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ABSTRACT OF THE DISSERTATION

The present investigation is an experimental study of the
acoustic oscillations of a gas column ("Taconis oscillations")
spontaneously generated in tube or pipe with steep temperature
~gradient. Spontaneous acoustic oscillations occur in tubes
which are warm at their closed end and cold at their open
end. In this thesis, some properties of such oscillations,
the stability, the frequency, higher harmonics and the effective
thermal conductivity are experimentally studied.

The stability curves for helium gas between oscillations
and no oscillations are determined under a nearly step—functional
temperature distribution, which is established by a continuous
flow of liquid or gaseous helium as coolant. They are discussed
on the plane of the dimensionless variables, the temperature
ratio o between warm and cold parts versus the ratio of a
tube inner radius to the Stokes boundary layer thickness
formed Oon the tube wall for the ratio § (=0.3, 0.5, 1, 2, 5,
and 10)of warm length of the tube to cold length as a parameter.
Measurments are performed below a=70. Frequency of the acoustic
oscillations is also determined corresponding to the stability
curves. For small £(=0.3), we find . new phenomena, which
are the transitions from the fundamental to a second-harmonic
and from the second-harmonic to a third-harmonic. These
transitions occur at o=15 and 0=60 at one hand branch of the
stability curve. The unstable region is experimentally and
numerically determined for the fundamental and higher harmonic

in order to explain such transitions.

iv



Results obtained in our experiments for the fundamental
are compared with the theory of Rott. In order to
qualitatively explain the results, stability curves and
appearences of higher harmonics, we roughly make some
suggestions.

The effective thermal conductivity of the oscillations
is estimated from the evaporation of liquid helium. Experi-
mental results are made a rough comparison with the theory
of the second-order heat flux taking into account a finite

boundary layer thickness.



CHAPTER I
INTRODUCTION

Spontaneous acoustic' oscillations of a gas column may be
generated in a long cylindrical tube or pipe with non-uniform
temperature distribution along its axis. This oscillating
instability can be induced, as well-known, when the open end of
the tube is cold and the closed end is warm. In low temper-
ature system such oscillations have often been observed,
in particular, in a transfer line of liquid helium and in the
pumping line from ligquid helium reservoir to room temperature
system, along which a steep temperature gradient is maintained.
The acoustic pressure amplitudes are sometimes surprisingly
high; 104pa or more. They are accompanied by a considerable
heat flux to liquid helium reservoir; the attainable evapor-
ation rate under the oscillations is empirically more than
three orders of magnitude larger than that without them. Thus
the problems of the oscillations become of great importance
for developements of cryogenics. Although the phenomenon has
been one of a good many years standings in low temperature
system since helium gas was liquified very little was
systematically performed by experimental studies.

We have been interested in this phenomenon occured in
liquid helium reservoir for some years. A deeper understan-
ding of

1. the stability and the frequency of the oscillations.

2. excitation of higher harmonic(second and third).



3. thermal effects accompanied by the oscillations.
has been acquired by experiments. Our experimental results
are supported by the theory of Rott(summarized in 1980)or

expansion of it.

This phenomenon was already known before the beginning
of the studies in cryogenics by more than a century at higher
temperature systems. We refer to the phenomena associated
with the name of "Sondhauss(1850)"; when a glass bulb attached
to a piece of a narrow tube, such as a flask, is heated by a
burner, audible sounds are spontaneously produced, as glass-
blowers sometimes experience. In his paper the earlier
observation by Pinaud(1837)and Marx(1841) are quoted. Sondhauss's
experiments and other topics related to thermally driven
acoustic oscillations have been described in the text book
"The Theory of Sound" by Lord Rayleigh(1945).

In cryogenics, spontaneous oscillations of helium gas
columns were observed by Keesom(1945) and Taconis et al.(1949)
at the Kamerlingh Onnes Laboratory at Leiden where helium
gas was firstliquified The oscillating instability is called
"Taconis Oscillations" in cryogenics. On several occasions
in the Leiden experiments a disturbing phenomenon occured;

a column of helium gas in cryostat began to oscillate. When
these oscillations appear, considerable heat transport takes
place, which gives rise to abnormal evaporation of liquid
helium for severai experiments under cryogenic condition.

Clement and Gaffney(1954)or Gaffney and Clement(1956) applied



them to a liquid helium level finder based on the disconti—
nuous change of the frequency and the amplitudes of the
oscillations that occur when the open end of a tube reaches

the liquid helium surface. Twenty years later, this phenomenon
is theoretically explained by Zouzoulas and Rott(1976).

A considerable heat flux along the tube, which is paid to
maintain the oscillations, has been measured by Banister(1966).
Although several experimental studies were performed, these
works were not essential to characterize the Taconis oscill-
ations. Such delay of experiment to find the stability of the
oscillations would be due to the lack of the theoretical

investigation.

The first theoretical studies of the stability problems
of thermally driven acoustic oscillations were carried by
Kramers (1949) using the boundary layer approximation that the
boundary layer thickness(Stokes layer) formed on the tube wall
is sufficiently small compared with the tube inner radius.

His theory has not been sufficient to interpret the experi-
ments. It took twenty years until the comparable theory with
experiments was considered. The theoretical approaches that
follow has been developed by Rott(1969), who has discussed the
stability limits of the oscillations using a long tube
approximation, where a finite boundary layer thickness neglected
by Kramers is taken into account. The temperature distribu-—~
tion along a tube is assumed to be piecewise constant with

a steepchange at a given location. The stability curves



between oscillation and no-oscillation have been theoretically
predicted for helium gas by Rott(1973), which consists of
two branches: at one hand branch the boundary layer fills a +tube
at warm part, and at another limit it is sufficiently samll
compared with the tube radius. Such two branches predicted
by the theory were first recognized by Hoffman et al.(1973)
roughly. Experiments heretofore have been rough or quali-
tative because no experiments has been carried out under a
given temperature distribution along a tube, especially in the
cold part.

In our experiments, two developements are performed:
one is the establishment of temperature distribution and
another is the continuous variation of the boundary layer
thickness. A U-shaped tube instead of a half open tube employed
in previous works enables us to perform such developements.
The stability curve for helium gas was first determined by
Yazaki et al. (1979)or Tominaga et al.(1979), where a comparison
between the theory and experiments was directly performed.
The frequency diagrams and more detailed stability curves
were experimentally determined by Yazaki et al.(1980)or
Narahara et al(l1980). Our experimental data will be, in
future, useful when one designs apparatuses for low temperature
systems avoiding the Taconis oscillations.

In studies up to present only the fundamental mode of
oscillations was discussed or observed. At one-hand branch

on the stability curve we found the transitions from the



fundamental to a second-harmonic and from the second--
harmonic to the third harmonic[Yazaki et al.(to be published
in 1980)]. These transitions occur on account of the
intersection between the stability curves.

Melkli and Thomann(l1975)have studied the thermal effects
(second-order heat flux) produced by the standing acoustic
waves in the tube with uniform temperature distribution,
executed by harmonic oscillation of a piston. More general
theory taking into account a non—uniform temperature distri-
bution, which is interestedhere, has been discussed by Rott
(1975) . The effective thermal conductivity of the oscillations
was measured by Yazaki et al.(to be submitted). They indicated
that the abnormal evaporation of liquid helium, as above stated,
is due to the second-order heat flux including the temperature
gradient.

In this thesis, I will summarize the experimental results
and its analysis performed in the works up to present. In
chapter II , qualitative explanations for the occurrence of the
spontaneous oscillations are suggested instead of the theory
of Rott. They are too rough to give the stability curves but
are useful to give a gqualitative interpretation of our
experimental results. The experimental apparatus in cryogenics
is described in chapter II including the pressure measure-
ment system, by which a step-functional temperature distribu-
tion is able to be established. In chapter W I will give

the experimental results and discussion of, mainly the stability



curves and the frequency diagrams of the acoustic oscillafions,
the transition from the fundamental to the second-harmonic

and from the second-harmonic to the third-harmonic, and

the effective thermal conductivity comparing with the theory

of Rott or our rough explanations.



CHAPTER II

THORETICAL

Theoretical investigations on the stability problem for
thermally driven acoustic oscillations of gaseous helium have
been performed by Kramers (1949)and Rott (1969-1980) using
linearized hydrodynamic equations. A series of the studies by
Rott, et al. has predicted the stability curves between
oscillation and no-oscillation, taking into account a finite
thickness of boundary layer formed on a tube wall neglected by
Kramers. Their studies enable us to make a complete comparison
with our experimental results for the stability curves of helium
gas.

We think that their theoretical treatments of the stability
problem are correct, but are too mathematical for us to
qualitatively understand this type of thermally driven acoustic
oscillations; namely we feel it is not clear what role the
temperature gradient plays to maintain the oscillations. Then
the quantitative treatments for deriving the stability curves
depend on the theory of Rott. We will give, in this chapter,
the quantitative explanation for the occurrence of the spon-
taneous oscillations induced by a finite temperature gradient.
It is too.qualitative to give the stability curve numerically,
but is useful to give a qualitative interpretation to our
experimental results in chapter ™, and throw light on the
distinct difference from a nbrmal case (uniform temperature).

We start from a intuitive model simplified a motion of

a fluid in a pipe instead of exact treatment performed by Rott,



and hydrodynamic equations and acoustic variables are obtained
under the model. So as to examine the role of shear viscésity
and thermal conductivity of gas to sustain the oscillations,
firstly we consider the case including only thermal conductivity
and then introduce the effect of the viscosity. The energy
considerations are performed for such two case.

We will also study thermal effect(second-order heat flux)
produced by the standing acoustic waves. The most drastic
phenomenon, a large amount of evaporation of liquid helium,
is able to be interpreted by the second-order heat flux, which
has been theoretically derived by Merkli and thomann (1975)
or Rott(1975)with slight different approach. The results are
used to explain our expefiments.

At last section we roughly review the outline of the theory

of Rott predicted the stability curves for the fundamental.

Let's consider briefly the mechanism for the spontaneous
acoustic oscillations, which is shown to be compatible with
many features of the experimental data. An essential
quastion is " what is the energy source to maintain the
oscillations with finite amplitudes in the system without
the mechanical energy source such as an oscillating piston
or speaker"? In a pipe with a steep temperature gradient
along its axis, the heat(thermal energy)acquired from the tube
wall should possibly become the driving energy for the
oscillations. Recalling the first law of thermodynamics,
such an idea is realistic; a part of the thermal energy is

transformed to the internal energy of the oscillating gas



and the rest is transformed to the mechanical energy, which

is interested here. An inflow of heat is not a sufficient
condition to induce the mechanical energy, but the suitable
phase differences between the acoustic pressure and the
displacement of the.particles(or velosity) is needed.

When the driving energy overcomes all dissipative energy

due to the shear viscosity and thermal conductivity of gas,

it will be possible that the acoustic oscillations are
spontaneously induced and sustained with finite amplitudes.
Thus we will call this type of the oscillations "thermally
driven acoustic oscillations" or "netsu-shindo" in Japanese,
corresponding to "piston-driven acoustic oscillations”.

In the section 2.6, we will give the increment of the mechanical
(acoustic)energy under above intuition before we quantitatively

caluculate it with hydrodynamic equations.

2.1 ENERGY CONSIDERATION

There are two means to sustain the acoustic oscillation
of a gas colum in a cyrindrical cavity. One of them is a
piston-driven oscillation and another is thermally driven
oscillation. The energy source in the former method is the
moving piston executed by external means; the pressure against
the piston varies in such a way that energy is transmitted to
a gas, whose average power delivered per unit piston area is
given by the time average of the product of the acoustic
pressure and the velocity at the piston, as investigated by

Temkin (1967, 1968)and other authors. In the latter case



(we consider the "Taconis oscillation"), where only a finite
temperature gradient instead of a piston exists along a tube
axis and which is intersted here, we will discuss whether a
temperature gradient plays a role of the energy source to
induce sound in a tube, comparing with the uniform temperature
case.

Let's consider the acoustic oscillations transmitted in
a long cylindrical cavity as a plane waves. As shown in fig.
2.1, we consider a volume element enclosed by a tube wall and
two cross-sections normal to the tube axis(x-axis), whose
location is situated in x and x+Ax . The work done on the
"slab of ring" at x by the pressure P in time 6t, as stated in
the text book "The Theory of Sound" by Lord Rayleigh, is
given by

%% = P (x) é(x,r) 21r dr = (pm+ pl)u 2tr dr (2.1.1)

where £ (=u)denotes the x-component of the velocity of a
particle, and P, and pq show the static and acoustic pressure
respectively. If the investigation with respect to time
extends over any number of complete periods, or whenever its
range is sufficiently long, the periodic term(the first order),
the product of the static pressure and the velocity in eq.(

2.1.1) should not contribute to the work. Taking into account

fig.2.1 Volume element
1
- - - E - . > sorrounded by two "slabs"
!
M in cylindrical cavity.
X x+Ax

- 10 -



the dissipative terms of shear viscosity and thermal conductivity
of gas, the velocity depends on the distance from the tube wall.
Thus after taking the time average of eq.(2.1.1), the work

done on the slab at x per unit time is written as

te
0(x) = pl(x) u(x,r) 2nr dr (2.1.2)

0
ry inner tube radius of pipe

where the baf indicatesthe time average. The quantity EIE

is called the acoustic energy density flux or sound intensity

(refer to text book, Itoh;1979 or Kohashi;1978). The net work
AQ which the volume elementAxwr% does to the external

system is, taking into consideration the contribution from the

slab at x+Ax

AD(x) = O(x+ X) - Q(x) = Ax %}_{Q(X) (2.1.3)

The radial average of a value X(abbreviation <X > )is given by

o
<x> =1 'Sx 27r dr (2.1.4)
Trro o

Using the definition (2.1.4), eqg.(2.1.3)can be expressed as

— 3
AQ = AXEh‘{(R%ﬁ*) + <“3‘E‘>} (2.1.5)

Negative value of AQ means the damping of the acoustic wave
in the volume element.A}<Wr% , as discussed later. Positive
value of AQ means that the energy to sustain the oscillations

is supplied there. For example, let's imagine such a system,



progressive harmonic wave, that the pressure and the velocity
are given by p=Asin(§ﬁHmt) and u=Bsin(ix-mt), where A and B
are constants everywhere. In this case AQ@ is vanished.
Therefore the sound is not excited and not damped. Taking
into account the dissipative effects, A and B depend on x and
decrease with x, so that the value AQ is negative. The sound
is damped. Thus in the normal system(uniform temperature),
there exists no system that AQ takes positive value.

Nextly we will consider a system in which a finite
temperature gradient is established along a tube axis. It is
expected that the important value AQ may be able to take a
positive value. In order to discuss a sign of 4Q , <(u%%>

and <R%%> will be calculated from a set of the fundamental

hydrodynamic equations with non-uniform temperature distribution.

2.2 DERIVATION OF HYDRODYNAMIC EQUATION

The fundamental equations (the axial and radial momentum
equations, the continuity equation, the energy equation and
the equation of state)governing a oscillatory motion of a fluid
in a long cylindrical pipe with non-uniform temperature
distribution have been given by Rott(1968)with a long tube
approximation in cylindrical coordinates.# The following
assumptions were performed tlrough his theory;

l. a strict linearization of all hydrodynamic equations.

* In the case of uniform temperature the acoustic solutions

of the basic differential equation were given by Bergh and
Tijdeman{1965).



2. as a radial momentum conservation, the radial
~gradient of the acoustic pressure Py is neglectéd
through a pipe;
ELIN
ar (2.2.1)
3. the radial gradient of the mean temperature Th is

neglected;
-y g (2.2.2)

4. The dissipative terms(viscosity and thermal con-
ductivity)in the basic equation which contain the
axial gradient are neglected.

Assumption 1 may be accepted, because the main purpose of this
investigation is the determination of the critical points
(stability limits)between damped and excited oscillations with
small amplitudes. Next simplification is also accepted for
reason that when the radial averages are carried out in the
following section, the term containing the radial component of
of the velocity are vanished, and moreover the radial velocity
is sufficiently small compared with the axial one. Rott pointed
out that the above assumptions are sufficiently satisfied, if
the tube inner radius Ty is much smaller than the whole length
L(long tube approximation). After all, his theory takes into
account the full and unrestricted range of the boundary layer
thickness neglected by Kramers under the boundary layer approx-
imation.

The mean value of pressure, temperéture and density will

be indicated by the subscription m, so that the mean pressure

- 13 -



P,=R T P. (R; gas constant and P Tean density). The time-
variation of the acoustic variables is assumed to be given by
the factor exp(iwt). In acoustics, where only small variations
of the flow properties about a basic state occur, a following

perturbation calculation can be emloyed;

P=p,*t Pl(x)exp(iwt)

T =T + T,(x,r)exp(iot)
m ol (2.2.3)

©
I

Pn T pl(x,r)exp(lwt)
u = u(x,r)exp(int)

¢ ®© 6 2 80 08 8060 00 0 0 s 800000 -

It is sufficient, in acoustics, to consider terms up to first
order only.

In Appendix(l), we will give only an outline of a slight
different derivation of the basic equations comparing with that
of Rott. Of course results are in agreement together.

Intuitive derivation of them is presented in the next section.

2.3 RADIAL AVERAGES OF Tl AND u UNDER SIMPLE MODEL

As given in Appendix(2), the velocity and the temperature
distribution near the tube wall are strongly dependent of the
distance from the wall on account of viscosity and thermal
conductivity. In the place sufficiently far from the wall,
they are independent of the distance from the wall. The
behaviors of r-dependence for oscillatory viscous fluid(
Poiseuille flow or Couette flow)are discussed in several text

books (Imai 1978 and Landau and Lifshitz 1950). The distribution

- 14 -



of them over the cross-section may be able to be classified
two

intoaregion; one of them in "boundary layer" where the fluc-

tuations are neglected and another is the "core" where the

amplitudes of them are not dependent of the distance from

the tube wall.

RADIAL AVERAGE OF u The distribution of the velocity in a
pipe is classified into two parts as shown in Fig.2.3.(a).
One of them is velocity core indicated by u, and another is
the velocity boundary layer indicated by Uy which is practical:
equal to zero. The region occupied by the respective velocity
should be dependent of the viscous effect. Therefore in order
to introduce such a effect, we impose on the normalized
"weight" F and (1-F) to the boundary layer and the core
respectively. The values F and (1-F) may physically show the
occupation rates of the respective area to the whole cross--
section, and generally are complex. In the following section,
the quantitative formulation of F will becomes to be clearer.
Using the above idea, the radial average of the velocity

is simply given by the equation

<uy = F ou, + (1-F) u_ (2.3.1)

This equation suggests that F approaches to unity or zero,
according as viscous boundary layer becomes sufficiently thick

or thin.

RADIAL AVERAGE OF T, In the same way as the velocity

distribution, the temperature fluctuation(refer to Appendix 2)

- 15 -



Figure 2.3

(a)

F*

1 - F*

(b)

()

The simple model for the mothion of a fluid
in a pipe. (a), the.veloéity distribution is
classified into two fegion; the velocity core imposed
by the weight F and the boundary layer (1-F). (b),
temperature distribution is classified as same as (a).

(c¢), the case taking into account both of (a) and (b).



is simplified into the model which is shown in Fig.2.3.(b).

In the core region where the "weight" (1-F*) is imposed, the
motion of fluid is isentropic: On the other hand, in the thermal
boundary layer region imposed F*, the motion is isothermal

(Tb=0). Thus the radial average of temperature fluctuation

is given be

—_ g nk
<Ty> = F* T+ (1-F*) T, (2.3.2)

where Tc and Tb are temperature fluctuation in the core and

the boundary layer. According as the thermal boundary layer
thickness is sufficiently large or small compared with the tube
radius, F*¥ will become unity or zero.

After the cross-section of a tube may be classified into
three region as shown in Fig.2.3.(c); the first region imposed by
(1-F*) is the velocity core and moreover the temperature core,
second region imposed by (F*-F), which may be important for
Taconis oscillation to be induced is the velocity core and
temperature boundary layer where a gas is able to move freely
and isothermal, and last region imposed by F, where a gas is
too viscous to move, so to speak, has same effects as the wall

of a pipe.

2.4 MOMENTUM AND ENERGY EQUATION UNDER SIMPLE MODEL

Under the model which is considered in the previous section
the hydrodynamic basic equations, in particular, the momentum
equation and the energy equation, are derived. The derivation

taking into account the temperature distribution have been



performed by Rott(1969), and reviewed in Appendix 1 in order
to compare with the results in this section.

One dimensional momentum equation is written as

ﬁ.%’% + _-3_% = 0 (2.4.1)

where the second order terms are neglected. The core velocity
u, in eqg.(2.3.1) should correspond to the velocity in eqg.(2.4.1).
If so, u in eq.(2.4.1) is able to be substituted to u, and

we simply obtain the momentum equation for viscous fluid;

d  <u> J P ,_.'
fmstacFE T 5% =0 (2.4.2)

which coincides with eq.(A.1.14) if F is assumed to be a
suitable form. Let's consider the asymptotoc behavior of F.

In the case that the boundary layer £fills up the entire tube

the fluid in a tube will become viscous due to the kinematic
viscosity and the axial velocity distribution becomes parabolic.

Thus a fluid has to be, in a moment, associated with the law

of Poiseuille;

n
_ = —dh mh
TR <uy = zmSO U rder Friere (2.4.4)

Comparing eq.(2.4.4) and eqg.(2.4.2), we obtain the asymptote
of F to be(l—rg@) ,%Ehﬁé.

The energy equation corresponding to the adiabatic motion
of fluid is given by, using the Lagragian differential formu-

lation,

D Se - 0
Dt (2.4.5)
SC; entropy of core

T

- 18 =



where Semeans the total entropy. Equation.(2.4.5) is expressed
in the Eular formulation. Moreover from thermodynamic identical

equation dH=TdsS+ lpdp (H; enthalpy), we obtain

e = 1
3T T Tl at f 3t
(2.4.6)
i§-°=_1,{.«zt‘.__LgL
3N T | X f IX

Thus a combination of egs.(2.4.5)and(2.4.6)leads to one

dimensional adiavatic equation;

L0 (PG Te = B) + Cru P il =g (2.4.7)

where we employ the relation %%‘=Lwcgr , and again neglect
the terms more than second order. By the way remember the
geometric model presented in the previous section, and we will
recognize that the motion in the temperature core must be

satisfied by eq.(2.4.7), so that T; and u will able to be

1
changed to TC=<Tf>/I—F* and ug(the velocity in the temperature
core). Thus the energy equation taking account of the dissi-

pative terms and the variable temperature distribution is

written as
LW BnCy €Ty = (1= PP+ (-F) G U BT =0

6=

By the help of results of Rott, we find that ug should be

(2.4.8)

assumed to be

t <u> FF—F
{1 T~ } (2.4.9)

Q- (1=F)
¢ : Prandtl number.
This formulation may be reasonable, because for vanishing case



of shear viscosity(¢=0 and F=0), ug becomes equivalent to the
velocity in the core in eqg.(2.3.1). Equation.(2.4.8) is

change to, using eq. (2.4.9)

G- (1- F) (2.4.10)

which is also given from a combination of egs.(A.1.12)and
(A.1.13), if the formulation of F and F* is suitably determined.
2.5 BEHAVIOR OF F AND F*

The fundamental equation derived in the previous section
are equivalent to those given in the Appendix 2, if the follo-

wing expressions for F and F* are imposed by

- Jolin)
Fo= < Jinyy P (2.5.1)
L*
Fros Q/J.cuzb ), (2.5.2)
with R=h[E , n=rf% and Mr=Je

where U (= #/p )and ¢ is kinematic viscosity and Plandtl

number respectively. In Fig.2.5, the numerical data calculated
by a computer about imaginary and real parts of F are illustrated.
It is reasonable that the weight F and F* tend to zero for
non-dissipative case, when we remember the physical meaning

of F suggested in section 2.3. The asymptotic behavior of F

is given by the following;

i e
Fo= 1+ 5(52) + (8 o<l (2.5.3)



and

L2 23
F T "T(—ﬁ:)“?_{(—’%\f for M| (2.5.4)

As suggested below eq.(2.4.5), the value F approaches to
(V- fugy Cfor Mel& | |

2.6 SUMMARY OF FUNDAMENTAL EQUATION

In order to discuss,in following section, the effects
of the thermal boundary layer and the viscous boundary layer
to characterize the thermally driven acoustic oscillations
we present here the basic equation where the effect of viscosity
is not taken into account but the effect of thermal conauctivity
only is taken into account or where the both effects'ére taken
into consideration. For the first case, since F and § is
vanished, we obtain from egs.(2.4.2)and(2.4.10)as momentum and

energy equation;

P
(W P+ A =0
(2.6.1)
: —(1-F*) b mCp T B Uy (=F¥ ) =p
L[ G <y —CI=F Y P+ B ) (2.6.2)

On the other hand, the equationstaking into acount the

viscosity are;

, P
o { BGp <> = (1o FORY + R B <us | 1= F=F 1=0 2.6.27)
™ G- (1-F) T

Other basic equation, the continuity equation and the equation

of state for ideal gas are not varied for above two cases;

- 21 -



Figure 2.5 Behavior of real and imaginary parts of F(Z).
Real part and imaginary part of F are always positive

and negative respectively.
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namely

iw<pl> + pm8<u>/8x +< u>3pm/3x = 0 (2.6.3)

Py/Py = <Py>/p *t <T{>/T, (2.6.4)

Before we calculate the increment of the mechanical
energy AQ on the basis of these fundamental equations,
we will intuitivelly derive it as indicated in introduction
in this chapter. For the simplicity, the effect of the
viscosity of gas is neglected(F=0), so that the axial
velocity u is independent of radia; coordinate. Only the
effect of the thermal conductivity (F*#0) is considered.
As shown in fig.2.6 let's imagine the periodical disturbance
of displacement of particles along the tube axis with finite
temperature gradient. Since enthalpy and internal energy
of ideal gas depend on temperature only, they are written
as H=Cme+constant and U=CVTm+constant respectively. Thus
the increase of enthalpy and internal energy per unit mass
for such disturbance is CPATm and CVATm respectively[ AT =
Tm(x+Ax)—Tm(x)]. By the way the particles in the region of
temperature core is not able to acquire the heat from the
external (tube wall), but only those in the region of temper-
ature boundary layer can acquire the heat; the particles
occupied in nrgF* shown in fig.2.6 can acquiré or give off
the heat. Taking into account the total mass passed per unit
time, the first law of thermodynamics shows that the incre-

ment of the mechanical energy AQ is given by
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(Cp-Cv)(dTm/dx)p u F* AV

AV = ﬂrgAx

where we take the time average on account of the priodic
motion of the particle ( the first order term is vanished )
Using the first order of the state equation for ideal gas

and the momentum equation;
Py = Py/RT
iwplu + dpl/dx = 0

where T, is neglected since we consider the thermal

boundary layer only, we will obtain the equation related with
acoustic pressure, which accords with eq.(2.7.4) shown later.
When we také into account the effect of the viscosity of gas,
F*-F may be adopted instead of F* as studied in the section
2.3. The quantity F* is closely related with the phase
differences between the radial average of T, and Tc(temperature
in core) and plays an important role for the increment of the

mechanical energy. As indicated in eq.(A.1.16), F* is also

| | flg. 2.6
X |

"! + i‘- // thermal boundary layer

Tm(x+Ax)'“"Tf"‘fj"'" X+AX Z zﬂrg F*
Tm(x)“"",""-'.""~" x
i
| \
wall wall
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related with phase differences between the acoustic pressure
and the velocity. When the phase differences are 90 degrees
the time average of the product between the acoustic pressure
and the velocity is zero. The phase of F* shifts such phase
differences from 90 degrees For r0/5>> 1, the argument of F*

approaches to m/4 and for r0/6<< 1 to zero.

2.7 CALCULATION OF 9_ <plu>

The main purpose in this section is to calculate the
quantities %; <P u> which is considered in sectioﬁ 2.1 and to
discuss the possibilityof spontaneous oscillations. The
quantity Fﬂji<u> is reduced to ordinary differential equation
for the acoustic pressure Py using the basic equations presented

for two cases in previous section, results are, for the first

case,
2 2
J<ur \P" ¥ _ R §Ta IR *
Rax = wzﬂhw‘)hF ZWHMJXJX:MF (2.7.1)%

where M is molar mass of gas(4 for helium gas).

And for other case

PL Gy Pt o —S— 4% g P-F (2.7.2)*

p AW
' 2% Py ZWMPB, 4dX -5

o W
X

Substitution of eqgs.(2.7.1),(2.7.2)and(2.6.1")yields the

final results;
AQ = AxTR (4], + 43, + 4§, ) (2.7.3)
where for the first case
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BO; = ~ Tamp d4X wx (2.7.4)
(o) Al * (2.7.5)
AQ, e (D ImF

and for other case

= _ _ __R 4w aIRY Ft—F (2.7.6)
AQl" ZWMP dX 3 x I*(;-—g-)

ray w [ P12 (2.7.7)
AQZ = erPPNl (3’ -1 ) Im F».

A - (2.7.8)
AQ3 = wﬁ., <u> 2 . E

These equations give us several important information to
discriminate the possibitity of the maiﬁtenance of the acoustic
wave.

At first let's consider the case for a pipe with constant
temperature distribution, where AQ is associated with Aaé
and A63. Since imaginary part of F and F* is always negative
as shown in Fig.2.5, AQ2and A63 never take positive value.
Therefore in such a tube only damping of oscillation is, of
course, possible and spontaneous oscillation is never induced.
Qualitatively AQ; and AQs show parts of potential and
kinetic energy dissipated by thermal conductivity and viscosity
respectively, whose rates is shown by imaginary parts of F*
and F respectively.
* The apprximation is performed for second term in the right--
hand side of egs.(2.7.1)and(2.7.3); that is we employ d4WE4,
- instead of the exact form Rd%q& . For stationarywave, the
acoustic pressure p, can be written as PB(pexptiwt) including
time factor. For i —0 and R =0 or for =0 and R =% , the

1mag1nary part of p is vanished, so that egs.(2.7.1)and
(2.7.2)are exact. %ut for practical case the problem of phase
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Nextly let's imagine a pipe with temperature gradient,
which is interested here. In this case it is possible that
AQ takes positive wvalue, bébause Aal can take large enough
positive value to make good the loss of 4Q; and 403 . Thus
in a pipe with suitable temperature distribution to make
positive value 561 , het acoustic energy is supplied to gas,
and enables a gas to sustain the oscillations. A finite
temperature gradient plays the same role of energy source as
piston, which is employed in piston-driven oscillations(refer
to Betchove 1958).

The driving terméﬁl is proportional to the inverse of
M, so that the light gases as helium, hydrogen and neon
is too easy to be unstable. This is confirmed in Introduction.
Members of cryogenics well-know that the oscillations are
occured when the closed end of a pipe is at warm part and the
open end is at cold as shown in Fig.2.7.a. This is able to
be explained from above discussion. In this situation the
product of JEQX and dl@%x are positive(see Fig.2.7.a),
moreover imaginary part of F* is always negative, so that
Aal can take positive value! In the tube with configuration
such as Fig.2.7.a, only the damping occurs at the warm and
cold parts. However near middle location with a steep temperat-

AQ

ure gradient ?T*CVés possible to be positive. Thus when aQ

shifts is produced, as indicated by Merkli and Thomann(1975).
This problem is very difficult. However the approximation
is sufficient to give a qualitative explanation of our exper-
imental results. Of course, in order to give more detailed
discussion, the solution of p, (x) must be solved for non--
uniform temperature case. Bu% this will be very difficult.
A calculation including the imaginary part of Py has to be
performed by a computer.
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Figure 2.7. (a) A half open tube with a temperature

~gradient along it's axis. And the distribution
of the square of the pressure amplitudes for

constant temperature case and wide tube limit.
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bécomes positive through the whole tube, the acoustic wave
ére éble to be sustained. Taking into account the effect of
viscosity (refer to eq.2.7.6), we can understand that since the
effect of it F makeslﬁilnegative at samller W\ as shown in
Fig.2.7.b, the unstable region . is reduced. These show a
good correspondence with our experimental results as shown in the
next chapter. Equation.(2.7.6) suggests the following Pheno-
mena:
1. the existence of two branches on the stability
curves.
2. the possibility of the oscillations in the cavity
closed both ends.
3. the appearence of the second-harmonic instead

of the fundamental.

These will be discussed in the next chapter as compared with

several experimental data.

2.8 SECOND-ORDER HEAT FLUX

The second-order heat flux is important to interprete
the thermal effect produced by "Taconis oscillation". This
consists of two parts. One of them which exists in a pipe
with constant temperature distribution has been theoretically
given by Merkli and Thomann(l975)énd experimentally confirmed in
a pipe where the standing acoustic wave executed by a piston
ét one end are induced. Another which is interested here,
comes from finite temperature gradient. A large amount of

heat transfer to liquid helium system is caused by the latter
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of the second-heat flux.

The thermal effect(the cooling and the heating effect)
observed in a experiment is time averages. Therefore only
terms of second and higher order in the fundamental equations
contribute to the experiments. Then we have to carry out the
perturbation calculation up to the second order instead of the

first order in acoustics. Thus we employ the equation simplified

by setting(with &€<«1)

_ 2
T = Tm + € T1 + € T2
p=p_ + €D + €°p
m 1 2 (2.8.1)
u = S ul + € u,
2
k k + € kl + € k2

where we take into account the wvariation of the thermal
conductivity and the shear viscosity associated with temperature
fluctuation. The basic energy equation containing the terms up to
the second order in cylindrical co-ordinates modified by other
basic equation is integrated over the cross-section of the tube
and furthermore averaged by time(in detail reffer to the paper

by Merkli and Thomann or Rott). Consequently the local second--
order heat flux g, per unit area penetrating into the tube wall

is obtained;

|

——

- m\ S . + R = 2mr, X
92 = ® (ah)rgm ( 'ak)bm e 39X (2.8.2)
Ex= it <hiwy h)=C_Ty; first order (2.8.3)

enthalpy

where ﬁz is total axial first order enthalpy flux over the
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cross-section of the tube. The angular brackets and bar
show the radial and time averages. The equation.(2.8.2) is
related with the heat exchanée between the tube wall and the

oscillating fluid. Thus E, is able to be obtained from the

2
product of the first order solutions uy and Tl' The expression
of egs.(2.8.2)and(2.8.3) have been Merkli and Thomann (1975)
derived by

or Rott(1975) with a slightly different approach.

We will obtain the acoustic variables u; and Ty under the
simple model suggested by us. From egs.(2.6.1')and(2.6.2")
the radial averaged écoustic variables are given by

' _ L dR
LWy = —57;:‘(1",':) /Jx (2.8.4)

A o 4P, v e o, dh
Pacr<t> = (R- m)'?v?%fk‘](" F 4 Gonenw T (2.8.5)

After inserting F and F* into above equations, still more
taking off: the anéular brackets, the radial and time averages

product of u, and T, is again calculated. Then we obtain the

1 1

resulting equation of ﬁz;

6 fiu 02

. \ O m Q" T
E, = Trs Re{[;—uc"ﬁ + 35 a5 g6
Ue = uﬁk%ﬁ%
where
— - o8 - 1 =%
g = 1 = F . ey F (2.8.7)

The quantity Ez consists of two parts in the right-hand side of
eg.(2.8.6). The first term produces the local heating and

the cooling. For the standing waves, the first term
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becomes

_ TR JIRE
Ei = — Zup, sx 1md (2.8.8)

Since imaginary part of g is everywhere positive as illustrated
in Fig.2.8, this equation indicate that the derivative of

Ez is positive (heating)at velocity node and is negative (cooling)
at pressure nodef For steep temperature gradient, the second
term of the inner brackets dominates over the first term.

This term is purely imaginary, so that only the imaginary part

of g is needed for the final results, Therefore

F'-Fo d T
- )P“C’?‘f (2.8.9)

E} = mh?—zltu_ u:ﬁt Im(

This equation can be rewritten as, using the effective heat

conductivity by thermally driven acoustic oscillations produced

by Rott
—_— d T
32 = - A 'R!ff 4 ;:

(2.8.10)

where A is the cross-section of area and ke is given by

£f
o luel? oF -k **
Rew = 555 R Is ( — ) (2.8.11)

This heat flux may contribute to a large amount of evaporation
of liquid helium. Qualitatively keff is proportional to the

square of the amplitudes of the oscillation.

* Mr.Haruyama and Mr.Ikeda in cryogenic center in the univer-
sity of Tsukuba show that the top of liquid helium level meter
becomes warm when Taconis oscillations are generated and very
vigorous. This phenomenon is explained by eq.(2.8.8).
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2.9 STABILITY LIMITS FOR THERMALLY DRIVEN OSCILLATIONS

We will roughly give the review of the theory of Rott
where the stability curves for helium are numerically predicted.
The stability problems are started from the differential
equation (wave equation) for the acoustic pressure Py along the

tube axis given in Appendix 1;

, 2 2 px_
! [l*’(Y'l)F*]'*'g;[%(l'F)sdi%] - _a__2_ F*-F dp _g (2.9.1)
W

which can be also derived from a set of equations given in
section 2.6 under the simple model. This equation under the
assumption"a long tube approximation" is of interst over the
full and unrestricted range of the variable |n0| , which
represent the ratio of r, to the Stokes boundary layer
thickness .. The acoustic solution for ©=0 was first solved
by Bergh and Tijeman(1965). However as coefficients in eq.
(2.9.1) depend :on the temperature distribution with x for & 0,
the solution of P, appears extremely difficult.

The part except for time factor for right running plane
wave is given by exp(—ijzx), where in general ﬁ is complex
due to the effects of a dissipation. Thus dispersion relation
for 6=0 1is obtained from eq.(2.9.1);

£ o W Lt(y-1)F*)1/2_ w

a 1-PF ax

1-F 1/2
a* —_ a( l+(‘Y—-l)F*) (2.9.2)

a; adiabatic sound velocity

where the proper sign of the root is chosen as k>0 in the

~

inviscid limit. The condition Im k <0 has to be imposed in



order to obtain the pressure amplitude converged to zero at
x= oo .  Therefore we must select a suitable branch of % ,
which has two branches, lii.‘ Equation.(2.9.2) shows a good
correspondence with the model given in the previous section.

For simplicity the inviscidcase, i.e.,F=0(but thermal conduc-

tivity is finite, i.e.,F*#0)is considered. Then the relation

is
I a- F*
o - a2 a2 (2.9.3)
where
0 = (.3_%)3 = (2.9.4)
QL&) 0 ag; adiabatic sound velocity (=a)
02 = 1) =2
N Wwh o agi isothermal sound velocity

When the thermal boundary layer thickness is sufficiently

small compared with the tube inner radius, the weight F*
approaches to zero, so that the right-hand side of eqg.(2.9.3)
becomes to l/ag . Thus for such aicase, the acoustic wave 1is

a normal adiabatic sound. On the other hand, when the thermal
boundary layer thickness fills up the whole tube, F* approaches
to unity, so that the sound speed becomes isothermal one.

For example in narrow tube limit, the leading term of the wave

** This equation shows a good correspondence with normal
thermal conductivity derived from the kinetic theory; &='%ﬁ39“£
where £ is a mean free pass. The following expression of

L in eg.(2.8.11) is convenient to compare with normal one;

l Uel
2w

(= —F*')

2 .

et =

where the particle displacement in the core is given u?@
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number is written as

=2 Loufa-y

Thus in a capillary tube, the wave is strongly damped. As
such strong damping is compensated by the driving due to the
steep temperature gradient, thermally driven acoustic oscill-
ations are sustained.

The important quantities Mo and Ny are function of x in
the case of a non-uniform temperatrue distribution. The
assumption of a piecewise constant temperature which has a
discontinuity at some situation along the tube is employed as
 shown in Fig.2.9, where a half open tube is cold at the open
end and - warm at the closed end, and temperature has
a constant value Tmc(mean temperature at cold part) between

x= 0 and x=¢, and T between x= { and x=L. We discuss the

mH
differential equation under such a discontinuous model for
leading the stability limits of the oscillations. Eguation.

(2.9.1) is written as

2
(1 + - F]BR *%[%(“F)B%]‘“‘O 2.9.5)

with
o8B F*—F (2.9.6)

S = T Gomesy O

where B is so normalized that it takes unity for non-dissipative
case( =% ), 1In order to discuss the boundary condition for
the pressure with the temperature discontinuity at x= 2 , the

following set of equation equivalent to eq.(2.9.5)

d¥

——

|
P =~ & ax (2.9.7)



‘aqny oYz buoTe uoTINTIISTP 8anjersdwal

uesw aYTT~dols e_pue aqny uado JTeY VY 6°'¢ 2anbtg

~
—
|
|
I
i

out

38



il
l_l

|

(2.9.8)

=l
N
o]]
e

where G=[1+(y-1)F*]B and K is wave number. The symmetry between
Py and Y requires that they can not take a function such as

§ -function or step-function, because Y will always be one
degree more singular than pl,and eq.(2.9.7) introduces a

previously excluded singularity in Pq- Such demand can be

recognized by analogy "the problem of well-type potential in

Schrddinger equation"; the wave function can be continuous

in all région. In order to avoid . singularities, ¥ and Py
~ . should be continuous along the tube axis, even if the

temperature distribution is step-functional: sa that at the

location x=2%

1

Py (8 =-0) =p (*+0) (2.9.9)

v (2 - 0) y (g + 0 ) (2.9.10)

The boundary conditions at the open end x=0 and at the
closed end x=L are p;=0 and u=0,i.e., dp;/dx=0 respectively.
The former is idealized for a half open tube, because the open
end correction is not taken into account, and oscillations of
the U-shaped cavity employed in our works which isclosed at
both ends and established a symmetrical temperature distribution
satisfies p=0 exactly. Thus the following expressions for
the pressure account for the above stated boundary conditions
and eq.(2.9.9);

A Cos EH(L—X)

pH= 1 ~ for 2
cos kH(L—Q)

(2.9.11)

IA
w
17
=
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Al sin k x
for 0 <x< 2

P.= —~ <
i L
sin kc~

where A, is the pressure amplitudes at x=% , and subscript c
and H intend the cold and the warm part respectively. The

final condition eq.(2.9.10) gives us the key equation for

stability limits;

G . G . 2.9.12
C oot £ = —B tan £(m-1) )
c H
k k
o] H

The oscillating instability is due to an amplification of the
accidental and infinitesimal disturbance which is not able to

be separated from any physical system. The angular frequency

in eqg.(2.9.12) is generally complex. According as the imaginary
part of the frequency is positive, zero and negative, the

system is stable, neutral (stability limits), and unstable
respectively. The subsequent studies concentrate on the
question of conditions for a real value of the frequency,i.e.,
the relations between the warm and the cold states will be
soughﬁ, which give the stability limit of the oscillation(refer

to the theory of Rott).
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CHAPTER 1III

EXPERIMENTAL

There have been many experimental investigations about
this type of the oscillating instability(Taconis oscillations)
associated with thermally driven acoustic oscillations in
cryogenic systems. They, however, are too rough or too
qualitative to give sufficient understanding of this phenomenon.
One reasonfor such failures is that the temperature distribution
along a tube was not paid attentions. Another is that, in
early daies, owing to a lack of theoretical investigations, it
was not understood what is essential parameter to characterize
the oscillating instability. The latter problem was
solved through . °~ a series of the theoretical studies by
Rott, et al..

In our experimental investigations, two main develope-
ments are made comparing with some previous experiments;
one is the use of a U-shaped tube instead of a half open tube
in previous works by other authors. Such a new type of a
cavity enables us to compare our experimental results quantit-
atively with the theory of Rott, et al.. Another is the
establishment of the temperature distribution along a tube
axis, which was performed by the uée of the techniques in
cryogenics. High sensitivity in thermal measurements 1is able
to be obtained there.  All experiments were made over a wide

range from 4.2K to about 60K as temperature at the cold part.

The warm part is maintained at room temperature.
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For obtaining the stability limits of the oscillations,
the experimental apparatus consists of three relatively distinct
parts; the cavity in which tﬂé standing acoustic waves are
set up(section 3.1), the pressure measuring system(section 3.2)
and the cryogenic systems for establishing a nearly step--
functional temperature distribution along a tube axis(section
3.3).

Lastly we introduce a cryostat for measuring a liquid
helium evaporation rates under the oscillations relating to
second-order heat flux discussed in the previous section.

In this cryostat, the developement of temperature distribution

is also performed comparing to the earlier experiments by

Banister (1966).

3.1 CAVITY

The cylindrical cavities are made of long stainless steel
tubes with a wall thickness of 0.3mm, inner radius 1.2-4.7mm.
The whole length of them is more than 1l.5meter. Thus those
tubesare sufficient for the experimental studies of plane waves
in gases(when sound waves of low enough frequency are propagated
in a pipe, they can be considered to be plane wave). Instead
of a half open tube, which is used in the previous section and
most of earlier works, a U-shapedAtube is employed in our
experiments. The U-tube and the symmetrical temperature
distribution along it are shown in Fig.3.l.a.

In the position of x=0, two half open tubesare smoothly

connected by a U-shaped brass whose length(about 3mm)is
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sufficiently samll compared with wave-length. Two types of tube,
a half open and U-shaped tube, are mathematically equivalent

as long as the fundamental ffequency mode or higher odd

harmonic modes are considered. In the tube schematically

shown in Fig.3.l.a, the following expressions for the pressure
fluctuations corresponding to eq.(2.9.11)acount for p;=0 at

X=0, dpl/dx=0 at x=+L and the continuity of the pressure;

”~

sin k _x
e S =l 2
c
py = A} cos %}L(L—z) 2< x <L
cos kH(L—R)
P_= -, cos kg (L+x) L < xeet

cos EH(L—Z)
where Aq is pressure at x=% including the time factor.

Another boundary condition as discussed in section 2.9, Y

also has to be continuous at x=+ & . It is understood, using
above equations, that the boundary condition at x=% 1is the

same as that at x=-%2 . Thus the U-shaped tube is mathematically
equivalent to a half open tube treated in chapter II , so that

the theoretical results are held true for the tube employed in
our experiments.

There are two experimental evidences in favor of this
equivalence; one is that the acoustic pressure amplitudes are
observed to be the same at two closed ends of the U-shaped tube,
and another is that the phase differences between them are
180 degrees. The X-Y diagram of the pressure fluctuations
observed on an oscilloscope is shown in Fig.3.l.b, whose

horizonal axis is connected to the pressure at x=1L , and
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Figure 3.1. (b)

The relation between the pressure fluctuations at

two closed ends in the U-shaped tube. X axis in this
figure shows the pressure fluctuations at x=L and Y
axis shows that at x=-L. From this photograph, two
important matter are understood; one is that the phase
differences between the pressure at two ends are 180
degree and another is that these amplitudes are the
same. Thus it is considered that this instability is
a kind of the standing waves with fundamental

frequency mode.
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another x=-L . This photograph confirms that "Taconis
oscillation” is a kind of the standing acoustic waves whose
pressure loops(velocity node)exist at x=+L and pressure node
(velocity loop)at x=0. The acoustic oscillations with the
fundamental frequency mode are excited in both types of the
cavities. From the symmetry between a half open and U-shaped
tube the discussion and the conclusions in capter II is applied
to our case. But a higher harmonic modes(as discussed in the
next chapter)except for the odd harmonic(fundamental, third,...)
induced in the U-tube do not satisfy the above explanation,
because two types of tubes are not equivalent. In such higher
harmonic mode as reported by Yazaki, et.al. (1980)the U~tube
is equivalent to the closed tube at the positions x=L and x=0,
where velocity node exists.

The new type of the cavities gives us several following

advantages:

1. The lowest acoustic mode excited in such a symmetric
tube provides the exact boundary condition, pl=0,
in the middle of the tube. In a half open tube this
condition is idealized, because the dynamics of the
open ends are ignored, and no oscillations of a
finite cavity connecting to the tube are admitted.

2. The oscillating gases can be separated from a coolant
(1iguid helium in our experiments), so that we can

) . *
make use of several kinds of cryogenic gases as sample.

* The oscillations have been observed for gaseous neon during

the course of our stadies.
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3. the mean density g, can be varied through a needle
valve and a capillary whose dead volume is negligible
compared with that of the cavity. Therefore the
boundary layer thickness § can be continuously

varied through the density of oscillating gas.

3.2 PRESSURE MEASUREMENTS

The self-sustained acoustic pressure measurements are
performed at x=L, where the pressure amplitudes are maximum.
Therefore, main purpose in our experimental investigations,
the determination of the boundaries between oscillation and
no oscillation(stability limits)will be sufficiently achieved
by measurements p. At other position x=-L, the mean pressure
is measured in order to determine the kinematic viscosity at
the warm and cold parts. The contact between a pipe and a
pressure transducersis performed using a rubber band and the

*
leak tight is tested by a leak detector.

PRESSURE TRANSDUCERS The pressure measurements in our
experiments were carried out using the microminiature semi-
conductor pressure transducers(differential types)made use of
the Piezo electronic resistance effects. The pressure is
determined from the voltage which is proportional to a small
distortion produced on diaphragms. Such transducers have
been developed in detail by members of the Toyota Ltd(1969;
Tomohisa and Igarashi). Attainable pressure fluctuations are
sometimes surprisingly high as 104 Pa or more, and their

frequencies are usually below 100Hz. The transducers are able
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to be employed below 105Pa, and their resonance frequency'
(diaphragm)is more than 10KHz, so that they are suitable to
our experiments. The acoustic and the mean pressure are
measured by typg*of 1F DD102(No51)and 1F DD102 (No58)respectively.
The relation between the output voltage through an amplifier
and pressure calibrated by a mercury manometer is shown in
Fig.3.2.a for 1F DD102(No5l)as an illustration, where one side
of the transducer is connected to the manometer and the other
side is pumped out by a rotary pump(10_3torr); the calibrated
line is

P; torr

P=155.1V + 0.2 Vs volt
where the transducerresolution is below 0.2torr( 27Pa),

including the following electronic systems.

FOLLOWING ELECTRONIC SYSTEM A block diagram for the pressure
measurement system is schematically shown in Fig.3.2.b. At
first the acoustic signal came from the pressure transducer is
amplified by two hundreds times using Amplifier-A.A.3000(Toyoda
Koki)and their amplitudes are measured by a digital voltmeter
(T.R 6858 Takeda Riken). The amplified signal by two hundreds

times, stillmore, is monitored by an oscilloscope(Tectronix

* The leak tight there is very important; in our earlier
experiments, on account of no leak tight the oscillations is not
able to be sustained, but damped, so that the determinations

of the stability limits was not able to be carried out. Still-
more the gaseous nitrogen or oxygen are solidified at cold

part through the leak, and are filled up the tube cross-section.
By sudden vaporization of them, a diaphragm of the pressure
transducer was destroyed.

** pressure transducers
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7603) and whose frequencies are measured using universal counter
(T.R. 5103 Takeda Riken). Secondly the voltage corresponding
to the static pressure is amplified by 50 times using D.C
Amplifiér—A.A.3000 and measured by a digital voltometer.

The wave-forms of the pressure fluctuations are normally
sinusoidal near the stability curves as long as only the
fundamental or only the second harmonic is induced. According
to Hoffman,et.al{1973) the wave-forms excited in a U-shaped
tube become to be deviated from sinusoidal shape of the
pressure-time curve for very vigoréus oscillations. We also
observed the same phenomenon in such a tube. Such new pheno-
menon may be due to the nonlinear effects or the superposition
between- the fundamental and the higher harmonics. Our experi-
ments, of course, are performed within the limits of the

sinusoidal pressure fromes.

3.3 APPARATUS

The cryostat consists of a three litter helium dewar
made of pyrex-glass which is evacuated to 10—3torr by a rotary
pump and surrounded by a liquid nitrogen dewar. The experimental
apparatus schematically illustrated in Fig.3.3.a, by which a
nearly step-functional temperature distribution is able to be
established, is consisted of a separated two reservoirs, a warm
part and a cold part, and is inserted into such a double dewar.
We obtained more homogeneous temperature distribution, in
particular, at the cold part, using this apparatus instead of
the use of an earlier cryogenic apparatus(not shown in this

paper) introduced in our first paper(Yazaki, et. al. 1979).
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Apparatus in Fig.3.3.a is employed for cooling uniformly the
cold part of the U-tube with & < 1. A simpler apparatus is
used for £ > 1. As explained in chapter IV. the experimental
results for g =1 in both cryostats agree each other.

Therefore in the following we introduce the former apparatus only.

WARM PART The warm part(52,+é2§ <X <L )is immersed into
the reservoirs at liquid nitrogen(77.3K)or room temperature
system made from vacuum pump o0il in copper jacket(with diameter
30mm and wall thickness 2mm). Near the top end of the tube,
the entrance for pouring or pumping the oscillating gases
(helium gas)is connected to vacuum rotary pump through a
needle valve and a capillary(0.5mm inner radius copper tubing)
whose volume is negligible compared with that of the U-tubes.
The cooling transmitted from the cold part(due to the heat
conduction of two stainless steel tube, the second order heat
flux caused by the acoustic oscillations and the radiation
across the valuum space)are compensated by heaters made of
constantan wire (normally less than five watt)wound around the
copper Jjacket. A copper versus constantan thermocouple(0.2mm
diameter)is used as a thermometer and we check the uniformity

of the temperatrue by moving up or down it.

COLD PART The cold part(l—%?gbd)is cooled by the continuous
flow of cold helium gas(or liquid)as shown schematically
in Fig.3.3.a. Using this cooling method, the temperature at

the cold part was able to be sufficiently varied from 4.5K to
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about 60K continuously. The cold reservoir is made of copper
cylinder (with length 1.3m, outer diameter 30mm and 2mm wall
thickness)around which a cooling tube (2mm inner diameter and
3m whole length)is wound and soft-soldered for heat exchange.
Through this tube, coolant, helium gas is pumped by Kenny--
pumg(KRP—3000 litter per minute). The cold part is precocoled
by liquid nitrogen through vacuum space and becomes about 200K,
and after liquid helium is transfered, it normaliy takes about
five houres to be cooled down to near 30K. The variation

of the temperature is performed by the adjustments of a gas
flow rate through a needle valve.

Even using such a way of cooling, it was not so sufficient
that a long tube (~¥lm)was uniformly able to be cooled. Futher-
more under the oscillations the thermal effect(second order
heat flux)are different according to the position of the pipe.
Therefore the temperature control should be demanded at the
local position of the tube. Taking into account such circum-
stamces, we could succesfully obtain more homogeneous temperature
distribution at the cold parts using the method described
below.

The cold part of the U-tube is thermally kept in contact
with three separated copper blocks and foils which are directly
soft-soldered on the wéll of the tube. This plays a role to
enhance the heat capacity of the wall, so that the assumption
in the theory that the wall temperature fluctuations are

negligible becomes more exact.

* DATA vacuum engineering co., LTD.
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TEMPERATURE MEASUREMENTS AND CONTROL At three
separated position A, B and C(see Fig.3.3.a), three carbon
resistors and a series of chromel versus gold 0.07 at % iron
thermocouples (Osaka oxygen Industrial Ltd Bach No 812001--
812089) are directly attaced on the tube wall by varnish(G.E
7031). The temperature Tc are measured by one of the resistors
(Allen Bradly nominal value 510 ohm 1/8 watt)calibrated
against chromel versus gold thermocouple(ligquid helium 4.2K as
a constant point). The calibrated curve is illustrated in
Fig.3.3.b. A simple D.C electric bridge circuit for measuring
the resistance thermometry is shown in Fig.3.3.c where lead
lines (with method of three wire)are Mn-Ni wire with 0.08mm
outer diameter;

Furthermore for obtaining more homogeneous temperature
distribution, temperature differences occurred between two
separated position are detected by chromel-gold thermocouples
at each position. .Thermoelectric power caused by temperature
difference are monitored by two microvolt-meters(Ohkura Elect-
ronic Co). Futhermore they are amplified by D.C amplifiers
(Bipolar Power Supply Kikusui Electric Corp,35-1A) Their
output voltages are automatically supplied to the respective
heaters B and C in such a way that thermoelectric power vanishes
A schematic block diagram is shown in Fig.3.3.c.

Thus we could obtain such a near step-functional temper-
ature distribution that the part Ax where the steep temperature
change occurs was less than three percents of L. Two

reservoirs, a warm and a cold, is inserted into the vacuum
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(A) ; A simple D.C bridge circuit for

measuring the resistance R of a carbon thermometer up to

10K .

the temperature uniformity along the tube axis.
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jacket insulated from surrounding liquid helium reservoirs
(a stainless steel pipe with 1.5m inwholelength, 50mm outer

diameter and 0.5mm wall thickness).

3.4 MEASUREMENTS OF LIQUID HELIUM EVAPORATION RATE

In order to measure a second-order heat flux due to the
Taconis oscillations caused by a steep temperature, we employed
another apparatus schematically shown in Fig.3.4, which is
inserted into the double pyrex-giass dewar subcooled by liquid
nitrogen. Thus two reservoirs are directly separated; the cold
part is soaked into liquid helium 4.2K and another is immersed
into vacuum pump o0il maintained at room temperature. The
temperature measurements are the same as above. Bellows attached
in the vacuum jacket prevents the soldered Jjoint between
cold and warm part from being destroyed by thermal contraction.

The evaporation rates of ligquid helium is measured instead
of the local second order heat flux penetrating into the
tube wall. The total heating came from a cold part contributes
the evaporation. A helium gas evaporated passes through a
calibrated impedance, which is made of a spiral copper tubing
(inner radius 4mm and whole length 0.5m). Thus the evaporation
rate is estimated by the use of the Poiseuill's law. The
pressure difference between an entrance and exit of the impe-
dance is measured by the pressure transducer(Toyoda Ltd 1D101,
0.1F) with D.C amplifier. The calibrated equation of a

flow rate was
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5 4 n; mol/sec

n = 1.30X10"° v + 2.0X10”

V; mm volt
(V; corresponding to pressure difference between an entrance
and exit of the impedance through amplifier (200 times))
which was estimated using the method of least square fiting.
The time independent heat current Qex produced by the oscilla-

tions is estimated experimentally through a relationship;

Ouy = L (n - ﬁo) (3.4.1)

where n is flow rate (mol/sec)including the background ﬁo
without the oscillations, and L is the heat of vaporization
of helium at 4.2K(80 Joul/mol). The gquantity folO contains
several causes of heat production;
1. radiation heat from the top flange, warm
reservoir and liquid nitrogen reservoir.
2. heat conduction transmitted through helium gas
in the U-shaped tube and stainless steel
tube.

Radiative heating from the top flange is reduced by inserting

several thin copper plates.
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CHAPTER IV
RESULTS AND DISCUSSIONS

In this chapter we will present the experimental results
about, in particular, three subjects: the stability curves
and the frequency diagrams of thermally driven acoustic
oscillations for gaseous helium, the transition from the
fundamentalto the second-harmonic and the thermal effect (second-
order heat flux)produced by the oscillations. At first the
existences of two branches on the stability curves predicted
by Rott et al.(1973-1976)is confirmed in our experiments.
For the ratio & of the length (L-g%) to & as a parameter,
the stability curves and the frequency diagrams are experimentally
determined and quantitatively compared with the theory of Rott
and qualitatively explained from the results presented in
Chapter II . The optimal conditions for driving the oscillations
are also discussed. At the "left-hand branch"for small ¢ ,
we have found the oscillations with higher harmonics (second-
harmonic and third harmonic) which have never been observed on
previous works. Secondly the classification of the unstable
region for the fundamental and the second harmonic is experi-
mentally and numerically performed. Lastly the evaporation of
liguid helium accompanied by the oscillations is measured and
the effective thermal conductivity of the oscillations is
determined from it. Results are compared with the theory of the

second-order heat flux introduced in section 2.8.

- 61 -



4.1 STABILITY LIMITS

The first approaches of the stability limits has been
performed crudely by Von Hoffman et al.(1973). Their results
are shown in fig.4.1, where the excistence of two branches
is indirectly suggested by use of tubes closed at one end(
half open tubeé). However in their experiments it was
difficult +to say that the stability curves were exactly
determined, because there is no continuous variables to approach
to the critical point(neutral point). In our case where a
U-shaped tube instead of a half open tube was employed, we
could confirm not only the existence of two branches but also
determine the stability curves.

Thé relationship between the cold and the warm parts
which gives the stability limits of the oscillations is
determined from the solutions of eq.(2.9.12)with real
In order to characterize the stability limits, non-dimensional

variables

1
a = |ng | 7/ Inogl= Tuyre , Imgl = xgw/n)Z (4.1.1)

are employed. These suggest us that instead of the tube
radius ¥y, we select the boundary layer thickness at the tube
wall as a continuous variable. In our tubes the boundary
layer thickness is able to be varied continuously.

The only temperature dependent term vy is proportional to

1+8 ( ﬁchB ; for helium gas, the best fitting value of

T
B is equal to 0.647: refer to the paper of Keesom). As

shown in Appendix II, both of the coefficient of viscosity
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and thermal conductivity of gas are independent of the static
pressure but dependent of only the temperature. In the analysis
of experimental data, we employed,as the values of viscosity for
temperatures, the experimental data obtained by previous
works, or interporated ones of them.

Determination.of the stability limits between oscillations
and no-oscillations are experimentally defined as follows.
The gas in the cavity becomes unstable and oscillates with
finite amplitudes, when, near the left-hand limit(see Fig.4.1),
a small quantity of gas is gradually poured into the U-shaped
tube through a needle valve(see Fig.3.3.a)under constant
temperature ratio; namely the warm and the cold temperatures are
kept constant. In the unstable region,when thedensity of gas is
reduced, the boundary layer thickness becomes large, then the
syste approaches to the stability limit where the oscillations
are neutral. Near the other hand limits, under constant
temperature ratio, the reverse operations to the above
procedures are carried out. Amplitudes of the oscillations
near the stability limits are illustrated in Fig.4.1 for
typical examples. They have a tendency to increase(left limit,
and decrease(right limit)in proportion to |ng.|- The critical
values]nogwhere the oscillations are neutral may be determined
by the extréporation of the line. Practically instead of the
extraporation, the valuesf,.|where the acoustic pressure
amplitudes are within the range between 27pa(resolution of
the pressure transducers including the following electronic
systems)and 107pa are employed as the critical points in our

experiments. Figure.4.l shows clearly that the differences

- 63 -



*sjuswTIodx® INO UT POUWITIUOD ATHUTHTIRS

axe 3308 Aq pejorpaad ‘spuey-3ybTI pue uwuﬁ .mmsocmun.ose *3aed pToOO a3
ut mmmaxwﬂgu I8AeT Aaepunoq sSnodSTA 9UY3 03 sniped aqni Y3z Jo OT3IBI SYF snsasa

(senTea yead 03 seed)pue pesold usu 3e sopnitldwe oanssead OT3SNOOY 'y oanbrd

ooy

- %79 ¢S | ¢l 0l
_ // _ _ T W _ T
i N g 11
w
v v
<<< s% |
W
i g i ) i 3
I= 3 | _ \ z = 2 _
LB = ® ﬂ/ UOTINTOSSY Hﬁ %% L*yT = ®
- W, °¢ = O.H v <\ wuwy g = O.H — m
\
JITWIT Y\ <\ FTWTT
puey-3y6TY v puey-3yeq ©
- 1. M
=
N
v B Y JN
~
! ! I — _ S =,



*3xed wIiem syj 3e SSaUNOTY3l IoAeT Arepunoqg SNodSTA 9yl o3

SnTpeI IsUUT 9qn} 8y} JO oIleld oy} snsiaa sopniTrdue sanssexd oT3Snooy T 7 oanbtg
[HOY|
6°S 86 LS :m.— 7°1 £l 2’1
\ I I  a _ _ \ 10
®e
) 9
- ) .ﬁ
. ¢
o'y !
® ’0
\e °
. ® — 27
/. O
T =3 \ uotinTosay H 0\ ¢ =3
— L°PT = © e (-] LT =D I
0 \ / 0
unnz cg =03 ° unty cg =Ox
\ ] Lv]
[ ]
= FTWTT ITUTT —Y 9
-
puey-3yb1y puey-33oT °
® : N
()
| | | | l \_ _ | N

ZW/N

65



between them are sufficiently small(less than 5%). In the
region around the minimum of the stability curves, where the
critical temperature ratio is lowest, that is a =6 for £=1
(see later section)the critical points of |nge} are determined
by slowly changing the temperature in the coldbpart with heater
while the amount of gas in the tube is kept constant.

Near the critical points the angular frequency of a harmonic
gas motion(relative error is below 2%)is almost independent

of the pressure amplitudes. In the following discussion,

the quantities|ng|. a and A represent the critical values

on the stability curves.

4.2 STABILITY CURVES FOR THERMALLY DRIVEN ACOUSTIC

OSCILLATIONS FOR GASEQOUS HELIUM.

The stability limits for various temperautre ratios are
experimentally determined by the methods described above
section(4.1). Under constant § we could obtain the stability
curves normalized on the plane of the dimensionless variables

o versus|ngd. The experimental results of the stability

curves for helium gas are shown in Fig.4.2.a( £=1, 2, 5 and 10)

s00 fig.4.1
295 o o II x x . .
I’ Oscillations observed
Pd
/ ”
- / o with half-open tubes of
= 100 l’ ) /// . .
77+ o |x x_~ o different diameter for
£=1[Hoffman et al. 1973]
X - Oscillotion
20 _ , O—No?fmmmj T ; warm temperature
05 Q.8 18 12 do; diameter of tube
d, ,mm
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and Fig. 4.2.b( & =1, 0.5, and 0.3)where the temperature .
ratio TH/Tc for driving the oscillations is plotted on a
logarithmic scale as a function of the ratio of tube inner
radius to the viscous boundary layer thickness in the cold
part. Cavities with various inner radii(r0=l,2—4.7mm)are
employed according to the viscous boundary layer thickness;
that is, narrow enough tubes are utilized near the left-hand
branches and wide ones near the right-hand branches, because
the mean pressure which can be measured by our pressure
transducers is less than about l.leOspa. All data shown here
are obtained for the case that the warm temperature is room
one(297K) . For the case that the warm part is at liquid
nitrogen temperature(77.3K)we also obtained almost same the
stability curve as that in Fig.4.2.a for & =1. However not
shown here, because these data are unreliable; the warm part
is‘sufficiently immersed in liquid nitrogen on account of the
pressure transducers.

Stating the survey of experimental results, each stability
curves for various £ as a parameter is consisted of two branches,
"right-hand branch" and "left-hand one". Such two branches
join together near the region where the minimum critical
temperature ratio is found. Of course, thermally driven
acoustic oscillations are induced insides of these curves
(unstable region)and not induced outsided(stable region) .

The lowest critical temperature ratio is found for about&= 1;
near |ng,|=10 the stability curve takes a minimum value a = 5.5
andanJofabout 8 at a =7 is the smallest value for which
neutral oscillation can exist(see fig.4.2.a). After the bend,
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the stability curves rise sharply; for any given temperature
ratio more than 5.5 there is a minimum(left limit)and a |
maximum(right limit)value forh%cL showing the ends of the
interval in which excited oscillations are found. At the
cold part the boundary layer thickness is small enough
compared with the tube inner radius at all regions.

The solid curves are from the numerical studies by Rott.
For convenience his resulting equation determining the
stability curves and the frequency is presented here. The

key equation(2.9.12)is written as

* *
GccotkC _ GHtanAH
2 * - 2 (4.2.1)
£ C H
with the notation
(4.2.2)

Ag==w2/aé ’ A§= w(L—Q)/aﬁ and £ = (L-2)/2%

where the quantity G indicates the effects of the dissipation

and it s value takes unity for non-dissipative case('ln0|+w ) .

For big values of & and moderate & , Ay (=—i%:£l.)is nearly
-1 H *
equal to zero, becauselg=£a2Ag, so that in eq.(4.2.l)§§%%ﬂ = 1.
H

As |ngclis large (more than about 8 as indicated in experiments),
the left-hand side of eqg.(4.2.1)is expanded into series in
term of a 2/ ' nge . Considering that the angular frequency
is real, we obtain readily the following set of equations,

after splitting the eqg.(4.2.1)into real and imaginary parts;

cotAc/Ae = E(ReGH + ImGH) (4.2.3)



_ V2 cothrc 2, ,,dcotrc -
Inge! = ETHGE{C[1+ No o FAGCOETA ISR (4 o 4y

The coeﬁficients c and d are Kirchhoff and Kramers constant of
gases; 0.90825 and 0.0022 for helium gas respectively. From the
above two equatiors the stability curves are, in principle,
determined. The experimental results are in qualitative
agreements with the theory of Rott.

The stability limits are able to be given on the plane

of o versus|n , which are mathematically equivalent to that

OHI
on the plane of o versus[nocj. Figure.4.2.c shows the stability
curves corresponding to Fig.4.2.a, where the temperature ratio
is plotted on the logarithmic scale as a function of the ratio

of the ratio of r, to the boundary layer thickness at the

0
‘'warm part. As discussed later, the plots in Fig.4.2.c may

be physically more valuable than that in Fig.4.2.a to charact-
erize the thermally driven acoustic oscillations. In the

following we will give the qualitative discussion about the

respective branches.

RIGHT HAND BRANCHES At the right-hand branches, values of
viscous (thermal) boundary layer thickness in both cold and

warm parts are sufficiently small compared with the tube inner
radius; namely the part of the "core"is dominant compared to

that of the boundary layer, as shown in Figs.4.2.a, 4.2.b and 4.2.c
The re%ults show that, for c0nstantinoé, a very flat minimum

of o is found in the region 1> £ > 1/2. The & -dependence

of the stability curves, in particular for £<1, is fitted
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with the asymptote equation for helium gas;

-1,.2
log a = 0.60[log|n, | + log(1+E l+AC€ )1-0.22

. _cotA . . . ;
where & =——XEQ as will be discussed in the next section.

The above behavior can be explained by the use of the
energyconsideration discussed in section 2.7. The driving
term AQjin eq.(2.7.4) is proportional to the term, imaginary
part of F*, which characterizes the effect of the thermal
conductivity of the gas. Figure 2.5 indicates that when the
boundary layer(consider the thermal layer here)becomes thin
compared with the tube inner radius, imaginary part of F¥*
gradually decreases, so that the oscillations should become
unfavorable. The gradual slope of the stability curves in
this branch is on account of such gradual decrease of the
driving term. Consequently, roughly speaking, the right hand
branch may be characterized as follows; the thermal boundary
layer thicknessvV/W0 becomes small, so that the oscillations
are not able to be sustained because of the lack of sufficient
heatihg and cooling from the tube wall. The effects of the
thermal conductivity plays an important role to maintain the
oscillations.

The driving term is also proportional to the derivative
of the square of the acoustic pressure amplitudes. As shown
in Fig.2.7.a, the derivative takes maximum in the middle
location of the half open tube(wide tube). Therefore the
maximum driving of the oscillations occurs when the gradient

of mean temperatures is established in the middle location
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of the tube. This qualitatively agrees with the experimental

results stated above.

LEFT HAND BRANCHES On the other hand, at the left hand--
branch the boundary layer thickness at the cold part is still
small compared with tube inner radius, but the boundary layer
thickness is not small in the warm part, as understood from
Fig.4.2.c. Thus the damping of the oscillations in the warm
part is dominant compared with that in the cold part. The
damping at the left-hand limit is not due to the effect of the
thermal conductivity, but that of the shear viscosity of gas.
When we take into account only the effect of viscosity instead
of thermal conductivity, the driving temnﬂﬁlis never positive
in the case that the closed end is at warm and the open end
is at cold, so that the effect of the viscosity does not
contribute to the driving but contribute to the damping of the
oscillations.

Let's consider the driving term AQ; including both effects
of viscosity and thermal conductivity, which is proportional
to imaginary parts of F#*-F/l- 0 shown in Fig.2.7.b.

When only the effect of thermal conductivity is taken into
account, the oscillations are favorable independent of the
thickness of the boundary layer. However comparing Fig.2.5
with Fig.2.7.b, we shall understand that the effect of viscosity
restricts the unstable region; namely at about |ng/=2.8, the

sign of AQ; drastically varies from positive to negative value,

so that below |ng|*2.8 only the damping is possible along the tube
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in spite of a steep temperature gradient. The steeper slope
of the stability curves at the left-hand branch compared with
that at the right-hand branch may be caused by such a drastic
change of the sign of the driving term. Thus the viscous
boundary layer thickness instead of the thermal one plays an
important role to characterize the damping of the oscillations
in the left branch; qualitatively because the viscous layer
fills up the tube in the warm part and near the location with
temperature gradient, the oscillations are unfavourable.

The & -dependence of the stability curves at this branch
is qualitatively same as that at right hand branch; near & =1
the oscillation are easy to be induced. This comes from

the gradient of the acoustic pressure amplitudes.

OPTIMUM CONDITION TO EXCITE THE OSCILLATIONS The
oscillations are very powerful, for example under suitable
conditions in the unstable region, especially in helium gas--
filled pipe coexisted with liquid helium under atmospheric
pressure, the acoustic pressure amplitudes sometimes run up

to a few hundred torr. Some experimental studies on the
amplitudes up to now have been described and suggested
qualitatively that the amplitudes take a maximum when the inner
diameter of a cylindrical cavity is about 3-5mm(L = lm). Self--
sustained oscillation with such large amplitudes may be applied,
in future, to an engine. The optimum condition, where the
pressure amplitudes take maximum, will be important as a point

of the operation of the engine.
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The ratio of the acoustic pressure amplitudes to the mean pressure (Xlo_z)

Figure.4.2.d
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The acoustic pressure amplitudes(rms)normalized by the
mean pressure are plotted as a function ofhocJandhun{hndef
constant temperature ratio as a parameter. The results are
shown in Fig.4.2.d. Since the experiments were performed in
the neighborhood of the stability curves, the amplitudes are
two or three orders of magnitudes smaller than mean pressure.
The left and the right limits in Fig.4.2.d correspond to two
branches stated previously. The normalized pressure takes
a maximum between two limits. Figure 4.2.d suggests that the
optimum condition is determined at the warm part rather than
at the cold part. The condition occurs when the value|ngglis
near 2.5. This is also understood from Fig.4.2.c where the
stability curves take a minimum atan=2.5 independent of &
Therefore when thermally driven acoustic oscillations are
induced in helium gas coexisted with liguid helium under one
atomospheric pressure, in order to obtain the maximum amplitudes,

the optimum condition is

log ry = -1/2 logw + 10g2.68

since v is equal to 0.15cm?s L at room temperature. Since
angular frequency normally varies from about 250 to 350 rad/sec
near liquid helium surface(L =1lm), we may select the tube with
inner radius between l.4mmand 1.7mm. These tubes are usually
employed as the level indicator of liquid helium as indicated
by Clement and Gaffney(1955)or Gaffney and Clement(1956). Rott
(1976) calculated the power function for helium gas in the case

of constant cross section tube and predicted that the oscill-
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ations take a maximum when|nggis equal to about 2.2 for

various values of parameter TH/TC.

DISCREPANCY BETWEEN EXPERIMENTAL RESULTS AND THEORERICAL

The experimental results were compared with the theory of Rott
by solid curves in Figs.4.2.a, b and c, where as temperature
distribution, the step functional one is employed(discontinu-
ous model). The numerical studies have been carried out at
the right hand branch under continuous model taking into
account a finite temperature gradient. The steepness of the

mean temperature at x=4% 1is characterized by

2

TH-TC

S = [dTm/dx]x=2

and S= « corresponds to the discontinuous model. The numerical
data calculated by Rott using a computer show that if S is enough
large, the stability curves are not so different from those
in the discontinuous ones. But with the reduction of S, the
discrepancy between them becomes large. It is probably
attributed to the decrease of S that the experimental data
deviate from thetheoretical curves to more inside; in our
experiments S is more than about 40, 24 and 12 for & =1, 5 and
10 respectively.

At the left-hand branches for small £ (=0.5 and 0.3),
we have discovered the acoustic waves with highef harmonic
frequency modes (second and third)which have a velocity node

at x=0. Such a higher harmonic has never been found in the



previous works. More detailed studies will be discussed
in the section 4.4.

The stability curves given here will be important, in
future,.when we will manufacture a cryostat at low temperature
experiments avoiding such oscillating instability. Therefore
we present here in this paper the experimental data(Table.4.2.1)

relating with the stability curves.



Pst(x103Pa) T (msec) n

T () c nyg Ao (rad) o
4.9 10.5 19.0 19.8 0.647 1.260 60.2
5.2 10.4 18.5 18.9 0.652 1.265 56.7
7.2 10.7 16.5 15.2 0.701 1.206 40.9
7.9 10.9 16.0 14.3 0.721 1.187 37.3
9.3 12.1 15.5 13.3 0.770 1.129 31.7

10.3 12.9 15.0 12.8 0.808 1.109 28.6

11.6 14.1 15.0 12.1 0.845 1.045 25.4

14.7 16.2 14.0 10.9 0.937 0.994 20.0

20.0 20.0 13.0 9.8 -1.080 0.918 14.7

27.2 25.7 12.0 8.9 1.274 0.853 10.8

23.3 22.5 12.0 9.5 1.193 0.921 12.6
4.6 8.62 19.5 18.8 0.579 1.276 64.1
5.0 9.14 18.5 18.4 0.612 1.290 59.0
5.5 9.45 18.0 17.4 0.630 1.264 53.6
7.1 10.4 17.0 14.9 0.682 1.178 41.5

12.2 14.3 14.0 12.0 0.879 1.092 24.1

16.6 18.1 13.0 10.8 1.027 1.008 17.7

30.6 28.1 11.5 8.7 1.361 0.839 9.6

33.9 31.9 11.0 8.7 1.482 0.833 8.7

37.8 36.8 10.7 8.6 1.610 0.807 7.8

41.6 42.6 10.7 8.6 1.734 0.770 7.1

44.5 48.1 10.5 8.7 1.865 0.762 6.6

48.1 61.1 10.5 9.2 2.100 0.733 6.1

48.9 106 10.9 11.8 2.708 0.697 6.0

50.2 91.5 10.5 10.8 2.540 0.701 5.8

( r0=l.2mm,L=lm, E=1 )

15.5 114 16.7 78.8 7.03 0.812 19.0

15.3 119 16.8 80.9 7.13 0.812 19.2

14.1 139 17.5 91.8 7.56 0.812 20.9

13.3 142 17.9 96.6 7.57 0.818 22.1

18.7 76.6 15.3 57.6 6.00 0.807 15.7

23.2 52.8 14.0 41.8 5.21 0.792 12.7

16.0 104 16.3 74.2 6.79 0.819 18.4

20.6 69.4 14.6 51.8 5.85 0.805 14.3

26.2 44 .2 13.3 35.5 4.89 0.784 11.2

30.6 32.2 12.4 26.6 4.32 0.778 9.6

39.4 15.0 11.3 16.0 3.09 0.752 7.4

47.3 10.7 10.5 12.1 2.70 0.739 6.2

47.6 10.7 10.5 12.1 2.71 0.737 6.2

49.3 7.79 10.4 10.0 2.32 0.731 5.9

24.3 45,7 13.7 33.8 4.90 0.790 12.1
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Tc(K) Pst(xlO3Pa) T (msec) ng Ny Ac(rad) o,
36.3 21.6 11.6 20.3  3.66 0.764 8.1
17.2 95.3 15.7 67.9 6.61 0.820 17.1
28.4 37.9 12.7 31.5 4.63 0.789 10.3
32.8 - 28.3 11.9 24.9 4.14 0.783 8.9
35.2 24.5 11.6 22.2 3.90 0.776 8.3
42.1 16.8 10.8 16.4 3.35 0.762 7.0
45.6 13.9 10.5 14.2 3.09 0.753 6.4
19.9 73.2 14.9 54.2 5.94 0.803 14.7
( r0=3.7mm,L=lm, E=1 )
5.9 16.4 20.6 20.1  0.77 1.067 50.0
6.5 17.2 20.6 18.9 0.79 1.016 45.3
8.3 20.1 18.9 17.1  0.89 0.980 35.5
8.6 20.4 18.7 16.8 0.91 0.973  34.3
10.9 23.8 17.6 15.3 1.01 0.918 27.0
13.6 27.4 16.9 13.8 1.11 0.856 21.7
25.1 46.3 15.4 11.3 1.51 0.692 11.7
4.5 13.3 23.1 22.1 0.66 1.089 65.5
5.7 14.1 21.6 18.8 0.70 1.035 51.7
6.0 15.0 21.1 18.6 0.73 1.033 49.1
12.6 25.9 17.3 14.2 1.06 0.869  23.5
17.3 33.4 16.3 12.7 1.24 0.787 17.0
18.8 35.6 16.2 12.3  1.29 0.760 15.6
24.3 43.7 15.5 11.3  1.46 0.698 12.1
27.6 49.8 15.2 10.9 1.57 0.668 10.6
4.4 13.7 22.9 22.8 0.67 1.111 67.0
4.8 14.3 22.3 21.9 0.69 1.092 61.4
5.1 15.1 21.7 21.4 0.72 1.089 57.8
6.8 18.6 19.6 19.3 0.84 1.044  43.4
7.9 19.8 19.0 17.7 0.89 0.999  37.3
9.2 22.5 18.2 16.9 0.96 0.967 32.0
10.5 24.0 17.6 15.9 1.01 0.936 28.1
32.5 61.2 14.7 10.7 1.77 0.637 9.0
32,9 63.9 14.7 10.9 1.81 0.633 8.9
36.7 81.8 14.7 11.2 2.05 0.600 8.0
38.5 96.7 14.7 11.8 2.23 0.585 7.6
( ryp=1.2mm,L=1.5m, =2 )
14,9 143 22.1 79.2 6.84 0.625 19.8
17.7 108 20.6 61.7 6.14 0.616 16.6
20.0 81.9 19.5 49.8 5.50 0.612 14.7
23.5 62.3 18.3 39.3 4.95 0.602 12.5
30.0 37.2 16.5 . 26.1  4.03 0.590 9.8
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Tc (K) Pst (x103Pa) T (msec) ng Nng Ac(rad) o
33.0 29.9 15.9 22.3 3.71 0.584 8.9
36.9 22.5 15.2 17.9 3.27 0.578 8.0
16.0 131 21.3 72.7 6.66 0.626 18.4
19.3 96.5 19.9 55.1 5.90 0.610 15.2
26.0 50.2 17.5 33.2 4.54 0.598 11.3
35.1 27.1 15.4 20.3 3.56 0.585 8.4
39.5 18.6 1l4.6 15.7 3.03 0.582 7.4
41.6 14.4 14.2 13.4 2.70 0.583 7.1
40.9 12.0 14.3 12.3 2.46 0.583 7.2
39.8 17.2 14.5 15.0 2.92 0.583 7.4
17.5 128 20.4 68.2 6.72 0.625 16.8
21.5 78.4 18.7 46.9 5.49 0.615 13.7
22.5 67.6 18.3 42 .4 5.15 0.615 13.1
28.7 41.1 16.7 28.3  4.20 0.596 10.2
14.2 2.68 16.1 13.2 1.09 0.880 20.7
32.2 32.8 16.0 23.5 3.84 0.588 9.1
23.9 4.23 14.7 11.2 1.43 0.743 12.3
12.2 2.52 16.8 14.2 1.04 0.910 24.1
18.9 3.49 15.2 12.2 1.28 0.808 15.6
21.5 3.90 14.8 11.8 1.37  0.778 13.7
19.9 3.51 15.1 11.8 1.29 0.792 14.7

( r0=3.7mm,L=l.5m, £=2 )

7.8 108 26.6 139 6.89 0.430 37.5
20.5 10.3 17.6 23.2 2.61 0.401 14.2
11.4 48.6 22.6 72.8 4.99 0.419 25.7
12.7 40.1 21.6 61.5 4.64 0.415 23.0
14.4 30.6 20.9 49.2 4.12 0.403 20.3
14.6 30.1 20.8 48.3 4.10 0.402 20.0
15.2 27.6 20.4 45.2 3.96 0.402 19.2
15.8 25.7 20.1 42.5 3.86 0.400 18.5
16.5 22.9 19.7 39.1 3.67 0.399 17.7
18.0 18.9 19.0 33.7 3.40 0.397 16.2
18.4 18.3 18.9 32.6 3.36 0.394 15.9
18.7 17.3 18.7 31.5 3.28 0.395 15.6
19.3 15.9 18.1 29.8 3.19 0.401 15.1
19.9 14.9 18.0 28.3 3.10 0.398 14.7
20.1 14.4 18.0 27.5 3.05 0.396 14.5
20.7 12.6 17.0 25.8 2.93 0.413 14.1
21.3 10.9 17.0
12.4 38.3 21.5 61.6 4.55 0.422 23.6
14.0 31.3 20.8 51.0 4.18 0.411 20.9
11.0 54.8 23.1 78.8 5.25 0.417 26.6
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T (K) Pst(xlO3Pa) T (msec) ng nyg Ac (rad) o
14.9 28.7 24.0 46.8 4.04 0.406 19.6
9.0 83.1 25.2 110 6.19 0.423 32.5
10.5 60.0 23.5 85.0 5.44 0.420 27.9
11.4 - 49.4 22.6 73.4 5.04 0.419 25.7
13.9 30.5 20.6 51.0 4.15 0.416 21.0
17.0 20.1 19.2 36.2 3.49 0.404 17.2
16.4 21.6 19.4 38.5 3.59 0.407 17.8
18.3 17.3 18.7 32.0 3.27 0.400 16.0
( r0=4.7mm,L=l.8m, E=5
15.7 84.7 20.4 44.2 3.99 0.395 18.6
17.0 70.5 19.7 38.4 3.71 0.393 17.1
18.3 59.4 19.2 33.3 3.45 0.389 15.9
19.2 51.4 18.7 30.4 3.25 0.390 15.2
21.1 37.8 17.9 24.7 2.85 0.389 13.8
21.4 31.3 17.5 22.4 2.62 0.395 13.6
14.2 110 21.1 53.9 4.47 0.402 20.5
15.3 93.0 20.5 47.3 4.18 0.399 19.0
16.4 81.9 20.0 42.4 3.97 0.395 17.8
17.8" 66.8 19.3 36.3 3.65 0.393 16.4
20.2 49.7 18.5 28.8 3.21 0.384 14.4
20.6 45.3 18.2 27.3 3.09 0.387 14.1
21.4 38.3 17.8 24.6 2.88 0.388 13.6
20.4 24.8 17.4 20.8 2.34 0.407 14.3
18.7 18.2 17.1 19.4 2.02 0.432 15.6
17.7 17.0 17.2 19.5 1.95 0.442 16.5
15.3 14.7 17.3 20.6 1.82 0.472 19.0
13.1 12.4 17.7 21.2 1.64 0.499 22.3
( r,=2.7mm,L=1.8m, &=5

4.7 31.0 21.7 33.2 1.04 0.680 61.7
5.2 35.1 21.2 32.5 1.12 0.662 55.7
5.4 37.3 20.9 32.6 1.16 0.658 53.7
5.4 38.8 20.6 33.5 1.19 0.668 53.7
5.7 41.1 21.0 32.6 1.23 0.638 50.8
6.1 42.4 20.8 31.2 1.24 0.623 47.5
6.5 45.1 20.8 30.4 1.28 0.603 44.6
6.9 47.3 20.1 30.0 1.33 0.606 42.0
7.3 51.0 20.6 29.3 1.37 0.575 39.7
9.1 60.6 19.5 27.0 1.53 0.544 31.8
10.0 65.7 19.5 25.9 1.60 0.519 29.0
4.9 34.7 22.1 33.4 1.09 0.654 59.1
8.3 49.9 19.3 26.7 1.40 0.575 34.9

( r0=l.2mm,L=l.8m, E=5 )
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To (K) Pst(x103Pa) T (msec) ng Ny A(rad) o
5.6 48.1 21.4 139 5.11 0.316 52.1
7.7 20.1 18.3 73.0 3.57 0.315 37.6
8.3 16.0 17.6 62.1 3.25 0.315 35.1
5.0 48.2 22.4 150 5.00 0.319 58.4
5.6 36.9 20.0 125 4.63 0.338 52.1
5.8 34.9 20.6 117 4.44 0.322 50.3
5.9 32.8 20.4 112 4.32 0.333 49.5
6.3 28.0 19.7 99.2 4.06 0.323 46.3
8.1 l16.4 17.8 64.0 3.28 0.315 36.0
5.3 39.5 21.5 132 4.62 0.323 55.1
5.5 36.7 20.9 125 4.52 0.326 53.1
6.7 24.5 18.9 89.6 3.88 0.327 43.5
7.5 19.1 18.1 73.2 3.50 0.322 38.9
8.7 13.6 16.9 55.9 3.05 0.321 33.5
9.2 10.2 l6.1 47.4 2.71 0.327 31.7
5.8 42.2 20.5 128 4.89 0.324 50.3
6.3 34.9 19.6 111 4,55 0.325 46.3
6.4 31.8 19.3 105 4,38 0.327 45.6
6.8 29.1 19.1 95.9 4.20 0.321 42.9
7.2 24.6 18.4 85.5 3.94 0.324 40.5
( r0=4.7mm,L=l.65m, E=10 )
7.1 104 20.0 '98.1 4.47 0.300 41.1
7.8 78.9 18.9 80.7 4.00 0.303 37.4
8.3 65.1 18.4 70.4 3.69 0.301 35.1
8.8 58.0 17.9 64.2 3.54 0.301 33.1
9.5 44.8 17.6 53.1 3.13 0.295 30.7
9.8 36.0 17.0 47.1 2.85 0.300 29.8
7.7 94.3 19.3 88.4 4.33 0.298 37.9
9.3 54.8 17.6 59.7 3.46 0.298 31.4
9.6 51.1 17.4 56.4 3.36 0.296 30.4
9.8 46.7 17.2 53.3 3.23 0.297 29.8
9.9 43.0 17.0 51.1 3.12 0.299 29.5
10.2 40.2 16.9 48.3 3.02 0.296 28.6
10.3 37.7 16.8 46.5 2.93 0.296 28.3
8.5 19.1 16.2 39.9 2.13 0.338 34.3
9.6 23.2 l6.3 39.3 2.34 0.316 30.4
9.9 27.6 16.4 41.6 2.54 0.310 29.5
9.2 20.8 16.3 38.6 2.21 0.323 31.7
8.2 18.4 1l6.1 40.5 2.09 0.347 35.6
7.1 14.7 16.3 40.8 1.86 0.368 41.1

( r0=2.7mm,L=l.65m, E=10 )
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Te (K) Pst(x103Pa) T (msec) ng nH Ag(rad) o
4.7 55.1 19.1 47.2 1.47 0.386 61.7
4.8 56.8 19 1 46.9 1.50 0.382 60.4
4.9 58.8 18.9 47.0 1.53 0.382 59.1
5.2 59.8 18.9 45.0 1.55 0.371 55.7
5.3 63.9 18.7 45.9 1.61 0.371 54.7
5.6 65.0 18.6 44 .2 1.62 0.363 51.7
5.7 67.5 18.5 44 .5 1.66 0.362 50.8
6.6 70.9 18.4 39.9 1.71 0.338 43.9
6.2 73.8 18.2 43.3 1.75 0.353 46.7
6.4 77.3 18.2 43.1 1.79 0.347 45.3
6.6 79.3 18.1 42.6 1.82 0.344 43.9
6.8 84.9 18.1 42 .9 1.88 0.339 42.6
7.1 86.2 17.9 41.9 1.91 0.335 40.8
7.5 95.1 18.0 41.7 2.00 0.324 38.6
7.8 96.1 17.8 40.8 2.02 0.321 37.1
7.8 102 17.8 42 .1 2.08 0.321 37.1
8.2 107 17.8 41.2 2.13 0.314 35.3
( r0=1.2mm,L=l.65m, E=10 )
40.2 19.9 14.2 l6.2 3.17 0.996 7.2
37.3 23.6 14.6 18.5 3.41 1.006 7.7
34.9 27.9 15.0 20.9 3.66 1.012 8.3
33.0 31.3 15.4 22.9 3.82 1.014 8.7
31.1 29.5 15.8 23.1 3.67 1.018 9.3
29.8 23.9 16.1 24.9 3.82 1.020 9.7
27.2 39.0 16.9 28.7 4.07 1.017 10.6
24.6 42 .4 17.4 32.0 4,18 1.039 11.7
22.6 49.0 18.2 36.1 4.40 1.036 12.8
21.0 56.8 19.1 40.3 4.63 1.024 13.8
19.9 61.6 19.5 43.4 4.77 1.031 14.6
18.1 72.3 20.5 49.6 5.04 1.028 16.0
16.0 89.5 21.2 60.1 5.51 1.057 18.1
15.2 96.5 21.7 64.5 5.65 1.060 19.0
19.1 53.2 19.5 41.8 4.43 1.052 15.1
( r0=3.7mm,L=1.26m, £E=0.5 )
37.8 12.0 8.84 9.99 1.86 0.982 7.8
36.8 10.4 8.91 9.49 1.73 0.988 8.0
34.1 8.91 9.04 9.26 1.58 1.011 8.6
33.3 9.63 8.96 9.85 1.65 1.032 8.8
29.9 7.44 9.37 9.26 1.42 1.042 9.8
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Tc (K) Pst(x103Pa) t(msec) ng¢ Ny Ac(rad) o
26.9 6.82 9.50 9.61 1.35 1.083 10.9
22.8 5.89 10.0 9.95 1.22 1.115 12.9
19.8 5.06 10.3 10.24 1.12 1.165 14.9
39.0 11.4 8.48 9.71 1.86 1.008 7.5
39.8 12.2 8.44 9.87 1.92 1.003 7.4
40.7 12.3 8.41 9.76 1.93 0.995 7.2
41.8 12.9 8.40 9.79 1.98 0.983 7.0
40.7 28.5 8.76 14.5 2.88 0.955 7.2
39.8 30.4 8.86 15.2 2.96 0.955 7.4
39.1 32.0 8.97 15.7 3.02 0.952 7.5
37.5 36.0 9.13 17.1 3.17 0.955 7.8
35.4 40.4 9.40 18.7 3.31 0.954 8.3
29.9 52.8 10.1 23.6 3.64 0.959 9.8
25.8 62.5 - 10.9 28.0 3.82 0.963 11.4
22.2 76.1 11.6 33.9 4.09 0.974 13.2
17.6 103 13.3 44.9 4.46 0.957 16.7
( r0=2.2mm,L=0.75m, £=0.5 )
46.3 46.1 8.44 9.2 2.03 0.929 6.3
45.2 42.6 8.48 9.0 1.95 0.936 6.5
43.8 40.0 8.44 9.0 1.89 0.956 6.7
41.8 36.0 8.52 8.8 1.79 0.969 7.0
39.1 32.6 8.61 8.8 1.69 0.991 7.5
36.8 30.3 8.73 8.9 1.62 1.008 8.0
32.5 26.0 9.08 8.9 1.47 1.031 9.0
29.4 24.1 9.29 9.2 1.40 1.060 10.0
26.8 22.4 9.48 9.5 1.33 1.088 11.0
22.4 19.8 9.99 10.1 1.22 1.129 13.1
19.4 17.9 10.4 10.6 1.14 1.160 15.2
17.2 16.7 10.8 11.1 1.07 1.184 17.1
34.8 31.1 8.83 9.4 1.63 1.025 8.4
21.2 18.9 10.1 10.3 1.19 1.146 13.9
14.1 14.1 11.5 11.6 0.96 1.229 20.9
9.5 10.8 13.6 13.2 0.77 1.274 31.0
12.0 12.8 12.2 12.3 0.88 1.250 24.5

( r0=l.2mm,L=0.75m, £E=0.5 )
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Ta (K) Pst(X103Pa) T(msec)nc Ny Ac(rad o
20.3 31.0 16.6 33.1 3.66 1.203 14.6
16.6 39.7 18.3 42.2 3.95 1.210 17.9
15.0 52.7 19.3 51.7 4.43 1.208 19.9
13.3 62.4 20.1 61.1 4,73 1.233 22.5
10.9 71.9 21.6 75.2 4.89 1.269 27.5
9.9 92.4 23.0 89.1 5.37 1.245 30.1
9.3 96.1 23.6 95.0 5.41 1.253 32.0
8.25 102.1 25.1 105.5 5.41 1.255 36.4
23.6 23.0 15.7 25.8 3.25 1.181 12.6
22.6 24.6 16.0 27.5 3.33 1.184 13.1
21.9 23.9 16.1 27.8 3.27 1.198 13.6
21.2 25.4 16 .5 29.0 3.33 1.186 14.0
16.2 38.3 18.8 42 .1 3.83 1.196 18.5
14.1 55.2 20.0 54.8 4 .45 1.202 21.2
12.4 68.0 21.0 66.3 4.82 1.222 24.1
11.8 70.1 21.0 70.2 4.90 1.254 25.4
10.5 84.1 22.1 82.3 5.23 1.258 28.3
7.7 117.0 26.1 117.5 5.68 1.246 38.8

( r0=0.37mm, L=1.07m, £=0.3 )
34.3 24.7 13.0 12.7 2.20 1.120 8.6
33.2 21.0 13.0 12.0 2.02 1.131 8.8
31.5 18.7 13.3 11.8 1.89 1.141 9.3
29.6 l16.4 13.6 11.4 1.75 1.150 9.9
27.6 14.8 13.9 11.4 1.65 1.163 10.6
24,7 13.3 14.5 11.6 1.52 1.177 11.9
23.6 12.8 14.8 11.7 1.48 1.184 12.5
21.4 11.7 15.2 11.9 1.39 1.206 13.7

4,85 2.68 9.2 26.6 0.86 4.210 60.8 **

5.05 2.83 9.2 26.5 0.88 4,125 58.4 **
34.9 33.7 13.2 14.6 2.55 1.093 8.4
33.7 37.6 13.3 15.7 2.68 1.098 8.7
32.5 39.8 13.6 16.5 2.73 1.094 9.0
31.5 43,2 13.9 17.5 2.82 1.093 9.3
30.0 46 .3 14.3 18.6 2.88 1.089 9.8
29.2 48 .5 14.4 19.3 2.92 1.090 10.1
27.8 53.5 14.8 20.9 3.03 1.091 10.6
26.8 57.5 15.1 22.1 3.11 1.089 11.0
26.0 . 60.0 15.2 23.0 3.16 1.094 11.3
25.3 64.1 15.5 24.1 3.24 1.089 11.6
23.9 69.4 16.0 25.9 3.32 1.089 12.4
22.6 75.3 16.4 28.0 3.42 1.094 13.0
21.6 83. 3 16.6 30.3 3.57 1.102 13.6
20.6 88.4 16.9 32.2 3.64 1.106 14.3
25.6 13.8 14.4 11.5 1.57 1.169 11.5
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Tc (K) Pst(x103Pa) T (msec) Ne NnH Ac(rad) o

5.0 2.81 9.2 26.4 0.88 4,128 59.0 **
5.2 2.91 9.2 26.0 0.90 4,065 56,7 **
15.8 6.86 8.4 15.8 1.44 2.539 18.6 *
( ro=0.22mm, I=1.07m, £=0.3 )
35.6 59.8 12.7 10.6 1.88 1.078 8.2
34.7 58.1° 12.8 10.6 1.85 1.085 8.4
34.3 56.1 12.9 10.5 1.81 1.083 8.5
33.1 52.3 13.0 10.5 1.76 1.099 8.8
31.7 50.3 13.2 10.5 1.69 1.100 9.2
30.5 48.2 13.4 10.5 1.65 1.106 9.6
29.2 45.5 13.6 10.5 1.59 1.116 10.0
27.4 43.1 13.9 10.7 1.52 1.128 10.7
26.4 41.3 14.1 10.7 1.49 1.132 11.1
25.3 39.4 14.2 10.8 1.44 1.146 11.5
23.9 37.3 14.6 10.9 1.39 1l.152 12.2
22.4 35.4 14.9 11.0 1.34 1.164 13.0
21.2 34.0 15.2 11.2 1.30 1.174 13.8
20.3 33.1 15.4 11.4 1.27 1.178 14.4
19.3 31.1 15.7 11.4 1.22 1.189 15.1
18.5 29.2 8.32 15.7 1.63 2.297 15.8 *
17.8 28.0 8.46 15.8 1.58 2.303 16.4 *.
17.2 24.8 8.45 15.3 1.49 2.345 17.0 *
16.2 24 .1 8.67 15.7 1.45 2.355 18.0 *
15.0 21.9 8.93 15.7 1.36 2.376 19.5 *
13.7 19.7 9.21 15.8 1.27 2.411 21.3 =*
12.2 18.2 9.59 16.4 1.20 2.453 24.0 *
10.6 15.9 10.12 16.9 1.09 2.495 27.6 *
7.8 13.0 11.25 18.9 0.93 2.616 37.5 =*
5.1 10.1 13.55 22.2 0.75 2.686 57.4 *
5.4 10.0 13.2 21.3 0.75 2.679 54.2 *
5.65 10.4 12.8 21.1 0.78 2.701 51.8 =*
6.2 10.9 12.3 20.2 0.81 2.668 47.2 *
7.0 11.4 11.9 18.9 0.85 2.597 41.8 *
7.5 12.2 11.4 18.8 0.90 2.628 39.0 *
17.8 26.3 8.34 15.4 1.54 2.336 16.4 *
19.3 27.0 7.99 14.9 1.60 2.341 15.1 *
35.0 63.8 12.84 11.0 1.94 1.082 8.4
34.3 61.9 12.88 11.0 1.90 1.089 8.6
32.8 57.5 13.03 11.0 1.83 1.101 9.0
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Pst(XlO3Pa) T (msec) Nc nH Ac (rad)

Q

55.5 13.1 11.1 1.78 1.104 9.2
50.8 13.4 11.0 1.69 1.120 9.9
46 .0 13.7 10.9 1.59 1.133 10.6
44 .3 13.9 11.0 1.55 1.140 11.0
41.3 14.4 11.2 1.47 1.149 11.9
37.2 14.7 11.4 1.38 1.179 13.2
12.7 10.7 17.9 0.94 2.645 35.2 *
13.0 10.5 17.2 0.96 2.599 32.8 *
( r0=l.2mm, L=1.0m, £=0.3 )
no mark the fundamental
* the second harmonic
*%
the third harmonic

Tc temperature at the cold part

PSt mean pressure

T period of the oscillations

Ne InOcl

TH Inox!

Ac wﬂ/ac

o temperature ratio TH/Tc
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4.3 FREQUENCY OF THE ACOUSTIC OSCILLATIONS

The frequency of the oscillation corresponding to every
point on the stability curves is discussed in this section.

/2

The dimensionless numbers A_and |”0clxi are employed as
variables characterizing the acoustic oscillations instead
of the angular frequency ® :

= 51/ —/
A, = wi/a_and X fng |=/a 7T, rg (4.3.1)

The value A, means the phase*of the amplitudes of the acoustic
pressure at the location x= % (Xcat x=0 is equal to zero,
where the pressure node exists). The relationship between

the stability curves and the freqﬁency diagram is schemati-
cally illustrated in Fig.4.3.a. One point in unstable region
corresponds to the one state(frequency)in the frequency

diagram.
The experimental results are shown in Fig.4.3.b, where

the frequency parameter A, is plotted as a function of the

/2

variable Xl, because the frequency is initially not known.
o e

* . The important feature of the stational wave is that the

x and t variables are separated as

p = f(x) exp(i wt) (1)
This is the characteristic of standing wave. The quantity
f(x) is the amplitudes of the standing wave at the location

X and written as

for wide tubes. The expression(iwt +ikx)no longer appear and eq. (1)

does not represent a traveling wave.
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Stability Curve -

Figure.4.3.a The relationship between the stability -

curve and the frequency diagram for the fundamental
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Thus the frequency of the oscillations near the stability curves

-1/2
llcl/ is

is able to be determined using Fig.4.3.b, since lnoc

independent of the angular frequency. The solid curves show
the numerical results derived by Rott from important
equation(4.2.1), which determines not only the stability limits
but also the frequency of the oscillations. The agreements
between the experimental and the theoretical results are
satisfactory. The behavior of the frequency is able to be
Classified by three separated regions;the lower branches, the
upper branches( Ag= T/2)and the region between such two
branches. We are going to give a qualitative explanation of
these results in the following discussion.

At first let's consider the lower asymptotes of the
frequency diagrams for each & . These limits correspond to
the right-hand branches (or asymptotes)in Figs.4.2.a and
4.2.b. The boundary layer thickness is sufficiently small
compared with tubes inner radii at both cold and warm parts
S0 that both viscosity and thermal conductivity should not
influence on the frequency of the oscillation everywhere.

The key equation for non—dissipative(lnol* © )case which

. gives the frequency is

cot Aq £ tan Ag (4.3.2)
Hc A H

Since both Gc and G, take unity as shown in Fig.4.3.c where

H
the quantity G is plotted as a function of2/|n0krefer [16]).
Equation (4.3.2) shows that the velocity at x=2% is essentially

continuous . For large temperature ratio X H is: nearly equal
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to zero, so that eq.(4.3.2) is equal to eq.(4.2.3) where’
the real parts of G_ and G, are reduced to unity but the

imaginary parts of them are equal to zero; namely

cot )\c/ >\C = E (4.3.3)

. This equation shows a good correspondence with our experimental

results at the lower branches of Fig.4.3.b. The solutions

of eq.(4.3.3), for the fundamental mode, take 1.07, 0.86,

0.65 and 0.43 for &= 0.5, 1, 2 and 5 respectively. These

values are excellentlyagreed with the experimental data.

Thus at lower branches the equation for non-dissipative case

is suitable. The sound velocity at the warm and cold parts

is equal to the adiabatic velocity, a_ and ay respectively

because in the dispersion relation(2.9.2), the effective sound
1

_,:;Ea becomes adiabatic one for 1arge|n0|(F=F*=0

velocity al
Y 1+

for|n gl .

Secondly we consider the other hand branch (upper) of
the frequency diagram. At upper limits, which correspond to
the left-hand branches of the stability curves, the boundary
layer fills the whole tube at the warm part but at the cold
part, the boundary layer thickness is still small compared with

tube inner radius. Quantitatively since both imaginary part

-1
and real part of GH approach to nearly zero for large[no[ as
shown in Fig.4.3.c, eq.(4.3.2)becomes
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Im G + Re G

Re G
C
o5l | (C)
Im G
1 1 1
0 1 2 4H
lz/nol
| | l
Im G + Re G
1.0 ) ' —

(c")
- Re G

Im G

0.5 | | /____ -
yd

|2/, |

Figure.4.3.c The G-function for helium gas neglecting the
the term [1+(y-1)F#*]. .

Figure.4.3.c' The G-function calculated by Rott including
the term [1+(y-1)F*],.
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where GC takes still unity. The solution of eqg.(4.3.4)is.
nearly equal to 7/2 independent of & . This means that the
location at a sudden temperature change behaves like a closed
end(of course exact boundary condition at closed end corre-
sponds to Ag= T/2)because the fluid in the warm part can

not move on account of large viscous and thermal boundary layer
thickness. There may be no variation (x-dependence)of the
acoustic pressure amplitudes in the warm part and the pressure
in the cold part occupies most of the variation of the
amplitudes. Practically such a limit is difficult to be
confirmed by experiments because of the large temperature
ratio. Our experimental data, however, show a tendency to
approach to mw/2.

Lastly in the region corresponding to near minimum of
the stability curves, where the dissipative effects in the
warm part are moderate. It is interesting that the frequency
parameter )c does not directly tend from the non-dissipative
solution to /2, but takes values less than the solutions
derived from eq.(4.3.3). In order to express the minimum,
Figﬁre.4.3.d rather than Fig.4.3.b is convenient where the
quantity S°tAcis plotted as a function oflnoé. The minimum

T Ac
in Fig.4.3.b corresponds to the maximum in Fig.4.3.d. The

position of the maximum is situated atlno ~2.5 independent

d
of g . It is understood from eq.(4.2.3)that such a maximum
comes from that of the addition of imaginary part of
Gy and the real part of Gy. Let's imagine the qualitative

meaning of such a maximum. The maximum comes from the term

of F*¥ in the quantity[l+(y-1)F*]. The addition of InG
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Figure.4.3.d The diagram corresponding to the frequency
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and ImG excluding the term F* isshown in Fig.4.3.c' where.
any peak does not exist. Therefore the maximum in Fig.4.3.d
is due to the effect of thermal conductivity. Another
reason is as following. As discussed in section
2.9 previously, the effective sound velocity is written as
Gerf™ 3% = a[_—i::(;%—)_}?* e
where F*shown the effect of thermal conductivity. We again
consider the effective sound velocity (practically the real
part of aeff) . Neglecting the viscous effect(F=0), when the
thermal boundary layer gradually becomes thick, the sound
velocity approaches from adiabatic to the isothermal ones.
At the warm part, such an effect of the sound velocity should
be remarkable, since|n0H lvaries from large value to the small. The

w ¥
to—y—————, whenln0H|changes

H ag
from infinity to zero. Therefore the right hand side of eq.
¥

value of Aj varies from CEA

(4.3.2) takes the value more than § becéusetaI;}Hbecomes
larger than unity as shown in fig.4.3. Thus thg minimum in
Fig.4.3.b comes from the thermal effect in the warm part.
After taking the minimum, the frequency diagram approaches to
constant value m/2 on account of stronger dissipative

effects at the warm part. The sound velocity at the cold part

is still adiabatic one.

tan )‘H
Ay
fig.4.3. 6
4
* 2 (L-R) 2
0 I 27Ag
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4.4 STABILITY LIMITS FOR TUBES WITH VARIABLE CROSS SECTION

Spontaneous oscillations of a gas column with temper-
ature stratification were first investigated experimentally
by Sondhauss(1850). His paper is quated in the text book
by Rayleigh and the device employed by him is called a
"sondhauss Tube". The earlier experiments were as follows:
when a glass-bulb attached to a pice of narrow tube as a
flask is heated by a burner, as glass-blowers sometimes
experience, audible sounds(a air gas oscillation)are spontane-
ously produced. Estimating from the melting temperature of
glass,.the temperature ratio between the warm part and cold
part is considered as about 3 or less. As studies in previous
section, the minimum critical temperature ratiofor helium
gas is about 5.5 for exciting the oscillations. Although the
gas is not helium but air, in such a device corresponding to
the tube with variable cross-section, the critical temperature
ratio is reduced. The part with constant temperature distri-
bution contributes only to the damping of the oscillations,
so that theenlarging of inner radius, in particular, of the
warm part where the kinematic viscosity is highmay contribute
to widen the unstable region. In order to confirm this, the
stability curves were experimentally determined for the tube
with configuration as shown in Fig.4.4.a; tubes have inner
radiifrH=l.7mm and r_=0.8mm or r =4.7mm and r =2.2mm for g€ =1
with whole length 1lm. The steep change of mean temperature

was established near x=L/2 within §x/L = 3%. The warm part
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is immersed into the reservoir at room temperature and the
temperature at the cold part varies from about 70K to 5.5K.
The results for helium gas are shown in Fig.4.4.b where the
left-hand branch of the stability curve shifts towards

the left and the right branch towards the right, and the
critical temperature is reduced compared with that of constant
cross-section tube. Thus the experiments of Sondhauss were
quantitatively confirmed by our experiments.

Mathematical approaches have been investigated by Rott
and Zouzoulas(1976). Taking into account the x-dependence of
the tube inner radius, we obtain the differential equation
(wave equation) for the acoustic pressure corresponding to

eqg.(2.9.1);

2 2
2 S rFrp +dr2 & (1-p)9Ryy-2 2_FXF o dp_
r I (V-1 FrIpytaolel S5 (1-Flgdl-ry —5 375 0 gxt=0

W

rw(x); tube inner radius

where the notation is the same as before. Using the
same procedure as section 2.9, the key equation is obtained.
The solid curve in Fig.4.4.b is the stability curve calculated
by Rott and Zouzoulas for ¥ =1 and rH/rc=2. The agreement
between theory and experiment is satisfactory.

The optimum configuration of a tube for driving the
oscillations is schematically shown in Fig.4.4.c; namely as
only the damping is possible at both warm and cold parts,
the optimum configuration is that both inner radii r, and ry,

are large as possible(in particular rH), but the tube inner

radius with temperature gradient must be suitably so narrow
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that the driving is effective. According to the discussion
in section 2.7, the optimum value of |n0|is about 3 (refer
to Fig.?.7.b).

The frequency at lower branch are determined from the
equation for non-dissipative caseleg.(4.3.3)], where has to
be redefined as the volume ratio VH/VC;(VH='nr§(L—£)‘and
Vc= ﬂri % ), and that at other branch approaches to constant
T /2. The experimental results, not shown here, satisfactorily
agree with such qualitative discussions.

By the way it is considered that when the tube inner
radius is sufficiently small compared with the thickness of
the boundary layer, the quantities F* or F is also small,
so that the damping energy is reduced. However, in such a
case, the driving energy is also reduced because the gradient
of the square of the acoustic pressure is small on account

of Ac »m/2. Thus only enlarging the tube inner radius is

favorable for lowering the minimum critical temperature ratio.
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|

X rH=1.7mm, rc=0.8mm
o ; rH=4.7mm, rc=2.2mm
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20

10

Figure.4.4.b The stability curve for the tube with variable

5 . M 20

Ir]0c|

cross-section. The solid curve is due to the

theoretical one by Rott and Zouzoulas(1976).
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Figure.4.4.c Optimum configuration of tubes for

driving thermally oscillations.
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4.5 SECOND-HARMONIC

The experimental results for the fundamental were
quantitétively interpreted by the linearized theory of Rott.
For small & (0.3 and 0.5), we found a new phenomenon, which
is the second-harmonic spontaneously induced in a U-shaped
tube. The second-harmonic with small amplitudes was generated
independent of the fundamental in this system. In experiments
up to present, the second-harmonic as treated here has not
been found, but only the fundamental has been observed. We
experimentally determined the stability curve of the second-
harmonic. It was concluded from experiments that the unstable
region is classified into three regions, where the fundamental,
the second-harmonic and the superposition of them are induced.
We will also suggest that the results for the second-harmonic
are supported by expansion of the linearized theory of Rott.

When we draw up the stability curves of the fundamental
for g =0.3, we found a higher harmonic at the left-hand limits.
As shown in Fig.4.5.a, the stability curve suddenly shifts
to the more inside stability curve at about 15 of temperature
ratio(TH=300K and TC=20K). From the wave-forms monitored by
an oscilloscope and the value measured by the frequency counter,
it was confirmed that the new oscillations were second-
harmonic. Of course the phase difference between x=L and x=-L
for pressure fluctuations is not 180 degree but zero(in phase)
for the second-harmonic.

The important variables which characterize the stability
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curve are, already studied here, the temperature ratio between
the warm and the cold parts and the ratio of tube inner radius
to the Stokes boundary layer thickness. However, the ratio of
lnocl to the square root of the frequency parameter A,
= wz/ac is employed here instead oflnoc|in order to obtain
the variable independent of the frequency.
In Fig.4.5.b, the stability curve corresponding to

Fig.4.5.a is réarranged on the plane a-lnocH%/z

. The neutral
points for the second-harmonic and the fundamental are marked
by the symbols [ A and @ ] and [ ®, O and A ] respectively.
The experimental results are given in Table.4.2.1.

The second-harmonic is observed only at the left-hand
branch of the stability curve and at the right-hand branch
only the fundamental is observed, so that the respective
stability curves may be extraporated as shown in Fig.4.5.b
(dashed curves). The stability curves of the second-harmonic
intersects with that of the fundamental at the left-hand
branch near o =15. Thus if higher harmonic more than third,
which is induced by bigger temperature ratio, are not taken
into consideration, the unstable region is classified into three
regionsI, I , II.

In the region I, only the fundamental is induced, and
typical wave-forms of the pressure fluctuations observed at
the closed ends of the pipe are shown in Fig.4.5.c(a) where

o , Ac andhbéng&e 13.0, 1.16 and 10.6 respectively. In
the region II , only the second-harmonic is induced and the

. -1/2
wave-forms are shown in Fig.4.5.c(b) where a , A, andhbékczare
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a)

b)

c)

Figure.4.5.c Pressure fluctuations observed at the
closed end of the pipe. a); the fundamental
b); the second-harmonic and c¢); the super-

position of them.
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15.2, 2.34 and 10.0 respectively. In the region II, the
wave-forms are expected to be the superposition of them. In
fact as shown in Fig.4.5.c(c) the wave-forms are the superpo-
sition of the fundamental and the second-harmonic. These
photographs are taken using the storage-oscilloscope(National
Co., LTD VP-5701A). Thus the second-harmonic is excited on
account of the intersection between the stability curves of
the fundamental and the second-harmonic. Under constant
temperature ratio more than 15, when a helium gas is poured
into the U-shaped tube, which is initially vacuum, at first
only the second harmonic is excited, then the superposition
of the wave-forms between the fundamental and the second-

harmonic will be observed and lastly only the fundamental is

favorable to oscillate. It is interesting to see that the higher

harmonic are able to be induced before the fundamental.
The frequency parameter Aclies between T and m/2.

Therefore one pressure node exists between x=0 and x=4 .
Such a higher mode was not observed for £ 1 below o Z70.

It is expected that such a mode is set up at the left-hand

branch for small & , where the dissipative layer is so thick

that it fills up the whole tube at the warm part. The stability

curve for the second harmonic is numerically derived from the
suitable boundary conditions below.
The boundary condition corresponding to the second-

harmonic is

IEE- =0 at x=0 and x=L
dx
p1(2+0) = pl(z—O)

(4.5.1)
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Step change of the temperature exists at x=% . The following

expression for the pressure account for eq.(4.5.1)
cos k (L—x)

PH = A 2< x <L
cos k (L-2) - =

_ cos kK _x
Po = A —=c= —iix <2 (4.5.2)
cos kc£
P_y= A cosky (L#x)/cos ki (L-2) -2 x> -L
where A is the pressure at x=4%4 . Equation.(4.5.2)shows

that the phase difference of the pressure fluctuation between
x=L and x=-L should be in phase for the second-harmonic.
From the other condition corresponding to eq.(2.9.10), the

key equation for the second harmonic is given

*
- Gctan }\’é _ GHtan >\H (4.5.3)
L _©¢ = —_ =
‘ Er X A H
As already pointed out, simplifications are performed for big
values of o and small or moderate & : then.kH = 0 and the
right-hand side of eq.(4.5.3) is Gy. We obtain the following
pair equation;
E§%§9=—g(ImGH+ReGH)
Ingol= 22— fell+tadh_ - g2k, geamdep g
c
gImGH

c; kramers constant, d; kirffihoff constant
The stability curves determined from eq. (4.5.4)certainly

intersects with that for the fundamental at the left-hand
branch for & =0.3, so that the linearized theory supported that
the second-harmonic is induced independent of the fundamental
as shown in Fig.4.5.d.

The excitation of higher harmonic is qualitatively able

to be understood from eq.(2.7.6). Figure.2.7.b shows that
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belowankQ.B only damping is possible through tube length,
and the driving is not possible. The value|nolof the second
harmonic is larger than that of the fundamental because the
former frequency is about twice larger than the latter.
Therefore at the left-hand branch there exist some regions
where the second-harmonic is favorable but the fundamental
is not favorable. It is concluded that the excitation of
higher harmonic is due to the viscosity of gas.

The stability curve for a second harmonic excited in a
U-shaped tube is equivalent that for the fundamental induced
in a closed tube at x=0 and x=L. Therefore the spontaneous
oscillations should be expected in such a closed tube.
Sergeev et al.(1979)shows that the oscillations were not able
to be observed in such a tube. The cause of no oscillations
may be due to the fact that the location of the temperature
stratification is not suitable. The positive gradient of the
square of the pressure amplitudes lies between x=% and x=L
for the wide tube with constant temperature, so that recalling
eq. (2.7.6), we find that the oscillations will be possible
to oscillate for smaller & than unity. We confirmed that
the oscillations were able to be produced for § =0.3 in a
closed tube and the stability curve for such a tube agrees
with that for the second-harmonic.

We observed a third harmonic at left-hand branch for

£ =0.3. At about a= 60, the transition from the second-

harmonic to the third harmonic occurs, as shown in Fig.4.5.a.
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It is also considered that this is on account of the
intersection,on the plane of o versushg,_| XEV{ of the
stability curves between the second-harmonic and the third-
harmonic. The stability curve for the third harmonic is
obtained from the key equation.(2.9.12). The relationship
of the stability curves among them is given in Fig.4.5.d,
which is calculated by use of data of G-function derived by

Rott. The transition occurs at the left-hand branch near

a=60.
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4.6 SECOND-ORDER HEAT FLUX

When "Taconis oscillations"are sustained in cryogenic
systems; liquid helium transfer line, pumping lines from
low temperature to room temperature system and the lines to
measure the pressure, they are usually accompanied by a large
amount of the evaporation of liquid helium. The attainable
evaporation rates are emperically three orders of magnitudes
larger than those without the oscillations. However there is
very little quantitative data on the heat flux produced by
the oscillation under a established temperature distribution.

Experiments are performed by the apparatus shown in
Fig.3.4, where the warm part is immersed into the reservoir
at room temperature and the cold part is immersed into the
‘reservoir at liquid helium(4.2K). The heat produced by
thermally driven acoustic oscillations is estimated from
the evaporation of the liquid helium. Measurements are
performed near the left-hand branch for g =2 and 3, where the
boundary layer in the warm part fills up the whole tube. As
shown in Fig.4.6.a, when helium gas is gradually poured into
the pipe through a needle valve under constant temperature
ratio (x=70.5(TmH=296K and Tmc=4.2K), the oscillation with
small amplitudes are generated at a certain mean density.
For example its critical values,| ngc| for & =2 is 22.6 for
r0=l.2mm or 22.4 for r0=2.2mm in our experiments, which is in
good agreements with theoretical value: the frequency and the

critical mean density are 273 rad/sec and 91.8 torr for r0=l.2nmn

and 273 rad/sec and 27 0torr for r,=2.2mm. Whenln0 lincreases,
c
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the acoustic pressure amplitude rapidly increase, and the
evaporation of liquid helium is strongly dependent of the
pressure amplitudes. The heat due to the oscillations Qex
is plotted as a function of the square of the real preSSure(ﬁl)
amplitudes (a half of peak to peak value)at x=L as shown in
Fig.4.6.b. The heat is proportional to ﬁi independent of
and To- According to the section 2.8, ﬁl is proportional to
the displacement of particles at x=% . The experiments by
Banister(1966) show that éex is proportional to the product
of the pressure amplitudes and the frequency. However in
his experiments, an important parameter, temperature distri-
bution along the tube(half open type)was not sufficiently
established. The experiments*using a half open tube, along
which the temperature distribution is not established,
confirm the Ei - dependence obtained in the U-tube (refer to
[25]).

As discussed in section 2.8, the heat flux penetrating
into the tube wall should come from the second-order heat flux
derived by Merkli and Thomann(1975). In particular, it is
expected that such a considerable heat flux produced in the
tube with a steep temperature gradient may be caused by the
second term in eq.(2.8.6), ﬁg given by Rott. Thus we will
rearrange the experimental data given above comparing to the
second-order theory.

The total heat flux penetrating into the tube wall in

the cold part, which contributes to the evaporation is from

eqg. (2.8.2) -
2mry | a, dx = Ak g pdT /dx|_ .,
cold part
. (4.6.1)
* our experiments
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Figure.4.6.b The effective thermal conductivity of the
oscillations versus the square of the pressure
amplitudes at x=L. 0(1); E&=3, rg=2.2mm and L=1.33m

0(2); &=2, r0=2.2mm and L=1.5m. X(3); &=3, rp=1.2mm
and L=1.33m. X(4); &=2, rp=l.2mm and L=1.5m.
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since a temperature gradient is vanished everywhere except
near the position x=% . Here A is inner cross-sectional area

of the tube and ke is, as given in eq.(2.8.11), formally

ff
the mean effective thermal conductivity due to thermally
driven acoustic oscillations.

If the evaporation is dominantly based on the second-

order heat flux, we can obtained the following equation, from

egs. (4.6.1)and(3.4.1),

Qy = 28 k¢ dTm/dxl x= % (4.6.2)
. _ k|u, P o2F - OF* (4.6.3)
Kege™ . 2C Im{———352 )
2wV
where the factor 2 means the contribution from x=%% . Oue
data is arranged by eq.(4.6.2). In order to perform  this,

we are obliged to make several assumptions as following:

[1] the temperature gradient dTm/dx is replaced by the

Y/ Ax .,

mean value (T

mE T

me

[2] +the mean value of viscosity, thermal conductivity
without oscillations and mean density are substituted by
those at the mean temperature( = 150K).

[3] in order to estimate the velocity of the core at x=29

the acoustic pressure variation is neglected at the

warm part, so that from

= iypm dulc
Py w dx (4.6.4)

the velocity of the core at x=2% is given by

2 w2

1 e 2" >3
¢t y2p2

|u (L-—Q,)z ;i (4.6.5)
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Figure.4.6.c The effective thermal conductivity obtained

by'experiments[Qex/ZA‘(dTm/dx)-l] versus that derived
by the theory of the second-order heat flux for

§=2 Marks are the same as that in Fig.4.6.b.
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Figure.4.6.d The effective thermal conductivity obtained

by experiments[Qex/zA-(dTm/dx)_l]versus that derived
by the theory of the second-order heat flux keff
for £=3. Marks are the same as that in Fig.4.6.b.
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where"};?l is real pressure amplitudes at x=L and is experimentally

observable.

Thus we can numerically determinekeff from the measure-—
ments of the pressure amplitudes at the closed end, the mean
pressure in the cavity and the frequency of the oscillations.

The effective heat conductivity is proportional to the
square of the pressure amplitudes as indicated by eqg.(4.6.3) .
As pressure amplitudes near the stability curves increase
abruptly, it is dominant term compared with others in keff'
Thus the results in Fig.4.6.b is explained by second-order
heat flux qualitatively.

Quantitative comparison between theory and experiments
are shown in Fig.4.6.c and Fig.4.6.d. The order of magnitude
agreement between them is satisfactory.Thus majority of the
evaporation of the helium under the oscillations is dominantly
due to the second-order heat flux contributed from the part
with a large temperature gradient. An excess in éex may be
attributed to the higher order heat flux or a large temperature
~gradient compared with an averaged value assumed here.

The effective heat conductivity becomes an order of
magnitude larger than that of gas without any disturbances
even near the stability limit(km=0.9X10—lwatt.m_lK—l at 150K).
In more inside region of the stability curve where the oscilla-
tion are so vigorous that it is difficult to maintain the
temperature constant in the warm part, the pressure amplitudes

becomes more than an order of magnitude larger than those

achieved here. Thus it is expected from Fig.4.6.b that the
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effective thermal conductivity may be the order of 102(watt.m_l

K‘l), which is the same order as that of a metal (aluminium alloy
at 150K). Such a high conductivity will enable us, in future,

to apply for precooling a large cryogenic systems.
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Appendix 1

Fundamental Equation Governing the Oscillatory Motion

The basic equations governing the motion of viscous and
compressible fluid are, as well-known, the mass conservation,
the axial and the radial momentum equations, the energy equation

and the equation of state. In cylindrical co-ordinates, these

are
i wE v el Sx) = 0
PLAE + wir 43 =3k ) i R )
PLAL + iy vv 31 -3k U D SR kR

U R, (w3 IV v Y _ MY VU MU d\2
)+ = Far T3k aX )—ax] Ry 'V();L)

If we accept the several assumption(long tube approximation)
given in section 2.2, the above set of equations, as given by
Rott (1969) for non-uniformed temperature distribution,

the continuity equation

. : 2u PR N J(rv)
twf + Fufx YU RN <0 (A.1.1)

the radial momentum egquation

EL
>k (A.1.2)

the axial momentum equation

iwu AR, 9 (2 (a.1.3)
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the energy equation

. 3T 3
LPMCPw(T.-_PE_L) + fugy = R Hb(*'%ls') (A.1.4)
MCP

the equation of state for ideal gas

(R i N

P e — (A.1.5)

where thermal conductivity k is equal to be Mg .

The boundary conditions are, at the tube wall,

Tl =0
u =0 (A.l.G)
v =0

When the wall substance has large heat capacity or is good
thermal conductor compared with a oscillating gas, the influ
ence of the wall temperature fluctuation is negligible in most
cases. The second and third boundary conditions are due to

finite viscosity of gas and shows unmovable wall. In principle,
the five equations(A.l1.1)-(A.1.5) determines the five unknown
variablesTl, Pys Pys 1 and v. The solution of eq.(A.l.3)
determining the distribution of radial velocity is given by,

using eq. (A.1.6)

L IR { Jotin) k
= _ | — =
u Py X R ELS) (A.1.7)
where J, is the Bessel function of the first kind in term of

the complex variables

= r |2 -
Q = F J W and n.o = ro,@‘ (A.l-s)

The variable Mo is concerned with the complex viscous boundary
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layer thickness given in the next Appendix 2. The first order

temperature solution is derived from eq.(A.l1.4), using eq.

(A.1.7);
I P 4Ryl Tolileh) §+ Q*AF.{ 3an]
mGT = h = GoSaCe @ dx Tolle o) ) @0t widx| Ta(A.1.9)
where the notation 9“ﬁ:‘i;_ shows the steepness of the

mean temperature. The value ez is associated with the thermal
boundary layer thickness treated in next Appendix. From egs.
(A.1.7) and (A.1.9), the gradients of temperature fluctuation

and the velocity at the wall are determined as
U i o~ dR
~ - -3 ——
"‘(“)r:n, z Fax (A.1.10)

which physically means the tangential force per unit area acting

on the wall surface, and

R(SD

h . T
3 X )hh :"i'{ —lw 'R+ & F"Fcpﬂar (A.1.11)

w 1-6

which is the heat flux to the tube wall per unit area. In

egs. (A.1.10)and(A.1.11), F and F* are determined by

F = < Jo(1h) > (A.1.12)
Iy (Lf)
B ¢ To (LT N (A.1.13)
Js CLIF M)
which express effects of the viscosity and thermal conduc-

tivity of gas respectively, and vanish in the non-dissipative
case. The next step consists of the reduction to one-dimen-
sional differential equations of (A.1.1)-(A.1.5).

Let these equations be multiplied by the factor 2mrdr and
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integrated from zero to the tube inner radius r, with

notation (2.1.3). The results are, using the boundary conditions

. A< U I

LW <R + fu 5 4wy 5 =0 (A.1.1")

. d b au

bw fadud + e 5—) (A.1.3'")

Y g T

o (PuCp Ty =P) + PaCpTaBCU> = 2 (;T)M (A.1.4")
LS A 4.2 (A.1.5')
P P Tom T

where the assumptions in section 2.2 again are employed here.
A combination of eqg.(A.1.2')and(A.1.10)1leads to

d P :
fw Pucuy + (1= F) 5= =0 (r.1.14)

and also from egs.(A.1l.4')and(A.1l.13)we obtain an equation

(F*-F
Lw{PMcP<T.>~(1-F*>P.§+ﬁ,c,T~9<u> _—a-m)cl’“% (A.1.15)

From egs.(A.1.15),(A.1.1")and(A.1.5"')we have an equation of

R Ns .
5x expressed by p; and a_xl ;
d<nw> X I+ -1 F* L(F*-F) | dn dBf
= - — + — = A.1.16
¥ % - } Pea P W (o) FuTm dX X ( )

Our final purpose is to calculate the eg.(2.1.5). The time
averaged product of the pressure fluctuation and the radial

averaged gradient of u becomes, from eg.(A.1.16)

<U v\2 ~
g W WIRY L 1Rt - R dmpdP o B-F(a 3.17)
3 X 2> Pm WMk dx T X ITE

Similarly the product of <u> and dpl/dx is

: & 2
dh w |<“> I. F (A.1.18)

VS =—0 =
dx z | -~ F
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We employ that the time average of the product of complex
quantities A and B is the real part of a half the product of
a complex conjugate of A and complex conjugate of A and
complex expression B.

By the way, we present here the differential equation
for the acoustic pressure (the wave equation)in order to

derive the stability limits of the oscillations;

d ra 4P 0 F~F , dh _
U+ =D F )Rk 4+ Bz(hF)q—x'- ] - ;1% & QT' =D (A.1.19)
which is obtained by elimination of <u> from egs.(A.1.15),
(A.1.14)and (A.1.16). Such a generalization of the wave
equation appling to the case of a variable wall temperature

have been performed by Rott(1969).
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Appendix 2

In‘order to understand thermal and viscous boundary layer
formed at the wall, oscillating flow in the plane instead of
in the cylindrical pipe will be discussed below. When a solid
body immersed in a viscous fluid oscillates, the flow thereby
set up has a number of characteristic properties. As a simple
but typical example, let's imagine that an incompressible fluid
is bound by an infinite plane surface which executes a simple
harmonic oscillation in its own plane, with frequency w .

We take the solid surface as the yz-plane, and the fluid
occupies the region x > 0; the y-axis is taken in the direction
of the oscillations. The velocity of the oscillating surface

is a function of time, of the form
U = U exp(-iwt) (A.2.1)

The fluid velocity must satisfy the boundary condition u =
uz=0 and uy=u for x=0. It is further evident from symmetry
that the velocity is everywhere in the y-direction. Therefore

from the simplified Navie-Stokes equation for one dimentional

incompressible viscous fluid, we obtain, for vy=v

AV v
< = U T (1;=/4%) (A.2.2)

which is equivalent to one dimensional heat conduction equation.

If the solution of this equation is periodic in x and t of the

form vV = uoexp{iff?x—wt)}
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A !
We find :‘.w:bﬁz, where ﬁ=f—%" ""‘—ij%(""i-) ;, So that the velocity is

- X—-wt)
vV = We%x el(% (A.2.3)

We have taken 2 to have a positive imaginary part, since the
velocity would increase without limit in the interior of the
fluid, which is physically impossible. The solution obtained
represents a transverse wave; namely the transverse wave can
occur in a viscous fluid, but they are rapidly damped in the
interior of the fluid, so that practically the character of
them does not appear(over a distance of one wavelength the
amplitude diminishes by a factor 540).

At the solid surface x=0, when the temperature is executed
a harmonic oscillation T=T0e_iwt, the distribution of them at
x is determined by the equation of one dimensional heat

conduction corresponding to eq.(A.2.2);

AT\ a 9‘1'!

T 2ne (a.2.4)

X ; thermal diffusivity

The solution of eq.(A.2.4) is
Ti=T eXP["XI%]e"P{L[XE“-’-;-wt]} (A.2.5)

The most important property of both waves of velocity and
temperature is that the amplitude decreases exponentially as
the distance x from the solid surface increase.

The distance § over which the amplitude falls by a factor
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e is called the viscous §v and the thermal boundary layer

31+ thickness; thus

gv = -ZL:-; and ST=% - ——_e— (A.2.6)
™ P
The factorv2 is neglected in this paper. The ratio of the

thermal boundary layer thickness to the viscous one is

St re 1
= = J.%_ = = >1 (A.2.7)

0=2/3 for helium gas
where ¢ (=—c-';{'i )is Plandtl number; ¢ =0 for #->or *=0 and

gso for R=0 |, For real gases the Plandtl number ¢ range:
usually from 1/3 to 1 depending on the kinds of gases, so that
the thermal boundary layer is ordinarily thicker than the
viscous, boundary layer. This is important to excite the acousti.
oscillation thermally, because when ¢ is more than unity,
the oscillation is not excited as understood in section 2.7.
In the oscillating flow(Poiseuille flow)in cylindrical
pipe, as illustrated in several textbookdImai, 1977), when
}ﬁ>>1 » the radial distribution of the axial velocity must
be parabola , and when ¥, 41 , Poiseuille flow consists
of two parts; the uniform flow in the "core" and the boundary

layer covered over the wall.
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Appendix I The Transport Coefficients of Gaseous Helium

I briefly introduce the temperature and pressure
dependences of viscosity and thermal conductivity for helium
gas refering to the experimental results up to present.

The phenomena of diffusion, viscosity and thermal conduc-
tivity are all physically similar in thesense that they involve
the transport of some physical property through the gas; for
example viscosity is the transport of momentum....

A detaild classical treatments of rigorous kinetic theory
of dilute monoatomic gases and mixtures has been early
investigated by Chapman and Enskog. According to rigorous
theory for rigidsphere molecules, the shear viscosity coeffi-

cient and the thermal conductivity can be written as following

expressions;
-5 2
K = 2.6693 X 10 ° [mT/d° g/cm-sec
kK = 1.9891 x 10 % mr/a® cal/cm deg sec
where m = molecular weight

0 0 =4
molecular diameter in A

=
i

temperature in K

In the first approximation the coefficients of viscosity and
thermal conductivity are both indepensent of the pressure and
increase with the square of the temperature. The above

equation would be correctly suitable to those propertisif the

molecules actually were rigid sphere. As stated later, these
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results give only the approximate pressure and temperature
dependence must include the effect of the interactions which
take place between real molecules.

At low temperature several authors experimentally
investigated the temperature effect of viscosity. A complete
discussion of experimental results obtained prior to 1942
was given by Keesom. These results can be represented
emprically by the straight-line relation in log-log co-ordinates,

according to Keesom,

0.647

u=5.023 T micro poise

with a deviation of less than + 1 %, so that we should employ

the value 0.647 as the best fitting value of B for analysing

our experimental data. This experimental value is slightly

different from that due to the classical theory as stated above.
The pressure effect was measured by Kestin and Pilarczk

in the range 1-~124 atm at room temperature. Their experimental

results indicates that the effect of the pressure is negligible.

This is accorded with the kinetic theory.
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SUMMARY AND CONCLUSIONS

We have experimentally studied following properties of
spontanéous oscillations of a gas columns generated in a
tube with steep temperature gradients;
1. determination of the boundaries between unstable
and stable regions, and the frequency of the oscill-—
ations.
2. transition from the fundamental to the second-harmonic
and from the second to the third harmonic.
3. rough estimate of the effective thermal conductivity
of the oscillating instability.
In experiments U-shaped tube was employed, which was separately
immersed into two reservoirs, cold(temperature Tc)and warm(TH)
ones.
The stability curves and frequency diagrams for helium
gas were determined under established temperature distribution
for several £ (=0.3, 0.5, 1, 2, 5, 10; the ratio of the
length of warm part to that of cold)as a parameter. The
experimental results were compared with the theory of Rott.
The agreements between them are satisfactory, and the existences
of two branches on the stability curves were confirmed. Two
types of the boundary layer formed on the tube wall, viscous
and thermal, play an important role to characterize the stability
of the-oscillatiOns.
For small §(=0.3), higher harmonics(second and third)

were observed at one-hand branch. The transitions from the
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fundamehtal to the second-harmonic occur near TH/TC=15,

and that from the second to the third harmonic near TH/TC=60.
These take place on account of a finite viscosity of gas,
and are fheoretically explained from the intersections
between the stability curves.

A effective thermal conductivity of the oscillations
was estimated from the evaporation rate of liquid helium
under given boundary layer thickness. Under suitable
conditions, the conductivity is more than three orders of
magnitude larger than the normal one of gas. Such a high
conductivity was able to be interpreted from the theory of

the second-order heat flux.
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