ~7 ix. By Proposition 6.1.3, f is generated by a proper map
f: X — P. Let A= {a| ais a closed neighborhood of X in p2+'}. For
each a € A, there exist , € A and a closed neighborhood W of P which
is homeomorphic to PAny;u™t!, such that gs|lw =~ gs.|lw and gsf ~p idx
in o for all § > 6, by Lemma 6.1.6. By the same argument of Theorem
6.1.5, we may assume that gs_|w is 2 Z-embedding of PA,,u"™"! into a and
X C gs,(W). Then g;'|x =7 g5. 9. f|x =5 f in PAqypth

Let o, € A. Since gg;l\x ~p f =~ g;;]X in PApp™t, by the Z-
set unknotting theorem, there exists a homeomorphism G : PA,pu"™ —
PA,1u™? such that Gggal|x = g;ﬁlix. Then h = ggﬁGgg;l is the desired
homeomorphism. O

It is proved (Theorem 4.2.3) that if X is connected, then X € SUV™ if and
only if n-Sh,(X) = n-Sh,(T') for some tree T. By Theorem 5.1.4, we have the

following:

Corollary 6.1.8 Let X be a connected Z-set in a u™'-manifold and X €
SUV™. Then X has an arbitrarily small closed u™-manifold neighborhood V
such that V = TApp pu™t for some tree T. O
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