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Abstract

Meson and Y-shaped and A-shaped baryon systems of finite
size are constructed as the monopole-vortex systems in the
nonabelian gauge models. These are natural generalizations of
Nielsen and Olesen's solution of vortex of infinite length. The
boundary conditions of Higgs scalars Q(i)(x) = F(i)U(x)—lT(i)U(x),
and Du¢(i)(x) = 0 are assumed at spatial infinity. U(x) is the
singular unitary matrix which is the one adopted by Arafune et al.
for SU(2) case, and its SU(3) generalization. After the singular
gauge transformation U(x), the field tensor Fuv acquires an
additional nonzero term --(i/e)U(EBUB\)—'a‘\)Bu)U"l which corresponds
to Dirac's string term G:v for Ai and/or Aﬁ vector potentials.
These string singularities give the vortex solution of finite
length. Our magnetic monopoles result from the field topology
as in the 't Hooft-Polyakov monopole. The finite-size solutions
in our SU(3) nonabelian gauge model enable us to construct
the color-chemical-bond-like model for the quark confinement.

Our solutions give a rigorous foundation to Nambu's conjecture

on the guark confinement by vortex model. The possibility of

construction of some exotic hadrons is also discussed.
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§1. Introduction

The various phenomena of hadron physics can be explained by

quark model. But quarks have not been observed. Quarks are

1).,2)

believed to be confined by SU(3) color ~gauge fields. One

of the most promising and simplest quark confinement model is the
magnetic vortex model of nonabelian gauge field analogous to

Landau-Ginzburg-Abrikosov model of superconductor. Nielsen and

3)

Olesen presented vortex models of hadrons, which give string-

like structure to the hadronic matter and also yield the confining
force between gquarks. It is quite unsatisfactory that their

arguments are based on the solution of infinitely long vortex.

4) ,5)

Nambu proposed a model, in which a mass term of the vector

potential (London current) is added to Dirac's magnetic monopole

theorys):

pA Nombu OZOD

l 2,2
T >/m (1.1)
rac T2 A
and proved the long-range confining force between the monopoles
(quarks). This model makes it possible to discuss the mesons of
finite extent, but Nambu assumed the Dirac string singularities
as a source, without the explanation of its singularities.

7)

Brout et al. presented another model for mesons, by introducing

three Higgs scalars. The relation of this model to Nielsen and
Olesen's one is unclear.

8)

The aim of this paper is to show the possiblity of finite

or semi-infinite monopole~vortex systems assuming no Dirac string



singularities in SU(2) and SU(3) nonabelian gauge models and
furthermore to discuss the gquark confinement in the hadron,
especially to construct Y-shaped and A-shaped baryons. We
impose the boundary condition for Higgs scalars at r = o,
Q(i)(x) = F(i)U_l(x)T(i)U(x), where U(x) is singular gauge
transformation. The U(x) corresponds to exp(in® ) of Nielsen-
Olesen Model. We show that by the singular gauge transformation
U the Dirac string singularity naturally appears as a result of

the formula

(2192-2023) ¢ (=tan'(§/x)) = 2mEC08Y) . (1.2)

Oour model is a natural generalization of Nielsen and Olesen's
model, and gives the mathematical foundation of Nambu's

4),3) on the quark confinement by vortex model. We

conjecture
show, in SU(3) case, that the baryon systems of Y (or A) shape
can be constructed. Furthermore exotic systems such as a
baryonium qzaz can be also constructed similarly.

Our idea and general formulation for deriving the vortex
solution of finite size is briefly summarized as follows.

Consider the 't Hooft-~-Polyakov monopoleg)

. for example. The
lines of magnetic force extend radially from the monopole to the
infinities (Fig.l(a)). In the case of the monopole-antimonopole

systemln)

; these lines originate from the monopole and terminate
at the antimonopole (Fig.l(b)). Since the lines of magnetic
force extend over the whole space andinn not squeezed, vacuum of

these systems is a normal one (i.e., not a superconducting vacuum)



The energy E of the monopoie—antimonopoie;system is a decreasing
function of the disfance L between these poles. We can separate
these poles far from each other by only finite energy. Therefore
these monopole ‘and antimonopole are not confined. In order to
derive confining force between these poles, we muSt embed these
systems into a superconducting vacuum, because in this vacuum
the magnetic flux is squeezed and this squeezed magnetic flux
tube (vortex line) leads to the confining force between these.
poles (Fig.2). The energies of these systems per unit length
are constant: E/L = const. (except for the vicinities of the end
points) ... Thus we can get the linear confihing potentiaiuww
E = const.xL for the monopole-antimonopole system of the distance
L.

We how formulate the above idea by means of a suitable
classical nonabelian gauge theory. The Lagrangian that we adopt

is

K . .
X =-3The + L TDDVDHEY -1 (@), (1.3

=1

where Q(l) are K Higgs scalars. The number K of Higgs scalars is
chosen so as to break spontaneously the gauge symmetry of (1.3)

completely {(complete Meissner effect). The Euler equations are

) K () (1)
E);}uz:= '“i@§517§5 , [%A§> J,

=t

() - ; .
MDH@ =~BV/3§§(), 1=1, -, K,

(1.4)



where Dué(l) = au¢(l) - ie[Au, ¢(1)]. In order to solve the

Euler equations (1.4), we impose boundary condition at r = w

) (1), -~ { |
o =F U T Ve, di=1 LK, (1.5)

(no summation over i)

where F(i) are real number constants and to be determined by the
minimum of Higgs potential. U(x) is SU(N) matrix which depends on
x through certain angles, e.g., spherical angles 6 and Y, and thus is
singular transformation because of (1.2). T(i) are constant nor-
malized generators, e.g., (1) Ti/z for sU(2), ki/2 for SU(3).
We see from simple energetic considerations that the Euler
equations (1.4) have no static solution in the semi-infinite and
finite monopole-vortex systems without any explicit external
boundary condition (1.5). The dynamical solutions, however, may
exist, e.g., for the rotating systems. 1In our model monopole or
antimonopole of the system is assumed to be attached at the ends
of vortex (or of the singular line of U) by the boundary condition
(1.5). This boundary condition provides the superconductivity
current which is necessary to enclose the vortex line of any
shape. The number K of: Higgs' scalars, and the type of the
matrices T(i) of (1.5) are chosen so as to produce vortices,
otherwise 't Hooft~Polyakov-like monopole will be obtained,
which will be unnecessary for the confinement. As explained
later, it is quite important to choose an appropriate form of U

in (1.5) in order to create the supercurrent which is necessary

to preserve the vortex system of given shape. The choice of U



determines the shape of monopole-vortex system.

Furthermore, if needed, we impose the following ansatz for

the Higgs scalars Of r # o,

@ @) iy ; .
d v =FfnUoT U, i=t, K, (1.6)

where p = (X2 + y2)1/2 and f(l) are "form factors" and they approach the

constant values F(l) at r = ®. Some of the é(l) (or f(l)) must vanish on

the singular line of U(x) because of the continuity of Q(l) on

this line. The f(l) are to be determined by Euler equations and
their values near the vortex system must be solved numerically.
From the reguirement of finiteness of the energy of the

system, we must assurell)'lz)

) .
Dﬂé‘m:O, 1=1, -, K at Y= 00 , (1.7)

After the transformation U, the condition (1.7) is reduced to
[T{i), A&] = 0 which leads to Aﬁ = 0, provided that the gauge
symmetry is completely broken (complete Meissner effect).
Therefore our boundary conditions at r = «» for the Higgs scalars

and the gauge potential are summarized as follows

&) W, - :
@(1) "’FLfo)T“)U"‘)' i=;,...,K,
(1.8)

1 -
Ay = -2 U@ - U,

in original regular gauge and



)/ __; .
@1(1) =F1T(), ’l:'—“",.",K,
(1.9)

/
/Q”(I) = O

in singular "vortex gauge", respectively.
It is most convenient to solve Euler equations (1.4) after

the unitary transformation U. By this fransformation, supercurrent
K

(except for London current) -ie .Z [Q(i), au®(i)] vanishes, but
instead Dirac string appears. T;thransformed field tensor Fﬁv
is
U o / ’ / ’ X
FP-V — Fp.v = B{AAV"QVA,A *f@f/‘\ﬁ,/‘\v] + Gpv,
(1.10)

H

Giv = =20, 2307,

where the last term G:v has in general Dirac string line,
because of the singular nature of U, namely explicit ¢ dependence
of U. String singularities are derived from the formula (1.2).
Correspondingly transformed Aﬁ‘has'L/p singularity along the
centexr of vortex line, but original Au has no 1/p singularity,
because the singularity of vortex and that of the pure gauge

1 10)

term -(i/e)3"U " +U cancel each other . The Euler egquations

in the singular gauge are

v s K (i)/ (i »
D /T";u,v - ané[@ )] [ @ s A‘M]], (l'lla)



R 0’/ ()’ .
D/AD'“@ = ~3V/ag?5 ) 1=I,---/K. (1.11b)

The solution must be obtained numerically. But its approximate
solution can be obtained easily as follows. By assuming the

minimum of Higgs potential for the Higgs scalars
Ca) (R) (1) .
V) = FUT i=1, - K, (1.12)
the Euler equation (l.lla) is written by
K 42
v 7 €] £ (0 ’
D/:,uv:e?ZF [T,[T,AF]]. (1.13)
=]
The right-hand side of (1.13) gives the mass term of the gauge
potential. For the singularjgauge transformations that we shall
adopt  below, the i tensor G:v is always diagonal matrix,
*
e.g., G12(X) = (4ﬂ/e)(T3/2)6(x)6(y)6(~z) for the U(8,¥) of §3-1.
Thus by setting
/B i
Altx)y=o0 ﬁ) = off-diagonal components, (1.14)
in (1.13) we obtain
v /o o ¥ o — 2 ' (1.15)
a(a,AAu — AL + Gy ) =y eOAu, .

where o takes diagonal component(s), i.e., d = 3 for SU(2) and

a = 3, 8 for SU(3). Gauge potentials with off-diagonal components



can be set equal to zero, because they have no string sources.

The mv(a) is the mass of the gauge potentials Aﬁ and of the order

eF(l). The equation (1.15) is easily solved as
‘o

-~

g Qa é-mv(cr)li"'—?l
A0 47CLdSXV { },
b

X -3

(1.16)
xX—S

& = diagonal component(s)

where the Dirac monopole and antimonopole of the strength g
-
are located at 2 and b respectively, and the line integral is

*
taken along the singular line of G v: The A& of (1.16) is vortex

solution and its singular part is expressed by Dirac's formula

WAL — ga |
A sing. It dsxv(m,&,_?}), (1.17)

which has the 1/p singularity along the singular line of G:v

;, we obtain the

-

After performing the inverse transformation U_l

fields in the original gauge

(1)(1) — F U (X)T“)U(I) iz‘/ R K,

(1.18)

RN
8
]
llrw
Qo
Q
pL

é-mvca)lic‘—§‘l (1.19)
2| )T ) j d3x¥ { }
b

‘é Ux)- Uex),



which has no 1/p singularity.- The 1/p singularities cancel each
other between the first and second terms on the right-hand side
of (1.19)10). The fields (1.18) and (1.19) are solutions of the
Euler equations (1.11) under the assumption (1.12). These are
also considered to be solutions in the region far away from the
vortex line. The approximation (1.12) where the Higgs scalars
take their vacuum expectation values over the whole space is

7)

justified in the "London approximation"'’, where
O(AS/AV) << 1. Here the penetration length Ay of the magnetic
field and the coherence 1engthv>\S of the Higgs scalars are
defined by X, = m;l and ) = m;1 respectively and the m, and mg
are the typical masses of the Aﬁ and Q(i) after the spontaheous
symmetry breakdown.

The singular gauge transformations used in this paper, for
U(1) and SU(2) cases, are (i) U(p) = e ™% for the infinite
vortex-line system, (ii) U(e,y) = exp(—i?13)exp(ielz) expﬁyly'farthe
semi-infinite monopole-vortex system and (iii) U(§,9) =
exp(—i?I3)exp(i612)exp(i@I3) for the finite monopole-vortex
system. The singular gauge transformations U(6,9) and U(6,9)

10).

were used by Arafune et al. in order to find the "point

solutions" for the 't Hooft-Polyakov monopole and monopole-

11) have already pointed

antimonopole systems. Tze and Ezawa
out that the last term of Fﬁv of (1.10) is equal to (2mn/e)s(x)S(y)
in the case (i) of ‘the singular gauge transformation U(¥). In

*
this paper we also show that the tensor Gﬁv(x) =

1

—(i/e)U(Bqu—avau)U_ is equal to I,(4m/e)§(x)68(y)e(-z) and

I3(4ﬂ/e)6(x)6(y){e(a~z)—e(—a—z)} for U(6,9) and U(S,¥), respectively.
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Furthermore, in SU(3) case, we intfoduce the following
singular gauge transformations: (iv) U(o,9) and U(6,%) defined
in §4-1 for the semi-infinite and finite monopole-vortex systems
respectively, and (v) S = U,T.U, T, U, of §4~2 for the Y-shaped

11727273
U(S(l), @(l)) with the vertex

and A-shaped baryons, where Ui(x)
angle G(i) of the triangle formed by the observed point and the
two end points of the (i) vortex line of the system and the
azimuthal angle @(i) around this (i) vortex line (see Figs.7 and
8). Iy and I'y are suitable matrices. The G:v for U(S§,9) of (iv)
is (21/e) {=38(1°/2)+/3 (a-v) (18/2) 16 (x) 6 (v) {6 (a~2) -8 (-a~2) } and
similar expressions are obtained for the U(8,9) of (iv) and the
S(x) of (v). The details will be presented in §4.

Our tensor G:v(x) corresponds to Dirac's one, which is
introduced in his abelian magnetic monopole theoryG). It should
be emphasized that Dirac introduced his tensor G:v explicitly in
his magnetic monopole theory by hand but our G:v is derived from
the non-commutativity of the derivative operations for the
singular gauge transformation. Monopole or antimonopole source
of our model is considered tobbe introduced externally through
the singularity of the U matrix.

This paper is organized as follows. In §2, the infinite

vortex-line system will be discussed. A relation between the
*

UV
under the singular gauge transformation U(Y) is pointed out.

* *
Higgs current ie(¢ Bu¢—¢3u¢ ) and the "Dirac current" 3°G

At large distances, the Nielsen-Olesen U(l) model in the London

7

approximation’’, with the aid of the singular gauge transformation

U(¢), yields the Nambu model of the infinite Dirac string with
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strength of n Dirac units. We obtain the same expression for the
gauge potential as that of Nielsen and Olesen, by transforming
from "vortex gauge" to the original gauge.

In §3, semi~-infinite and finite monopole-vortex systems
will be constructed in the Nielsen-Olesen SU(2) Higgs modelB).
We adopt this model as one of the simplest nonabelian Higgs
models from which the nonabelian vortex lines appear. This
model has two isovector Higgs scahn3'$ and'$. For the semi-
infinite case of §3-1, our expressions‘for the Higgs scalars ¢
and.ﬁ are closely related with Mandelstam's homotopy13). The
parameter B in his homotopy is assumed to depend on the spatial
coordinates, i.e., B = 7 - 6 with the zenith angle 6. We
investigate the behavior of fields near the axis of symmetry and
at large distances from the vortex line. The Higgs scalars have
the nodal lines on the negative z-axis and then we can check the

complementarityll)

of the Dirac strings and the nodal lines of

the Higgs scalars. Furthermore we see that in the "vortex gauge",
the Euler equation for Ai in the London approximation is identical
with that of the Nambu model. The magnetic monopole at the end
point of the vortex line have the strength of two Dirac units.
There exists no Dirac string in our monopole-vortex system of

the original regular gauge. A finite monopole vortex system of
this model will be discussed in §3-2. Similar results as in

§3-1 are obtained for this system, provided that the singular

gauge transformation U(S,9) is used instead of U(0,¥) in §3-1.
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In 84, we shall extend the argument of §3 to the SU(3) gauge

group. Finite and semi-infinite monopole-vortex systems in our

. . '3
SU(3) Higgs model are presented in 84-1. The potentials AU and

Ap8 of our "vortex gauge" have the Dirac string singularities

with the strengths

zFic

!H

_ 2T
3= ~e—x3/3, Is x(¥—ol). (1.20)
The o, B and Y are parameters which characterize the singular
SU(3) gauge transformation U(x) and have quantized values owing

to the conditions

306/ .3(3/ 3y, O(-/;?,(Z—b% I- = integers, (1.21)

which are derived from the single-valuedness of the Higgs
scalars. Some of the nontrivial vlaues of a, B and y are listed
in Tab. 1l(a) and (b). We get two kinds of quantized magnetic

vortex fluxes (charge) (1.20). But there is one difficulty that
'3

T
AU and Au8 are mixed by gauge transformation. In order to overcome

this, we define the following gauge-invariant field strengths

2

A2 A2 ‘/\ A
273D~ 8 ), BT @Q’—@‘Bﬂ);:m (1.22)

o
which are reduced to Fuv = auAv - 9 A}J + Gpv’

"vortex gauge." The ¢(l) are the Higgs scalars in our SU(3) model

o = 3,8 in our

and the g (1) are their suitably normalized fields. The A x A
t
terms of Fug vanish, because only the diagonal components of the

gauge potentials remain in our approximate solution in this gauge .
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These terms can not be neglected in the exact solution, however.
The field strengths (1.22) which we shall dénoteg?iv andsqii

can be used to define the magnetic fluxes of vortices or
equivalently the magnetic charges of monopoles in a gauge-
invariant way. 'Color' of monopoles (quarks) is defined by these
I and II fluxes (Tables 1(a) and (b)) - Red quark is defined by the
one from which both vortices I and II originate. Blue quark is
defined by the one into which vortex I comes and from which
vortex II originates. Green quark is defined by the one into

. which vortex II of two units of fluxes comes. These two magnetic
vortex fluxes give "chemical bonds" between red, blue, and green

quarks (monopoles)s)’la). It is accidental that the 'color' of

monopoles of Tab.l coincides with the eigenvalues o.f)\3 and AS
of SU(3) group. The origin of this 'color' is the topology of

the fields. We shall denote this 'color' by adding quotation
1),2)

marks in order to discriminate ‘it from the conventional color
In 34-2, Y-shaped and A-shaped baryons are presented. As
explained previously, we can introduce the singular SU(3) matrix
S(x) which gives desired Y- or A-shaped Dirac string singularities
'3

1
to the Au and A 8 gauge potentials in the "vortex gauge". 1In the

M

Y-shaped baryon, the each sum of fluxes of the two kinds of
magnetic vortices I and II is assumed to be zero at the junction
of three vortices; otherwise we would not obtain genuine baryon
system gqg. The Y-shaped baryon may be imagined to be constructed
from the three meson systems RR, BB and GG of §4-1 by gathering

their three antimonopoles R, B and G at the junction of this

baryon system, where the each sum of the two magnetic charges of
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R, B and G must vanish (Fig.7). The difference between the Y-
shaped and A-shaped baryons is pointed out.

In §5, we shall discuss Gauss' theorem on our squeezed
magnetic flux.  This is examined under the London approximation
and in the "vortex gauge" of our models, where only the diagonal

components of the gauge potentials remain. We can express the

tH

* *
= - A o)
dual tensor Fuv' where Fuv auAv 3uAv + Guv for Au u )} o
'8

Au , in a transparent form for physical insight. We see that.the

magnetic flux originates from the monopole in two distinct forms.

For the semi-infinite system of §3-1, for example, one extends to

—

v
the negative z-axis. The other part extends from the origin

infinity in the form of sgueezed flux tube of radius m along

spherically like Yukawa force with the range mvl. For r >> m;l,
the latter part vanishes, but the former extends to infinity and
presents the origin of confining force between quarks. Magnetic
flux ® of the squeezed flux tube is equal to the magnetic charge
g of the monopole at the origin, i.e., ¢ =‘—g in our notation.
Similar results can be obtained for the systems of §§3-2 and 4-1.
In 86, the quark confinement will be discussed in our SU(3)
Higgs model. Our I and II vortex lines correspond to the vortex
bonds of Nambu's phenomenological chemicai bond model for hadrogg{lg)
These bonds allow only 'colorless' states such as RR, BB and GG
meson systems and RBG baryon system as finite—eﬁergy states. By
'colorless' states, we shall mean such systems with no magnetic
'colbr' charge. The allowed states in our SU(3) model are
(i) 'colorless' mesons: RR, BB, GG,

(ii) ‘'colorless' baryon (antibakryon): RBG (RBG),
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(iii) 'colorless' exotic states: RRBB, R2B2G2 etc. (Fig.l10),

5)  (rig.11).

(iv) Pomeron
It is interesting to note that some exotic states are allowed
in our model. .All the other systems such as 'colored' mesons,
'colored' baryons, diquarks, isolated quarks, and 'colored'
exotic states, e.g., RRBB are excluded in our model. We see that
the confinement of quarks, in this chemical vortex bond model,
can be explained at least for 'colorless' states, but does not
necessarily select the 'color' singlet hadron states. It is
interesting to study.experimentally the difference between the
'colorless' states in our model and the color singlet states in
the conventional color model. Further analysis is required on
this point.

The last section, §7, is devoted to conclusion and some

final remarks.
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*
§2. The Nielsen-Olesen U(l) model and the Nambu mode18) ™)

In the Nielsen-Olesen U(1l) model3) the Lagrangian is given

by

oZ = —Z;_"(a{uqv -~ 6w4‘u>2+/(a'u,- ;8/4{&)4)[2 - V(Sb),

(2.1)

V@) = k2912 + 21p1*. (42<o, A>0)

The Euler equations for the gauge potential Au and the complex

Higgs scalar ¢ are
F(opAv—2vAp) = ie($¥oud - paud¥) +2€10PAK, (2.2)

(ou—-ieAu)’¢ = —p2¢ =2I$P¢. (2.3)

The Nielsen-Olesen ansatz for ¢ and Aﬁ is ¢ (x) = exp(in¢ ) f(p),
-\

Ao(x) = 0 and A{x) = é?g(p), where $>is the azimuthal angle, 5?
is the unit vector in the direction of ¢ and n is an integer.

. - 2 2.1/2
The f(p) and g(p) are real functions of p = (x° + y°) .
Substitution of this ansatz into (2.2) and (2.3) leads to
differential equations for f£(p) and g(p). This is Nielsen and
Olesen's procedure.

We now apply our general method summarized in §1 to the

*¥) The term "singular gauge" used in §§2 and 3 may also be
substituted by "vortex gauge". The latter will be used in $§4

and the subsequent sections.
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simplest Higgs model (2.1). We take the same ansatz for the
Higgs scalar ¢ as Nielsen and Olesen's one: ¢ (x) = exp(inP)f(p).
We remove the phase factor exp(in¢) of ¢ through the singular

)

*
gauge transformation U(y) = exp(-in¢y), so that the real Higgs

scalar ¢' = f(p) is obtained and the Higgs current vanishes.
*

The transformation U(Y), however, yields a new term Guv(x) to the

Euler equations (2.2):

F oAl - wAl) = 3Gk + 281 AL, (2.

I

(O-€AAR)f =—12f —af3, (2.5)

where

’

Af* = Afc-(i/e) BHU'U—I = /4{4"‘ Cﬂ/e)af.(qo,

(2.6)
X _ 2 -
Giv==gU(uav— 223U = Baav- 202 )9.
The nonzero components of G:v are given by
* .
Gri2(x) ==~G*§,(I) = g’[g_&&x) 6¢4), (2.7)

*) By singular gauge transformation, we shall mean gauge trans-
formation U for which auavU = avauu fails to hold on lines or

points.
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where we have used the following relation:

oL

~VA-—§2 = 2TEEY) , p=(x,Y,0) . (2.8)
We see that the vector B/p2 is divergenceless outside the z-axis.
In order to estimate the 3-(g/p2) on the z-axis, we integrate it
over the xy-plane: ‘gdxdy$'(3/pz) = §.dq> = 27w, thus (2.8) is
obtained. A more rigorous treatment will be provided with the
distribution theory. See Ref. 14), for example.

The tensor G which has nonzero components G

*
v 03 = “G3p (= Gpy)

can be expressed in terms of Dirac's string variables yu = yu(r,o):

G0 = gfdr [dorgt, $Istey),

(2.9)
\d ¥
[y 41 = 28%a_ 280"
- DT 20 o0 21
with yo =T, yl = y2 = 0, y3 = ¢, and § = -2mn/e (n Dirac units).

The tensor G:v in (2.4) can be regarded as the one derived from
the Dirac string extended on the z-axis from z = -» to z = .
Applying Patkds' argumentls) to (2.4) and (2.5), we see that the
Higgs scalar ¢' = |¢| has the zeros on the whole z-axis, which
implies the continuity on the z-axis of the Higgs scalar ¢ =
exp(in®) |¢| in the regular gauge. Furthermore the complementarityll)
of the Dirac strings in the singular gauge and the nodal lines

of the Higgs scalaré is satisfied.

Compared (2.4) with (2.2), we find that the Higgs current

* . "
ie(¢*8u¢—¢au¢ ) in (2.2) is exactly replaced by the "Dirac current
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aVG:u in (2.4). Note that the Dirac current a“G:u is nonzero

only in the infinitesimal regidn around the z-axis(the infinitesimal

solenoidal current) and, in contrast, the Higgs current is not so.
Next we investigate the behavior of Aﬁ at large distances

from the vortex~line. In the temporal gauge A! = 0, the equation

0
(2.4) yields the following integral equation for Ai:

Al) = "‘_(Gr(%’i/)aa ;k’:(xl)di/ (2.10)

+26 G-Il - IS EORIAL @) L,

where we have imposed the condition V-R' = 0, which will be proved

*
later to be consistent with our final result for A' ). The function

G(x-x') = (l/4ﬂ){exp(~mvl§—§'|)/|§—§'|} is the Green function for
the massive vector field with mass m, = eF, in which F is defined
by |¢(x)| = F/¥Y2. The integral equation (2.10) can be solved,
formally, by the iteration. This iterative expansion is justified

**)

for large distances p >> m;l and in the London approximation as

*) In the derivation of (2.10) we have assumed the relation
[a“, Bv]A' = 0. Its justification is given by single valuedness
v J

of A¢ with respect to the space-time point x", see Ref. 16).

7)

**) According to Brout et al. ', we refer to the neglect of the

terms O(mv/ms) = O(AS/AV) as the "London approximation". Here

m, and m_, are the magses of Au and ¢ after the spontaneous

S
symmetry breakdown; m, = e(»ZuZ/A)l/z, mg = (—4112 1/2. The

penetration length XV of the magnetic field and the coherence

length AS of the Higgs scalar ¢ are defined by Ay = m;l and

=1 .
AS = mg, respectively. N
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shown in the following.

The first zeroth-order term of the right-hand side of (2.10)

is equal to the gauge potential in the Nambu model4)’7)

[e 0] —_
A2 = 2 (4 —4{—exp(—-7nle—x’f)}
A( ) 2@_00 l'I—'I/, ecpe 'VKI( -V/O) ( )
where the line integral is taken along the whole z-axis. After

iteration the first-order term for Ai is obtained as

x%f{[‘#(@]%‘ICP(?)P}KO(/’”vF)K,@ﬂvF/) 599, d:c/’dx’2, (2.12)

PN ..\ 1 2 -~ A .
where p' = |p'|, p' = (x'", x'%, 0) and p = |p-p'|. The magnitude

of the Higgs scalar |¢(§')| differs from its vacuum expectation
value only in the region of 0.< p' < AS. Therefore we can
roughly estimate the integral in (2.12) by approximating the

. 2 A2 . 2 :
difference [¢(»)|” - |¢(x')|“ by the step function |¢ (=) | e(ks—p ) :

’-_klé—m ,[% [ (o) j/{o('mv/O)K(’mv/o)eso’d:c/’c(I . (2.13)
Oé;ﬁ1§;13

Since the condition p >> AV >> AS is satisfied at large distances

and under the London approximation, we get
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2
/\(X)O) e?evarmvf’)x (Rs)/ (2.14)

where we have replaced Kl(mvp') of (2.13) by its most dominant

part (mvp‘)—l. From (2.11) and (2.14) we obtain

AR) = A+ A
& B2 K, 0myp) {1+ O(Cs/ar))} (2.15)

up to the first order of-i}(§). Thus it is justified to solve
(2.10) iteratively for large distances and in the London

approximation*). We conclude that, for large distances and in
the London approximation, the Nielsen-Olesen U(l) model in the

singular gauge ((2.4) and (2.5)) can be approximated by the

Nambu model

B\J(BPA\/) -—‘au/\/,/L +Cf[fu) = ’méA;L (2.16)

and the constant Higgs scalar ¢' = F/V2.

Finally we show that if we perform the inverse transformation

*) We may expect, say, a term of the order of magnitude
(As/kv)ln(ks/kv) in the higher-order expansion of (2.10), but
they do not change the result of (2.15) under the London

approximation.
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U_l(?) to the solution (2.11), we get the same expression that
Nielsen and Olesen obtained by treating |¢| as a constant. After

performing U_l(@) to the vector potential (2.11), we get

Zﬁ) = gSD{—ez?—)o %WVKIWV/O) } y (2.17)
and the Higgs scalar is ¢(x) = (F//?)exp(ing>). This is the
result of Nielsen and Olesen: They obtained (2.17) by solving
the Euler equation (2.2) in which |¢| is treated as a constant.
We could reproduce the same result as that of Nielsen and Olesen
through a different path from them, which indicates the consistency

of our treatment of the singular gauge transformations.
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§3. The monopole-vortex systems in the Nielsen-Olesen SU(2)

Higgs models)
§3-1. A semi-infinite monopole-vortex system

We now deal with the semi~infinite monopole-vortex system.
Our method in §2 can also be applied to this system. We adopt

the Nielsen-Olesen SU(2) Higgs mode13), which contains two

)

isovector Higgs scalars'$ and'$* . The Lagrangian is given by
| 2
L=-2TFuv + TTDOD* + TrDYDHY - V(4 ),

V@) = 26Trd + 4C4(Tr ) + 242 T 0> + 4da(Tr?)”

F2eTrdyp + 4e4 (oY) (3-1.1

(c2,da<o0, c4,ds, €s>0)

7)

*) Brout et al. chose a multiscalar model containing three

Higgs scalarsf?i, for convenience. However, in SU(2) case only
two Higgs scalars with noncollinear vacuum expectation valués3)
are sufficient for deriving the vortex line. This is the reason
for our chice of the model (3-1.1). Higgs scalars@i (or'$ and
?) of Ref. 7) which vary in space keeping a pyramidal symmetry
in their ground states are replaced by (3-1.4) in this paper

which varies in space keeping the configuration (3-1.5) with

fixed relative angle ?b.
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Here V(¢,y) is the Higgs potential and the Euler equations are
v
DF{(A\) = —ie[P, D}ACP] —ielY, D},LLP]) (3-1.2)

D'Dug = a\/ , DDy =

(3-1.3)

%U

where Fuv = B A -3 Au—le[A ’ A 1, D ¢ = 8u¢—1e[Au,¢],
Au = (Ta/2)A,ua etc. and T are the Pauli matrices.
Consider a static axially symmetric semi-infinite vortex

line whose energy is localized about the negative z-axis (Fig.3).

Correspondingly we propose the following ansatz for the Higgs

-3 .Y
scalars ¢ and y:

$(x) = {cosécoslso +SiP, (wsh—1)wsPsing , ~$m6cosso}f¢(p, %),

Yx) = {coseoossocoscfp*%) + Sinpsin(Q-Po),
SO sinPeos(P—Fp) = osP Sin (9= o),

= SinBeos(P—%o) Hu(p 2), (3-1.4)

where 6 is the zenith angle. Here ?b is a constant determined
from the Higgs potential V(¢,y), and we assume to be ?b # 0, ﬂ3).
The f¢ apd f¢ are some functions (the "form factors"). 1In
(3-1.4), we have explicitly fixed only the directions of the

Higgs scalars in the isospin space and left their magnitudes,

i.e., f¢ and f¢ unfixed. But these £, and £, are chosen so as

¢ 1
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to satisfy the suitable boundary conditions compatible with this

vortex line.

The Higgs scalars in our singular gauge are expressed as

P = (1, o, o)f,(p2),
EUJ(I) = (cos§p,, sin%o, o)f*(gz)' ‘ (3-1.5)

The above Higgs scalars (3-1.5) are connected with those of
(3-1.4) in the regular gauge through the singular gauge trans-
formation U(e,?)lo) = exp(-i?I3)exp(ielz)exp(ivla), i.e.,

¢ = U—l(e,?)¢'u(e,?) and y = U'l(e,@)w'u(e,@). The Higgs scalars
$' and ﬁ' lead to the vanishing Higgs currents; -iefly’, au¢'] =
-iely', auw'] = 0, and this is one of the reasons for our choice
of the ansatz (3-1.4). Note that'g' and ' are on the 12-plane
in the isospin space and the angle between them is the constant
Fo-

On the positive z-axis, the Higgs scalars’$ and'$ of (3-1.4)

agree with those of (3-1.5) having constant directions in the

isospin space. On the other hand, the Higgs scalars around the

vortex line near z = —-o are

W], = (~0052¢, —sin2¢, 0)fy(p,%),

’

VO, = (—0s(29-42), —Sin2P-%,) 0)fp(p.2). (3-1.6)

We see from (3-1.6) that, when a point P(?) in the physical space
turns once around the vortex line near z = -», the ¢ and

ﬁ rotate twice around the third axis in the isospin space.




- 26 -

There do not exist such continuous Higgs scalars-$ and'a as to
agree with (3-1.5) at 8 = 0 and, at 6 = 7, rotate once around
the third axis in the isospin space when the point P(?).turns
once around the vortex line near 2z = ==, For example, in
(3-1.4), the many-valued Higgs scalars appear at the interval
0 < 6 <7 if we replace ¢ by ¥/2, though we get desired fields
at 8 = 0 and 7. We return to this problem later in this section.
Note that our ansatz (3-1.4) is connected with Mandelstam's

homotopyl3)

through the relations ¥y = 7 - o, ¥$= 27 - ¢ and
® = m - B. The angle ¢ denotes Mandelstam's azimuthal angle and
also the parameter B characterizes his homotopy.

Applying the singular gauge transformation U(6,%) to (3-1.4),
we get the Higgs scalars (3-1.5) and then the Euler equations

(3-1.2) are given by

D/VFPC = ¢ ;A;f'cp + e ;A;Lw (3-1.7)
where
At=(0, A2, A2
and

) /1 /2 /3
Aﬁ‘P = (sin° @, Aﬂl"ws%sin% f\/,‘f/ —cosfysing, Ap + 05 o Af* ;A ).

*
The field tensor Fﬁv acquires a new term Guv in the singular

gauge:
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/1; = UAHU”“- = 3uU-U™, (3-1.8a)
/
Fuv = A0 = Al —ie[AL, AL] + Gl (3-1.80) ")
¥ _ i N
Gre = —gUGuav-av3p)U™! (3-1.8¢)

*
The nonzero components of Gnv are given by

G’Tz(x) = ‘"G’zl(:‘)

_2nfr!x | x2 4 3 2
=TT v w5 (1-F)eosy

3 :
=*§—'%£5(U3<y)9(‘3), except for the origin, (3-1.9)

where r = |x|, and (2.8) and the relation Ty () = (anav—avau)e =0
*)

*
(except for the origin) have been used . The corresponding

dual tensor Guv can be expressed by Dirac's string variables:

w2 (o [ moyvy o4 -
G (x) = E-gjd’tjdo*[;t , 418 (x~g) (3-1.10)

11)

*) This expression was also written by Tze and Ezawa , but

they did not refer to the explicit forms of singular gauge
transformations in the semi-~infinite and finite cases.
*¥%) The Jﬁv(x) may have singularity at the origin. It is easily

checked that, in particular, the J‘v(x) has no 63(x) singularity.

i
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with the yu in §2 and with g = -(4n/e) (two Dirac units).
Consequently, the new term G:v in Fﬁv can be.regarded as the one
derived from the Dirac string with the strength of two Dirac
units extending. on the z-axis from z = -« to the origin.

We now investigate the behavior of-iﬂ,’é' and—a' in the
singular gauge near the negative z-axis, where the symmetry
breaking is recovered. Because G:v(x) is proportional to
(T3/2)6(x)6(y)6(—z), we can expect that Agg behaves 1like 1/p
near the negative z-axis, This is justified below, if we can
expand the gauge potentials A' (p,2) and A‘ (p,z) in Laurent
series around p = 0 (with the fixed z). We must extend the
argument of Patkésls) from his abelian to our nonabelian cases.

We require the finiteness of the energy per unit length of the

vortex line, which leads to the following conditions:

D,/ACPi D,/Apf FF:’ = 0(pP), p<i for P—o0. (3-1.11)

Then the third component of the "magnetic fluxes" is evaluated
by integrating over an infinitesimal disk of radius e around

the z-axis:

3= [H"af

= YA db—efdxdy (AL A% + AP AZ) — ocn) =0 (677),

(3-1.12)

ai _ ajk . . .
where H = —(1/2)elij . Substitution of the Laurent series
Aia(p,z) = £_ oo T (K z)p (I = p,‘Q?indices) into (3-1.12) leads

to
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3 (- - 200
Ao (-1,2) = SO0C2),

(3-1.13)

/

, .
Ap(-2,%) = a3(-3,2) = -+ - =0

and, in addition, some recursion relations among aIa(ﬂ, z)'s
are obtained. As a result Aﬂg behaves like 1/p near the negative

z—~axis:

AIS(P,Z) = 5?—‘};-9(—2) + O (P") for P o0, (3-1.14)

We similarly find that AQ; and Ah? have no terms with the inverse
powers of p.
Subsequently we apply the conditions (3-1.11) to the Higgs

- - . . .
scalars ¢' and ¢'. Their covariant derivatives have, say, the

following components:

/ / 2 -_ /3
(DFLCP )CP - eAS"f?J
TN . /3 .
(OFY ) = ~eAgTysine, (3-1.15)
From (3-1.11), (3-1.14) and (3-1.15), we get the asymptotic

forms of the form factors of the Higgs scalars near .the negative

z—axis:
;ﬁ;,(p,z) ~ Cy®) pum , VDo,

/,
folp, 2) ~ C‘(p(z)pwzi V()>0 for g0, P—0. (3-1.16)
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The Higgs scalars'$‘ and'ﬁ' have zeros on the negative z-axis,
which implies the continuity on the negative z-axis of the Higgs
scalars (3-1.4) in the regular gauge. Furthermore we see the

complementarityll)

of the Dirac strings and the nodal lines of
the Higgs scalars.
. . . - LY -3
Next we investigate the behavior of AL » o' and yY' at large

distances from the vortex line. The Higgs scalars in this region

have their vacuum expectation values: |$| = F¢ and [$| = F
1/2

wl

- 7 . 1/2 . _

where F¢ = c2/2c4) and Fw = | d2/2d4) . Equation (3-1.7)

implies that all the isospin components of Aﬁa behave like the
*

Yukawa-type ) for large distances. By assuming the minimum of

Higgs potential for the Higgs scalars
=/
$x) = (1,0,0)Fg,
=y
Y ) = (ws$o, singo, 0) Fy, (3-1.17)

the Euler eguations (3-1.7) is written by

D/UFPLC = ezF;Aﬁ(? + e’FfA{,:w' (3-1.18)

1

*) The eigenvalues of the mass matrix for A'~ and Aﬁz satisfy

the equation (m2)2,— e2($2+$2)m2 + e4($2$)2 = 0. This equation

2

of m“ has one real positive root if l$] = |y| and $.L'$, and

otherwise has two real positive roots.
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Gauge potentials A'i and A'ﬁ can be set equal to zero because

)

*
they have no string sources and (3-1.18) is reduced to

3 o 13
Flouhl - wA’ + 647) = mpAL, (3-1.19)
2 _ 2,2 2 .
where m, = e (F¢ + Fw). The equation (3-1.19) has the same form

as in the Nambu model, and we have the following solution

Ao =o

o ° ., ~9’m"'§—x1
AP = st’xv{ — }

(3-1.20)

This is also approximate solution of (3-1.7) in the region far
away from the vortex line.

So far we have investigated the behavior of the fields in
the singular gauge. We now translate it into the regular gauge.
To this aim, we perform the inverse transformation U—l(e,?) to
the fields Aﬁa, ¢'a and w'a. For the Higgs scalars'$ and-$ we
obtain (3-1.4). For the gauge potential Aﬁ we have Ag(x) =0

and

a - Q / N -
SA =U o9 T ATcoU®.9) - & 3U16,9)- 16, 9).

(3-1.21)

*¥) The equation (3-1.19) corresponds to Eq.(8) of Ref. 7) in a
singular gauge where field'§ is real. oOur (3-1.19), however,

N .
takes account of Dirac's term Gnv explicitly, in contrast to Ref. 7).
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We easily see from (3-1.21) that the l/p behavior of Aﬂg_is just

cancelled by the pure gauge term, i.e., -(i/é)aiU—l-U. The gauge

potential Ai,in the regular gauge has no 1l/p term near the z-axis.
At large distances (r, p >> mvfl) far from the vortex line,

the first term of the right-hand side of (3-1.21) rapidly

decreases, so that aM approaches the expression

H _ 1 - 3-1.22
Ao = -2U6,9).00,9), ( )
that is,
Ay = ai, 1§~ a1 X 3 | }

If (3-1.23) is also used near the symmetry axis of vortex line,
we see that only the component Ai?has the singular line on the
negative z-axis, which is in fact cancelled with the first term
of the right-hand side of (3-1.21). Moreover all the other
components AZ, A: (a =1,2,3) and Aip(a = 1,2) do not have
singular line, but singular points at the origin,

At the infinite point P(p.,9,z) where z - -» and p is large

(p >> mv-l), only the component Ai,survives and then we get
Ai,= 2/ep. We thus see that, through the singular gauge trans-
formation U—l(e,?), the singular part of the gauge potential
A'$ = 2/ep near the . negative z-axis has been transferred into
the tail of the gauge potential A%>= 2/ep of the regular gauge

at large distances where z » -o,

The tail of the gauge potential A%P= 2/ep yields the
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"magnetic flux" of 47m/e (two Dirac units). On the other hand,
in the case of infinitely-long vortex line, the smallest flux
is 2m1/e (one Dirac unit) (see (2.7) or (2.17)). According to

11) argument, only the topologically unstable

Tze and Ezawa's
vortex lines whose fluxes are (in the SU(2) case) integral
multiples of 47m/e admit the singularity-free end points. Our

result is consistent with this argument. Our semi-infinite

monopole~-vortex system has no Dirac string in the regular gauge.

Note that the flux 47/e around the vortex line in the regular
gauge is equal to the strength of the magnetic monopole at the
origin in the singular gauge (see (3-1.9)). Further study on

this point will be given in §5.
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§3-2. A finite monopole-vortex system

We proceed in the same way as in §3-1 by replacing the

10)

singular gauge .transformation U(8,¢) with U(S,y). The angle

¢ is the one from which the monopole a (0,0,a) and the anti-

L =
monopole 3_ = (0,0,-a) are seen: § = tan-l{Zap/(r2'— a2)}

(Fig.4). The U(8,9p) is a special case of U($§,p), that is, if

the monopole is placed at the origin and the antimonopole at the
point (0,0,-2a), the angle § approaches 6 by the limit a + «
(Fig.5). Therefore almost the same results as in §3-1 are
obtained also in this finite case.

We shall consider an axially symmetric static finite monopole-
vortex system whose energy is localized about the interval -a<z<a
on the z-axis, which we denote with I in this section. Our ansatz
for the Higgs scalars is given by (3-1.4) where 6 is replaced by §
in the regular gauge and (3-1.5) in the singular gauge, and these
are connected with each other through the U(§,¢).

Near the z-axis with |z| > a, the Higgs scalars have constant
directions in the isospin space, i.e., they are given by (3-1.5).
Near the interval I, the Higgs scalars are equal to the right-hand
side of (3-1.6). Similarly to the Higgs scalars of §3-1, they
rotate twice around the third axis in the isospin space when the
point P(X) turns once around the vortex line.

After the singular gauge transformation U($-¥),, we get ' the
Higgs scalars (3-1.5) and the Euler equations (3=1.2) are given by
(3-1.7) and (3&1.8a)~(3—1.8c). In this case the nonzero components

*
of G are
uv
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X
G2 (%) = “‘G;.F:(I)
_ 2T l_’_c:' 2axX  T* 2a¢ 13 r-a?
- {2 e T 2 hr 2'('” Y }S(x)g(g)
_ 34%
= 5‘<1)863){9(a 2)-6(-a-2)}
except for the points gi’ (3;2.1)

where r, Ix - a+|, and (2.8) and the relation L__ (x) (3.9

BV - v
*
- 3v8u)8 = 0 (except for the points ai) are used. )

The correspond-
ing dual tensor pr can be expressed by Dirac's string variables
as (3-1.10), where the Dirac string extends on the z-axis from

z = —-a to z = a.

. | 1 !

The behavior of Au, ¢ and ¥ near the z-axis is obtained

from arguments similar to those given in §3-1. The gauge potentials

a .
A'" near the z-axis are

Aae®), Agk = O() (3-2.2a)

AGAp,=) =—:};{6(0\—2)-— 6(—&-—2)} + Q(p°) for p-y o, (3-2.2b)

*) The va(x) may have singularities at the points 3+. It is

easily checked that, in particular, the Luv(x) has no

§(x)8(y)d(z + a) singularities.
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We also see that the Higgs scalars have zeros at the interval I,

which implies the continuity at the interval I of the Higgs

scalars in the regular gauge.

Furthermore we see the complemen-
11)

tarity of the Dirac strings and the nodal lines of the Higgs

scalars.

Under the London approximation, we get the Euler equation

*
(3-1.19) with G

]
y °f (3-2.1) and the gauge potential Au3 is

solved as A (x) = 0 and

. (mel3-21)
/1 %0 ~('/e)Jd§3<§ —exply } (3-2.3)
o

| X -7

Finally we return to the original regular gauge by means of

l(6,30). As in §3-1, we see that the 1/p behavior of A:; near

the interval I is removed in the regular gauge. At large distances

from the vortex line, we get the following boundary expressions
for A :
M

Aleo = —gdUCe-U6e)  for RYymy!, (3-2.4)

where R stands for Ty, P and r_, according as the reference

point is in the regions z > a, a > z > -a or z < -a. From

(3-2.4), the p-,<?~‘§nd z-components of Aia are written as follows:
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a _ | 2ax*
A‘P € y_'f,x(:)o ’ (a=1, 2)
A2 = L wy -r-a?
Q J
? Wﬂ:f (3~-2.5a)
where
= 20 2 _2 9y 4apE =
= — -Z+Q - -
76 (mJ_)z(P )é’,o )2 €z , (3-2.5b)

If (3-2.5a) is also used near the symmetry axis of vortex line,
we see that only the component A<; has the singular line at the
interval I to be cancelled in fact. Moreover all the other

components do not have singular line, but singular points at §+.

3
P

survives at large distances and we get A.; = 2/ep. It leads to

For the long vortex line where a - ©, only the component A

flux 4T/e (two Dirac units). Our finite monopole-vortex system
has no Dirac string in the regular gauge. Our finite system is
dynanically unstablé if the Higgs scalars ghand $ are treated as
dynamical fields, because the monopole and antimonopole of the

system can annihilate with each other into the vacuum state.
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§4. The monopole-vortex systems in an SU(3) Higgs model
§4-1. Finite and semi-infinite mdnopole—vortéx systems
We now extend the argument of §3 from the SU(2) gauge group
to the SU(3) one. Our SU(3) Higgs model contains the three Higgs
scalars Q(i) (i =1, 2, 3) each transforming as the octet of SU(3).

By 3 x 3-matrix notation our Lagrangian is given by

3 . .
L == 5T ho + LTI DIV-V (), (4-1.1)

where

Fuw = uAv = dvAu-ielAp, A,
DF@@): B;A@Ci)—;G’[AH, @m] )

X @ _ A g
/4P =:§5/§Z P Qﬁl "—'foﬁ

with the Gell-Mann matrices 2%. We take the Higgs potential V(&)

in (4-1.1) as

| 3 - o 2
NP)= Cg/(‘h; 5% 4 F2>2+ C%;’/;p ( {3 q)ca)} _ zi r @(k))l

(4-1.2)
(Cl/ (2/ F>O> k
. . . . . i _
where {81, 33y = o (33 4 51 ang c§clic denotes cyclic
summation over the set of indices (i, j, k) = (1, 2, 3), (2, 3, 1),
and (3, 1, 2). The Euler equations are

3 . .
. 7) 1
DVF/W = —le), [@(, D,»@( )), (4-1.3)

c=/

() (z) N
DMDH@’L = BV/B@ z'/ 1=1,2,3, (4-1.4)
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We have chosen the Higgs potential V(¢) so as to be one of the
permutation-invariant forms of the three Higgs scalars Q(i).
Thus our Lagrangian (4-1.1) has an additional discrete symmetry
as well as loqal SU(3) symmetry. We assume this symmetry only
from aesthetic reasons.

We consider a static axially symmetric finite monopole-
vortex system whose energy is localized about the interval

x=y=0, -af%zSa. We impose the boundary conditions at r=w

6
=Ty, 8-FU'SU, 39-FUEU,  was

and DMQ(i)=O. We see that (4-1.5) is an absolute minimum state
of the Higgs potential V(¢) (20) since this state yields V(®) = 0.
Furthermore,.in the unitary gauge, eight unphysical massless
Goldstone bosons are absorbed into the longitudinal components
of the gauge potentials AS and consequently there remain only
massive particles: eight massive vector fields and sixteen massive
scalars. More details will be presented in Appendix B. Singular
SU(3) matrix U = U(S,9) is givén by

e o) c s o) o
Use=| &P  lesc @ s ef? (4-1.6)

0 e s> —es cJl o &9 )’

where ¢ = cos(8/2), s = sin(é6/2), and a, B and y are constant
parameters. We impose an additional condition o + B + y = 0

without loss of generality. The matrix (4-1.6) gives the finite
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. > .
monopole-vortex system with a monopole at a, and an antimonopole at

+
3_(Fig.6). For the semi-infinite system, the angle § is only
replaced by the zenith angle § = tan—l(p/z).

*
The singular tensor G

v of this case has the components

X X
X) = — (X)
Gio (0 G (4-1.7)

3 8
~ sl + 2y YA Jseosplo@a)-ocanl,

. ->
except for the points a, .

When we impose the following ansatz for the Higgs scalars of

r # o
- {
&) = jC((Uﬁ z)U(lI)%U(U,
2) @ oo A
¢ = fipx)UmZUMX), (4-1.8)

%0 =1% U oA,

these fields, after the transformation U, become

4 / 6
) (3)
'0-F5 , §°=FF, T®=F3, o

in the constant f(l) approximation corresponding to the London

L
approximation. All the octet components of Aua have constant
nonzero masses and behave like the Yukawa-type for large-
T '
distances. The Euler equations for Ap3 and Au8 are, in the
'3 '8

temporal gauge AO = AO = 0, given by
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(@0 +mHA? = 2L -3p)Fxél) ScSeplela-z)- 6a-)},

(O+m2)A’® = 2%11:(d~a’)($xé‘2)8(1)8(3){6(0—2)-6(—6{—2)},
(4-1.10)

2 2 2")
where m, = (3/2)e" F . All the other components of potentials

can be set equal to zero, because they have no string sources,

such as (4-1.7). The equations (4-1.10) are solved as follows.

@ My [X— X’
"'"\/3 3{3 - = / v
= — dz
A ) o (VX&) A ey )
o fd 2 (4-1.11)
a. - vx—
=/8 J§ —3 —\f , @
x) = —(¥-A dz —

A = S @-)Uxey)] &2 =
where §‘ = (0,0,z'). Note that the A:P and Azg of (4-1.11)

IA.

have singular line at the interval x =y =0, -a z £ a. When
1 -—
we gauge—-transform Au into the original Au by the U 1, we see

that this line singularity is cancelled by the pure gauge term

*) Any two of the three Higgs scalars (4-1.5) are sufficient to
make all the octet components of Ag massive. However they give
unequal masses for AS and AS, while the three Higgs scalars

(4-1.5) give an equal mass. This is one of the reasons for

our choice of the three Higgs scalars (4-1.5).
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—(i/e)BpU_l-U. The gauge potential Ag,in the regular gauge

have no Dirac string singularity.

)
The monopoles at the point 2; of vortices of A 3. and
]
A 8—potentials have strengths
_ 2T _ 23T _
9s = —é—-x3ﬂ , ds =g (-a), (4-1.12)

1 1]
for A 3 and A 8 respectively. The quantization conditions of

t T
A 3 and A 8 magnetic charges are obtained from the conditions

3CK/ '3[3/ 35}/ d"ﬁ/ [3’3’, - = integers, (4-1.13)

which are derived from the single-valuedness of the Higgs scalars
Q(i). Some of the nontrivial values of o, B and y which fulfill
(4-1.13) and the condition a + B + vy = 0 are listed in Tables 1l(a)
and (b).

There is a difficulty that Aﬁ and Aﬁ- vortices
are mixed by gauge transformation, that is, they are not gauge

invariant. In order to overcome this we define three gauge-

invariant field strengths

A2 Doy A()z
A =Tr " Fuv, b{*v"—‘mﬁ”ﬁw) cpr =T L ya

These are not independent, because the sum of them vanishes:

a+b+c =0 . - (4-1.15)
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el x A -
The §(l) are normalized Higgs scalars as follows 'l"ré(l)2 = 1/2.

From these three dependent fields, we define two independent

field strengthsﬂﬂi, andéFIf as followsl3)

I i 2
Frv =2-Opv,  Fp =F(20-b-c)py,  (4-1.16a)
for the case (a) of Table 1 and
I 2 T _
g{:w = E(Qq‘_b_c)r_v’ JZ«”W =2(b-c)pv, (4-1.16b)
for the case (b) of Table 1, respectively. Through these field

strengths&ﬁﬂ andfo; , we can define two gauge-invariant

magnetic fluxes §I and §II of the monopole at the point'g

+
- 2 e -1
¢ = fHI'dS , ¢ = SHIL-o(S, (4-1.17)
- _ * * * I(II) .
where Hp 5y = (3bl,‘$b2,éﬁo3) and S is theclosed surface
enclosing the point 3;. In our "vortex gauge", the QI(II) and

CI)II(I) fluxes (4-1.17) coincides with the coefficients of'k3/2

ana 18/2 of (4-1.7) for the case (a) ((b)) of Teble 1. The &_

and @II are related to the parameters o, 8 and y as follows
- 2% 2B
b, =-x38 | br = 225 (a-3), (4-1.18a)

for the case (a) and
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23T T
égl - %-(a-—a’) ) §JI = — ‘?—e—xgﬁ , (4-1.18b)

for the case (b) of Table 1, respectively. More detail will be
given in §5. We see from Tables 1 (a) and (b) that the smallest

fluxes are
e - $p=t=——, (4-1.19a)
for the case (a) and

$y = + g[zll; ) by = :t%—t— ) (4-1.19b)
for the case (b) of Table 1, respectively.

The I and II magnetic vortex fluxes (4-1.17) with the values
of &, B and Y of Tables 1 (a) and (b) defines the two magnetic charges
g = - @I and 9rp =~ ®II for red, blue and green quarks réspec—'
tively, provided quarks are idehtified with monopoles attached
to the ends of vortices (Fig.6). Red quark is defined by the one
from which both vortices I and II originate. Blue and green
quarks are defined similarly (see Tables 1 (a) ans (b)). By this
definition we can define 'color' chemical bonds between red,
blue and green quarks. Thus we succeed in the construction of

'color' chemical bond model.S)

It is accidental that the 'color'
of monopoles of Table lcoincides with_)\3 and')\8 of SU(3) group.

The origin of this 'color' originates from the topology of the
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fields. 1In what follows, we shall denote this 'color' by adding
quotation marks in order to discriminate this from the conven-

tional color.
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§4-2. Y-shaped and A-shaped baryons

It is very interesting that our dynamical model enables us
to construct Y-shaped (or A-shaped) baryon. We impose the boundary

condition at r=« analogous to finite monopole-vortex system:

] -1 2 ¥ Y
§”=FS%5, @()=FS%S, 3 = FS%S. (4-2.1)

Matrix S is defined by the unitary matrices Ul’ U2’ U3, Fl and T2.

S=UT U2T2Us, (4-2.2)

Ul’ U2’ and U3 are similar matrices as (4-1.6), which give the

finite Dirac strings with orientations 6 = 0, u, -v and lengths
2a, 2b, and 2c respectively (Fig.7). Pl and P2 are inserted so
as to preserve the 23 and A% forms of vortex line. Otherwise‘)\3

3A"l, and ax8a~1

and 2% would be changed into A\ A"~ with some SU(3)
matrix A. It will be also shown that Pl and T2 can be so chosen
as to have no ¥ dependence, and thus give no Dirac string. Matrices

Ui‘s are characterized by angles 6(1) and 341) as follows.

Up=U (8T, ), | (4-2.3)

where
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§O=taz ' [2ap/lxP+ 4+ -af-a2}], ¥ =lan'ty/x),

$P=tom' [2bf( Xcosp—Zsing )"+ 52}1/2/ {(xes §= Zsiﬂ’}i)l +32+ (Xsinfd + ans/.i-—b)z-— b }J, |
PP=tan {4/ (xorsp~2sinp)},

§P=tan' [2¢f(xxcasv + 2sinv )+ gq}yz’/{(xcosv +25inV) + Y3 (~xsiny +3esv —c) —c3},

PPt {4/ (X sV +2sinV)} .

(4-2.4)

The angles G(i) and gﬁi) are the vertex angle 6f the triangle
formed by the observed point and the two end points ofithe (i)
vortex line and the azimuthal angle around this (i) vortex line,
respectively (Fig.7). From (4-2.2), (4-2.3) and (4-2.4), Dirac

)

*
string is easily calculated as follows

1€ q-;fv = S(a’uau—gva{.&)sﬂl

Uilap, 2307 + UiT7 {Ualop, 3303 71U

(l

+UTU2Ta{Us [, 203"} 7' U5 T U, (4-2.5)

*¥) It is to be remarked that the operation [ay,av] obeys the
conventional rule of differentiation, namely [aﬁ,av](AB)

= [Bp,av]A-B + AIBﬁ,Bv]B.
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Pl is chosen so as to make U1F1 = 1 on the axis (2), and T2 is

also chosen so as to make UlrlUZPZ = 1 on the axis (3). We here

choose them

7-7 = U“/Cg(l)/ sD(l)_: O), 7:-21 - U“ICSQ)/ (P(i’)____ O) i (4-2.6)

These Tl'and F2 have no gp)dependence, and thus give no Dirac

*
string. The nonzero components of Guv are given by

*
G () = — Qzﬁ (x)

!

= M) Sc0 89){o(2a-2)- 6¢-2)}
+ Macospt 88y { 6(2b-27) - 6-2)}
+ M3 cos V- S*(I”)S(g)[e(zc— 27)~ 9(~2/’)},
G,;kg ) =— C%;io_(x)
= My sinp- 8608y {6(2b-20-6 3]

=Mz siny . 8D 8H{o(2c -2 - 0¢-27)},
(4-2.7)

where
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3 8 .
2 A2, 2B, . ZL_} .
M; = {-—*8 (~3/3;)“2" t e (Of‘ a)”) 24, i=/,2,3,
/ . /. I .
X = :}CCOSH“ZSIH.;A, 2= Slﬂ/)(.'f'zooSf,L}

X”= Acesy +EsinV, 27= ~XAsinV +ZeosV, (4-2.8)

and Oy Bi and Y; are constant parameters which characterize

the matrix Ui'
In Fig.7, at the junction of three vortices, the each sum of A'3
and A'S magnetic fluxes is assumed to be zero. In order to
fulfill this requirement, the parameters o5 Bi and Yi of (4-2.8)
are restricted to certain values. We now derive these constraints
by calculating the aiGio from which the positions and the strengths

*
of monopoles are immediately seen. From (4-2.7) we obtain )

3{Gzo(x) = M;8x)8Y) §(z-2a) + M2 §(xHE(Y) §&L2b)

Mz 8NP SE"-2¢) = sunc. §%x) (4-2.9)
where

3

2. M;

r=1

i

gjunc.

3 3 2371 A&
= 7, {%—C -—35,;)—%— + Ié--(dz—?)i)—i . (4-2.10)

=l

Note that the total magnetic flux (or charge) ? o Of this Y-shaped

*) We here assume (aﬁav - Bvaﬁ)S(l) = 0, for simplicity.
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system is automatically zero because of its construction, that

is

i

S
Q%bf £§f4L _'gjunc.

(4-2.11)

1}

O

.

We also see that there is no magnetic monopole at the junction

of three vortices if the following conditions are satisfied.

3
Bi=o0 I3 =o0 (4-2.12)

Ne

;=0 y

] 1

1™Me

t

where we have used the relations

05L+Bi+3)i=0 , 1=1,2,3, (4-2.13)

We see that the parameters o, B and y of Tables 1 (a) and (b)

satisfy the conditions (4-2.12), provided we choose them as
(A, {31,3’1) = (=/, 1, 0),
(da, Ba,v2) = (o, =1, 1), (4-2.14)

(Az, B3, 7¥3)

fl
™~
N
(@
1
v

for the case (a) and as

i, B, 31) = (B, B, =5)

il

(cdp, B2, ¥2) = (%3, [/8;, %), (4-2.15)

(as, B3, ¥3s) = (%, 24, W),
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for the case (b), respectively. Thus the Y-shaped baryon may
be imagined to be constructed from the three meson systems RR,
BE and GG of §4-1 by gathering their three antimonopoles R, B
and G at the junction of this baryon system, where the each sum of
two magnetic charges of R, B and G must vanish.

For the A-shaped baryon shown in Fig.8, singular SU(3) matrix
S is given by (4-2.2) where U ;'s are the matrices which give the
finite Dirac strings with orientations © = 0, u, v and lengths
2a, 2b and 2c respectively. Matrices Ui's are characterized by
S(i) and %;i): the vertex angle of the triangle formed by the
observed point and the two end points of the (i) vortex line and
the azimuthal angle around this (i) vortex line, respectively.
Tl and P2 can be chosen, analogously to the Y-shaped baryon, so

as to preserve the A3 and AB

forms of vortex lines.

Note that in this A-shaped baryon none of the three vortices
can have the unit fluxes of Tab.l(a) or (b) but they have at
least two times of the unit fluxes. For example the monopoles
at the three vertices of the A-shaped baryon of Fig.8, which we
denote R', B' and G', have twice color fluxes of R, B and G. It
may be concluded that Y-shaped baryon having junction is more
preferable than A—sﬁaped baryon with no junction. It is shown
'~ that our monopole-vortex model enables us to discuss hadrons of

any shape by introducing appropriate matrix U and the junction.lg)
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It is quite an interesting problem to’discussvthe recently

20) 21)

discovered resonances, i.e., baryoniums and dibaryons

from the view point of our vortex model.
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§5. Gauss' theorem on the squeezed magnetic flux

Here we discuss Gauss' theorem for our squeezed magnetic
flux with the magnetic charge at its end points. This is most

easily examined in the " vortex gauge" of our models:

l / ’ 2 o 2
I = Zd {“Z—(ayﬁvq" av/lf t+ Gﬂfvd —f-—;-/n’z; e }) (5.1a)
o= iag.

Qﬁv(x) = {_}oﬂ[jH, Yv] S~ dr dor, (5.1b)

which is obtained from the Higgs models of §§3 and 4 under the
*
London approximation in our singular gauge, but the Gu\) is

expressed by the gauge transformation U as follows

X _ 1 -
Gﬂ,w = BUEBV‘I aw]jU . (5.2)
First we consider the semi-infinite monopole-vortex system

of §3-1, where g(= g3) =-4m1/e and the string variables ylJ of

(5.1b) are given by the normal frame

éo:rt} 3':‘3“2:0} 33=0’_ (5.3)

The Euler equation of Z—\u = is given by

I
o
=

3w = Mg A, (5.4a)
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va = 3,&/4\»—3\»/\& + @?iv . (5.4Db)
Solving this for AU' we obtain4)
A = = [ae-x) QL ey e
(5.5)

(O+mM3)Ax-x") = —§%(x~x'),

*
Here we shall express the dual tensor Fu\) in a transparent

form for having a physical insightand for proving Gauss' theorem.

From (5.1b), (5.4b) and (5.5) we obtain

Fiutr) = = Epupo A — Gpv(x)

Od“ﬂb’apao‘ fA ('J("x/) Gfﬁv (x’) d.4x/ - 6‘,,{,\/ (x)

= ~ 5 Eppo &
= pBut) = Bu) +my Kpv (x) (5.6)
where
Bux) = 3jA(x—-z)-§%id%, ZulT) = gu(T,0), (5.7)
(5.8)

KP.V(I) = fA (X—= :C/) GV,V (x”) 0(43(/,
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We have used in (5.6) a calculation-similar to Ref.6). The Tt
integration of (5.7) is taken along the world line of the
monopole. Note that the expression (5.7) for the BU(X) is
modified from the Dirac's one owing to the nonzero mass of A
and consequently it has short-range Yukawa-type behavior, e.g.,
for the monopole at rest

- 9 ) é—'mﬂ“

Botx) = 5 = (5.9)

~

in contrast to the long-range Coulomb potential in the Dirac
monopole theroy. The new term m%Kuv in (5.6) which is absent
in the Dirac monopole theory presents the confining force between

the monopoles. This is easily seen by rewriting the action

integral

fid4x = ‘é’f@pu SVBUd4x - 'Zg_‘m%fGHVKHVOL‘FI . (5.10)

The second integral gives the short-range Yukawa interaction
between the two surface elements of the world sheet swept out

by the Dirac string (the nodal line of the vortex line):
—;fl*ﬂn;ﬂdvdv’owtgm(g—y’) oy,
dv=drde;, dv'=dtde’, Ou§)=[4p, ], (5.11)

which gives the confining force between the monopoles and further-

4)

more the action for dual string model . On the other hand, the
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first integral of (5.10) gives

. L
%ngzHAcz—z’)z“ dr dv,
Fp = dfufdr ,  F = dzl/dv, (5.12)

which is a Yukawa interaction between magnetic currents.
Now we shall discuss Gauss' theorem. In the same manner as the

Dirac monopole theory, we obtain from the definition (5.4b) of

Fuv
* d¥y 4
aVFVf*(x) = -gfﬁé‘(x—z)d't_ (5.13)
Note that this equation is also derived from (5.6). By setting

¥ = 0 in (5.13) we obtain

.y
V-H = -35), (5.14)
> * * * . .

where H = (FOl, F02’ FO3). Thus magnetic Gauss' theorem takes

the following form
— -
HdS = —-§, (5.15)
S

where the surface S, encloses the monopole at the origin. It is
to be emphasized that any closed surface S enclosing the monopole
at the origin can be taken. From (5.6), (5.8) and (5.9), the

magnetic field H is expressed as follows
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S g g™ a 0 émv¢p2+<2~z’)2
H=2gVy%  + zzém f dz’ , (5.16)
ffaiu-(z 3/)2

from which (5.14) is again checked.

From the argument of 83-1 and the expression of H in (5.16)
we see that the magnetic flux originates from the monopole at
the origin in two distinct forms. One with squeezed flux tube
with radius m;l along the negative z-axis extends to the infinity
z + =o, The other extends spherically like Yukawa force of

range mg .

The independence of (5.15) of the surface S is
explicitly verified by evaluating the left-hand side of (5.15)
about a small sphere S and a large sphere S centered at the

origin (Fig.9). For the sphere S (0 < & << m ), we have

fA-d5 = g% |9+:-d5
St
_— (5.17)

For the sphere SR(R >> m"l

v }, the first term of (5.16) can be

neglected and we obtain

(5.18)

g \y Jf ~ﬂ%wﬁ?1253?31
g{d A5 = qrMr e s fp2+<z z)>
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Since the main contribution to the surface integral comes from

the region m > 6 2 m;l/R around the south pole of the SR, we get

é?nVVx°+gz+u?
Jxzey2ew2

' R
gﬁa@ = *J%mﬁfdid& liu (5.19)
R

oS p LMy

where we have legitimately replaced the surface integral on the

S by the one on the plane z = -R and introduced the new variable
of the integration: wuw = R + z'. The integral of (5.19) is easily
evaluated by extending the region of the integration to the whole

region of the variables x, y and u. Finally we get

L g (10 R
jH'dS = —-—Rmv%vfwdxdgolu

SR vV xn'{"ng‘ua

—F. (5.20)

il

Thus we can justify that the flux originates from the monopole at
the origin and extends along the negative z-axis to the infinity
z ¥ —-o in the form of squeezed vortex line of radius mgl.
result can be also obtained for the finite system of §3-2.

Similar

So far we have used the singular "vortex gauge". In order
to make the gauge invariance of our argument manifest, an
appropriate,gauge;ipvariant field strengthW?;v must be introduced
and the magnetic flux should be defined with this gauge-invariant

field strength. For the above SU(2) case, thef?%v can be defined

as



- 59 -

AQ a -\ -y
L(r?[l:u = @ FH—V , @R= 95)([/)) (5.21)
hich i duced to ]5"3 = a'A'3 -9 AJ3 + G*3 in the "vortex
which is re e av = ARy NS v
1]
gauge" of §3. The A X A term of Fu3 vanishes, because only the

diagonal component of the gauge potential A;3 remains in this
gauge. This term can not be neglected in the exact solution,
however.

Next we discuss the SU(3) finite system of §4-1. We have
obtained, in our "vortex gauge", the approximate solution (4-1.11)
where only the diagonal components A&3 and AIB remain. In this
SU(3) case, two magnetic fluxes are defined in (4-1.17) through two

gauge-invariant field strengths (see (4-1.14) and (4-1.16))

Fpw = 2T (3D - 8 ),

T ~. 2 /\lQ. A D
.\7;-\, 2%‘,}(2@(”—@()“@(3) )FHV, (5.22)

for the case (a) of Table 1and the indices I and II are interchanged
in (5.22) for the case (b) of Table 1. In what follows, we shall

mention only the case (a) of Table 1for simplicity. Byf?iv and
IT

o s ' ] s = - —_ -
jkuv we def;ne the 'color' magnetic charges 91 @I and 9q QII

for red, blue and green quarks (see(4-1.17) and Table 1). When the
(1)

Higgs scalars o take the values

/ | ~7 ’
am _ A @ A% @(3) A8
30=4, =% 2
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in the "vortex gauge", these fieldséﬁiv andékii'are reduced to

I /13 X3
K?v :FHV = BF'A\I/B — ’QVA[-’As -+ C;”,Lv ’

I g (5.24)
~ TI/° _ 18 /8
\?’A_V - F v al»lA\J —‘ BUA'H Gr'ow y
from which we obtain (4-1.18a).
The magnetic fields of the SU(3) finite system are
- 30 é"va" "mVVP +(2-2)?
HI:—[—G""‘ + 837ﬂvjd3 J
2e T 2 2
+(X-Z%
le ) ’ (5.25)

'vaF +(Z~-X")* ]

<l

H -—M>[ —g—mv + Engjdz

From similar argument to the SU(2) case, we see that the two

fluxes @I and QII originate from the monopole at §+ and are

squeezed into the flux tube with radius m;l

x =y =0, -a <z < a and terminate at the antimonopole at 3_.

along the interxrval

In order to define the SU(3) gauge-invariant field strengths
. Al *o .
which can be reduce@ to auAv avAu T+ Gyv' a =:3,8 without
5 (1)

any approximation, we may add certain polynomial of Du to

the right-hand side of the field strengths (5. 22)17)
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§6. The quark confinement in.our SU(3) Higgs model

In the previous sections §§4-1 and 4-2, we have constructed
the meson systems RR, BB and GG and Y-shaped (or A-shaped) baryon
system RBG. Two imporiant properties for confinement by magnetic
vortices are
(1) vortices start from positive 'color' magnetic charge and

terminate at negative 'color' magnetic charge.

(ii) the energy stored in the magnetic vortices per unit length

is constant.

From these properties of vortices, we can conclude that for the
finite energy system (equivalently finite-size system) the two
kinds of I and II vortices are 'closed' within its system. By
what is 'closed', we mean that the vortices start from one quark
(antiquark) with +(-) 'color' charge and terminate at another
quark (antiquark) with -(+) 'color' charge in the same system.

For RR, BB and GG meson systems and Y-shaped (or A-shaped) RBG
baryon system of 884-1 and 4-2, the vortices are closed and the
energies of these systems are finite. Contrary to these, however,
the diquark and isolated quark systems have infinite energies,
because at least one vortex must extend to infinity. For example
in RB system, two II vortices start from R and B to infinite points,
because both R and B have plus charge for II vortex.. It can never
be realized in any process of finite energy.

We thus see that our I and II vortex lines correspond to
the vortex bonds of Nambu's phenomenological chemical bond model

for hadrons§)’18) These bonds allow only 'colorless' states such



as RR, BB and GG meson states and RBG baryon state as finite-
energy states. By 'colorless' states, we shall mean such systems
as those with no magnetic 'color' charge. It should be noted

that our model can allow some exotic states such as baryonium

RRBB (Mi) and dibaryon r%p2G2 (Dg) (Fig.10). The finite-energy
states are
(1) 'colorless' mesons: RR, BB, GG,

(ii) 'colorless' baryons (antibaryons): RBG(RBG),

(iii) 'colorless' exotic states: RRBB, r%B2G2 etc.,

(iv) PomeronS) (Fig.11l).

All other systems such as 'colored' mesons, 'colored' baryons,
diguarks, isolated quarks, and 'colored' exotic states, e.g.,
RRBB are excluded in our model. We see that the confinement of
quarks, in this chemical vortex bond model, can be explained at
least for 'colorleés' states but does not necessarily select
the 'color' singlet hadron states. It is interesting to study
experimentally the difference between the 'colorless' states in

our model and the color singlet states in the conventional color

model. Further analysis is required on this point.
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§7. Conclusion and final remarks

We have shown that Nambu's conjecture on color chemical
bond can be justifiedaby the vortex solution of SU(3) nonabelian
gauge field with Higgs scalars. One of the important
tasks to construct a chemical-bond-like model for hadron, is to
find the vortex solution of finite length in the SU(3) nonabelian
gauge field with Higgs scalars. We have succeeded in finding
a vortex solution of finite length, though in London approxima-
tion. The first problem in constructing the vortex solution is to
ask how to construct the supercurrent which preserves the magnetic
vortex of finite size. We can construct such supercurrent by
introducing a singular unitary matrix U, hamely the supercurrent of
Higgs scalars of the type F(i)U_lT(i)U. One of the easiest.
way to find the vortex solution of Euler equations is to apply the
unitary transformation U. The Euler equations become much
simplified, and further a Dirac string singularity appears through

the gauge term U_l

1937 8y] Uy which is a string source tem for the vortex
solution. This equation of gauge potential is just what Nambu
has conjectured to derive his chemical-bond-like model. Thus
our vortex solution gives the mathematically rigorous foundation
to Nambu's conjecture. One of the adVantages of our model is to
derive the dual string action quite naturally. We inttroduce two
~gauge invariant 'color'fluxes TJC(:}?(‘?)2 - 3(3)2)F and Tr(Z?i\J(l)2
s _ s, . "
- )Fuv' By these two 'colorx! (magnetic) fluxes we

can define red, blue, and green quarks, and thus we have

succeeded in constructing a 'color'~chemical-bond model.



One of the problems left unsolved is how to attach the fermion
(anti-) quark at each end of magnetic vortex. Our model is quite
different from other confinement models, in that our model selects
only 'colorless' states in the sense defined in §4.

Note that fhe vortex lines of our meson and baryon systems
of §§3 and 4 have no topological stability, because the monopoles
(antimonopoles) at their ends have no Dirac string singularity
in the regular gauge, and according to Tze and Ezawa's argumentl})
only the topologically unstable vortex lines admit singularity-free
end points. This is also checked by evaluating explicitly the
nonintegrable phase factor QC(ZW) = Texp(ieééAudx“), where C is the
closed loop of the radius p >> m;l encircling the vortex line. For
the completely broken SU(N)/ZN gauge symmetry, the value of QC(Zﬂ)
is restricted to the discrete elements of the SU(N) center Zy and
discriminates the topologically distinct classes of vortex lines.
Especially Qc(zﬂ) =:E corresponds to the topologically unstable
class. Since we can obtain Qé(2ﬂ) =ﬂ_for the vortex lines of §§3
and 4, they belong to the topologically unétable class. In any
case, however, the topological étability of our finite meson as
a whole cannot be derived since the total topological charge of
the system is always zero. Furthermore, for our baryon, we cannot
obtain any nonzero total topological charge (e.g., the baryon
number), and therefore their topological stability does not seem
to exist. In this paper we have restricted ourselves only to the
monopole-vortex syséems in which no Dirac string singularity exists
in the regular gauge. Consequently we have obtained the topolpgica]

ly unstable vortex lines. We can extend our argument to the case

of topologically stable vortex lines by introducing explicitly



the Dirac string singularity which cannot be removed by any
singular gauge transformationsl For a more mathematically suitable
treatment of these systems, we can use Wu and Yang's theoryzz) of
magnetic monopoles based on the theory of fibre bundles?3) in

which nobstring singularity is introduced.

Our model can be easily generalized to construct vortex
solutions of any shape. We have only to find an appropriate singular
unitary matrix U, which generates the supercurrent that preserves
the vortex of given shape. These generalized solutions enable
us to discuss the recently discovered resonances, i.e., bMQTMhMSzo)

21)

and dibaryons®., It is a very interesting problem to test wether

our magnetic vortex model is more favorable than others, such as
Susskind's lattice model.24)

Our model is the only simple quark confinement model which
can explain the dual string action. The lattice gauge model is a

very promising one in this respect, but at present this model is

not successful in explaining the dual string action.
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Appendix -A: Notation

Our metric is 9gg = 7911 T "9p2 < ~933 = 1. Repeated Greek
indices are summed from 0 to 3; Latin indices from 1 to 3.
Generally, the indices i, j and k refer to ordinary space, a to
SuU(2) space, and o to SU(3) space. The total antisymmetric

tensor Sijk is normalized as 9123 = 1. The dual of an anti-

. ' . * o po .
symmetric tensorxr Auv is defined by Auv = (1/2)EUVDUA ’ Wlth
the total antisymmetric tensor 80123 = 1. Magnetic field H is

£3 i - c. . jk . ._\.= * * *
defined as H (1/2) 1ij , l.e., H (FOl’ Foor F03)

(F32, F13, F21). In our notation, the magnetic flux ¢ which

originates from a monopole with strength g is given by & = -g.
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Appendix B: The unitary gauge of the SU(3) model of §4
In this appendix, we define the unitary gauge of the SU(3)
model of §4. Because of the SU(3) symmetry, it is sufficient

to restrict ourselves to the Higgs scalars

! ¥
S (2) A (3) ﬂ_
¢, =F%, o =F%, ¢, =F3 , (B-1)
instead of (4-1.5). Since @éi)'s of (B-1l) satisfy the relations

2 (42 . (B-2)
Td=3zF 1=1,2,3

2

and
) @GN _ | (p
{ésoz ) éo } ——ZF®O ) (B-3)

with (i, j, k) = (1, 2, 3), (2, 3, 1), and (3, 1, 2), we see that

1 1
the @él) s give the minimum of the Higgs potential V(¢) (>0) of

(4-1.2), i.e., V(8) = 0. When we write the Higgs scalars around
=\ !
the minimum state @él) s as
(7) _ 1) () . _
@ —@ @ ) 7-—-//2/3/ (B-4)
we obtain §V(®) = 0 and, for the second order wvariation, we obtain

SU(Q) = 402 (Tr@m @m)
+sz Tr({ @ 8@(&)} { &) S@h)} 2]:8@@) B-5)

QTIC

Obviously, from the SU(3) invariance of the V(®), there always

. 1 ]
exist the nontrivial 6®(l) s which lead to 62V = 0. Conversely,



. ‘
we can prove that the nontrivial Gé(l) s which lead to 62V = 0 are

restricted to those which are obtained by applying a suitable SU(3)
3 ]

transformation to the @él) s. This is seen as follows. From (B-5),

the nontrivial 6®(l) s which lead to 62V = 0 must satisfy‘the

equations

T3, 88

Y ’i=//2/3/

(B-6)
{87 53} +{ 3% 3@“’} 4753 = 6 -
from which we obtain
SIOPIN SO L O
g@m8= o 5@(2)22 53" S / géfs)z 53007 /
53— 5398 530%= 539 F
s37f=0 | §3¥%= 2657, L

S@méz —:ﬁg@mé/ g@ca)f:__ Sqi(z)’{ )
) ;
37 B3 s3¥=0

8@13)2 —6@(0?{‘ 85”5(2)5-

g @(3)82_\58@5(/)4;

where eight of the unknown components, i.e., 6®(1)2~7 and 6@(2)5’7,

. oy
cannot be determined. It is easily seen that SQ(l) s of (B-8) are
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obtained from the @él) s through the SU(3) transformation

_ & -
U~e)<f> 150 (B-9a)
with

/

. . S
(6= (—2537" 537 _s39% 25897 —256“°, 253"

2 2 25
0 530* As3*-2587°) .

(B-9b)

In order to introduce the unitary gauge , We parametrize

(i)'

the Higgs scalars around the 4 s as

Il

§U)

3= LRV (X7 + P17 P10 Ao 2™ s,

Ve + e

/

{B-10a)
37= LR 2% 2 e )T N ™)
v
where
Vis) = EXF(i%f%d) . (B-10b)

The eight £'s and sixteen n's denote the new independent fields

(i)'

which parametrize the Higgs scalars around the @0 s. We now

make the gauge transformation defined by
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/ N

(‘) =/ () ~

¢ =y PV, i=1(,2,3,
(B~11)
/ - 1 -1
= —g ol

In this unitary gauge, the fields & which correspond to the unphy-
sical massless Goldstone bosons are gauged away and are absorbed
into the longitudinal components of the gauge potentials A'ﬁ.
Furthermore all the n's are massive, since we can obtain nonvanishing
determinant for the mass matrix of n's. There remain, therefore,
only massive particles: eight massive vector fields and the sixteen

(l)u’ n(2)0L (3)a.

massive scalars n , and n
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Table Caption

Tables 1l(a) and (b)

Typical values of o, B and y which fulfill
(4-1.13) with the condition a + B8 + y = 0,
and the values of Ir and 911 for red, blue
and green quarks (monopoles). The.gI and
grp of the case (a) ((b)) are equal to the
g3(8) and 98 (3) of (4-1.12) respectively.



Figure Captions

Fig.l(a).

1(b).

Fig.2(a).

2(b).

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

Fig.8.

Fig.9.

Fig.10.

Fig.1l1l.

Lines of magnetic force in the case of 't Hooft-
Polyakov monopole.

Lines of magnetic force in the case of 't Hooft-
Polyakov monopole-antimonopole system.

Squeezed magnetic flux tube of semi-infinite length
in a superconducting vacuum.

Squeezed magnetic flux tube of finite length in a
superconducting vacuum.

A semi-infinite monopole-vortex system.

A finite monopole-antimonopole system.

A relation between the semi-infinite system of Fig.3
and the finite system of Fig.4. The vertex angle §
approaéhes the zenith angle 6 under the limit a » .
'Colorless' mesons RR, BB and GG. Solid and dashed
lines represent I and II vortex lines, respectively.
A Y-shaped baryon. {(1l)-vortex line consisting of
both I and II vortex lines is taken to be parallel to
the z-axis. The y—-axis is perpendicular to the paper.
A A-shaped baryon, where double arrows represent the
vortex lines of the two units of magnetic fluxes.
Small sphere SE (0 < & << mvnl) and large sphere

sp (R >>’mv_l) in the semi-infinite monopole-vortex
system, where the solid lines represent the lines of
magnetic force schematically.

'Colorless' exotic baryonium state RRBB (Mz) and
dibaryon state R2B2G2 (Dg).

A Pomeron.



(a) 'Color' (o, B, ) gI/gIO gII/gIIO
Red (-1, 1, 0) 1 1
Green (1, O, -1) 0 -2
910 = 6n/e, gIIO = 2V/31/e
(b) 'Color! (o, B, v) qI/@sl-0 9117911,
Red (1/3, 1/3,-2/3) 1 1
Blue (-2/3, 1/3, 1/3) -1 1
Green (1/3,-2/3, 1/3) 0] -2
910 = 2/3n/e, gIIO = 21/e

Table 1
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