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ABSTRACT

Strong ground-state (p,t) transitions in nuclei of neutron
number x50-82 are found to show anomalous analyzing powers
which cannot be reproduced by direct one-step distorted-wave
Born-approximation calculations at all. The anomalies are
explained as an interference between (p,d) (d,t) sequential
processes and the one-step process. The cross section of the
sequential processes is as large as that of the one-step
process in the L=0 (p,t) reactions. The neutron-number

dependence of the anomalies is interpreted.
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Chapter 1 Introduction

The two-nucleon transfer reaction (p,t) and/or (t,p) has
been recognized to be a very useful method in obtaining nuclear
structure information, particularly on the correlations of the
transferred pair in the nucleus. Actually, by using this re-
action, collective modes associated with the pair correlations

were ocbserved and identified as BCS statesl)

in the ground
states of medium—- and heavy-mass nuclei.

So far most of the studies of two-nucleon transfer reactions
have been carried out by measuring differential cross sections
0(6) for (p,t) and/or (t,p) transitions. Angular distributions
of the cross sections &(6) for these transitions between of
ground states (0;) of medium- and heavy-mass nuclei are known

2)

to have diffractive patterns which can be explained by a

direct transfer of two neutrons in a lS0 state on the basis
of the first-order distorted-wave Born approximation (DWBA)

theory3_5)

. In addition to the cross sections 0(9,0;), vector
analvzing powers A(B,O;) for the (t,p) ground-state transitions
have been analyzed so far by the method of the first-order
DWBA6) because anomalous analyzing powers A(B,O;) which are
far beyond the predictions by this method have not been reported
in two-neutron transfer experiments.

The present work, however, reports for the first time
the existence of anomalous angular distributions of A(@,o;)

for (p,t) reactions which cannot be reproduced by the first-

order DWBA calculations at all. This work is the first



systematic study of analyzing powers for (p,t) ground-state
transitions between medium~mass nuclei having neutron number
of N¥50-82. So far published works of (p,t) analyzing power

measurements for medium- and heavy-mass nuclei have been only

176Yb(g,t)l74 7)

Pb at E_=40 Mev® |

the following two reactions:

and 2OBPb(g,t)zo6

Yb at Ep=16 MeV

From the definition of analyzing powers A(6) and cross
sections  0(8) in terms of transition amplitudes (see egs. 33
and 41 in chapter 4 ), it is obvious that an interference
effect between various transition processes in (p,t) reactions
playes a more dominant role in the analyzing powers than in
the corresponding cross sections. As a conseguence, measure-
ments of analyzing powers for (p,t) reactions are of fundamental
importance in understanding the reaction dynamics such as a
competetion between a one-step process and multistep processes
in the (p,t) transitions.

In the present work, the analyzing powers A(G,OE) and
cross sections 0(6,0;) for the ground-state transitions to

98,100,102R 102,104,106,108 110,112,114

fifteen nuclei of u, P4, cd,

ll6Sn, l20’126'128Te and 142Nd have been measured by using a
polarized proton beam of Ep=22.0 MevV.

In Chapter 2, experimental procedures are described. 1In
Chapter 3, experimental data of A(G,O;) and 0(6,0;) for the
(p,t) reactions on the fifteen targets are given. Characteristic
features of these experimental results are déscribed. The

anomalous analyzing powers A(S,O;) appear in the angular

distributions around 6~20° where the 0(6,0;) have a deep minimum.



The anomalies display distinguishable change in going one
nucleus to the other. Chapter 4 is devoted to the theoretical
analysis of the data by means of the first-order and (p,d) (d,t)
second-order DWBA. The anomalies can be accounted for as an
interference effect between the (p,d) (d,t) segquential processes
and the direct one-step process. Chapters 5 and 6 are devoted
to discussions and conclusion, respectively.

The essential point of the present results has been

published in Phys. Rev. Letters (ref. 9).



Chapter 2 Experimental Procedures

A polarized proton beam was accelerated with the University
of Tsukuba 12 UD Pelletron at Ep=22.0 MeV. The polarized beam
10)

was produced with a Lamb-shift-type ion source The layout
of the beam preparation system is illustrated in Fig. 1. The
beam intensity on target was about 100 nA within a diameter of
2 mm. Emittéd tritons were momentum analyzed with an ESP-90

11) and detected with silicon position-

magnetic spectrograph
sensitive detectors mounted in the focal plane.

The upper limit of the instrumental and geometrical
asymmetries of the whole detection system was estimated by
measuring an asymmetry for a H(E,p)H scattering at 6L=17.5°
12)

and found to be zero within a statistical error of 1%.

Measurements of angular distributions of the analyzing
powers A(6) and cross sections o(0) were made from 6L=5° to
65° in 5° steps with spin-up and spin-down runs taken at each
angle. In addition refined mesurements were made in smaller
steps around the angles at which the corresponding o(6) has a
sharp minimum.

Reversal of the polarization of spin-up and spin-down at
the £arget was accomplished by reversing magnetic fields of
the spin filter and ionization region at the polarized-ion
source. The degree of the proton-beam polarization was measured
at the beginning and end of each run using the quench-ratio

13)

method and was found to be quite stable with an average

value of (85%1)%. This value agreed with the one obtained



from a measurement of an asymmetry for a 4He(E,p)LlHe scatteringl4)

within an experimental error of 1%.

The angular acceptance of the magnetic spectrograph was
A8L=3.O° or 1.5°, which corresponded to a solid angle of 2.0 msx
or 1.0 msr. The measurement around the angles at which the
cross section had a minimum was made by using the smaller
acceptance of ABL=1.5°. A monitor detector was placed normal
to the scattering plane at 6L=155° and was used to measure the
elastic proton scattering, monitoring the target thickness and
charge collection of a Faraday cup. The monitor detector was
insensitive to the polarization of the incident protons with
spin normal to the scattering plane.

A specially designed Faraday cup was used to monitor the
geometrical condition of the beam in addition to the collection
of the charge. As shown in Fig. 2 , it consists of separated
two cups: the forward cup with.a hole of 3 mm in diameter and
the backward one which stops the full beam. The current from
the forward cup indicates the geometrical condition of the beam
passing the hole. This current is measured continuously in the
case of a long run. If the current changes anomalously during
the run, the data accumulation is automatically stopped by an
electrical monitoring system of the current.

In order to measure tritons leading to several levels of
the residual nucleus and deuterons in (p,d) reaction simulta-
neously, several silicon position-sensitive detectors were
aligned precisely on the focal plane by using a laser-beam.

The active area of the detector was about 45 mm long and 8 mm



wide. The vertical spread of the particles on the focal plane
was confirmed to be within 8 mm as shown in Fig. 4 . The posi-
tion pulsés from two detectors were fed to a multichannel pulse-
height analyzer (MCA) after processing by the parallel electric
circuits as shown in Fig. 3 .

Targets were made by several methods according to their
chemical and physical property. All Pd, llsz and ll4Cd targets
were self-supporting metallic foils, while other targets had an
aluminium backing which was 0.4 (or 7) pm in thick. The Pd

targets were made by a press of ingot with a roller, and llzcd

and 114Cd targets were made by electroplating. Of the targets
with the Al backing, the argon-sputtering method was used for

all Te and 116Cd targets, while the centrifugal settling method

llBSn 144

was applied to all Ru, and Nd targets.

The thickness of each target was determined by measuring
its weight or an energy loss of o particles from an 241Am
source through each target. Uncertainties of the thickness
were estimated to be within 20 % by comparing with the results
in each method. However, the accuracy of the thickness for all
Ru and ll6Cd targets was limited to about 50 % mainly due to
their non-uniformity.

'A measurement to determine the relative cross sections
among isotopes was made for four Pd isotopes.

A summary of types, thicknesses and enrichments of the

targets used is presented in Table 1.



Chapter 3 Experimental Results

Typical momentum spectra of tritons taken at 6L=20° for
fifteen targets are shown in Fig. 5 . The energy resolutions
are tabulated in Table 1, which are mainly due to the target
thickness and the non-uniformity. Measured angular distribu-
tions of the analyzing power A(®) and the differential cross
section 0(8) for the (p,t) transition to the ground state (O;)
are shown in Figs. 7 and 8 , respectively. The numerical
results with experimental errors are given in Appendix 3.

The absolute error in the A(8) was estimated to be less
than 2 %, which was due to the geometrical asymmetry (€1%) and
the uncertainties of the beam polarization ‘(¥ 1 %) discussed in
Chapter 2. However, the absolute values of ¢(8) had rather
large uncertainties (20 ~ 50 %) due to inaccuracies in the
thickness of the targets used.

The observed A(8) and o¢(6) have the following characteristic
features. The most striking result for A(6) is observed in a
pair of two isotopes of Ru and Pd as shown in Fig. 6 . A

98 102

positive peak of A(6) around 6 = 20° in Ru (

102Ru lOBP

Pd) changes to

a sharp negative dip in ( d) . On the other hand, all
the ¢(6) have a deep minimum around 6 = 20° and do not show
such a drastic change.

As is easily seen in Fig. 7 , the A(8) display distinguish-
able change in going from one nucleus to the other in the
angular distributions around 8 = 20°. However, they are very

similar with each other over an angular range of 25°< 6 <65°.



This feature is clearly shown in Fig. 9 . A hatched area
covers the all data points after correcting the effect due to
the nuclear radius.

An interesting comparison can be made for three pairs of

100R 10

nuclei which have the same neutron number: u, 2Pd with

N=56, 10%ru, 10%pg with N=58 ana %%pa, 110c4 with N=62. The
sign of the A(6) is opposite with each other around 6 = 20° for
the latter two pairs, while no such a change is observed for
the first pair.

It is easily recognized that the several properties
mentioned above cannot be explained simply by the differences

108P

of Q-values (Table 2) because the results of A(6) for d

and 114

Cd which have almost the same Q-value (-6.5 MeV) are
quite different with each other.

It seems to have a relation between the derivative of the
measured 0(0) and the corresponding A(8) in the angular range
of 25°¢6¢< 65°. As will be discussed in section 4.5, the

experimental results approximately satisfy the following

relation:

ACe) o< (—}-f—%o(e)/cr(@)

l02Ru and lOSPd do not

On the contrary, all the nuclei except
obey this simple relation in the forward angular region of
B < 25° where the A(6) are expected to be negative since the

corresponding cross section o0(6) decreases steeply with

increasing 6.



Chapter 4 Analyses in Terms of the First- and Second- Order

Distorted-Wave Born-Approximation

In (p,t) reactions the importance of successive neutron
transfer processes has been pointed out especially for the so-
called "forbidden" transitions in which the direct one-step
process is strongly inhibitedls). The cross section for
unnatural-parity transitions is such a case and has been well
reproduced on the basis of the (p,d) (d,t) two-step processesl6z

It has been also pointed out that the (p,d) (d,t) mechanism
has a significant effect on the allowed (p,t) reactions such

7)

as our experiments. The results of calculationl have sug-
gested that the (p,d) (d,t) process is as sérong as the one-step
process.

However, the comparison between the calculated results and
the data has been made only for the differential cross sections.
The purpose of the present analysis is to investigate the
effect of the two-step mechanism on the analyzing power for
strdng ground-state (p,t) transitions. The main analysis for
the present experimental results is made by considering (p,d)
(d,t) process as a two-step mechanism and will be discussed
in this chapter. The effect of the two-step process involving

inelastic scattering processes will be discussed in sect.

5.6.



4.1 Formalism for the first- and the second-order DWBA

In the last ten years, there has been success for the
method of coupled-channel (CC) calculationsls) and it has been
found that CC reaction mechanism playes an important role in
various type of reactions.

In this section, one- and two-step distorted-wave Born-
approximation (DWBA) theory is reviewed, which is derived from
the iterative approximate solution of coupled channel equations.

The coupled channel theory is based upon a wave function

for the total system:
. - , = o,
Y = ¢°((£°()7(0((T°‘)+§‘¢25(L75) Ke(T) + Pt Xg(Tp) (1)

where a, B, Yy, which are described by a symbol ¢ in general,
denote the incident, final and intermidiate channel, respective-
ly. The ¢ is the normalized internal wave function of the
channel ¢ and is described by the internal coordinate ic. The

¢

c is a solution of a Shroedinger equation

H.¢

c 'c

il
M

P @

where H, is the internal Hamiltonian in channel c¢ and €q is
the corresponding eigen wvalue. The Xc is a wave function
describing the relative motion and is expressed by a relative

coordinate';c. The Y satisfies a Shrcedinger equation for the.

total system:

- 1lo0 -



Hy = EW (3)

where H is a Hamiltonian for the total system and has a total

energy E as its eigenvalue. The H is written as
H = Hc + —Tc ¥ \/C (4)

where Tc describes the kinematic energy of the relative motion
in the channel ¢ and Vc is the interaction in each channel c.

Eq. (3) can be written as
<P IE-HIYD =0 (5)
Le

where the subscript ic stands for the coordinate for integra-
tion. By inserting eg. (1) into eg. (5), we obtain coupled

channel equations

(Be-Te-U)%e = 2 Vo %y (6)

cxc’

where

EC = E - eC » (7)

Ue

i

<¢clvcl¢c>‘ ' (8)

LC >

and Vcc' is defined by

- 11 -



Vee Koo =2 <P |H-E | <;5C,7<C,>iC (9)
and will be discussed later.
By putting o, B, Yy into c or c¢' in eqg. (6), we obtain the
explicit form of the coupled equations:

(EqmTaUad Ky = ZV, K+ VieXg

b4

(Ex —Tx“ux) Ay = on«,Xok t 2. ,\/3'25’7(75’ * Vm 7(B

XY ’

(Eeg=Tp-UgdXp = Vg Xy * %: Voy X¢ (10)
These equations can be solved by an iterative approximate way.
By treating up to the second order of Vcc" we have the solution

for the final channel B:

2)

X (+) {Fﬂ (+) o+ (+)
g =Gg Ve T, +.§J€rp Voy Gy Vi To . (11)
The Gc is a Green operator which describes propagation of a

particle in the field UC and has a form of

&) =1
Ge = (Ec-T~U *cg) (12)

where the sign of the superscript indicates the well-known
boundary condition. The f(z) is the distorted wave of out-

going boundary condition and is given by

- 12 -



(+3
Te = C1L+ G UDE, (13)

where gc is a plane wave:

-3/2 =
SC: (2‘7[) GXF(‘L RC'YC) R (14)

Here Kc is the wave number in the channel c.
The transition amplitude which corresponds to the transi-
tion from the incident channel o to the final channel B can be

obtained from eg. (11l) and has the form of

P 2
Tea™ Tpa T Tex (15)
where
o (> - +>
pa =<t [ VaalTa 2 (16)

(2) (+)

(> D)
B ?;‘<7£(3 {VBZ Gv ‘\/m] Fo > (17)

|

T

The first term T (1)
Bo

the second term TBu(Z)

The Vcc; defined in eg. (9) can be represented in terms

corresponds to the first-order DWBA and
to the second-order DWBA.

of the various channel. For example, V in eqg. (16) can be

Bal

described more explicitlyv as

0 ™ )

)
Vea T = <Pl Her TV —EL 6, T, (18)

- 13 -



If c=0o (B), the above expression is called the prior form (post

form). It is well known that the first-order transition ampli-
tude does not depend on the representation of Vﬁig. Eg. (16) is
written as
4D (= L(+)
= - - =& or 19
T =<Tg 1V -U T, > c g (19)

When we consider the sequential pickup process, such as

(p,d) (d,t) process, VBY and VYOL in eg. (17) are represented by

the prior forms in order to make actual calculations easy.

Then eq. (17) becomes

(+7

J (&) )
L<fe | Vey Gp Vyy 114

2) ) (¥ ¢+

Tea

vV no
= Tee & | gy (20)
where
vV R _ ) (+
o = 2 CH g Pl Ve - Ul 8,G <3 v U 18 % 21
no () +)
Tpd=~§<ﬂg Pel P iV U 1 f > (22)

The first term having the superscript vv describes the transi-
tion which is caused by successive two interactions and the
second one is due to the non-orthogonality between the different
channels.

To carry out the calculations, we need the transformation

of the coordinate for integration. The results are as follows:



) (=) () +)
Tea = JealTe | Foy 11, 72 7 (23)

T "Z‘Im;j <f(3lFﬁxq FmH > ;’P ’ (24)

[cJa
" J- ) () r% ¢
T@d B BY 10\< _fe l<¢ ‘ ?S )de\ f >;_>d ?K —\?p ’ (25)

where Jc‘c is the Jacobian for the transformation from the
coordinate (;C.,ic,) to (?C,fc,,i). Here i is the coordinate

(c)

which is independent of both T and Tore The F is a form

factor given by

(c)

Fue =<8 A V18>. (26)
where

Ve = Ve = Ug , (27)

and the superscript c denotes the channel in which the inter-
action is described. '
If the incident and outgoing particle have spin s; and Ser

and the target and residual nuclear spins are Ji and Jf,

respectively, we define

- - -

- - - - >
1=J- 74 §=5,-S5, , 2 =

>
? s J

-*
- S . (28)

3)

The reduced amplitude B for the first-order DWBA is defined by

- 15 -



7" = 2 C23+1)(T, 1M, MM, 1T M;?A ﬁ (29)
,QSJ
SENN
where my = M; —I%L + O*_“ oL and Agsj is a

spectroscopic amplitude for the transition.
In a similar way, when the light and heavy particle in the
‘intermediate channel have spin So, and Jm, respectively, the

reduced amplitude for the second-order DWBA is defined

T 225 DT My M T M
7

InTe TeTm Moy

2. . .
>{9,S;f|}§ﬂ'9’37 2557, Y7 A $13) ’ (30)
-gzszjl 4?252]2
where
- -7 - > - - -5 -3 =
I, = jnw— Jl ’ SI-— Si_ Sm s £, = ]'_'S’;
- 4 - - - - - - -
b= _ — — =5 —c
7, : jm , S, =S, S{ , ﬂz 7, 2, (31)

The total amplitude for the first- and the second-order DWBA

is written as

My o) Z A‘T-}jl,‘ IBm)cG“ja‘C‘
Bf 2s ' 2sy 487
- Im J¢ T4+ T, myaoy oy
+ : ' ',0
ﬂlsl]‘[ /glgl]] _,0232]2 -p/SI]/ . (32)
: 22272
225272

- 16 -



The differential cross section for unpolarized projectiles and

unpolarized target nuclei is given by

2
m‘{_Gf{_G'L'

M R 2T+
CT(@)-“—/“ ANGL f ) IBJ- ‘ ,  (33)

(274)% ki (2T;+1)(2S;+1) 7mpopoy

where My and U are the reduced masses of the incident and
outgoing channel , respectively, and ki and kf are the relative

momentum of the respective channels.

- 17 -



4.2 Definition of analyzing power

In discussing polarization phenomena, it is recommended to
use the Madison Convention concerning notations and coordinate
systems. According to this convention, the analyzing power is
generally defined as the guantities which describe the effect
of initial polarization of a beam on the differential cross
section for a nuclear reaction.

The polarization of a beam is refered to a right-handed
coordinate system in which the positive z-axis is along the
direction of momentum iin of the incident particles and the
positive y-axis is along Kin><iout for the nuclear reaction.
To describe the state of spin orientation of an assembly of
particles, it is recommended to use spherical tensor operators
qu or Cartesian ogerators Sy associated with spin of the

particles. The polarization of an in¢ident beam is described

as an expectation value of qu:
ZLkﬁz = <Tk9 ? . : (34)

The analyzing power for a reaction induced by the polar-

ized beam of the polarization Tkq is defined aslg):
_)L
T o= Ixr(MTaM) (35)
kg3 ~
! Tr(Mmy

where M represents the transition matrix for the reaction.

The corresponding differential cross section is given by

- 18 -



X

where 00(6) is the differential cross section for unpolarized
particles. In the case of the incident particle with spin 1/2,
the cross section in eg. (36) is easily written in terms of

the Cartesian representation:
o =0, [ 1+p AB] | a7

If the incident beam is purely polarized along the direction
of the positive (negative) y-axsis, the polarization p equals

1 (-1). Then the A(6) can be written from eq. (37) as

(T8 + Typ (O] -[a44(0) + Ty 4 (0)]

(0) = 38

A = D 7T 00+ Gy e, Y
because we have the relations

Tpp (@) + 0o = oy (0 [ 1+ A®)] (39)

Ty, (8) + T, (0) = T, (0) LI -A)]) (40)

where the Oyprs for example, is the differential cross section

from an initial state with the spin projection 1/2 (described

as 4) of the incident particle (p) to a final state with the

*¥) In the present paper, we abbreviate the vector analyzing

power Ay(e) to A(6).

- 19 -



spin -1/2 (¥) of the outgoing particle (t) on the y-axis.

From eg. (38), the A(®) can be expressed in terms of the

- 0Ty
reduced scattering amplitude IBj defined in sect. 4.1:
‘ *
t/2 m, Qs -1, @y G|
‘f‘ f L +7h “'I 1+
o) s [csiroernes;-op) LalBy B
(6) =~ My (41)
‘ +T49 |2
s; 22| Bj ‘ .

The eg. (41) will be derived in Appendix 1.

- 20 -



4.3 BCS wave function

The BCS theory is well known as the powerful method to
describe the wave function for nuclei in an unfilled shelll).
Detailed comparisons with experiments have been carried out
successfully by many authorslg"Zl).

In this section, the BCS theory will be discussed briefly
since we apply the BCS wave function to the ground state of
the nuclei involved.

The model space consists of nucleons in the truncated

shell-model orbits and the pairing force between like nucleons

is introduced. The Hamiltonian for the system is given byl9,20)
o
HeYecic -Le z 0 ol
S T ImGm % T Sy ol S
—7#n7
Xj% (-7) Cy'—;?chﬂ? , (42)

where C;g and ij are the creation and annihilation operators
of the shell model state with spin j and z-component m, res-
pectively. The first term of the right-hand side represents
the sum of single-particle energies while the second term
représents the pairing interactions among nucleons. The Ej is
the single-particle energy of the state j, and Gy is the
strength of the pairing interaction.

Following the usual procedures of the BCS theory, the
C;& and ij are transformed by the Bogoliubov-Valatin trans-

formation and the "quasi-particle" operators are introduced:

- 21 -



“+ + g-m

¢ } L h \ .{— 43
Jm UJ ij - /J 0 07an ’ (43)

o
if

where Uj and Vj satisfy

U 'f'\/j :‘1 . (44)

As this transformation mixes states with different mass number,

it is necessary to introduce the auxiliary Hamiltonian

H = H—WZQ 0 (45)

j m ]n’t 9

where A is the chemical potential, serving ‘as a Lagrange multi-
plier to take into account the constraint that the average
occupation number equals the number n of nucleons in the
unfilled shell. The coefficients Uj and Vj are chosen so

that the new Hamiltonian‘in terms of ajm and a;ﬁ will not
contain terms like a+a+ and aa. Therefore the following

equations are obtained

/ 27 + |
- G, L = (46
% 07 [ (Ej—-l)z 4 Az]l/z ’ )
where
[
Asz-& ;ﬁ 2]+l)U V , (47)
and

- 22 -



2| E; - A
U, == | | + z (48)
Toe [Ce,-20%+ 212
2 1{ E. - A
] 2 [(Ej—l)z'*AZJ;/z .
The number of nucleons is obtained as
27+ £ -2
no=L ]2 {' - | . (50)
7 [(&,-2)+ A ]

Equations (46) and (50)are the basic equations, and A and A
will be obtained if Ej' GO and n are given. After A and A
are derived, Uj and Vj may be calculated from eqs. (48) and
(49) . A physical meaning of V? (U?) is the probability of
occupation (nonoccupation) of the j level. Also one-half of
the gap energy in the even-even nuclei approximately equals
A in this model.

The numerical values €j and G0 are tabulated, for example,
in Ref. 21) where a detailed study of nuclei from Ni to Pb

has been made. The values of Ej’ A and A used in the present

paper are given in Table 3.

- 23 -



4.4 Spectroscopic amplitude

In reaction calculations, the spectroscopic amplitude is
an important quantity which contains all information about
the nuclear structure involved. The application of the BCS
theory to the direct nuclear reaction has been made extensively

20) 2) transfer

by S. Yoshida for one-nucleon and two—nucleon2
reactions. The expression for the spectroscopic amplitudes
which are necessary to perform the calculation of (p,t) re-
action including (p,d) (d,t) process can be obtained from his
work.

If the second-guantization formalism is used, the spectro-

scopic amplitude for one-nucleon transfer is expressed as

A= Z <M Iml I M)

Hy m

+
« LT MG T MY

Here we distinguish between the heavier nucleus (target nucleus
in pick-up reactions) and the lighter nucleus (residual nucleus
in pick-up reactions). The subscript h denotes the heavier
nucleus and the 1 denotes the lighter one, and the I and M
having subscript h or 1 are the total angular momentum and
its Z component for the respective nucleus.

If the BCS wave function is assumed for the states

|1, M > and IIlMl>, the spectroscopic amplitudes are obtained

h'h

easily in the following two cases:



(1) The heavier nucleus is in a zero guasi-particle state and

the lighter one is a one quasi-particle state:
A,(J>=/2j+l Vj(h) ) (52)

(ii) The heavier nucleus is in a one quasi-particle state and

the lighter one is in a zero quasi-~particle state:
/\I(]) = L)jﬁﬁ) . (53)

The case (i) corresponds to a (p,d) reaction on an even-even
target and the case (ii) to a (d,t) reaction on an even-odd
target.

In a similar way, the spectroscopic amplitude for the

two—-nucleon transfer is defined as

A, (33,3,) :%'# LT MMIT, M0

: J
+ +
X< Ml ley cjzjmllkmp , (54)
where
J |
+ 4 ‘ . + +
ey = = 2. <177 ) ..
[¢;,¢:.1, 5 f}:mz TG G, (59)
142

which is a creation operator of a pair of nucleons coupled to
total spin J. Then the spectroscopic amplitude for the tran-

sition between the BCS ground states is given as
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2

AL(07173) =/7'+ = U Vichy | (56)
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4.5 Procedure for calculations

The numerical calculations of one-step and two-step DWBA
were carried out by using the code TWOFNR23). The zero-range
approximation is used in this chapter for both the one-step
(p,t) process and the two-step (p,d) (d,t) process. In addition
the non-orthogonality term given by eqg. (25) is neglected.

The finite-range effect and the contribution of the non-
orthogonality term will be discussed in sects. 5.4 and 5.5,

respectively.

The form of the optical potential employed is

(R) . (I , ¢I)

o
4V TR sy v,

where
(B —1 13
f o =1+ exP(T—RR}/aRJ ; Re=TphA |
(D -1 /3

L ‘ -2
for =4 lexpr-r /0 101+ expcr-rp/a.]

?

(R -
1/3
LS [l+eXF(T—RLS)/aLSJ , R _=7T_A

LS LS ’

~+~
~~
-”
N/
i

]EC(T) :(ZZ‘SZ/ZRC)[B—(T/RC)ZJ for T £ RC

4 ’
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or Xz e/r . Tor 1> Re

7

/3

;RC:TA

c

We first used the parameters listed in Table 4 which were

determined by elastic scattering experiments. Those are

4)

obtained from the work of Becchetti and Greenlees2

5)

for protons,

that of Hjorth, Lin, and Johnson”
26)

for deuterons, and that
of Flynn et al. for tritons. As discussed later, calculations
will be performed by using modified parameters for the deuteron
optical potential. These parameters are listed in Table 5
together with those used in the discussion about the effect
of the spin-orbit force; see sect. 5.3. ’

The radial shape of the form factor was calculated with
‘the conventional methods of zero-range DWBA; the so-called
separation energy method for the one-neutron transfer process,

27) for

(p,d) and (d,t), and the method of Baymann and Kallio
the direct (p,t) process. The single-neutron wave function
is calculated by assuming single-particle potentials of the

form28)

UnM =V, f, o+ 2V FapTism(L£:T)

where Vo is determined to give an experimental separation energy
of a bound neutron.
In the calculation of the BCS wave functions, we consider

five neutron orbits ld5/2, 0g7/2, 251/2, ld3/2, and Ohll/2’
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of which binding energies are taken from the table of Kisslinger

1)

and Sorensen2 . The pairing interaction strength G0 is taken

as G,=23/A MeV. By use of this force strength together with

0
the single-particle energies, we calculate the spectroscopic
amplitudes of egs. (52) and (53) for each one-neutron transfer
process in (p,d) (d,t) process and those of eg. (56) for one-
step (p,t) process. The results of the calculation are given
in Table 3 , where Apt(Ojj) is a spectroscopic amplitude for
one-step (p,t) process and Apdt(j)‘is a product of the spectfo—
scopic amplitude of a (p,d) process and that of a (d,t) process.

14

In the case of Nd isotopes, the nucleus 4Nd(l43Nd) can

be assumed to have a pure configuration f7§2(f ) outside a

7/2
core nucleus 142Nd of N=82. Then the spectroscopic amplitudes
are simply given by Apt(O,f7/2,f7/2)=l and Apdt(f7/2)=/§.

The normalization constants of the zero-range form factors
are taken to be as follows:
2 2

D0 (p,d)= 1.53 ’ DO (d,t)= 3.37

all in units of 104MeV2fm3. These values have been widely used

in DWBA analyses and taken from Ref. 17). The determination

of Dg(p,t) is more ambiguous than the other two D2 s. We use

0
the value Dg(p,t)=22 throughout all the relevant calculations,
which is obtained by assuming a simple wave function for

triton and the n-p interaction in the zero-range treatment of

the Baymann and Kallio method.

- 20 -



4.6 Results of analyses

First it should be emphasized taht the observed A(8) cannot
be interpreted by only one-step (p,t) process because it always
predicts a sharp negative minimum at 6220° as shown in Fig. 10.

The analyzing powers A(6) which cannot be explained in
terms of the direct one-step process are called anomalous in
this paper. The calculated A(8) and o(€) by the one-step
process seem to obey a derivative relation A(8)«d[1lnc(6)]1/d8
as indicated by dashed lines in Fig. 10, which connect a peak
or valley of the cross section with a corresponding zero-cross
point of the analyzing power. This relation, which is well
known in the elastic scattering, can be obtained quite generally
in the ground state O;(p,t)Og transition and is derived in
Appendix 2 by the perturbation treatment of spin-orbit distor-
tion. According to this relation, the sharp negative dip
should always appear around 6x20° because the corresponding
0(6) decreases steeply with increasing 6 from 6x0.

In consequence it can be concluded that other transition
processes than the direct one-step process are essential to
interpret the experimental A(6) around 6x20°. Then (p,d) (d,t)
procésses are taken into account.

The calculated analyzing power A(8) and cross sections
0(6) in terms of the one- and two-step DWBA are shown in Figs.
11 and 12, respectively. The potential parameters in Table 4
are used as a first trial. It should be noticed that this

optical potential for deuterons has a surface imaginary part



which depends linearly on the deformation parameter 82 of the
nucleus. As is seen in Fig. 13, the strength of the (p,d) (d,t)
process 1s comparable to that of the one-step process and the
‘resultant magnitude of the cross section can reproduce the
experimental results within a factor of about 3.

The variation of the A(6) around 06220° seems to be well
reproduced for the Ru and Pd isotopes, although the character-
istic negative dip in the one-step DWBA still remains slightly.
These results are considered to be a success because the sharp
negative dip is inevitably predicted by the one-step DWBA and
no variation in A(8) is obtained around 6z20° as far as the
one-step DWBA is applied. However, the fitting to the experi-
. mental results becomes worse in going from Cd to Te both in
the cross sections and the analyzing powers. Thus we cannot
obtain overall fit to the measured angular distributions of the
A(B) and o(8) for the fifteen nuclei.

As 'the second stage, we made a calculation by using a
modified opticalipotential for deuterons which had a volume
imaginary part instead of a surface imaginary part. The effect
of changing the imaginary part into a volume type is a reduc-
tion of the contribution to the deuteron scattering from the
nuclear interior. This result is consistent with that obtained

9)

by use of the Johnson-Soper approach2 , and therefore suggests
that deuteron breakup is responsible for the required change
in the deuteron potential. However, the differences between

the Johnson~Soperyeffective parameters and those in the present

analysis suggest a further study of the problem. A



phenomenological investigation will be presented in sect. 5.2.

As shown in Fig. 14, we can obtain a significant improvement
for both the analyzing powers and cross sections by introducing
this empirical deuteron optical potential. The interference
between the one- and (p,d) (d,t) two-step processes is essential
to reproduce the anomalies at 6320°. For simplicity and in order
to see a general trend of the angular distributions of the ana-
lyzing power over a wide mass-number range, we use the same
parameter set of the deuteron potential for all nuclei except
for lOBPd which will be discussed later. It is essentially the
same potential set in Table 4. Here we made another modification
for the spin-orbit force for protons. The depth of the spin-
orbit force was reduced from VLS=6.2 to 4.3 MeV. This modifica-
tion is not so essential as discussed later in sect. 5.3.

Contributions of various neutron orbits to the two-step
processes are explained in Fig. 15 . A dominant contribution
of the d5/2 orbit accounts for the positive A(6) in forward

98 lO4P

angles 0<20° for Ru and d. A decrease of the contribu-

tion of the d5/2 orbit and a relative increase of that of

102 108

the 51/2 orbit in going from P4 to Pd can explain an

appearance of a sharp negative dip for 108R

126

d. A redisappea-
rance of it for Te is due to an increase of the contribution
of the hll/2 orbit. Large difference in analyzing powers for
various orbits appears only in forward angles 6540°, while

the each analyzing power focuses almost on the same angular

distributions in backward angles 63240°. It should be noticed

that the j dependence of analyzing powers for one-nucleon



0)

transfer reaction3 is similarly revealed in the (p,d) (d,t)

. 31) . . . .
sequential processes : a d5/2 d3/2 pair in Fig. 15.

Appearance of a round positive peak in the A(6) at 0x25°

has been observed only in the case of l08Pd. This can be

reproduced quite well by adding a surface imaginary part to
the distorting potential for deuterons, as explained in Fig. 16.
This fact implies that deuterons in the intermediate channel

break up and/or are absorbed more easily near the nuclear

l09Pd than in the other nuclei. This seems to be

correlated with the fact that lloPd (108

2)

surface of
Pd) has a very large
deformation parameter3 of 82=0.25 (0.24).

In addition to A(6), the observed o(6) are also well
reproduced in their shape as well as in magnitude within a
factor of about 2 by including the (p,d) (d,t) processes. The
normalization factors are given in Table 6 and will be discussed
in sect. 5.7.

As is shown in Fig. 14, the angular distribution of the
cross section for the (p,d) (d,t) two-step processes (dashed
curves) is very similar in shape to that for the one-step
process (dash-dotted curves). Moreover, the cross section of
the coherent sum of the two processes (solid curves) has a
similar shapé of angular distributions to that of the both
of the two processes mainly because there occurs a constructive
interference between the two processes. Therefore we cannot
appreciate the contribution of the (p,d) (d,t) two-step pro-
cesses to the ground-state (p,t) transitions as far as only

the cross-section data are utilized. Indeed strong (p,t)
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transitions between 0 ground states of medium- and heavy-mass
nuclei have been considered so far to proceed via a direct one-
step transfer of two neutrons in a lS0 pairz). According to
our data of the analyzing powers A(G,O;), however, the previous
conclusion mentioned above is wrong. The (p,d) (d,t) two-step
process 1is as strong as the one-step process in the strong
ground-state (p,t) transitions in medium- and heavy-mass
nuclei. The anomalous analyzing powers due to the interference

between the one- and two-step processes prove this fact very

clearly.
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Chapter 5 Discussion
5.1 Isotope dependence of the analyzing power

The fact that the difference of the contributions of each
orbit in the intermediate states of the (p,d) (d,t) process
determines the aspect of the angular distributions of A(8) in
forward angles 6<20° is demonstrated in Fig. 17. The dashed
line shows the result of the calculation in which the contribu-
and d

tions of both the 4 orbits are omitted from the

5/2 3/2
total scattering amplitude. If the component of the d5/2 or

d orbit is added, the A(8) becomes positive or negative at

3/2

forward angles 6<20° according to the respéctive case. The

final result after summing all contributions is indicated by

the solid line and reproduces the sign of the measured A(8).

On the contrary, the orbit-dependent behavior of the A(6) cannot

be observed in backward angles 6>30° where the angular distribu-

tions are very similar for each single-particle orbit. It

should be noted that no orbit-dependent behavior is observed

in the shape of the cross section o0(8) as is shown in Fig. 17.
In order to see the systematic aspect of the A(8) around

8220° for all nuclei in the N=50-82 shell, we made an artificial

calculation as shown in Fig. 18 . Although the corresponding

spectroscopic amplitudes for each isotope (Table 3 ) are

employed in the calculation, the scattering amplitude B are

all calculated by using the reaction parameters fixed to 98Ru.

This procedure is adequate to investigate the effect of the
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nuclear structure involved because it can reduce the effect
due to the reaction dynamics. It is clearly seen in Fig. 18
that the positive A(8) observed in 6<20° becomes negative in
going from Ru to Te and various behaviors of A(®) are observed
for each isotope. This general trend is consistent with the

experimental results.



5.2 Effect of the imaginary part of the deuteron optical
potential

It has been pointed out25’33)

that a volume integral of
optical potentials is physically more significant than, for
instance, the depth of the potential itself. From this point
of view, the following study is carried out in order to
investigate the effect of the imaginary part of the distorting
potential in the intermediate state. /

A simple evalution by using a volume integral I of the

imaginary potential for deuterons
I o 3 ' 2 ‘I_B
= ?RIWV -+ RI O‘I WS (Mes/ im)

is made, where the parameters are defined in sect. 4.5. If

we change the depths of W, and W, for the deuteron potential

S
with keeping the volume integral I constant, a relatively

small change in the angular distributions of A(8) is observed

in forward angles ¢<40° as shown in Fig. 19. However, the
amplitude of the A(8) around 6x55° become larger with increasing

the ratio of WV to W Fig.20 shows the similar results. In

S

this éase the combinations of the parameters WV and WS are
taken arbitrarily without conserving the volume integral I.
The second minimum around 6x55° in ﬁhe angular distribution
of 0(9) is rather sensitive to the volume integral I. It

shifts backward in angle with increasing the value of the

volume integral I. An agreement with the data can be obtained



by adjusting the W and Wg. But it is difficult to eliminate
the negative dip of the A(6) around ©€x220° by the same adjust-

ment.
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5.3 Effect of the spin-orbit terms of the optical potentials

In the previous calculations in chapter 4, the optical
potentials which do not contain spin-orbit interactions have
been used for deuterons and tritons. We first examine the
effect of the spin-orbit force for deuterons in this section.

Fig.21 shows the A(6) and o(6) calculated by using the
deuteron optical potential determined by the elastic scatter-
ing33) with a polarized deuteron beam of Ej =12 MeV. vOnly the
optical potential for tritons has no spin-orbit interaction.
No modification for the imaginary part of the deuteron poten-
tial from the surface type is made. The agreement with the
data is improved for the angular distribution of A(8) in
-backward angles, although a small dip appears around 6=15°.

It should be noted that successful calculational results are
obtained in the Nd case without depending on the choice of
the deuteron potential;

Next Fig.22 shows the results in the case where the spin-
orbit interaction is switched off. The volume imaginary part
is used according to the successful calculational procedures
in sect. 4.6. The spin-orbit force of deuterons is therefore
considered té be not important for the (p,d) (d,t) process.

The effect of the spin-orbit interaction for the triton
potential was investigated by using the potential set 2 in
Table 5 (Ref. 34). The effect of the spin-orbit force for

tritons on the angular distributions of A(9) ap?ears in

forward angles ©<20° as shown in Fig. 23; a small dip appears



around 6x15°. However, the agreement with the data does not
become worse. Therefore it can be concluded that the spin-
orbit forces both for tritons and deuterons have no significant
effect on the final results of the calculations.

It is generally observed that the calculated A(8) over-
estimate the data in amplitude. This fact is strongly corre-
lated with the spin-orbit force for protons. A shallow spin-
orbit potential for protons can give rise to a significant
overall reduction of A(8) in amplitude as shown in Fig. 24.

The depth of the spin-orbit potential is reduced from V. .=6.2

LS
to 3.1 MeV in this case.
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5.4 Finite-range effect

To evaluate the finite-range effect in the (p,t) and (p,d)

(d,t) processes, numerical calculations were done in the case

144

of the reaction Nd(p,t)l42Nd. Since the exact-finite-range

program to compute the one-step (p,t) transition is not avail-
able, only the distance between a proton and a cluster of two
neutrons is considered to be finite in the one-step process.

For the (p,d) (d,t) process, the full finite-range calculations

3)

2 . . .
are made . However, there remains an uncertainty in the

relative intensity between the one-step and two-step transitions.

The normalization is made by
range calculation, so that a
range effect is made in this

It is assumed that both

using the result of the zero-
rough estimation of the finite-
section.

the intrinsic wave function ¢d for

a deuteron and ¢t for a triton have the pure s-wave spatial

part. The forms of ¢d‘and ¢t

—-af

e

are assumed to bel7)

-b5,
- C

sbd(m:NoL

2 2 2
~? (2.?2-{'—2'—}")

Bol51,52) = Ny €

with

a=0.233 £m T,

n%=0.0634 fm % ,

£ ’

2

b= 1.45 fm ~ ,
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where Nd and Nt are spatial normalization constants. For the

n-p interaction potential, we take a Gaussian form:

2
-(7/3%)
Vpp(T) ==V, &

0
with a range parameter £=1.49 fm.

Fig. 25 shows the calculated A(8) which should be compared
with the zero-range calculation. A slight difference is
observed around 6=x20° and 50°. The finite-range effect,

however, is small.



5.5 Effect of the non-orthogonality term

The strength of the non-orthogonality term and its effect
on A(O) are investigated in the l42Nd case. The finite-range
method is used to calculate the overlap <¢d]¢t>, while the zero-
range approximation with the same normalization constant given
in sect. 4.5 is applied for the first step in the (p,d) (d,t)

process. The intrinsic wave functions in sect. 5.4 are used

for ¢d and ¢t.

The strength of the non-orthogonality term is smaller than
that of the interaction term [TVv in eq. (21)] by a factor of
about 10 as shown in Fig. 26. The resultant calculations in-
cluding the non-orthogonality term show that there is essentially

no effect on the A(8). (Fig. 26)



5.6 Effect of inelastic two-step processes

It has been pointed out by many authors that the two-step
processes via inelastic excitations are important in (p,t)
transitions leading to the collective states. This reaction

mechanism has been clearly confirmed by a recent investigation

+
1

. Therefore the contributions of inelastic two-

of the analyzing power for the 2. transitions in (p,t) reac-

tions35’36)
step processes via the first 2" (2;) states of the initial

‘and final nuclei should be estimated.

An estimation for these contributions was done in the

10 102

4Pd(p,t) Pd reaction. The wave functions of the 2;

states are constructed by using the quasiparticle random-
phase~approximation (RPA) modell9). Details of the formalism
and relevant spectroscopic amplitudes are given in Ref. 36).
For the inelastic scéttering process, we employ macroscopic
form factors which are obtained as the derivative of the
optical potential. The deformation parameters are taken as
‘82=0.2 for both target and residual nucleus. The relative
importance of the (p,p") (p',t) and (p,t') (t',t) processes to
the one-step process is explained in Fig. 27 . The strength
of the (p,p')(p',t) is smaller than that of one-step process
by 0.5%, while the (p,t') (t',t) process is much smaller and
negligible. No remarkable change is observed in the analyzing
power by including inelastic two-step processes as shown in

Fig. 27 . The effect of the inelastic two-step processes is

minor in comparison with the (p,d) (d,t) processes which are



as strong as the one-step process.



5.7 Absolute values of the cross sections

In the present paper, we calculated the absolute values
of the (p,t) cross sections on the basis of the zero-range
approximation by using the numerical values for the zero-range
normalization constants Do(p,d), Do(d,t) and Do(p,t) given by
sect. 4.5.

Now we define the ratio N as N:zo /Oth at the second peak

exp

of the angular distributions of the cross section. Here the

Uth's are the theoretical cross sections mentioned above. 1In
Table 6 are given the ratio N obtained for five nuclei (see
Fig. 14) by the use of the modified optical potential which
has been introduced to obtain overall fits with the data.

The ratios obtained are N=1%*0.2 except for the case of
l42Nd. The agreement between the theoretical cross sections
and the experimental ones ié as good as one would expect in
view of the uncertainties in the absolute values of the
- experimental cross sections (see chapt. 3) and the oversimpli-
fication in the optical potentials for deuterons and tritons
(see sect. 4.6).

These ratios increases from 98Ru54 to l26Te74 and fall

142Nd82. This fact seems to be related to the model

space used for the construction of the nuclear wave functions.

down at

The limited model space (only five single-particle orbits)
employed for the BCS wave functions is considered to be
inadequate for the nuclei near the closed shell. It may be

true that the model space is too wide for 98Ru and too narrow
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for 126Te. The overestimate of the theoretical cross sections

for the case of 142Nd may be due to the simplified assumption

of the pure-configuration (f7§2) wave function for the target

nucleus 144Nd.



Chapter 6 Conclusion

The anomalous analyzing powers for strong (p,t) ground-
state transitions have been observed for the first time by the
systematic measurement on fifteen nuclei having neutrons from
N=54 to 82. The corresponding cross sections, however, do not
show such anomalies. This experimental result demonstrates
that the analyzing powers are powerful tools for investigating
the reaction mechanism of two-nucleon transfer reactions.

The conventional one-step DWBA cannot explain these
anomalies, which only predicts similar angular distributions
of the analyzing power for each target nucleus of the fifteen
nuclei. The anomalous analyzing powers stfongly violate the
derivative rule between the cross section and the analyzing
power. This fact tells us that other transition processes
than the direct one-step process are essential to interpret
the anomalies.

The (p,d) (d,t) two-step processes are then found to be
essential for interpreting the experimental result. The
anomalies can be accounted for as an interference effect
between thé& (p,d) (d,t) sequential processes and the direct
one-step process. The neutron-number dependence of the
anomalous angular distributions of the analyzing powers is
‘determined by the variation of the dominant one-quasiparticle
neutron orbits in the intermediate channels in the sequential
two-step processes.

The ground-state (p,t) cross sections for superconducting



nuclei are improved well by including the (p,d) (d,t) processes
which are as strong as the one-step process.
More works should be done for the distorting potential

in the intermediate channel in the sequential two-step processes.
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Table 1 Experimental information on fifteen targets for

(p,t) reactions.

Target Thickness Form Enrichment Energy resolution
(mg/cm?) (%) (keV)
100zy 2.1 Ruo,?) 97.24 130
102p4 1.8 ru?) 99.35 50
10454 1.3 rRu?) 99.35 50
104,54 2.0 pa>) 95.25 60
106,45 2.4 paP) 96. 66 60
10854 2.0 paP) 98.11 50
11054 2.9 pg? 97.73 50
11204 4.0 caP) 97.8 100
Lideg 4.4 cad® 99.0 120
11604 0.8 ca® 96.85 20
118sn 1.1 SnOZa) 95.75 40
122,¢ 1.0 red) 94.71 20
12844 1.8 re?) 99.19 60
1307 1.5 re?) 97.49 60
144ya 1.2 Na,0,%)  97.51 30

(a) On an aluminum backing.

(b) Self-supporting metallic film.



Table 2 O-values for ground-state (p,t) reactions.a)

Reaction Q-value (MeV)
100:4 (p, t) *8Ru ~8.660
102Ru(p,t) 100Ru -7.539
104 (p, ) 10%Ry ~6.655
10454 (p, 1) 192pg ~9.145
10854 (p, ) 20%pg ~8.152
10853 (p,£)1%6pqg ~7.285
11054 (p,£) 108pg -6.475
11204(p,6)M0%a ~7.892
11404 (p, £) 112¢cq ~7.099
11603 (p,t) 14ca ~6.362
18 (p,t) 10sn ~7.788
1220 (p,t) 120¢ ~8.562
128Te (p,t) 126Te -6.585
130’J:'e(p,t) 128Te -6.018
14444 (p,t) 14%na ~5.461

(a) Ref. 39).



)

Table 3 Single particle energies eja , and the calculated
chemical potential A and gap energy A. The Apt(Ojj)
and Apdt(j)b) are the spectroscopic amplitudes for

one-step and two-step (p,d) (d,t) processes, respectively.

100 98

Ru Ru (nlj) ej(MeV) Apt(OJJ) Apdt(J)
A(MeV) 0.368 -0.072 ld5/2 -0.075 1.018 1.439
A(MeV) 1.062 0.922 251/2 1.382 0.378 0.534
0<_:;7/2 1.786 0.615 0.870
Ohll/z 2.561 0.540 0.764
ld3/2 3.087 0.259 0.366

102 100 . .. .

~Y“Ru Ru (nlj) ej(MeV) Apt(OJJ) Apdt(J)
A(Mev) 0.772 0.364 ld5/2 ~-0.066 0.859 1.215
A(Mev) 1.215 1.071 251/2 1.372 0.485 0.685
0g7/2 1.769 0.810 1.146
Ohll/2 2.555 0.703 0.995
1d3/2 3.055 0.336 0.476

a) Calculated values for target by using the formula in Ref. 21),

b) A gy (3)ERA 4 (3)¥Ag (J); see sect. 4.5.



Table 3 (continued)
104p, 102z, (n13)  ej(MeV) A (033) AL (3)
A(MeV) 1.108 0.763 ld, ,, =-0.057 0.742 1.049
A(Mev) 1.334 1.221 25, ,, 1.364 0.541 0.765
09, ,, 1.753 0.959 1.357
Ohyy,, 2548 0.854 1.207
1d, ,,  3.023 0.411 0.581
104 . . .
0 pd l02Pd (nl3) | ej (MeV) Apt(O_j‘j)‘ | Apdt (.3)
A(MeV) 0.668 0.292 1d;,, -0.057 0.887 1.255
A(MeV) 1.208 1.082 2s,,, 1.364 0.462 0.653
09, ,,  1.473 0.880 1.244
Ohy,,, 2548 0.673 0.951
1d,,, 3.023 0.326 0.461
106,54 104p4 (hl3)  ey(MeV) AL (033) A4 (3)
A(MeV) 0.993 0.659 ld;,, -0.049 0.777 1.099
A(MeV) 1.306 1.213 2sy,, 1.355 0.524 0.741
09,,, 1.457 1.015 1.435
Ohyp,, 2.542 0.806 1.140
1d,,, 2.992 0.392 0.554



Table 3 (continued)

108 106 . .. .
Pd Pd (n13) »;j(MeV) Apt(QJJ) Apdt(j)
A(Mev) 1.288 0.982 ld5/2 -0.042 0.699 0.989
A(MeV) 1.364 1.310 Zsl/2 1.347 0.551 0.779
0g7/2 1.442 1.087 1.537
Ohll/z 2.536 0.927 1.311
1d3/2 2.962 0.454 0.642
110 108 . . . .
Pd pd (nlj). ej(MeV) Apt(OJj)‘ .Apdt(j)
A(Mev) 1.566 1.277 ld5/2 -0.034 0.636 0.900
A(Mev) 1.389 1.367 251/2 1.338 0.551 0.779
Og7/2 1.427 1.104 1.561
Ohll/z _2.530 1.039 1.470
ld3/2 2.933 0.514 0.727
112 110 . .. .
cd cd (nl3j) ey (MeV) Apt(ojj) Apdt(j)
A(Mev) 1.451 1.153 ld5/2 -0.027 1.451 0.932
A(Mev) 1.324 1.315 0@[7/2 1.133 1.102 1.559
251/2 1.330 0.556 0.786
Ohll/z 2.524 0.978 1.383
1d3/2 2.905 0.484 0.685
T -5



Table 3 (continued)
114cd 112Cd
A(Mev) 1.733 1.441
A(Mev) 1.316 1.326
116Cd 114Cd
A(MeV) 2.006 1.723
AMev) 1.293 1.317
118Sn 116Sn
A(Mev) 1.938 1.631
AMev) 1.214 1.233

(nlj) ej(MeV) Apt(Ojj) Apdt(j)
1<515/2 -0.020 0.592 0.837
09;7/2 1.119 1.043 1.475
251/2 1.322 0.544 0.769
Ohll/2 2.518 1.092 1.544
1d3/2 2.878 0.546 0.772
(nl3) ej(MeV) Apt(ojj) Apdt(J)
ld5/2 -0.013 0.530 0.750
Og7/2 1.106 0.951 1.345
251/2 1.315 0.509 0.720
Ohll/2 2.512 1.201 1.699
ld3/2 2.851 0.611 0.864
(nl3) aj(MeV) Apt(OJJ) Apdt(J)
1d5/2 -0.006 0.528" 0.747
0g7/2 0.813 0.866 1.225
251/2 1.307 0.522 0.738
Ohll/z 2.506 1.168 1.652
1d3/2 2.825 0.590 0.834
T - 6



Table 3 (continued)
122 120 . . . .
Te Te (nl3) g5 (MeV) A_Pt (033) Apdt(j)
A(Mev) 2.173 1.878 ld5/2 0.006 0.453 0.640
A(MeV) 1.126 1.134 0g7/2 0.508 0.648 0.916
251/2 1.293 0.468 0.661
0hll/2 2.494 1.268 1.793
ld3/2 2.775 0.654 0.925
128 126 . . . .
Te Te (nljy) sj(MeV) Apt(OJJ) Apdt(j)
A(Mev) 2.857 2.640 1d5/2 0.023 0,321 0.453
A(Mev) 0.939 1.037 0g7/2 0.473 0.435 0.615
251/2 1.272 0.307 0.435
Ohll/z 2.477 1.320 1.867
163/2 2.705 0.785 1.110
130 128 . . .
Te Te (nl3j) ey (MeV) Apt(OJJ) Apdt(j)
A(MeV) 3.051 2.848 l<35/2 0.0287 0.275 0.389
A(MeVv) 0.798 0.941 097/2 0.462 0.369 0.522
251/2 1.266 0.259 0.367
Ohll/z 2.471 1.223 1.730
ld3/2 2.683 0.766 1.084
T = 7



Table

ref

a)

c)

d)
)

g)

4 Optical-potential parameters for the first analysis

in chapter 4 and bound state potential parameters

for neutrons.

d

(SET 1)

46.96+0.42/a173  (94.6+0.4z/a%/3)

+24.0&2

1.17

6.3+12.0
1.32

0.51+0.7¢

6.2

1.01
0.75
1.25

b)

£=(N-Z) /A

B(E2;07>2T) in 10

) X[l-3exp(-rRAl/3)]
1.15
0.81
0

c)
£ 12.28+341.5/B(E2) /A
1.34

0.68

b) Ref. 24.
3

was taken from Ref. 32.

Ref.

25.

e) Ref. 26.

(SET 1)

166.7

1.16
0.752

37.5-127.4¢

1.498

0.817

Adjusted to give the experimental binding energy.

Ref.

28.

£)

1.27

0.67

9.05-5.85¢

fm4 for target nucleus in (p,t) reactions



Table 5 Optical-potential parameters for the second analysis

in chapter 4 and those used in chapter 5.

Deuterons Tritons

(SET 2) (SET 3) (SET 2) (SET 3)
vy 91.13+2.20z/a'/3  eg.0 152.5 176.0
o 1.05 1.15 1.20 1.14
ag 0.80 0.81 0.65 0.72
W, 0 18.0 13.7 18.0
W 21887273 0 0 0
r. 1.43 1.34 1.60 1.61
a;  0.50+0.0132%/3 0.68 0.98 0.82
Vog 3.5 0 6.0 ° 0
rog 0.75 1.15
arg 0.5 0.84
e 1.3 1.15 1.30 1.14
ref. a) b) c) d)
a) Ref. 33.

b) Modified set from SET 1; see sect. 4.6.
c) Ref. 34.

d) Ref. 17.



Table 6 Ratios N of experimental to theoretical cross

sections for five nuclei in Fig. 14.

98Ru 102Ru 108Pd 126Te 142Nd

T - 10



Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Figure captions

Layout of the beam preparation system.

Illustration of the double Faraday cup.

Block diagram of the circuits for data accumulation.
Typical vertical spread of tritons on the focal plane
of ESP-90 magnetic spectrograph.

Momentum spectra of tritons for both spin-up and spin-
down. Each residual nucleus is indicated. 1In the
present paper, the notation of each isotope is given
by the residual nucleus in the (p,t) reaction.

Angular distributions of cross sections and analyzing

98,102Ru 102,108

powers for and Pd. The lines are to

~guide the eye.

Angular digtributions of analyzing powers for (p,t)
ground-state transitions of Ep=22.0 MeV. The lines
are to guide the eye.

Angular distributions of cross sections for (p,t)
ground-state transitions at Ep=22.0 MeV. The lines
are to guide the eye.

Summary for angular distributions of analyzing powers.
The hatched area covers all the data points of
analyzing powers. The A, in the angular correction
factor is taken as A0=128.

Comparison of typical experimental cross sections and
analyzing powers with the theoretical ones calculated

in terms of the one-step DWBA (solid lines). The



normalization of the cross section to the data is made
arbitrarily.

Fig. 11. Comparison between measured angular distributions of
analyzing powers and the calculations in terms of
one- and two-step DWBA. For the optical potential
parameters, the set 1 for deuterons and the set 1
for tritons are used. The solid curves represent
the calculated analyzing powers. The dot-dashed
curves correspond to the one-step process only.

Fig. 12. Calculated cross sections with the same optical
potential parameters as those in Fig. 11 (solid
lines). The data are arbitrarily normalized to the
theoretical curves.

Fig. 13. Relative strengths of the one- and two-step processes.
The solid curves represent the calculated cross
sections with the same optical potential sets as
those in Fig. 11. The dot-dashed curves and the
dashed curves represent the theoretical cross sections
corresponding, respectively, to the one-step process
only and the two-step process only. No normalization
to the data is made.

Fig. 14. Experimental and calculated analyzing powers A (f) and
cross sections o(6). The optical potential set 3
for deuterons and the set 3 for tritons are used.

The depth of the spin-orbit force for protons is

reduced from V__,=6.2 to 4.5 MeV. Dot-dashed (dashed)

LS

curves are the one-step (two-step) DWBA calculations



Fig.

Fig.

Fig.

Fig.

15.

1e6.

17.

18.

and solid curves are the coherent sum of the two
processes. The measured cross sections are arbitrarily
normalized to the theoretical curves.

Contributions of each orbit to the analyzing powers

and cross sections in the two-step processes. Solid
curves are the coherent sum of the each process.
Optical potential parameters are the same as those

in Fig. 14.

Effect of the imaginary part of the deuteron optical

108P

potential on the calculated analyzing powers for d.

Potential parameters are the same as those in Fig. 14.

The WS is taken as WS=12.5 MeV in the indication of
WV+WS .

Shell effect of the (p,d) (d,t) two-step process on
the analyzing powers [(a), (b)] and cross sections

[(c)] for 126Te

. So0lid lines in (a) and (c) re-
present the calculations corresponding to the coherent
sum of the one- and two-step processes and those

in (b) corresponding to the two-step processes only.
In (a), (b) and (c), the dot-dashed (dotted) curves
represent the calculations without the contribution

of 4 (d3/2) and the dashed curves without both a

5/2
and d

5/2
3/2 in (p,d) (d,t) two-step processes. Optical
potential parameters are the same as those in Fig. 14.
General trend of the angular distributions of the

calculated analyzing powers for the nuclei in the

N=50-82 shell.



Fig. 19.

Fig. 20.

Fig. 21.

Fig. 22.

Effect of the imaginary part of the deuteron optical
potential on the angular distributions of the analyzing
powers for 116811. The potential set 3 for deuterons
and the potential set 3 for tritons are used. The
depth of the spin-orbit force for protons is not
modified. The curves represent the calculated
analyzing powers corresponding, respecti&ely, to
WS=16.3 and WV=O (dashed lines), WS=ll.7 and WV=1.6
(solid 1lines), WS=6.7 and WV=3.l (dot-dashed lines)

in the unit of MeV. The potential set 1 is used for
tritons.

Effect of the imaginary part of the deuteron optical
potential on the angular distributions of the analyzing
powers and the cross sections for ll6Sn. The potential
set 1 with the modified imaginary part is used fox
deuterons. The curves represent the calculations
corresponding, respectively, to WS=0 and W.,=25.1

v

(solid 1lines), WS=16.3 and szO (dashed lines), WS=

8.4 and Wv=8.4 (dot-dashed lines) in the unit of MeV.

The potential set 1 is used for tritons.
Calculated analyzing powers and cross sections foxr
l42Nd with the potential set 2 for deuterons and |
the potential set 1 for tritons. Dot-dashed (dashed)
curves are the one-step (two-step)DWBA calculations
and solid curves are the coherent sum of the two

processes.

Effect of the spin-orbit force for deuterons on the



Fig.

Fig.

Fig.

Fig.

23.

24,

25.

26.

calculated analyzing powers. The potential parameters
are the same as those in Fig. 21 except for the
imaginary part of the deuteron potential which has

WV instead of WS. The coheremt sum of one-~ and two-
step processes is represented in (a) and the two-step
process in (b).

Effect of the spin-orbit force for tritons on the
calculated analyzing powers. Solid lines (dashed
lines) in (a) are the calculations with (without) the
spin-orbit interaction f&r one- and two-step processes.
Solid lines (dashed lines) in (b) are the calculations
for one-step processes only with (without) the spin-
orbit interaction. Dashed lines (dot-dashed lines)

in (b) are the calculations for two-step processes
only with }without) the spin-orbit interaction. The
set 2 for tritons and the set 1 for deuterons are

used for the optical potential parameters.

Effect of the spin-orbit force for protons on the
calculated analyzing powers for one- and two-step

(p,d) (d,t) processes. The set 3 for deuterons and

the set 3 for tritons are used for the optical poten-
tial parameters.

Finite-range calculations for analyzing powers com-
pared to zero-range calculations. The set 3 is used
for the deuteron optical potential and the set 3 for
the triton optical potential.

Effect of the non-orthogonality term on the analyzing



powers [(a),(b)] and the cross sections [(c)]. Curves
in (b) are the two-step calculations only. Solid

lines (dashed lines) in both (a) and (b) are the
calculations including (excluding) the non-orthogonality
term. Curves in (c) are the cross sections corre-
sponding, respectively, to the non—orthogonality term
only (Tno) (dashed lines), the interaction term dnly
(TVV) (dot-dashed lines) and the coherent sum of the

two terms (T''+T"°). The optical potential parameters
are the same as those in Fig. 25.

Fig. 27. Effect of the inelastic two-step processes on the
analyzing powers (left side) and the cross sections
(right side). The potential set 2 is used in triton
channels. The cross sections for each process re-

present the relative strengths.
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Appendix 1 Expression for the A(6) in terms of the reduced

amplitude B

We first define two right-handed coordinate systems;

the system S1 and the system S In the system Sl’ the z-axis

5
is perpendicular to the reaction plane and the y-axis is parallel
to the direction of an incident beam. The system S, is the

same as that defined by the Madison convention in which z-axis

is taken to be parallel to the direction of the incident beam
and the y-axis is perpendicular to the reaction plane. The
calculation of the reduéed amplitude is usually made in the

system S because the polar angle in the system 82 equals the

o
scattering angle. The reduced amplitudes B described in each
system are connected by the equation3)

B:; (3 :m§+¢iBJ' (53) D/“}*' (R)5) chcré (Rp) Dq-crz (Rip) ’(Al'l)

where the Dau, (RlZ) are the rotation matricies and R,, means

12
the Eular angles of the rotation necessary to take the system

Sl into coincidence with the system Sz’ In this case, 53,2 =

/ ’ / ’
(ﬁ/Z,TE/Z,ﬁ/Z) and ﬂ=m++0'{—0""‘ and/u:mf,f—gjf—ol..
As shown in eqg. (33), the differential cross section for

the spin substates m%, oé, ci are proportional to the value
mi oy o 12

1B

]

with spin 1/2, we can easily express the analyzing power in

. In the case of an incident particle

the system S, on the basis of the physical meaning of eg. (38),



Aco) = dmicit ' 73 AL
gL g,
j.m;it-;lo‘, , .+ + (LS )’
> o my Ty 0 m/ oo *
_ dngeger S0 By sp By (S0 1.2,
S: 2., \B'wm(sﬂ
]m_fc‘fo‘* .

In order to use the reduced amplitude described in the
system 52, it :is: necessary to transform the above expression
from the system Sl to the system 82. By inserting eqg. (Al.1)

into eg. (Al.2), the numerator of eq. (A2.2) is written as

X
/¢ 7 / / ' /
p n‘l_‘U’_FO‘L' m+ U‘_f 0-':
J,mgicrlm/@z B.  (spB; (s)
A *
m_F O:FO'L- m/{/_ O::O‘,‘,
—_— L
=/s.(s; +;>2: <S100150>Z B. (5B  (5:)
{ + '77-{-0“-}0-( 7 .7
LA
|* t S.
)DIJI' R / I/L/
}, ( )D (R >D; ;(R >D ,CR )DGL_TL_(RQ)
(Al.3)

Generally, the rotation matrices satisfy the equation
g XK

S
”2;, Dw(RPDou /(R = § o

mm

and



e D
SR D L (R

e’ , . k
=(-1)  Z<SS-mmkq¥<55-mm|ko> Dy, (R,) = (al.4)
k - :

Then, applying these relations to the rotation métrices, the
eg. (Al.3) can be rewritten as
/ 7 4 7 / /7 *
r My Oy my Ty Ty

1 ;:l /Oi Bj (Sl) B]' (S‘)
Jmfa"fo-.

- 1

]In?(U‘(T q
7/ 7 / *
M+O'+ mr 0+¢
X BJ. (62) B (s,) . (Al.5)

Summing over g, we can obtain the following results;

7 r X%
m U‘U' my Uy oy
/ +4 "' +
2, 0 B, <s>B s
ymfcfcrl
T *
m+0‘+(r m-[-_‘l LI+
- 2Z /(S.—o XSp+0,+7) Im( (SZ)B' €S,) ] .
Jm,a ’ ’
+v‘ L
(al.6)

where the notation Im means "taking the imaginary parts".
The denominator of eqg. (Al.2) has the same expression
after the transformation. Then the analyzing power is expressed

in the system S2 as the function of the scattering angle 6:

X

4+ L m+‘ 0,00 4

s, Z {Bm*cr"cr(eﬂ.

Jm+0"U

A(e)_ . (Al.75

A -3



Appendix 2  Derivative relation between the A(f) and o (6)

The one-step DWBA leads to the derivative relation between
the A(p) and g(p) in the ground state Og(p,t)og transition.
This relation does not depend on whether the zero-range or the
finite-range approximation is employed. 1In this appendix, we

37)

follow the procedure given by K. I. Kubo using the zero-
range approximation.
The reduced amplitude B described in the system S, (see

3)

Appendix 1) generally satisfies the following relation™’:

' .
m Oy T; me+gH L+ S -8) —mg- 0=y

frsy () = (1) Frs; () . (32.1)
In the (p,t) transition between Og‘ground states, we have
l=s=3=0 and S;=Sg- Then the eq. (A2.1) becomes

m
g 6y = (-1) " P () . (A2.2)

Here we drop the 1, s, j because they are unique. By using
the above relation, the differential cross section in eqg. (33)

can be written as

M=

0

3 2 PG
cey =k (1B "ol +[B? “ol) | (A2.3)

where

K _ AL My ‘kf’ 2Jp +]

= ™ (A2.4)
(275%2)2 ,éc' 2.75 + ]



From eqg. (41), the analyzing power is written as

¢} |

_Lx
ZIm[B (6>B ° To)

RIS 2 a1 2
[B T %0y +] B' 2 Zg]

M|
N]—
nl—

A(B) = (a2.5)

The explicit form of the reduced amplitude is given by3)

. - ) 2 .
m ooy % Li-Lg-2 /

Iy Limoyl g' £ S my L53
By ey=ZA_, Z [——————( FR (50:5:) P(o) ]
2s ] L,Ic?c (Lgtmy)! Ls LeTg, L Ty
Ledg

A2 A AN A \
XLp2sLyJg {JTglop-mg me-ap+e; | J, 00 >

X <L;s 000 17,0, %< LySemmop) Joop-m > L 000l L;07  (a2.6)

" where Li(Lf) and Ji(Jf) are the orbital and the total angular

momentum of the initial (final) partial wave, respectively,

and % stands for (2x+1)l/2. When 1l=s=j=0, we have Li=Lf§L

and Ji=JfEJ because of the property of the vector coupling.
£s 7
In this case, the radial integral I is reduced to
‘ LeJe, biTe
the form of

ZTVZ
/
I

=

L7 b h{

3 A
=L R fpmdr L @2

wheré A and B are the masses of target and residual nucleus,
respectively,-and fLJ is the partial wave of the distorted
wave. The Fo(r) is the radial part of the form factor.

We consider the spin-orbit force as a perturbation and

assume that it affects only phase shifts of the partial wave:



f ~ -;CLe , (A2.8)
where
-2 - |
{LG¢> = L for T=L+3

or —(L+1) for J=l-%

9

el
The fL is a partial wave in the case of no spin-orbit coupling

and independent of J. The CL is a small parameter related to

the strength of the spin-orbit force. By inserting eq. (A2.8)

into eq. (A2.7), we obtain

—-_ -2 >
el: L<L'(T> n
I.,= I, (a2.9)

N

/\ —
where IL is the radial integral in terms of fL' and CL is a

sum of two Cis for the incident and exit channel.

From eqg. (A2.6), we have

PRI A
B ey =2 E (23+1) I, _P (&) | (32.10)
and
L x As 5 Sz !
= —— -1
B "N =T & ) I. P& (A2.11)

where A, denotes the spectroscopic amplitude. By inserting



eg. (A2.9) into egs. (A2.10) and (A2.11), and applying a

Taylor expansion for exponent in eg. (A2.9), we obtain the

following results in the first-order approximation for Cri

o~ L A ~

B %)= == S (2L+1) [ P, (8) (A2.12)
and

N A - o

B (e)=J—_-2?AOEECL(2L+I)IL P (8) . (A2.13)

If we assume that the ﬁi is effective only for a few L, we can
take it outside the summation over L and replace it by an
average quantity C. This procedure is similar to that by

38)

R. C. Johnson . Then we have the following relation by

comparing eqg. (A2.12) with (A2.13):

N)—
roj—

A
2

n| -

d 0 1

— = — A2.14

cLGB (6) = B (| , ( )
because..we have the relation

o _ i

i T = - Poer . (A2.15)

In the expression for the cross section (A2.3), the first term
of the right-~hand side is dominant because the second term is
proportional to C2 from eg. (A2.13) and can be neglected in

our first-order approximation. Then we have



P 2
S
o(e) ~ KB *%eyl | (A2.16)

By inserting egs. (A2.14) and (A2.16) to eg. (A2.5), we obtain

the final result:

Ale) = ¢ ﬁo(e)/me) : (A2.17)



Appendix

A3.1.

lab
(deg)

7.5
10.0
12.5
15.0
17.5
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0

3

Experimental results of differential cross sections

o(0) and analyzing powers A(6) in the center of mass

system for (p,t) ground-state transitions.

errors are indicated by &§c/0 and JA.
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A3.2. Experimental results of differential cross sections
0(0) and analyzing powers A(6) in the center of mass
system for (p,t) ground-state transitions. Statistical
errors are indicated by §0/0 and JA.

lOZRu(p,t)looRu

elab ecm o(8) So/o A(0) SA

(deg) (deg) (ub/sx) (%) (x100) (x100)
5.0 5.1 6548 0.2 1.7 0.3
10.0 10.2 2923 0.3 4.4 0.4
12.5 12.8 1374 0.4 ‘6.1 0.5
15.0 15.3 499 0.8 6.8 0.9
17.5 17.9 89 1.5 12.7 1.9
20.0 20.4 65 2.1 18.9 2.5
22.5 23.0 241 0.9 14.2 1.1
25.0 25.5 477 0.8 14.2 1.1
30.0 30.6. 769 0.5 11.8 0.6
35.0 35.7 769 0.5 1.4 0.6
40.0 40.8 570 0.4 -15.3 0.5
45.0 45.9 291 0.6 -40.4 0.7
50.0 50.9 95 1.1 -49.7 1.2
55.0 56.0 96 0.9 27.0 1.1
60.0 61.1 206 0.6 12.8 0.8
65.0 66.1 265 0.6 -11.4 0.7

A -10



A3.3. Experimental results of differential cross sections
0(6) and analyzing powers A(6) in the center of mass
system for (p,t) ground-state transitions. Statistical
errors are indicated by 680/0 and JA.

104Ru(p,t)102Ru

elab ecm : o(8) So/o A(B8) SA

(deq) (deg) (ub/sr) (%) (x100) (x100)
5.0 5.1 5669 0.3 2.0 0.3
10.0 10.2 2614 0.4 4.3 0.5
15.0 15.3 499 0.9 2.9 1.0
18.0 18.4 54 2.7 -21.7 3.1
20.0 20.4 30 3.6 -30.6 4.0
22.5 23.0 156 1.6 7.6 1.8
25.0 25.5 331 1.1 16.2 1.2
30.0 30.6 614 0.8 11.8 0.9
35.0 35.7 705 0.6 1.5 0.7
40.0 40.8 563 0.6 -14.8 0.8
45.0 45.8 269 0.7 -38.7 0.9
50.0 50.9 80 1.3 -45.9 1.5
55.0 56.0 99 1.1 28.9 1.3
60.0 61.0 211 0.7 11.7 0.9
65.0 66.1 253 0.7 - 9.0 0.8

A - 11



A3.4. Experimental results of differential cross sections
0(6) and analyzing powers A(6) in the center of mass
system for (p,t) ground—staﬁe transitions. Statistical
errors are indicated by 8o0/0 and 6&A.

104Pd(p,t)102Pd

, elab ecm o(8) §c/0 A(D) SA

(deg) (deq) (ub/sr) (%) (x100) (x100)
10.0 10.2 2625 0.3 5.4 0.3
12.5 12.8 1324 1.3 ‘8.6 1.6
15.0 15.3 422 1.4 18.1 1.7
17.5 17.9 93 2.1 46.1 2.3
20.0 20.4 201 1.5 24 .4 1.8
22.5 23.0 540 1.3 9.9 1.5
25.0 25.5 920 1.4 7.6 1.7
30.0 30.6 1207 0.4 7.0 0.5
35.0 35.7 967 0.4 0.2 0.5
40.0 40.8 547 0.6 -16.9 0.7
45.0 45.9 219 0.7 -49.2 0.7
50.0 51.0 81 1.1 -43.3 1.2
55.0 56.0 114 0.9 29.9 1.0
60.0 61.1 231 0.7 12.2 0.7
65.0 66.2 297 0.6 -11.0 0.7

A - 12



A3.5. Experimental results of differential cross sections
0(8) and analyzing powers A(€) in the center of mass
system for (p,t) ground-state transitions. Statistical

errors are indicated by do/c and GA.

106Pd(p't)104pd
elab ecm g(0) So/0 A(0) SA

(deg) (deg) (ub/sr) (%) (x100) (x100)
5.0 5.1 6924 0.2 2.3 0.2
10.0 10.2 2967 0.3 4.4 0.3
12.5 12.8 1439 0.7 5.5 0.9
15.0 15.3 446 0.7 12.0 0.8
17.5 17.9 60 1.8 54.5 1.9
20.0 20.4 166 1.1 24 .4 1.2
22.5 23.0 465 1.3 16.2 1.5
25.0 25.5 784 0.5 13.2 0.6
30.0 30.6 1111 0.3 8.9 0.3
35.0 35.7 950 0.5 - 1.5 0.5
40.0 40.8 580 0.5 -20.6 0.6
45.0 45.9 255 0.6 -49.0 0.7
50.0 50.9 90 1.1 -33.2 1.2
55.0 56.0 142 0.8 28.9 1.0
60.0 61.0 277 0.5 7.6 0.6
65.0 66.1 330 0.5 -15.1 0.6

A - 13



A3.6. Experimental results of differential cross sections
0(8) and analyzing powers A(6) in the center of mass
system for (p,t) ground-state transitions. Statistical
errors are indicated by &o/0 and JA.

10854 (5, 1) 106pa

elab ecm o(8) 8c/a | A(0) SA
(deqg) (deg) (ub/sr) (%) (x100) (x100)
5.0 5.1 8246 0.2 2.1 0.3
10.0 10.2 3704 0.3 3.7 0.4
12.5 12.8 1799 0.7 5.1 0.8
15.0 15.3 563 1.0 6.8 1.1
17.5 17.8 62 2.1 23.8 2.4
20.0 20.4 89 1.5 30.6 1.8
22.5 22.9 394 1.0 17.0 1.2
25.0 25.5 688 0.5 12.6 0.6
30.0 30.6 1119 0.4 9.9 0.5
35.0 35.7 1096 0.4 0.2 0.5
40.0 40.7 758 0.4 -18.0 0.5
45.0 45.8 351 0.6 -43.0 0.7
50.0 50.9 113 1.1 ~38.0 1.3
55.0 55.9 171 0.8 27.8 1.0
60.0 61.0 345 0.5 9.8 0.6
65.0 66.0 401 0.5 ~12.6 0.6

A - 14



A3.7. Experimental results of differential cross sections
0(8) and analyzing powers A(6) in the center of mass
system for (p,t) ground-state transitions. Statistical
errors are indicated by 60/c and GA.

11054 (5, ) 10854

elab ecm o(6) §a/0 A(9) SA

(deg) (deg) (ub/sr) (%) (x1.00) (x100)
7.5 7.6 6567 0.2 2.3 0.3
10.0 10.2 4119 0.3 3.2 0.3
12.5 12.7 1843 0.9 3.0 1.1
15.0 15.3 780 0.7 - 0.3 0.8
16.0 16.3 348 1.3 0.1 1.6
17.5 17.8 99 1.8 -13.9 2.1
18.5 18.8 36 2.9 -23.9 3.5
20.0 20.4 57 2.4 5.8 2.9
21.0 21.4 129 1.6 14.9 1.9
22.5 22.9 277 1.1 16.8 1.3
25.0 25.5 582 1.0 17.6 1.2
30.0 30.6 1082 0.4 12.4 0.4
35.0 35.6 1192 0.4 1.3 0.5
40.0 40.7 877 0.4 -15.4 0.5
45.0 45.8 391 0.6 -40.6 0.7
50.0 50.8 122 1.1 -41.4 1.2
55.0 55.9 192 0.9 26.0 1.0
60.0 61.0 376 0.6 10.1 0.7

0.6 -10.6 0.7

65.0 66.0 415

A-- 15



A3.8. Experimental results of differential cross sections
o(8) and analyzing powers A(6) in the center of mass
system for (p,t) ground-state transitions. Statistical

errors are indicated by do/c and GSA.

llsz(p,t)llOCd

elab ecm o(06) So/o A(0) SA
(deg) (deg) (ub/sr) (%) (x100) (x100)
5.0 5.1 8196 0.1 0.9 0.2
10.0 10.2 3543 0.3 1.8 0.4
12.5 12.7 1644 0.5 "2.8 0.6
15.0 15.3 501 0.9 8.8 1.1
17.5 17.8 94 1.5 47.9 1.7
20.0 20.4 247 0.9 30.5 1.1
22.5 22.9 641 0.8 17.8 1.0
25.0 25.5 1034 0.5 14.6 0.6
30.0 30.6 1405 0.4 7.5 0.5
35.0 35.7 1152 0.4 - 1.5 0.5
40.0 40.7 679 0.4 -21.5 0.5
45.0 45.8 268 0.6 ~50.5 0.7
50.0 50.9 103 1.0 ~19.6 1.2
55.0 55.9 198 0.6 29.9.° 0.5
60.0 61.0 373 0.4 6.0 0.5
65.0 66.0 418 0.4 -16.6 0.5

A - 16



A3.9. Experimental results of differential cross sections
0(6) and analyzing powers A(6) in the center of mass
system for (p,t) ground-state transitions. Statistical

errors are indicated by §o0/0 and &A.

11404 o 0y 1204

1. Ocm o (8) §g/0 A(8) A
(deg) (deg) (ub/sr) (%) (x100) (x100)
5.0 5.1 8683 0.2 1.1 0.2
10.0 . 10.2 3872 0.3 1.8 0.4
12.5 12.7 1862 0.5 0.9 0.5
13.8 14.0 1117 0.6 2.2 0.7
15.0 15.3 573 0.8 5.9 1.0
16.3 16.6 240 1.3 9.9 1.5
17.5 17.8 85 1.7 41.1 1.9
20.0 20.4 171 1.5 38.7 1.7
22.5 22.9 551 0.8 22.2 1.0
25.0 25.5 959 0.6 15.3 0.7
30.0 30.5 1414 0.4 10.3 0.4
35.0 35.6 1263 0.4 ~ 0.8 0.4
40.0 40.7 800 0.4 -19.6 0.5
45.0 45.8 311 0.6 -48.8 0.7
50.0 50.8 114 1.1 ~16.5 1.2
55.0 55.9 234 0.8 26.8 0.9
60.0 60.9 430 0.6 6.1 0.7
65.0 66.0 446 0.5 -16.0 0.6

A - 17



A3.10. Experimental results of differential cross sections
0(0) and analyzing powers A(6) in the center of mass
system for (p,t) ground-state transitions. Statistical

errors are indicated by d&g/c and JA.

11 114

bcd (p,t) ttica
elab ecm o(0) §o/c A(8) SA

{deg) (deg) (ub/sr) (%) (x100)  (x100)
5.0 5.1 5726 0.9 1.1 1.1
10.0 10.2 2739 0.5 1.6 0.5
12.5 12.7 1244 1.4 1.5 1.6
15.0 15.3 453 1.2 - 2.5 1.3
17.0 17.3 98 2.4 2.1 2.9
18.5 18.8 24 3.5 54.3 3.8
20.0 20.4 63 3.1 50.3 3.4
22.5 22.9 247 2.2 24.7 2.6
25.0 25.4 469 2.2 22.4 2.6
30.0 30.5 859 0.6 12.1 0.7
35.0 35.6 . 864 0.6 - 0.7 0.7
40.0 40.7 576 0.7 -18.4 0.8
45.0 45.7 230 1.7 -49.0 1.7
50.0 50.8 77 2.0 -25.4 2.3
55.0 55.9 169 1.4 27.1 1.5
60.0 60.9 311 1.0 9.1 1.1

1.0 -11.6 1.1

65.0 65.9 315

A - 18



A3.11 Experimental results of differential cross sections
0(6) and analyzing powers A(6) in the center of mass
system for (p,t) ground-state transitions. Statistical
errors are indicated by &§0/0 and SA.

118, (o, +) 116g,

elab ecm o(6) So/c A(6) SA
(deg) (deg) (ub/sr) (%) (x100) (x100)
5.0 5.1 6877 0.2 0.5 0.3
7.5 7.6 - 0.1 0.5
10.0 10.2 2903 0.4 - 0.5 0.5
12.5 12.7 1338 0.8 - 0.3 1.0
15.0 15.3 396 1.4 7.3 1.7
17.5 17.8 124 2.1 54.8 2.3
20.0 20.4 357 1.5 34.4 1.8
22.5 22.9 797 1.0 20.0 1.2
25.0 25.5 1249 0.7 16.3 0.8
30.0 30.5 1563 0.6 9.0 0.7
35.0 35.6 1235 0.7 - 3.6 0.8
40.0 40.7 639 0.9 -24.0 1.1
45.0 45.8 212 1.4 -62.5 1.5
50.0 50.8 98 2.1 1.8 2.5
55.0 55.9 260 1.3 31.0 1.5
60.0 61.0 423 1.0 4.0 1.2
65.0 66.0 428. 1.0 -17.0 1.2

A - 19



A3.12. Experimental results of differential cross sections
0(6) and analyzing powers A(6) in the center of mass
system for (p,t) ground-state transitions. Statistical
errors are indicated by 6o/c and G6A.

122Te(p,t)leTe

elab ecm o(6) So/a A(9) SA

(deg) (deg) (ub/sr) (%) (x100) (x100)
5.0 5.1 4089 1.0 0.6 1.2
10.0 10.2 1769 0.5 2.2 0.5
12.5 12.7 713 1.7 ©3.1 2.1
15.0 15.3 238 1.3 12.5 1.5
17.5 17.8 115 2.2 34.2 2.5
20.0 20.4 330 1.1 18.1 1.2
22.5 22.9 721 1.7 12.7 2.1
25.0 25.5 1018 1.5 9.0 1.8
30.0 30.5 1216 0.6 5.4 0.7
35.0 35.6 855 0.5 - 3.5 0.6
39.0 39.7 454 0.6 -20.6 0.8
45.0 45.8 101 1.4 -60.8 1.4
50.0 50.8 83 1.5 14.9 1.7
55.0 55.9 198 1.0 22.8 1.1
60.0 60.9 300 0.8 . 0.5 1.0
65.0 66.0 292 0.8 -19.5 1.0

A - 20



A3.13. Experimental results of differential cross sections
0(6) and analyzing powers A(6) in the center of mass
system for (p,t) ground-state transitions. Statistical
errors are indicated by §o0/c and SA.

128, (5. £) 1260

elab ch o(6). So/0 A(6) SA

(deg) (deg) (ub/sx) (%) (x100) (%x100)
5.0 5.1 5619 0.4 - 1.2 0.4
7.5 7.6 4017 0.5 - 0.9 0.5
10.0 10.2 2413 0.6 - 1.5 0.7
12.5 12.7 1136 1.9 - 2.5 2.2
15.0 15.3 317 2.5 - 2.5 3.0
17.5 17.8 66 3.4 54.3 3.7
20.0 20.3 193 2.0 42.4 2.3
25.0 25.4 849 1.2 16.4 1.5
30.0 30.5 1114 0.6 10.3. 0.7
35.0 35.6 903 0.8 - 2.3 1.0
40.0 40.6 464 1.1 -26.9 1.4
45.0 45,7 129 2.1 -58.7 2.3
50.0 50.7 96 2.5 18.7 2.9
55.0 55.8 248 0.9 23.2 1.0
60.0 60.8 383 0.7 4.2 0.8
65.0 65.9 326 0.8 -18.1 0.9

A - 21



A3.14. Experimental results of differential cross sections
0(6) and analyzing powers A(8) in the center of mass
system for (p,t) ground-state transitions. Statistical

errors are indicated by §0/0 and dA.

130 128

Te(p,t) Te

elab ch o(0) So/c A(6) ~ 6A
(deg) (deg) (ub/sr) (%) (x100) (x100)
7.5 7.6 2852 0.5 - 2.6 0.6
10.0 10.2 1643 0.7 -,2.8 0.8
15.0 15.2 239 1.8 - 0.3 2.1
20.0 20.3 125 2.5 42.4 2.6
25.0 25.4 546 1.0 18.8 1.1
30.0 30.5 792 0.8 10.9 0.9
35.0 35.5 673 0.8 0.9 0.9
40.0 40.6 351 1.1 -22.7 1.2
45.0 45.6 98 1.6 ~57.6 1.6
50.0 50.7 77 1.8 19.1 2.1
55.0 55.8 217 1.0 23.0 1.1
60.0 60.8 271 0.9 4.3 1.0
65.0 65.8 223 0.9 -15.6 1.1

A - 22



A3.15,

lab
(deqg)

5.0

7.5
10.0
12.5
14.5
15.0
16.5
20.0
25.0
30.0
35.0
40.0
42.5
45.0
47.5
50.0
55.0
60.0
65.0

Experimental results of differential cross sections

0(0) and analyzing powers A(6) in the center of mass

system for (p,t) ground-state transitions.

errors are indicated by d8c/c and SA.

cm
(deg)

5.1

7.6
10.1
12.7
14.7
15.2
1l6.7
20.3
25.3
30.4
35.5
40.5
43.0
45.6
48.1
50.6
55.7
60.7
65.7

144Nd(p,t)l42Nd

c(8) §o/0
(ub/sr) (%)

1093
757
408
163

55
43
15
89
281
359
258
97
43
28
46
75
143
141
81
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