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0. Conventions

ALL spaces considered are assumed to be completely regulan
Hausdorfg, and all maps are continuous. Notation and terminology

will be wsed as 4in [E] and [GJ].

For a space X, C(X) ( C*(X) ) denotes the ring of all
real-valued ( bounded ) continuous functions on X. A subspace Y
of X is said to be C-embedded ( C¥-embedded ) in X if every element
of C(Y) ( c*¥(Y) ) admits a continuous extension over X, and Y is
said to be z-embedded in X if every zero-set of Y is the restric-
tion to Y of a zero-set of X.

For an ordinal o, W(a) denotes the set of all ordinals less

than a, topologized with the order topology, and W ( Wy ) denotes
the initial ordinal of.Nb (3{1 ).
For a set A, [AI denotes the cardinality of A, and my stands

for the first measurable cardinal. Since ml ( if it exists ) is

greater than any non-measurable cardinal, that IAI is non-measurable

+
is denoted by IA] <m If m is a cardinal number, then m 1is the

-
smallest cardinal greater than m, and D(m) is the discrete space

of cardinality m. The set of positive integers i1s denoted by N.

There is an index of terms and symbols at the end of the

paper.



CHAPTER O

INTRODUCTION AND PRELIMINARIES

1. Introduction

In 1948, Hewitt [H_] introduced the notion of realcompact

p)
spaces, under the name of Q-spaces, as an aid in studying the ring
C(X)!. He showed that for each space X there exists a unique real-
compact space uX in which X is dense and C-embedded. The space vX
is called the Hewitt realcompactification of X, and it plays the
same role in the theory of C(X) as the Stone—éech compactification
BX does in the theory of C¥(X). Among several characterizations

of the class of realcompact spaces, it is most intuitional and
convenient to view it as the class C of closed subspaces of prod-
ucts of real lines R, that is, as the epireflective hull of C =

{R} ( this characterization was first proved by Shirota [82] in
1952 ). ~When viewed as above, the Hewitt realcompactification uX
of X is the epireflection of X into E, that is, it is the unique
realcompact space containing X densely such that each map f from

X into a realcompact space Y admits a continuous extension vuf:

vX =+ Y. For more detailed information on vX, the reader is

referred to chapter 8 of [GJ].

1 Nachbin also defined independently ( but not published )
the same class of spaces in terms of uniformities, and so real-
compact spaces are sometimes called Hewitt-Nachbin spaces.



An important problem in the theory of Hewitt realcompact-
ifications concerns when the relation v(X x Y) = uvX x vY is valid.
This is motivated by Glicksberg's theorem that settled the analo-

gous question in the theory of Stone-Cech compactifications:

1.1 THEOREM ( Glicksberg [GQ] ). If X and Y are infinite
spaces, then X x Y is pseudocompact if and only if B(X x Y) =

BX x BY holds.

The problem of finding a corresponding condition on X X ¥ in
order that uv(X x Y) = vX x vY was first considered by Comfort
and Negrepontis [CNl] in 1966. Although from that time the
problem was attacked by many researchers ( e.g., Blair, Comfort,
Hager, HuSek, McArthur ), it does not come to a satisfactory
solution, and there appears to be no simple answer, as we shall
see in the next section. In 1968 Comfort, however, established
the following theorem that is one of the most important results

about this problem:

1.2 THEOREM ( Comfort [03] ). Let X be a locally compact,
realcompact space of non-measurable cardinal. Then v(X x Y) =

uX X VY holds for each space Y.

In 1970 McArthur [Ml] attempted to characterize the class R of
all spaces X such that v(X x Y) = vX x uvY holds for each space Y,
and he conjectured, in view of 1.2, that R is precisely the class

of all locally compact, realcompact spaces of non-measurable



cardinals. Theorem 1.2 asserts that a locally compact, realcompact
space of non-measurable cardinal is a member of R. Conversely,
McArthur [Ml] and Hufek [H6], [H8] independently proved that every
member of R is realcompact, and Hufek also noted in [HG]’ [HT]
that every member of R must be of non-measurable cardinal. In
chapter 1 below, we complete his conjecture by showing that if X

is not locally compact, then v(X x Y) # uX x uY for some space Y.

This solution leads us to the following new problem:

1.3 PROBLEM. Characterize the class R( P ), where P is a

given topological property, of all spaces X such that uv(X x Y)

VX X VY holds for each P-space Y.

The author believes that full knowledge of these classes R( P )
would supply a deficiency of the theory due to the absence of an
analogue of Glicksberg's theorem. This paper aims at making a
systematic study of characterizations of the classes R( P ) for
various familiar topological properties P. In fact, Problem 1.3
is settled for the following values of P: compact, metacompact,
subparacompact, P(m), k, locally compact, locally pseudocompact,
first countable, Moore, metrizable, locally compact metrizable,
discrete, O-dimensional; definitions of these properties are
stated when they first occur in the course of the paper.

The primary organization of the paper is into six chapters.
Chapters 1, 2 and 4 present characterizations of the classes R( P )

stated above; the major theorems are formulated without proof at



the first sections. The theory developed there has many appli-
cations. For instance, in case X satisfies the countable chain
condition and Y is metrizable, we can settle the problem of when
u(X x Y) = vX x vY is valid ( 16.6 ). These chapters end with
quinary open questions which ask about possible extensions of our

results. Chapter 3 studies the following two problems:

I : i =
(1) For maps fi Xi - Yi (1i=1, 2 ), when does U(Xl 5

x Y ) = vY. x vY_ ?

vX, x uX, imply U(Yl o N o

1 2

(II) TFor spaces X and Y, when is X X Y z-embedded in X x BY ?

As will be stated in section 3, barring the existence of measurable
cardinals, v(X x Y) = vX x uY holds whenever X x Y is z-embedded

in X x BY. Therefore consideration of (II) yeilds several suffi-
cient conditions in order that uv(X x Y) = vX x vY, and that of

(I) allows us to deduce new sufficient conditions from old. Some
miscellaneous remarks are collected in chapter 5. The remaining
sections in the present chapter is devoted to prerequisite mate-
rials. In the last one, we quote HuSek's theorems that are useful
for dealing with the delicate questions caused by the existense of
measurable cardinals, from which characterizations of R( compact )

and R( discrete ) are deduced.



2. The situation surrounding v(X x Y) = uX x vuY

The relationship between u(X x Y) and vX X vUY is complicated,
and many features appear pathological compared with the case of
Stone—éech compactifications. This section is devoted to a brief
explanation of the awkward situation. In the interest of simplicity
each cardinal is assumed to be non-measurable only in this section.

We begin by making mention of a witty work due to Husek. He
showed in [H9] that there exist spaces Xi and Yi (i=1, 2 ) such
x Y )

1 1

x Y2) # VX, x uY,. This fact disappoints

that Xl X Yl and X2 X Y2 are mutually homeomorphic yet v(X

= qu x vY. and u(X

1 2

one's hope of finding topological properties of X x Y equivalent
to u(X x Y) = vX x vY. His construction is very simple; let R be
a locally compact, realcompact space ( e.g., the real line ), and
P, Q a pair of spaces for which u(P x Q) # UP x UQ. Then it
follows from 1.2 that U(R X (P x Q)) = VR x v(P x Q), while

V((R x P) x Q) # u(R x P) x vQ. If one use a finite space instead
of R, then the same holds good of the Stone—éech compactifications,
and this fact can be viewed as the reason why Glicksberg's theorem
(1.1) applies only infinite spaces. From this point of view, one
might reasonably ask whether or not, for spaces X, Y neither of
which is locally compact and realcompact, the relation v(X x Y) =
vX X uY can be determined by topological properties of X x Y.

The answer is still negative; in fact, we shall give a counter

example in section 23. Consequently it is necessary for us to



concern ourselves more deeply with the properties of each factors
X, Y than merely with that of X X Y in order to determine whether

or not the relation v(X x Y) = vX x vY holds.

The problem of when u(X X Y) = vX x uY is valid has been
approached chiefly from two points of view. We next review these
two customary methods, and show that they are both inadequate.

In [H3] Hager approached the problem from the point of view of

uniform spaces. If we denote by UX ( B, ) the weak uniformity

X
generated by C(X) ( C¥(X) ) on X, then vX ( BX ) is known to be

the completion of X with respect to v, ( B, ). These use of

X X

uniformities will be found in chapter 15 of [GJ]. In the case
of B the situation is simple; in fact, it was proved in [12] that

B, x B

B(X x Y) = BX x BY if and only if By w v = By o

X
where BX BY

is the product uniformity generated by BX and BY. Since uX x vY

can be viewed as the completion of X X Y with respect to UX % UY,

v, X U, implies v(X x Y) = uX x uY.

it is evident that UX % Y % Y

Unfortunately the converse is not true in general: Onuchic [05]
proved that X is either pseudocompact or a P—space2 whenever

UX x X = UX X UX’ and the real line R has neither of these proper-
ties, whereas V(R X R) = VR x uUR ( = R x R ). Therefore the

relation v(X x Y) = uX x uY need not be described in terms of

uniform spaces at least in the most concrete case. Among other

[

A P-space is a space in which every Gd—set is open.



things, in [H,], Hager characterized those pairs X, Y of spaces

3

such that v U, X U_.

X xY X Y

The second approach to the problem is through function
spaces, and was employed effectively in [CNl]’ [HT]’ [HB], [H9].
In particular, Hufek [HT} offered another proof of Comfort's
theorem (1.2) from this point of view. An outline of his proof
might be sketched here to show the standard use of function spaces:
Let X be a locally compact, realcompact space, and Y a space.
Let f€C(X x Y). For our end it suffices to show that f admits
a continuous extension over X x vY. Let C(X) be endowed with
the compact-open topology; then C(X) is realcompact. The map
F: Y > c(X) defined by g(y) = £|(X x {y}) is continuous, and so
it can be extended to a continuous map g: uY - C(X) because C(X)
is realcompact. Then, since X is locally compact, the desired
extension g of f is obtained by defining g((x, y)) = [g(y)](x).
Hence the proof is complete. We now call an ordered pair (X, Y)
of spaces a v-pair if X x Y is C-embedded in X x vY. Obviously
u(X x Y) = vX x UY holds if and only if both (X, Y) and (vY, X)
are v-pairs. Let C(Y, Z) denote the set of all continuous maps

from Y into Z, and C,(X) the space C(X) with a topology t. The

t
argument of the proof suggests that (X, Y) is a v-pair whenever
there exists a completely regular Hausdorff topology t for C(X)
satisfying the following three conditions:

(1) Ct(X) is realcompact,

(2) cx xy)ccly, ¢ (X)),



(3)  cfuy, c (X))Cc(x = vY),

t
where the inclusions stand for the canonical injections ( i.e.,
(2) and (3) mean that /f\'EC(Y, Ct(X)) for each f&€C(X x Y), and
f€C(X x vY) for each §GEC(UY, Ct(X))’ respectively ). 1In [H9]
HuSek asked whether or not the existence of such a topology t
for C(X) is necessary for a pair (X, Y) to be a v-pair. In
section 23; we answer this question negatively by showing that
if X is not locally compact, then there exists a space Y such
that (X, ¥) is a v-pair but C(X) has no such a topology. Con-

sequently, in this sense, the relation v(X x Y) = vX x uY can

not be always described in terms of function spaces.

We nevertheless nourish a hope of finding a all-around
theory to attack the problem. Actually various new methods for
studying the relation v(X x Y) = uvX x uY will be developed in

this paper, although our goal is still far to see.



3. Definitions and results from the literatures

For convenience, we list certain basic definitions and

facts that will be used in the sequal.

3.1 We begin with a brief account of measurable cardinals.

A cardinal number m is said to be measurable if a discrete space
D(m) of cardinality m admits a countably additive {0, 1l}-valued
measure u such that u(D(m)) = 1 and u({da}) = 0 for each a€D(m).
It is known ( cf. [GJ] ) that a discrete space is realcompact if
and only if its cardinal is non-measurable. The class of non-
-measurable cardinals contains Nb, and is closed under standard
operations of cardinal arithmetric. For detailed treatment of
non-measurable cardinals, see chapter 12 of [GJ]. The assuption
that each cardinal is non-measurable is known to be consistent
with the usual axioms of set theory; however, the consistency of
the existence of measurable cardinals with the usual axioms of

set theory remains an open question ( cf. [Sl] ).

3.2 Let X be a space. The weight of X is the minimal cardi-
nality of a base for X and is denoted by w(X). The density of X,
denoted by d(X), is the minimal cardinality of a dense subset of X.
If x€X, the character at x in X, written x(x, X), is the minimal
cardinality of a neighborhood base at x, and x(X) = sup{ x(x, X) |
x€X } is called the character of X. The cellularity of X,

denoted by c(X), is defined by c(X) = sup{ |U| | U is a disjoint

10



family of non-~empty open sets in X }. . The following inequalities
are well known ( ef. [E, 1.5.1, 1.5.6, 3.5.3] ):

3.2.1 co(X) £ a(X) £ w(X), x(X) g w(x).

3.2.2 x| < exp w(X) 2 exp exp d(X).

3.2.3 w(uX) < w(BX) < exp d(X).

3.3 The following results are used throughout the paper.

3.3.1 If Y is C-embedded in X, then vY = clUxY ( [ecg, 8.10] ).
3.3.2 If G is a cozero-set of vX, then v(GNX) = G ( [BE’ 5.2] ).
3.3.3 A space X is pseudocompact if and only if vX = BX, and
hence a pseudocompact realcompact space is compact ( [GJ, 8AL] ).
3.3.4 For a space X, vX = { xgBX | every zero-set of BX con-
taining x meets X } ( [GJ, 8.8] ).

3.3.5 If Y, is Gg-dense in X13 for i =1, 2, then Y, x ¥, is

G.-dense in X. x X ( [cNW,, 5.1] ).

8 1 2 1
3.3.6 A z-embedded subspace is C-embedded if and only if it is

completely separated" from every zero-set disjoint from it ( [BH

3.6]1 ).

l!
3.3.7 If a space X admits a complete uniformity and ]Xl < ml,
then X is realcompact. In particular, a paracompact space X

with |X| < m is realcompact ( cf. [s,], [GJ, 15.20] ).

1 2
3 Every non-empty Gé—set of Xi meets Yi.
& Recall from [GJ] that two subsets A, B of a space X are

said to be completely separated in X if there exists fE&C(X)
such that f(A) = {0} and £(B) = {1}.

11



3.3.8 If D is a discrete space with |D] > m , then VD is not

lS
a k-space ( [C3, p-115] ).

3.3.9 A pseudocompact paracompact space is compact ( cf. [E,
3.10.21 and 5.1.20] ).

3.3.10 Every metrizable space has a o-discrete base. Conversely

space having a o-locally finite base is metrizable ( cf. [E,

o

L.h.3 and b.4.7] ).

3.4 By 3.3.3 above, we can interpret Glicksberg's theorem
(1.1) as one sufficient condition in order that u(X x Y) = LX X VY,
actually some weaker conditions are known to be sufficient. The

following chart describes the situation. Recall from [H_] that

T

a space X is pseudo-m -compact if each discrete family of non-empty

1
open sets in X is of non-measurable cardinal. The projection Tyt
1).

X XY+ X is z-closed if it carries zero-sets to closed sets ( [T2

(¥) indicates that the implication requires the assumption that

either |Y| < m or X is pseudo-m_-compact.

1 1

(a) B(X x Y) = BX x BY (f) Ty is z-closed

(b) X x Y is C¥-embedded —(g) X x Y is C¥-embedded
in BX x RY in X x BY

' |

(¢) X x Y is z-embedded —=(h) X X Y is z-embedded
in BX x BRY in X x BY

! (*) '
(d) X x Y is C-embedded —s (i) X x Y is C-embedded
in vX x vY in X x vY

!

(e) wu(X xY) = uX x vY

12



Here, (a) ++ (b) and (d) <> (e) are virtually the definitions

of B and v, respectively. The equivalence (f) «> (g) was first
proved by Hager and Mrowka [HM], and the proof was described in
[H2]; (g) - (f) was also shown in [Ih]' In {CNl], Comfort and
Negrepontis proved a weak form of (f) + (g), and that (g) implies

(@) if |Y| < m It was proved by HuSek [H_.] that (g) also

1’ 9

implies (d) if X is pseudo—ml—compact. Blair has proved in [Bg]
that (h) implies (d) under the assumption (¥). Section 15 below
concerns the question of what topological properties of X and Y

make (h) true. A study of (c) was made in [Hl] and [BH3], where
(¢) » (a) was noted. (h) =+ (i) as well as (c) -+ (d) follows

from 3.3.4, 3.3.5 and 3.3.6. Other implications are obvious.

3.5 The following concepts and results will be used, without
reference, in chapters 2, 3 and 4. A map f: X > Y is called

( countably ) bi-quotient if, whenever y€Y and U is a ( countable )
éover of f_l(y) by open sets of X, then finitely many £(U), with

U€U, cover a neighborhood of y in ¥ ( [M.], [SM] ). Recall from

2

[AE] that pseudo-open maps are defined by restricting the family
U in the above definition to have only one element. The following

chart summarizes the relationship of these maps to other more

familiar ones:

perfect — quasi-perfect — closed

! 1 l

. . countably .
open-w—bloquotlent-ﬁrbi_quotient—a»pseudo—open—a-quotlent

13



A space is called ( countably ) bi-sequential if it is the

1,

( countably ) bi-quotient image of a metrizable space ( [M3

[83] ). Recall from £Mh] that a paracompact M-space ( = a para-
compact p-space in the sense of Arhangel'skil [A3] ) is a space
which has a perfect map onto a metrizable space. A locally com-

1, D] ).

pact, paracompact space is a paracompact M-space ( [A

3
A space is called a ( countably ) bi-k-space if it is the

).

( countably ) bi-quotient image of a paracompact M-space ( [M3

The pseudo-open image of a metrizable ( resp. paracompact M- )

space is called a Fréchet ( resp. singly bi-k- ) space ( [A,],

3
[M3] ). Internal characterizations of these spaces can be found
in M. ].
(14,
first . . countably ’
countable_*'bl_sequentlal_’ bi—sequential-"FreChet

l | |

. countably singly
paracompact BI———»'blik —————~>.bi_k E— bik

..—...’.k

locally compact

3.5.1 If X and Y are bi-k-spaces, then so is X x Y ( [M_, 3EL4] ).

39
3.5.2 If X is a bi-k-space and Y is a countably bi-k-space,

then X x Y is a k-space ( [M_, p.11k] ).

3
3.5.3 If X is a locally compact space, then X x Y is a k-space

for each k-space Y ( [Cl] ).

If fi: Xi > Yi is a map for 1 = 1, 2, then the product map f =

£, % f, from X, x X, to Y, x Y, is defined by f((xl, x,)) =

1 2 1 1 2 2

1L



(

( JE X, x X_. While the product of

), fg(xg)) for (xl, X, 1 5

fl xl

two quotient maps need not be quotient, the class of bi-quotient

maps is well behaved with respect to products:

3.5.4 If fi: Xi + Yi (i1i=1, 2 ) are bi-quotient maps, then

so is £, x f, ( [M2, 1.2] ).
3.5.5 If fl: Xl -+ Yl is a countably bi-quotient map and if f2:
X, > Y, is a bi-quotient map onto a bi-sequential space Y then

2 2 2°

£, % T, is countably bi-quotient ( [M3, p.110] ).

3.5.6 If X is locally compact, then id, * g is a quotient map

for each quotient map g: Y - Z, where id, is the identity map

X
of X ( [W,] ).

In 3.5.3 and 3.5.6, the converse is also valid. See
Michael, Local compactness and cartesian products of guotient
maps and k-spaces, Ann. Inst. Fourier, Grenoble 18.2 (1968),
281-286.

15



L, Husek's theorems and characterizations of R( compact )

and R( discrete )

For later use, we quote two theorems due to HuSek [HYJ’
from which characterizations of R( compact ) and R( discrete )

are deduced. They are useful to exclude difficulty originated in

the possible existence of measurable cardinals from our theory.

b1 THEOREM ( Hufek ). Let Y be locally compact, realcompact.
Then u(X x Y) = vX x uY holds if and only if either |Y| < m, or

X is pseudo-m,-compact.

1

L2 THEOREM ( HuSek ). Let Y be discrete. Then uv(X x Y) =

UX x uY holds if and only if either |X| < m, or Y| < m, .

As immediate consequences of the above theorems and 3.3.2
we have the following results that characterize R( compact ) and
R( discrete ). Let D*(m) denote the one-point compactification

of the discrete space D(m) of cardinality m.

4.3 THEOREM. The following conditions on a space X are

equivalent:

(a) X is pseudo—ml—compact.

(b) v(X x Y) = uX x vY holds for each locally compact, real-
compact space Y.

(e) u(X x Y) = uUX x uY holds for each compact space Y with

16



L.h THEOREM. The following conditions on a space X are
equivalent:

(a) |x| < m, -

(b) V(X x Y) = vX x UY holds for each discrete space Y.

(c) u(X x D(a(x))) = v¥ x ub(d(x)).

h.s REMARK. k4.4 was noted in [H7] implicitly, and was stated

by the author in [0_.]. The special case v(D(m ) x BD(ml)) #

2 1

UD(ml) X BD(ml) was earlier observed in [CNl]. In chapter L,
it will be shown that in L.k (b) "discrete" can be weakened to

"locally compact, metrizable'.

17



CHAPTER 1
CHARACTERIZATIONS OF THE CLASSES R, R( metacompact ),

R( subparacompact ), R( P(m) ) AND R( metacompact P(m) )

For an infinite cardinal m, a P(m)—space is a space each
of whose point lies in the interior of every intersection of less
than m its neighborhoods. Every space is a P(Xb)—space, and a
P(ﬁi)—space usually is called a P-space. Recall that a space is
metacompact ( resp. subparacompact ) if each open cover has a

point-finite open ( resp. o-locally finite closed ) refinement

(cf. [a8], [E] ).

5. Main theorems

In this section, we state main theorems of this chapter
and discuss some remarks. The proofs will be given later in
section 7. The first one proves McArthur's conjecture mentioned

in the intrcduction.

5.1 THEOREM. The following conditions on a space X are
equivalent:

(a) X is locally compact, realcompact and |X| < m, .
(b) u(X x Y) = uX x vY holds for each space Y.

Il

(c) v(X x Y) = uX x UY holds for each metacompact space Y

with w(Y) < w(ux)oé?l.
(a) v(X x Y) = vX x uY holds for each subparacompact space Y

with w(Y) < w(uX)-exp.Xb.

18



5.2 REMARK. In 5.1, (a) - (b) is Comfort's theorem (1.2).
Conversely it was proved in [H6], [HB]’ fMl] that X is realcompact

whenever X satisfies (b), and HuSek noted in [H6], [H_] that such

T

a space X must be of non-measurable cardinal. The equivalence of

(a) and (b) has been completed by the author in [02].

5.3 REMARKS. (1) A space is called O-dimensional if it has
a base consisting of open-and-closed sets ( [E] ). As the reader
will observe in the proof, 5.1 remains true if O-dimensionality
is added to the conditions on Y in (b), (c) and (4).

(2) The author does not know if exp-N% can be replaced

bywxi in (d).

For an infinite cardinal m, a space is weakly-m-compact
if each open cover has a subfamily of cardinality less than m

]

with dense union. This notion was introduced by Frolik [Fl
under a different name ( cf. also [Hg] ). A weakly-ﬁ%—compact
space is precisely a compact space, and LindelSf spaces and
separable spaces are weakly—?ﬁ—compact. For an infinite cardi-
nal m, let m¥ denote the smallest regular cardinal not less than
. . . + . . .
m(i.e., m =mif m is regular and m¥ = m if m is singular ).

The following theorem gives characterizations of R( P(m) ) and

R( metacompact P(m) ).
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5.4 THEOREM. The following conditions on a space X are

equivalent:

(a) Each point of uX has a neighborhood G in uX such that
GNX is weakly-m¥-compact, and |X| < m, .

vX X UY holds for each P(m)-space Y.

(b) v(X x Y)

(e) u(X x Y) = vX x uY holds for each metacompact P(m)-space Y

with w(Y) < exp w(uX).

5.5 REMARKS. (1) A space X is called locally weakly-m-compact
1f each point has a weakly-M-compact neighborhood. As far as
I know, this notion first appears in [H9]. Obviously 5.4 (a)
implies local weak-m¥—compactness of X and vX, but the converse
need not be true if m¥ >-Nb. In fact, let m¥ > Nb, and let us
set X = w(wa), where w is the initial ordinal of m¥: then both
X and vX ( = W(wa + 1) ) are locally compact, but X does not
satisfy 5.4 (a).

(2) In 5.4 (a), m* cannot be replaced by m in general.
To show this, let m be a singular cardinal with m < ml, and let
X be the quotient space obtained from W(w0 + 1) x D(m) by col-
lapsing the set {wo} x D(m) to a single point. Then X is weakly
~-m¥-compact realcompact but not locally weakly-m-compact. Thus

it follows from 5.4 that v(X x Y) = vX x uY holds for each P(m)-

-space Y, but X does not satisfy (a) with m* changed to m.
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In case X is itself a P{m)-space, we have the following
theorem, from which the equivalence of (a) and (b) in 5.1 can

be deduced as the special case m =~Nb.

5.6 THEOREM. For an infinite cardinal m, the following
conditions on a P(m)-space X are equivalent:

(a) X is locally weakly-m*-compact, realcompact and |X| < m, .
(b) u(X x Y) = uX x vY holds for each P(m)-space Y.

(c) v(X x Y) = vX x UY holds for each metacompact P(m)-space Y

with w(Y) < exp w(X).

5.7 REMARK. 1In 5.6, (a) » (b) was proved by HuSek [H

9]'

5.8 REMARKS. (1) In chapter 4 below, it will be proved that

if X is a first countable realcompact space with [XI < m , then

'
V(X x Y) = vX x vY holds for each normal countably paracompact
space Y. This fact asserts that a member of R( normal countably
paracompact ) is not necessary locally compact, and hence we can
not adapt the above theorems by making Y a normal countably para-
compact space instead of metacompact. Since a o-locally finite
family of a P(éﬁ)—space is closure preservings, it follows from
Michael's theorem [E, 5.1.G] that a subparacompact PLXi)—space

is paracompact. Therefore, in case m >Q€O, 5.4 and 5.6 are not

5 A family F of subsets of a space X is closure preserving
if el (U{ F | FeF' 1) = U( cl,F | FEF' } for each F'CF
( ecf.”[E, 5.1.G6] ).
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true for subparacompact spaces. Furthermore, since normal
metacompact spaces and normal subparacompact spaces are known
to be countably paracompact ( [Gl] ), in 5.1 (e¢), (d), 5.4
(e¢) and 5.6 (c), one cannot add normality to the conditions
on Y. However, it is fully expected that R = R( normal ) =
R( countably paracompact ); the possibility will be discussed
in section 8 and 9.2 below.
(2) The author does not know whether, in the case
m >-Nb of 5.4 and 5.6, exp w(vX) and exp w(X) can be replaced

by w(uX)uNi, respectively.
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6. Tools for proving theorems

When proving theorems stated in the preceding section,
since a mild variant of Comfort's procedure ( [03] ) proves
(a) > (b), the remaining issue is how to find a space Y such
that V(X x Y) # uX % UY when (a) fails. The following two

tasks are imposed on us:

Task 1. If X has a point having no weakly-m¥-compact
neighborhood, then find a suitable space Y such that X x Y is

not C-embedded in X x vY.

Task 2. If vK - X has a point having no neighborhood in
vX whose restriction to X is weakly-m¥-compact, then find a suit-

able space Y such that X x Y is not C~embedded in vX x Y.

In this section, we present useful tools for performing

these tasks.

6.1 NOTATION. Let k, m be infinite cardinals with k > m, and
D a set of cardinality k. Let I be the family of all subsets of
D whose cardinality is less than m. Then Z+(h, m) denotes the
space L U{s} topologized as follows: Each point of I is isolated
and { J(o) | o€z }, where J(o) = {s}U{ 0'€z2 | ¢'D0 }, is a

+
neighborhood base at s. In case m is a regular cardinal, I (k, m)

is a P(m)-space.

23



+ +
6.2 NOTATION. Let Z be a space, and let I = I (R, m) be the
+ +
space defined in 6.1. Then F(Z, £ (k, m)) ( or simply F(Z, £ ) )
+
denotes the space obtained from the product space Z x £ by

letting each point of Z x I be isolated.

6.3 FACTS. The following simple facts about these construc-
tions are listed without proofs:

6.3.1 |Z+(k, m)| = w(z (R, m)) < exp k, in particular, |Z+(h, 5%)[

1l

w(z'(k, ) = k.

we(2)ew(z’).

6.3.2 |F(z, )] = |z|-|27|, w(F(z, £)) = |z

6.3.3 If Z has one of the following properties, then so does
+
F(Z, I ): metacompactness, subparacompactness, normality,

countable paracompactness, O-dimensionality.

-+

+
6.3.4 If both Z and £ are P(m)-spaces, then so is F(Z, I ).

6.4 THEOREM. Let X be a space having a point Xys With x(xo, X)

n, that has no weakly-m-compact neighborhood. Let Z be a space

A

having a locally finite family F of closed subsets in Z, with |F|
= n, such that M{ cl F | FEF } # 0. Then X x Y is not C-em-

bedded in X x vuY, where Y = F(Z, T (w(X), m)).

Proof. With the notation in 6.1, I (w(X), m) = TU{s},
and the sets of the form J(o) = { 0'€z | ¢'Dco }, 0E€L, are
basic neighborhoods of s. Let { GA | Y€ A } be a neighborhood
base at Xy in X with IA] = n. For each XEA, ClXGX is not weakly-

-m-compact, and thus there exists an open cover UA of X such that

no subfamily of cardinality less than m has dense union in GA'
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Since it can be assumed without loss of generality that ]U}\[ =
w(X), we denote the collection of all subfamilies of UA whose
cardinality is less than m by { qu | 6€5 }, where oCo' if and

only if U, CU, . If we set H =G, - cl (UL U | uel, 1)

for each o€, then H is a non-empty open set. Pick XME H)\o’

AT

and choose meC(X) such that f = 0 and fm(x - HM) = {1}.

AU(XAO)

On the other hand, since |F| = n, it can be written F = { Fy |

AEA }. For each A€M and each c€1%, B, % {o} is an open-and-
~closed subset of ¥ ( = F(Z, £ (w(X), m)) ), so there is g, €C(Y)

such that ng(F x {c}) = {0} and g}\U(Y - (FA x {0})) = {1}. For

A
each A€ A and each 0 €%, let us set

Iig = {xm} x (F)\ x {c})CX %Y,
Ko = H % (Fx x {o})CX x Y,
by (6 ¥)) = min {1, £, (x)+g, (¥)}; (x, y)E€X x 1.
Then hy €C(X x ¥), h, (J, ) = {0} and b, ((X x7Y) - K )= {1

Claim 1. K= { KX, | AEA, 0€X } is locally finite in

AC
X x Y: To prove this claim, let p = (x, y)€X x Y; then y =

(z, 1) for some z€Z and T€LU{s}. Since F is locally finite,
z has a neighborhood G(z) in Z which meets only finitely many

members, say F}\l’”" F, , of F. In case T€Z, X x (G(z) x {1})
n

., K , and so

AT

is a neighborhood of p which meets only KA Sy
1

we only need consider the case Tt = s. For each i =1,..., n,

choose U, &€ U
i Az

with x€U,; then {U.} = U
i i i

Ai0g for some oiE L. 1If

we set G(x) = Ulﬂ...ﬂUn, then G(x) is a neighborhood of x such
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that G(x)NH, _ =@ for each i =1,..., n. Let us set G(p) =
i

i
G(x) x (G(z) x J(oo)), where o, = 0;U-..Jog - Then G(p) is a

neighborhood of p in X x Y which meets no member of K. For, if
C—(p)ﬂK}\G # 0, then G(x)f\H)\cj # 0, 0)00, and A = A, for some i.

)UA. , it follows that H, = CH , and

Since U DU H
Aioo 101 Ao Aj0 Aj04

)\id
hence G(x)f\Hl s # . This is a contradiction, that proves
i¥i
claim 1.
Define a function h on X x Y by

h(q) = inf { n, (a) | AEN, 0E€Z }; qg€X x Y.

Then h is continuous, since K is locally finite.

Claim 2. The function h admits no continuous extension
over X x uY: To prove this claim, choose yoéif\{ ClUZFA [ AEA I},
then local finiteness of F implies that YOEEUZ - Z. Since Z x {s}
is C-embedded in Y, it follows from 3.3.1 that vZ = v(Z x {s})C
VY, and hence yOEQUY -~ Y. Let V x W be a given neighborhood of
(xo, yo) in X x vY. There is AEA with GACV, and then Wﬂ(FA X
{s}) # ¢. Find zEF)\ and 0 €L such that (z, s)EW and (z, o)C W.
Then both p, = (xkg, (z, o)) and P, = (xo, (z, s)) belong to
V x W and h(pl) = 0, while h(pg) = 1. This shows that h does not

extend continuously to (xo, yo). Hence the proof is complete.

6.5 REMARKS. (1) Let X and Z be spaces satisfying the condi-
tions of 6.4. Then one might ask whether X x Z is not C-embedded
in X x vZ or not. Example 16.7 provides a negative answer to

this question.

26



+
(2) A similar space to the space Y = F(Z, I ) was used
by Przymusinski [Pl] to show the existence of normal non-weak

cb-spaces.

6.6 The preceding theorem reduces Task 1 to the problem of
finding a space Z which has a locally finite family F of closed
subsets such that [M\{ cl o F | FEF } # §. Our next work is to
construct such spaces Z. The following definition is needed

for this end.

6.6.1 DEFINITION. Let Xi be a space with a base Bi for i =1, 2.
Let E be a closed subset of Xl’ and let Z# be the quotient space
obtained from Xl X X2 by collapsing the set {e} x X2 to a point
for each e€E. Let ¢#: Xl % X2 - Z# be the quotient map.

Define 1 to be the new topology for Z# having the collection
J{ B(B) | BGEBl } as a base, where
{¢#(BXX2)} if BNE # P,
B(B)={ ,
{ ¢"(B x B') IB'€B2} if BNE = p.
We call T the strong topology with respect to this identification,
and denote the space Z# equipped with 1 by 2. Then the natural

).

map ¢: X, X X, - Z is continuous, and w(Z) = w(Xl)'w(X

1 2 2
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6.6.2 TFACT. For every two infinite cardinals m and n, there

exists a O-dimensional metacompact P(m)-space Z = Z_{(nm, m), with

1
+
|z| = w(z) = n-(m*)", that has a discrete family F of closed

subsets in Z such that |F| = n and N\({ cl o F | FEF 1 # 0.

Proof. Let w, ( resp. Wy ) be the initial ordinal of

+
(m*) ( resp. m*¥ ). Define Tl ( resp. T, ) to be the subspace

2
of W(wa + 1) ( resp. W(wB + 1) ) obtained by deleting all non-

x T_)

). Let us set T = (‘I'l o

isolated points except w, ( resp. W

0= (wa, wB). Then T is a O-dimensional metacom-
+

pact P(m)-space with [T| = w(T) = (m*)".

- {to}, where t

Claim 1. The space T is C-embedded in Tl % T2, and hence

UTDTl X T _:

,i To prove this claim, let fE€C(T). Since w, is a

P((m*)+)-point6, we can find a neighborhood G of w, in Tl such
that £ is constant on G x {y} for each YEET2 - {wB}. Then f
takes on‘the constant value r on (G - {wa}) x {ws}. Extend f
over T. x T, by setting f(to) = r. Then the extension is cont-

1 2

inuous, and thus T is C-embedded in Tl X T2, from which uT D

Tl x T2 follows.

Let us set E = {ma} X (T2 - {wB}) and F = (Tl - {wa}) x
{wB}; then E and F are disjoint closed subsets of T such that

(1) toe cluTEﬂ cluTF.

6 A P(m)-point is a point which lies in the interior of
every intersection of less than m its neighborhoods.
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Let A be the discrete space of cardinality #n, and Z# be the

quotient space obtained from T x A by collapsing the set {e} x A
to a point for each e&E. Define Z to be the space Z# with the
strong topology with respect to this identification. Then it is
easily checked that Z is a O-dimensional metacompact P(m)-space
with |2] = w(z) = n-(m*)+. Let ¢: T x A >~ Z be the natural map.

Setting F)\ = ¢(F x {A}) for each A€ A, we have a discrete family

{ Fy | A€EA } of closed subsets in Z.
T . F}\\ z
T, T E - ¢(E x {1})
/ ¢
B
Ty

Claim 2. MN{ cl F, | €A} # ¢: Although this claim is
apparent in the light of the above picture, we make a rigorous

proof for later use. There exists a continuous extension @:

V(T x A) » vZ of ¢. Claim 1 tells that u(T x A)D(Tl X Te) x A,
If we set z()A) = <I>((to, X)) for each AE A, then

(2) z(x)@(clu( (F x {a})) C

T x A)

Ccluzd)(F x {A}) = CluZFA'

We now show that z(A) = z(u) for each A, t€A. Suppose that

z()\l) # Z(}‘g) for some A;, A,€A; then they have disjoint neigh-

l)

borhoods U, , respectively. Since Vi = <I>-l(Ui), i=1, 2, are

neighborhoods of (t., A.), there exist neighborhoods G, of t_. in
0 i i 0

T. x T, such that G, x {A,}CV, for i = 1, 2. Then since
1 2 i 1 i
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o(E x {xl}) = ¢(E x {Ag}) and U NU, = b, Glf\Gef\E is empty,
which contradicts the fact that tO(EcluTE. Hence z(A) = z(u)
for each A, u€A. This fact combined with (2) proves claim 2.

Therefore Z is the desired space Zl(n, m).

A space X is called a Moore space ( or a developable
space ) if there exists a countable collection { Un | n€N } of
open covers such that { St(x, Un) | n€N } is a neighborhood base
for each x€X. Here St(x, Un) = J{ u€ Un | U9x }. The collec—
tion { Un | n€N } is called a development for X ( cf. [as8], [E] ).

It is known ( [Bh] ) that a Moore space is subparacompact.

6.6.3 FACT. For each infinite cardinal n, there exists a
O-dimensional Moore space Z = ZE(”)’ with |Z] = w(Z) = neexp X,
that has a discrete family F of closed subsets in Z such that

]F|= nand{ﬁ{c%EFl FEF } # 0.

Proof. Let ¥ be the space of Isbell [GJ, 5I, p.T79], which
is made as follows: Choose a maximal family S of infinite subsets
of N such that the intersection of any two is finite ( apply
Zorn's lemma to [E, 3.6.18] ). Then |S| = exp Xy. Let D= { ug |
SES } be a new set of disjoint points, and define ¥ = NUD with
the following topology: ZEach point of N is isolated, while a

is any set containing w_, and all but finite

neighborhood of w s

8
number of points of S. Then ¥ is O-dimensional, and it was proved
in [GJ] that ¥ is pseudocompact ( i.e., u¥ = BY by 3.3.3 ) but

not countably compact. Further ¥ is known to be a Moore space;
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in fact, we have a development { Gn | n€N } for ¥ by defining
Gn = { ({mS}US) - Kn | s€S YU{ {n} | n€N }, where K ={ ien |

i <n }, for each n€N. Let us set T = Wlw ., + 1) x ¥, Then T is

0

a O-dimensional Moore space with IT[ = w(T) = exp .R'O. Since

W(w, + 1) is compact, it follows from 1.2 that

0]

(1) UT=W(wO+l)XU‘P(=W(wO+l)><B‘1’ ).

Since ¥ is not countably compact, there exists a decreasing se-
quence { Hn ] n < W } of closed subsets in ¥ with empty inter-
section. Since v¥ = BY, we can find a point poeﬂ{ cl i, |

n < w, }. Let us setE={wO}X‘1’,F=U{ {n}XHn|n<wO}

and tO = (mo, po); then E and F are disjoint closed subsets of T

such that
(2)  ty€cl ENel F.
Let A be the discrete space of cardinality n. We make a space Z

from T x A by the same way as in the proof of 6.6.2. Let ¢: T x A

-+ Z be the natural map.

r-——T—="=—7m—=" T-="=-== A
I ]
BY | F *t, 7
! \ [ ’ l ;
E
’\{ ¢
y T _—
0 wo

Then the resulting space 2 is a 0O-dimensional Moore space with
|z| = w(Z) = neexp NO. Indeed, denoting the development for T

by { Vn | n€N }, we have a development { Un | n€EN } for Z by
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defining Un Ut uw) | ve Un } for each n€ N, where

u(v)

I

{{ o (V x A) 3} if VNE # 9,
{ ¢(Vx {a}) | A} if VNE = §.

Let us set F, = ¢(F x {A}) for each A€ A. Then { F, | 2€A } is

a discrete family of closed subsets in Z, and a similar argument

to that of 6.6.2 shows that M{ CluZFA | A€EA } # f. Hence Z is

proved to be the desired space Zz(n).

We now proceed to Task 2.

6.7 NOTATION. Let kR, m be infinite cardinals with k >m, and

£ (k, m) = £U{s} the space defined in 6.1. Then 3%(k, m) denotes
the quotient space obtained from Z+(k, m) x D(n) by collapsing
the set {s} x D(n) to a point Yo+ The space EZ(&, m) is a 0-di-
mensional paracompact space, and it is a P(m)-space in case m is
a regular cardinal. Note that ]Zz(k, m)| = ken and w(Zﬁ(k, m)) =

ezt (e, mN™

6.8 THEOREM. Let X be a locally weakly-m-compact space. If

UX - X has a point x,, with x(x,, VX) < n, that has no neighbor-

O!

hood in uX whose restriction to X is weakly-m-compact, then X x Y

is not C-embedded in vX x Y, where Y = ¥ (w(X), m).

*
n
Proof. Let Xy be a point of vX - X satisfying the stated

conditions. Let { GA i A€M } be a neighborhood base at X, in

vX with IA[ = n. For each AE A, X/\cluXGA is not weakly-m-compact,
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and thus there exists an open cover UA of X such that no subfamily

of cardinality less than m has dense union in XNG Let us set

2"
+

r (w(X), m) = U{s}. Since it can be assumed without loss of
generality that |U>\l = w(X), we denote the collection of all

subfamilies of U)\ whose cardinality is less than m by { U}\G |

- . -
0€EL }, where o0 Co' if and only if U)\GCU)\O,. If we set H,

(X{’\Gk) - ch(U{ U [ UGUAG }) for each o0& I, then H)\O is a

non-empty open set. Pick x GEHAU’ and choose f GEC(X) such

A A

) = 0 and £ (X - H)\o) = {1}. Topologize A with the

that f \o

AG(XAG
discrete topology. Since |A] = n, Y = Z:fl(w(X), m) is made from
(zuU{s}) x A by collapsing the set {s} x A to a point Yo € Y.

Let y: (£2U{s}) x A + Y be the quotient map. If we set P((o, 1))
=Yg for each A€ A and each 0&€X, since Vg is an isolated point

of Y, there exists ngEC(Y) such that gxg(y}‘o) = 0 and gko(Y -

{y)\o}) = {1}. For each AE A and each &I, let us set

1l

P g (x)\o, yAG)EX x Y,

Ky = Hyg % {ym}CX x Y,

h)\o((x, y)) = min {1, f}\o(x)+g)\6(y)}; (x, yYJEX x Y.

= {1}.

Then hmec(x X Y), hm(pm) = 0 and h)\c((X X Y) - KM)

Claim 1. K= { K, | X€A, €T } is locally finite in
X x Y: To prove this claim, let p = (x, y)EX x Y. 1In casey =
¥,, for some AEN and c€Z, X x {y} is a neighborhood of p which

meets only K)\UEK' In case y = yo, choose a weakly-m-compact

neighborhood G(x) of x; then for each A€ A there is c)\EZ such
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that G(X)C:ch(L){ U | U(EUAOA }). Let us set G(y) = U{ w(J(cx)
x {x}) | €A}, where J(UA) = {s}U{ o€z | 520, }. Then G(y)
is a neighborhood of y in Y, and G(x) x G(y) meets no member of K.

Hence K is proved to be locally finite in X x Y.

Define a function h on X x Y by
n(q) = inf { n, (q) | XEN, 0€Z }; QEX x Y.

Then h is continuous, since K is locally finite.

Claim 2. The function h admits no continuous extension

over VX x Y: To prove this claim, let V x W be a given basic

neighborhood of (xo, yo) in vX x Y. There is A€ A with G, CV.
Choose ¢ €I with kaEEW} Then both by = (Xxo’ yko) and p2 =
(xm, yo) belong to V X W and h(pl) = 0, while h(pe) = 1. This

shows that h does not extend continuously to (xo, yo). Hence

the proof is complete.

6.9 For practical use, we summarize essential information
about spaces constructed above. Let R, m and n be infinite

cardinals.

+
Zl(n, m¥), sV = 57 (k, m*) and nem* < Rk, then

1]

6.9.1 If zl

F(Zl’ £ ) is a O-dimensional metacompact P(m)-space such that

w(P(z,, 1)) = |Zl]-w(Zl)-w(Z+)
= lzy - 157] (= IF(z), 2D
< n-(m*)+-exp k = exp k.
In case m =-Rb, since w(Z+) =k,
w(r(z,, 1)) = [F(z, 2| = @)k = kX
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6.9.2 If Z2 = Ze(n), . Z+(h, 5%Q and n < k, then, since a

. +
Moore space is subparacompact, F(Z L ) is a O-dimensional sub-

2)
paraccmpact space such that

+

w(F(Z_, )

il

|z

D3 'W(Zg)‘W(Z+)

+
l

2
+

Il

|z L

~—

5 )|
n-(exp-Rb)-h = h-exp~xb.

(= lF(Z2, T

A

k, then ¥ is a

Ha

6.9.3 If I =3 (k, m¥), ¥ = 2% (R, m*) and m
a O-dimensional paracompact P(m)-space such that
w(z®) = (w(z" )" < (exp )" ana

lo*| = n-[Z+| < neexp k.

6.10 We conclude this section by applying our theory to answer

the question of HuSek [H., p.326]: Do there exist minimal cardi-

7
nals m, n for which |X| =m, |Y| = n and u(X x Y) # vX x VY ?

The following example provides a positive answer to this gquestion.

6.10.1 EXAMPLE. Let Q be the space of all rational numbers with
the usual topology. There exists a 0O-dimensional metacompact

space Y with |Y| = w(Y) =-Ni such that v(Q x Y) # Q@ x vY.

+
Proof. We take for Y the space F(Zl(wo,~Rb), z 0N6,>€O))
defined above. Then, by 6.9.1, Y satisfies the stated conditions.
Since w(Q) = x(Q) =<f%, it follows from 6.4 that v(Q x Y) #

Q x vY.

6.10.2 REMARK. This question was first answered by the author
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in [03]; however, the space Y exhibited there is not metacompact
and w(Y) = exp RO. In 11.5.1, we shall also make a O-dimensional
locally compact space Y with |Y| = w(Y) =Xl such that v(Q x Y)
#Q x vY ( see also 15.8.1 ).
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7. Proofs of theorems ( 5.1, 5.4 and 5.6 )

T.1 PREREQUISITES. We make use of the following results:
7.1.12 ( [HM], [H2] ) If X is weakly-m¥-compact and Y is a
P(m)-space, then the projection My X XY ~+Y is g-closed.

( It should be noted that a space is a P(m)-space if and only

if it is a P(m*)-space. )

7.1.2 ( [H9J ) Let m < m. . If X is a P(m)-space, so is uX.

We begin with the detailed theorems which constitute

parts of 5.1, 5.4 and 5.6,

T.2 THEOREM. For each infinite cardinal m, the following
conditions on a space X, with IX] < ml, are equivalent:
(a) X is locally weakly-m¥-compact.

(b) X x Y is C—embedded in X x uY for each P(m)-space Y.
(c) X x Y is C-embedded in X x vY for each O-dimensional
metacompact P{(m)-space Y with w(Y) < exp w(X).

In case m = X, the following conditions are also equiv-
alent to the above:
(¢') X x Y is C-embedded in X X vY for each O-dimensional
metacompact space Y with w(Y) < W(X)'Xi.
(4) X x Y is C-embedded in X x vY for each O-dimensional

subparacompact space Y with w(Y) < W(X)-eprQO.

Proof. (a) » (b). Let Y be a P(m)-space. Since X is

locally weakly-m¥—compact, it suffices to show that 8 x Y is
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C-—embedded in S x vY for each weakly-m¥-compact subset S of X.
Let S be a given weakly-m¥-compact subset of X; then WY: S xY
+ Y is z-closed by T7.1l.1. Since |8| < m , it follows from 3.k
that S x Y is C-embedded in S X vY.

(b) > (c). Obvious.

(¢) » (a). Suppose on the contrary that X is not locally
weakly-m¥-compact at XOEEX. Let n = x(xo, X), and let us set Y =

+
F(Zl(n, m¥), £ (w(X), m¥)), as defined in the preceding section.

Then, by 6.9.1, Y is a O-dimensional metacompact P(m)-space with

2
[
A

< exp w(X). It follows from 6.4 that X x Y is not C-embedded
in X x vY. Thus we have (a).

In case m =-Rb, (b) » (e¢') and (b) »~ (d) are obvious.

(e') » (a). Apply the proof of (c) -+ (a) to the case m =
X.. Then w(Y) < W(X)'Nl, as noted in 6.9.1.

(d) > (a). The proof is the same as that of (c¢) + (a) if
one consider Y to be F(Zg(n), Z+(W(X), X%)) ( then, by 6.9.2, Y

is a O-dimensional subparacompact space with w(Y) < w(X)-exp ?% ).

Hence the proof is complete.

7.3 REMARK. In 7.2, (a) » (b) is essentially due to HuSek,

who showed in [HQ] that a v-pair (X, Y) of a locally weakly-m-

-compact space X with |X| < m and a P(m)-space Y can be described

in terms of function spaces ( see section 2 ). For m = Nb, (a) »
1.

(b) was earlier proved by Comfort in [03
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T.h4 REMARK. In the preceding proof, the assumption that |X|

< m; is useful only for the implication (a) ~ (b).

T.5 THEOREM. For each infinite cardinal m, the following con-

ditions on a locally weakly-m*-compact space X are equivalent:

(a) Each point of uX - X has a neighborhood G in uX such that
GNX 1s weakly-m¥-compact.

(b) X x Y is C-embedded in uX x Y for each P(m)-space Y.

() X x Y is C-embedded in vX X Y for each O-dimensional

paracompact P(m)-space Y with w(Y) < exp w(uX).

Proof. (a) - (b). Let Y be a P(m)-space, and let f &
C(X x Y). For our end, it suffices to find, for each x€uX - X,
a neighborhood G of x such that f can be continuously extended
over (X x Y)U(G x Y). Let x€uX - X. Choose a cozero-set neigh-
borhood G of x in uX such that Xf\clUxG is weakly-m¥—compact.

If we set Xl = Xf\cluXG, then = Xl XY+ Y is z-closed by T7.1.1,

Y:

and so it follows from 3.4 that Xl x Y is C-embedded in UXl x Y.

There is a cozero-set Gl of UXl with GlF\Xl = GMNX. Then f can

be continuously extended over (X x Y)Lj(Gl x Y). By 3.3.2,
G, = U(Glf\xl) = v(GNX) = G.
Hence f admits a continuous extension over (X x Y)U(G x Y), as
required.
(b) » (c¢). Obvious.

(¢) - (a). Assume that (a) is false at some Xy EVX - X.

We take for Y the space Z;(W(X), m¥) defined in 6.7, where n =
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x(xo, vX). Then, by 6.9.3, Y is a O-dimensional paracompact
P(m)-space with w(Y) < exp w(uX). Since X is locally weakly
-m¥-compact, it follows from 6.8 that X x Y is not C-embedded

in vX x Y. Hence the proof is complete.

It might be interesting to know whether in 7.5 the assump-
tion that X is locally weakly-m¥-compact can be omitted or not.
The following theorem shows that this omission is possible for

mo< m, if we allow X to be a P(m)-space.

7.6 THEOREM. Let X be a P(m)-space, where m < m. IfXxY
is C-embedded in vX x Y for each O-dimensional paracompact P(m)-

-space Y with w(Y) < x(vX), then X is realcompact.

Proof. For m = XB, this theorem was proved by McArthur
in [Ml]. Our proof is a slight modification of his proof.
Suppose on the contrary that X is not realcompact. Choose XO €
vX -~ X, and let { G, | AEA } be a neighborhood base at Xy in vX
with |A] < x(vX). Let us set ¥ = ALJ{VO}, topologized as follows:
Each point of A is isolated and { J(A) | AEA }, where J()) =
{yO}LJ{ ATEN | GK'C:GA }, is a neighborhood base at Yo Then Y
is a O-dimensional paracompact space with w(Y) < x(vX). By T.1.2,
vX is a P(m)-space, which implies that Y is a P(m)-space. For
each A€ A, choose fxeic(UX) such that fk(xo) = 0 and fA(UX - GA)

= {1}. Define a function h on X x Y by
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n((x, v)) ={
AEA.

i

fk(x) if v
Then h€ C(X x Y), and it is easily checked that h cannot be ex-
tended continuously to (xo, yO)E uvX X Y. This contradiction

completes the proof.

We are now in a position to prove theorems stated in

section 5. Before proving 5.1, we give proofs of 5.4 and 5.6.

7.7 Proof of Theorem 5.4. (a) » (b). Let X be a space sat-
isfying 5.4 (a), and let Y be a P(m)-space. By 7.5, X X Y is
C-embedded in vX X Y. On the other hand, since vX is locally
weakly-m¥—-compact, it follows from 7.2 that uX x Y is C—embedded
in VX x VY, and so u(X x Y) = vX x uY holds. (b) - (c¢) is clear.

(¢) > (a). Since |X| < m by b.b, it follows from 7.2 and 7.5

1

that X satisfies (a). Hence the proof is complete.

7.8 Proof of Theorem 5.6. (a) - (b) is the special case of
(a) » (v) in 5.4, (b) - (c) is obvious. (c) = (a). Since |X|
< ml by 4.4, it follows from 7.2 that X is locally weakly-m¥-

—compact. It remains to prove that X is realcompact. In case

m>m X is discrete, because X is a P(m)-space with |X| < m

12 1
Since a discrete space of non-measurable cardinal is realcompact,
X is realcompact. 1In case m < m , since x(uX) 2 exp w(X) by
3.2.3, it follows from 7.6 that X is realcompact. Hence the

proof is complete.

L1



7.9 Proof of Theorem 5.1. (a) =+ (b) follows from the case
m =‘Nb of 5.6. (b) =+ (¢) and (b) » (d) are obvious. Both
(c) -~ (a) and (d) » (a) follow from 4.4, 7.2 and T.6. Hence

the proof is complete.
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8. On R( normal ) and R( countably paracompact )

In 5.8, we have conjectured that R = R( normal ) =
R( countably paracompact ). In this section, we prove these

equalities in the class of first countable spaces.

8.1 THEOREM. Let X be a first countable space. Then the
following conditions on X are equivalent:

(a) X is locally compact, realcompact and |X| < m, .

(b) v(X x Y) = uX x VY holds for each normal space Y.

it

(e) u(X x Y) = uX x uY holds for each countably paracompact

space Y.

Proof. Both (a) = (b) and (a) » (c) are the results of
1.2 ( or 5.1 ). When proving (b) » (a) and (c) - (a), that X
is realcompact and |X| < m, follows from 7.6 and L.k, To show

the local compactness of X, in view of 6.3.3 and 6.4, it suffices

to observe the following two facts.

8.1.1 FACT. There exists a normal space Z = z3¢86> that has
a countable locally finite family { Fn I n€N } of closed sub-

sets in Z such that [\{ el F_ | neEN } # p.

Proof. Let Z be Rudin's example of a Dowker ( i.e.,
normal but not countably paracompact ) space ( ef. [RI] ). It
was shown in [Rl] that Z has a decreasing sequence { Dn I n < W 1

of closed subsets with empty intersection such that [ { cleFn ]
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n < w, } # 0. Since { D, | n< W, } is clearly locally finite,

().

Z is the desired space Z3 0

8.1.2 FACT. There exists a countably paracompact space Z =

2),(X,) that has a countable locally finite family { F | neN }

of closed subsets in Z such that (\{ el ,7F, | n€w } # ¢.

Z

Proof. We utilize the space Y due to Comfort [C2, p.99]
( independently due to Mack and Johnson [MJ] ). The space Y is
constructed as the quotient space obtained from the product space

’I‘O =N x W(ml + 1) x W(ml + 1) by identifying, for each k€N and

each v < w,, the two points (k, w5 v) and (k+1, v, w.). Let f:

1’ 1

TO + Y be the quotient map, and let us set 2 = Y - {yo}, where g

is the center point £((1, w )) (= £((x, W, s ml)) ). Then he

1 %1
proved that vZ = Y. Let us set T = TO - f_l(yo) and g = f!T.
Since T is countably paracompact, and since g is a perfect map
from T onto Z, Z is countably paracompact. Setting

F_o=f({1 | i2n ) x Wl +1) xWe +1))NZ
for each n€N, we obtain a locally finite family { Fn | neEN } of
closed subsets in Z such that yoeﬂ{ el F. | neN }. Hence %
is the desired space Zh(x\%). Facts 8.1.1 and 8.1.2 complete the
proof of 8.1.

8.2 REMARK. 1In 8.1, "normal" or "countably paracompact" can

not be replaced by "normal countably paracompact" ( see 5.8 ).
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9. Problems and remarks

9.1 PROBLEM. Is it true that R = R( normal ) = R( countably
paracompact ) ? More generally, for each infinite cardinal m,
is it true that R( P(m) ) = R( normal P(m) ) = R( countably para-

compact P(m) ) ?

9.2 PROBLEM. A space Z = Z(n) which has a locally finite

family F of closed subsets such that |F| = n and MN{ el F | FeF }
# f has played an important role throughout this chapter. It
would be nice to have examples of Z(n) which have various other

properties. Among other things, we want the following ones:

(1) a normal P(m)-space Z(n),
(2) a countably paracompact P(m)-space Z(n),
(3) a metacompact subparacompact space Z(n) with |Z(n)| =

w(z(n)) = H'Xi.
The existence of (1) and (2) guarantees 9.1 to be true, and that
of (3) enable us to replace "metacompact" by "metacompact sub-
paracompact”" in 5.1 (c¢). The constructions developed in 6.6.2
and 6.6.3 cannot be duplicated to make (1), because every pair-
wise disjoint closed subsets of a normal space T have disjoint
closures in uT. It should be emphasized that (1) must be a Dowker
space ( see 8.2 ). Recently, Rudin [RQ] has proved that for each
infinite cardinal k there exists a normal space Z, called a k-
-Dowker space, which has a monotone decreasing family { Fa |

a < w(k) } of closed subsets with empty intersection such that
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MH{ el gFy | o< w(k) } # @, where w(k) denotes the initial
ordinal of k. The author does not know whether the k-Dowker

space has the desired locally finite families or not.

9.3 PROBLEM. Do there exist any other conditions on Y for

which 5.1 remains valid ?

9.4 We temporarily say that a space X is an a(m)-space if
each point of uvX has a neighborhood G in uX such that GNX is

weakly-m—-compact.
9.4.1 PROBLEM. Characterize R({ o(m) ) for each a >J§y

Since an a(ﬁ%)—space is precisely a locally compact, real-
compact space, 9.4.1 can be viewed as an extension of the problem
of characterizing R( locally compact, realcompact ) ( see 4.3 ).

The following proposition shows that R( a(m) ) = R( weakly-m-com-

pact ).

9.4.2 PROPOSITION. For each infinite cardinal m, the following
conditions on a space X are equivalent:
(a) V(X x Y) = uX x uY holds for each o(m)-space Y.

(b) v(X x Y)

i

uvX x VY holds for each weakly-m-compact space Y.

Proof. Since a weakly-M-compact space is an a(m)-space,
(a) » (b) is obvious. To prove (b) + (a), let Y be an a(m)-space,
and let f€C(X x Y). For each y€ VY, choose a cozero-set neigh-

borhood G of y such that YfﬁclUyG is weakly-m-compact. If we set

L6



Y, = YﬂcluYG, then v (X x Yl) = uX x qu holds by (b). There

is a cozero-set Gl of qu with Glf\Yl = GNY. By 3.2.2, Gl =
U(Glf\Yl) = u(GNY) = G, and so f can be continuously extended
over (X x Y)U(uvX x G). Since y€vY was arbitrary, this shows

that f admits a continuous extension over uvX x vY. Hence the

proof is complete.

9.5 PROBLEM. Characterize R( realcompact )’. Hufek [H6],

[Hy] and McArthur [M. ] proved that each member X of this class,
8 1

with |X| < m , is realcompact ( cf. also T.6 ); however, the

characterization is not yet known in complete form.

This problem has been posed by the author in [03].
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CHAPTER 2
CHARACTERIZATIONS OF THE CLASSES R( k ),

R( locally compact ), R( Moore ) AND R( locally pseudocompact )

A space X is called a k-space if it has the weak topology
determined by the family of its compact subsets, i.e., SCX is
open if and only if SN K is open in K for each compact subset K
of X ( ef. [E] ). Locally compact spaces and first countable
spaces are k-spaces. Note that a Moore space is first countable,

and hence it is a k-space.

10. Main theorems

In this section, we state main theorems of this chapter
and discuss some remarks. The proofs will be given later in

section 12.

10.1 THEOREM. The following conditions on a space X are

equivalent:

(a) VX is locally compact and |X| < m, .

(b) u(X x Y) = vX x vY holds for each k-space Y.

(c) v(X x Y)

uX x uY holds for each locally compact space Y
with w(Y) < x(ux)w\’l-
(d) V(X x Y) = vX x vY holds for each Moore space Y with w(Y)

< X(UX)-exp.Nb.
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10.2 REMARK. 1In 10.1, (a) + (b) was proved by Husek [H8], and
it was also proved in [C3] under the assumption that |X x Y| < m, .
Conversely, in [03], the author has proved (c¢) - (a) without the

cardinality condition on Y. For (b) - (a), see also [02].

10.3 REMARKS. (1) As the reader will observe in the proof,
10.1 remains valid if O-dimensionality is added to the conditions
on Y in (b), (e¢) and (d).

(2) It will be shown in 13.1 that in (d) "Moore" can be
replaced by "locally compact, Moore" if x(uX) < expiqo; however,
the author does not know whether this replacement is possible in
general ( cf. 13.1.1 ).

(3) Recall from [03] that a space is locally pseudocompact
if each point has a pseudocompact neighborhood. If uX is locally
compact, then X is locally pseudocompact, but the converse is
false ( see [03] ). As for the problem of when it will occur

1, [c

that vX is locally compact, see [B3]’ [C 1, [Hh]’ [16]’

2 3

[IT] and [Nl].

10.4 EXAMPLE. In 10.1 (c), local compactness of Y cannot be
weakened to local pseudocompactness. Let Xi’ i=1, 2, be pseudo-

compact spaces with ]Xi| < m. such that Xl x X, 1s not pseudocompact

1 2

( e.g., see [E, p.265] ). Then vk, = BX, by 3.3.3, and so vX,
are compact, but it follows from 1.1 that U(Xl x XE) # UXl X UXQ.

Consequently, R( locally compact )} # R( locally pseudocompact ).
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The next theorem asserts that R( locally pseudocompact )
= R( locally compact )(VR( pseudocompact ). We now say that a
space 1s a pseudo-k-space if it has the weak topology determined
by the family of its pseudocompact subsets. Locally pseudocom-
pact spaces and k-spaces are pseudo-k-spaces. The class of all
spaces X such that X X Y is pseudocompact for each pseudocompact
space Y is denoted by $, and was intensively studied by Frolik
[F2] and Noble [N.]. We call a member of B a strongly pseudo-

2

compact space.

10.5 THEOREM. The following conditions on a space X are

equivalent:

(a) Each point of uX has a neighborhood G in vX such that
GNX is strongly pseudocompact, and IX[ < ml.

(b) U(X x Y) = UX x vY holds for each pseudo-k-space Y.

(c) v(X x Y) = vX x uUY holds for each locally pseudocompact
space Y.

(a) u(X x Y)

vX X vY holds for each locally compact space Y

and for each pseudocompact space Y.

10.6 REMARKS. (1) Let us say that a space is locally strongly
pseudocompact if each point has a strongly pseudocompact neigh-
borhood. Since a pseudocompact space which is locally strongly
pseudocompact is strongly pseudocompact ( [Fg] ), 10.5 (a) is
formally rephrased as follows: (a') X is a locally strongly

pseudocompact space such that uvX is locally compact and |X| < ml.
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In particular, this is the case if X is a k-space such that uvX

is locally compact and |X| < m  ( cf. [TE] and 10.3 (3) ).

1
(2) The author does not know whether 10.5 remains true

with the cardinality condition "w(Y) < x(UX)-Nl" added.

10.7 REMARK. A space is called a gquasi-k-space if it has the
weak topology determined by the family of its countably compact
subsets. We leave it to the reader to find a version of 10.5
for quasi-k-spaces. It will be proved, with essentially the
same proof, that R( quasi-k ) = R( locally countably compact )

= R( locally compact ) R( countably compact ).
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11. Tools for proving theorems

In this chapter, pseudo-m-compactness plays key roles in
place of weak-Mm-compactness. Recall from‘[Ig] that, for each
infinite cardinal m, a space X is pseudo-M-compact if each locally
finite ( or discrete, equivalently ) family of non-empty open sets
in X has cardinality less than m. A space is called locally
pseudo-M-compact if each point has a pseudo-m-compact neighborhood.
A ( locally ) pseudo—ﬂ%—compact space is precisely a ( locally )
pseudocompact space. The relationship between pseudo-m-compact

spaces and weakly-m-compact spaces is summarized as follows:

compact ——— Lindeldf separable

; \ /

weakly—ﬁ%—compact.——> weakly—%i-compact —_— e e

v '

pseudo—ﬁ%—compact — pseudo—%i—compact —_— s s e

!

pseudocompact

The purpose of this section is to present useful tools for
proving theorems stated in the preceding section. The central
issue of the proofs is how to construct a suitable space Y such
that u(X x Y) # uX x uY when uX is not locally compact. In sec—
tion 6, we have built up such a space Y by attaching isolated
points to the outside of a space Z which has a locally finite
family F such that M{ el /F | FEF } # ¢. In this section, we

turn our attention to the inside construction of the space Y,
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and observe how to project the problem of extending a continuous
function on X x Y over uvX X vY to the problem of finding local
pseudo-M-compactness of X { or vX ). This observation enables
us to make the desired space Y, and yields a number of necessary
conditions in order that u(X x Y) = uX x uY be valid, which will
be used again in chapter U4 to characterize R( metrizable ). The
pattern of attack is much the same as that in section 6 except
that pseudo-m-compactness replaces weak-M-compactness. The con-
cepts and results 11.1 ~ 11.3, 11.4 (2) have been presented by

the author in [03].

A family { Fa } of subsets of a space X is called expand-
able if there is a locally finite family { H, } of open sets in
X with FQC:HG for each a. We introduce avnew class of expandable

families.

11.1  DEFINITION. Let m be a cardinal. A family { Fa | €A}
of subsets of a space X is D(m)-expandable if there exists a

locally finite family { Ha ] a€A } of open sets with FaC:Ha for
each a« €A and each Fa is the union of at most m subsets each of

which is completely separated from X - Ha'

In this definition we may replace "at most m" by "just m".
As a space considered in this paper is completely regular Haus-
dorff, every expandable family in X is D(|X|)-expandable, and a

CZ-expandable family defined in [ol] is D(1)-expandable. OFf
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course, D(m)-expandable families are D(n)-expandable whenever

no> m.

11.2 THEOREM. Let X x Y be C-embedded in X x vY. If there
exists a D(m)-expandable family F in Y such that |F| = n and
N1 CluYF | FEF } # @, then each point x€X, with x(x, X) < n,

has a pseudo-m-compact neighborhood.

Proof. Suppose on the contrary that there exists a point
xoe X, with x(xo, X) n, which has no pseudo~-m-compact neighbor-
hood. Let { Gy | €A } ve a neighborhood base at X, in X with

|A| = n. Then, for each A€ A, chG)\ is not pseudo-m-compact,

and thus there is a locally finite family { G;\u | ve M, } of

non-empty open sets in chG

. - : = 0!
, vith IM, | = m. Setting G A

Au

for each u€M,, we have a locally finite family { Gku | ne M, }
of non-empty open sets in X. It can be assumed without loss of
generality that XO¢ M{ GMJ | HEM, }. TFor each u¢€ M, , pick
XMJEGMJ’ Au
G)\u) = {1}. On the other hand, since |F| = n, we may write F =

and choose fkuec(x) guch that f (le) =0 and £, (X -

Au

{F AEA }. Then there exists a locally finite family { H, [

A

AEA } of open sets in Y with FAC Hy for each A€ A, and each F

is a union of m subsets each of which i1s completely separated

from ¥ - H We express it by F, = A F)\u | HEM, }, that is,

A”

there is ngG-_C(Y) such that g)\u(F = {0} and gw(y - HA) = {1}.

Au)
For each A€ A and each UEMX’ let us set

JMJ = {xku} X FMJ’
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KMi =»~G;MJ X Hk’

h, ((x, y)) = min {1, f)\u(X)+g>\u(Y)}; (x, yY)EX x Y.

Al
ThenhHEC(XXY),h (J y = {1}.

A AR Al Al
It is easily checked that { K)\u I HEM,, AEAN } is locally finite

) = {0} and hm((x X Y) - K

in X x Y. Therefore if we define a function h on X X Y by
h(q) = inf { hku(q) | WEM,, LEA }; (x, Y)EX x ¥,

then h is continuous. Let us choose yoén{ ClUYFA | AEA T,

then yOEUY - Y, since F is locally finite in Y. We now show

)

that h admits no continuous extension to the point Py = (xo, yo
€X x u¥Y. Let V x W be a given basic neighborhood of Py in X x
VY. There is A€ A with GACV, and WF\FK11 # @ for some pc€ MA'

Choose yEWﬂFM. Then both p, = (XMJ, y) and P, = (xO, y) belong

to V x W and h(p.) = 0, while h(pg) = 1. 'This shows that h does

1
not extend continuously to po, which contradicts the assumption

that X x Y is C-embedded in X x vY. Hence the proof is complete.

11.3 COROLLARY. Let X X Y be C-embedded in X x vY. If there
exists a locally finite family H of non-empty open sets in Y
such that [H| = n and M{ el | HEH } # @, then each point

x €X, with x(x, X) < n, has a pseudo-c(Y)-compact neighborhood.

Proof. Let H={ H A€ A}, and choose yoeﬂ{ el

A | uYH)\

AEA }. TFor each AEA, by Zorn's lemma, there exists a maximal
disjoint family F)\ of non-empty open sets of H)\ such that each
FE F)\ is completely separated from Y - HA' Let us set Fk =

U{F | Fe F }. For each A€A, the maximality of F, implies
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that y €cl F . Since |F,| <c(¥), { F, | €A } is a D(c(¥))-

A " |

-expandable family in Y such that |A| = n and N{ el F AEN )

5 |
# @. Hence this corollary follows from 11.2.

Roughly speaking, 11.3 suggests that if X x Y is C-embedded
in X x vY, then either X is locally compact or every locally
finite family of non-empty open sets in Y is locally finite in vY.
A detailed study of the latter property will be made in chapter L.
The surprising fact is that the condition is not only necessary

but also sufficient provided suitable conditions are imposed

( see 16.6 ).

11.4 REMARKS. (1) In 11.2 ( resp. 11.3 ), the condition

"MN{ cl ¥ | FEF } # 8" ( resp. "MN{ el | HEH } # 8" ) can
be weakened to the following statement: There exists a point of
vY each of whose neighborhood meets all but finitely many members
of F ( resp. H ).

(2) Let us say that a family G of subsets of a space X
converges to x €X if each neighborhocd of x contains some member
of G, and that a subspace S of a space X is relatively pseudo-
-m-compact in X if each locally finite family U of non-empty
open sets in X, with SNU # P for each UEU, has cardinality
less than m. 11.2 ( resp. 11.3 ) remains true if the conclusion
is strengthened as follows: Each convergent family G of subsets
in X, with |G| < n, has a member which is relatively pseudo-m-

—compact ( resp. relatively pseudo-c(Y)-compact ) in X.
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11.5. Our next work is to construct spaces Y which have a D(®%)—

-expandable family F such that (M\{ el F | FEF 1 # p.

11.5.1 FACT. For each infinite cardinal n, there exists a 0O~

-dimensional locally compact space Y = Y_(n), with |Y| = w(Y) =

1
n-xa, that has a D(é%)—expandable family F such that |[F| =n

and [\{ ClUyF I FEF 1 # 8.

Proof. Let A be a discrete space of cardinality n, and
A¥ = {«}{JA the one-point compactification of A. Let Z# be the

quotient space obtained from T = (W(w, + 1) X W(wo + 1)) x A* Dby

1
collapsing the set {(wl, B)} x A¥ to a point Z(B)EEZ# for each

8 w.. Define Z_ to be the space Z# with the strong topology

0 0

A

with respect to this identification ( in the sense of 6.6.1 ).
Let ¢: T - ZO be the natural map, and let us set

z= 25 - ¢({ (v, wy), =) | v e ).

Then Z is a 0O-dimensional locally compact space with IZI = w(Z)

= nf%a. Since z(B) is a P(Ni)—point8 for each B < Wy it is

easily checked that Z is C-embedded in Z\J{yo}, where Yo = z(wo),

and so y,€vZ - Z. Setting E, = o({ ((v, wo), A |y o< w, })

for each AE A, we have a discrete family { E AGA } of closed

3 |

subsets in Z such that yoeﬂ{ cl AMEA }. Define the sub-

z |

space Y of the product space Z X W(wo + 1) as follows:

Y = (2 x {ogDUUL B, x Wle, + 1) | ren }).

8 See footnote of p.28.
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Then Y is a O-dimensional locally compact space with [YI = w(Y)

= n+X., because Y is closed in Z x W(w. + 1). It remains to show

0
the existence of a DCNB)—expandable family satisfying the stated

conditions. Since Z x {wo} is C-embedded in Y, it follows from

3.3.1 that vZ = v(Z x {wo})C.UY, and hence yOEZUY - Y.

E V%
0T - <D

Yo

<

]
1
¢
|
1
4

O .-

Setting F, = E, x W(wo) for each AE A, we have a locally finite

family F = { F, | A\EA } of open sets in Y such that Yo €

I

M{ cl FA ‘ A€ A }. Then, since each F, is a union of countably

vy A

many open-and-closed subsets in Y, F is a D(X.)-expandable family

0
in Y. Hence Y is proved to be the desired space Y. (n).

1

11.5.2 REMARKS. (1) Since Yl(n) is the union of n many pseudo-
compact subspaces, it is pseudo—n+—compact.

(2) A 0O-dimensional locally compact space having the same
D(N%)—expandable family as above has been constructed by the
author in [03] to prove a weak form of 10.1 (c) + (a); however,
the cardinality and the weight of that space are larger than

those of the above.

11.5.3 FACT. For each infinite cardinal n, there exists a O-

dimensional Moore space Y = Yz(n), with Y] = w(y) = n'exp‘Rb,
that has a D(RX )-expandable family F such that |F| = n and
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M\ cl ¥ | FEF } # p.

Proof. Let Z be the O-dimensional Moore space Z, (n) con-

2
structed in 6.6.3. Then |Z| = w(2Z) = Vl-expNO, and Z has a

discrete family { E, | A€ A } of closed subsets in Z such that
|A] = n and M{ cl E | X\EA } # p. Define the subspace Y of

the product space Z x W(w_. + 1) as follows:

0

Y = (2 x {wo})u(U{ E, x Wloy + 1) | A€ }).

0
Then Y is a O-dimensional Moore space with |Y| = w(Y) = n-exp NO'
Setting F, = E, X W(wo) for each A€ A, we have a D(NO)-expandable

family { F | A€A } in Y such that (M{ cl vFy | XEA } # 9.

Hence Y is the desired space Ye(n).

We now proceed to the discussion analogous to the latter
part of section 6. A family { Fu } of subsets of a space X is
called hereditarily closure-preserving if any family { Ea } with

EaC F01 is closure-preserving.

11.6  DEFINITION. Let m be a cardinal. A family { F_ | a€A }
of subsets of a space X is weakly D(m)-expandable if there exists
a point-finite hereditarily closure-preserving family { Hu | aca}
of open sets with FuC Ha for each a € A and each Fa is the union

of at most m subsets each of which is completely separated from

X -H.
o
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11.7 THEOREM. Let X be a locally pseudocompact space, and
let X ¥ Y be C-embedded in vX x Y. If there exists a weakly
D(m)-expandable family F in Y such that |F| = n and [\{ cl.F ]
FEF } # f, then each point x€vX - X, with x(x, vX) < n, has

a pseudo-M-compact neighborhood in uX.

Proof. BSuppose on the contrary that there exists a point
X € vX - X, with x(xo, uX) < n, which has no pseudo-m-compact

neighborhood in vX. Let { G AEN } be a neighborhood base at

"
n. TFor each A€ A, similarly to the proof of

1l

X, in VX with [

11.2, we can find a locally finite ( in uX ) family { G)\u | uEMA }
of non-empty open sets in GA with |M>\| = m. For each uE M)\,

Al )\u) =0
u) = {1}. On the other hand, since |F| = n, we

pick XMJE G)\uﬂ X, and choose fXUEC(X) such that £, (x

and fm(X - G)\

may write F = { F | A€A }. Then there is a point-finite hered-

itarily closure-preserving family { H MEA } of open sets in

i |
Y with FAC HA for each A€ A, and each F)\ is expressed as FA =
U1 FMJ | UE’M}\ }, where there is g)\UEC(Y) such that gku(F)\u)
= {0} and g)\u(Y - H)\) = {2}. For each XE A and each pé€ MA’ let
us set HAu ={yey | ngu(y)l <1 3}, and set

JMJ = {Xku} x F

K

G X * Y,

A G)\]J X HMJCX x Y,

hAu((X’ y)) = min {1, fw(x)+gw(y)}; (x, yJEX x Y.

) = {1}.

ThenhuEC(XXY),h (3, ) = {0} and h, ((X xY) - K

A AU Au Au Au

We now show that K = { Khu | HEM,, AEA } is locally finite in
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X x Y. Let p=(x, y)EX x Y. Since { H, } is point-finite, y

H, . Choose

is contained in only finitely many H se e s
A1 An

3 say H
a pseudocompact neighborhood U(x) of x in X; then for each XAE A
there is a finite subsets Mj of M, such that U(x)r\GMJ = f for

each WEM, - M!. Setting E, = U Ly, | WEM) } for each A
€ A, we have closed subsets EA of X with EXC:HA' Let us set
Uly) = Y - U{ E, | A # Al,..., An }. Then, since { H, } is
hereditarily closure-preserving, U(y) is a neighborhood of y
such that U(x) x U(y) meets only finitely many members of K.‘
Hence K is proved to be locally finite in X x Y. Therefore if
we define a function h on X x Y by

n(a) = inf { b, (q) | WEM,, AEA }; qE€X x ¥,
then h is continuous. Let us choose yOEfW{ ClYFA | A€n }.
Then a similar argument to that of 11.2 shows that h admits no
continuous extension to the point (xo, yO)EEUX X Y, which con-

tradicts the assumption that X X ¥ is C-embedded in vX X Y.

Hence the proof is complete.

11.8 COROLLARY. Let X be a locally pseudocompact space, and
let X X Y be C-embedded in vX x Y. If there exists a point-
-finite hereditarily closure-preserving family H of open sets
in Y such that |H| = n and M\{ cl H | HEH } # 9, then each
point x € vX - X, with x(x, vX) < n, has a pseudo-c(Y)-compact

neighborhood in vX.

Proof. The proof goes just as that of 11.3.
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11.9 REMARK. For 11.7 and 11.8, the analogous generalizations

to those of 11.2 and 11.3, stated in 11.4, are all possible.

A space is called a LasSnev space if it is the image of

a metrizable space under a closed map ( cf. [L] ).

11.10 FACT. For each infinite cardinal n, there exists a O-

-dimensional LaSnev space Y = Y_(n), with w(Y) < exp n, that

3

has a weakly D(%%)—expandable family F such that |F| = n and

M cl F | FEF } # 0.

Proof. Let A be a discrete space of cardinality n, and
let Y be the quotient space obtained from W(wO + 1) x A by col-
lapsing the set {wo} x A to a point yo. Then, the quotient map
$: W(wO + 1) x A » Y being a closed map, Y is a O-dimensional
LaSnev space with w(Y) < exp n. Setting F, = ¢(W(wo) x {A}) for
each A €A, we have a weakly D(X )-expandable family { F, | A}

0

in Y such that yoeﬂ{ cl F AMEA D} # P. Hence Y is the desired

YA I

space Y3(n).
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12. Proofs of theorems ( 10.1 and 10.5 )

A subspace of a space X is said to be relatively pseudo-
compact in X if it is relatively pseudo—}%-compact in the sense

of 11.4 (2). A regular closed set is the closure of an open set.

12.1 PREREQUISITES. We make use of the following results:
12.1.1 ( ef. [CB, L.1] ) A relatively pseudocompact regular
closed subspace is pseudocompact.

12.1.2 ( [M6] ) A subspace S of a space X is relatively pseudo-

compact in X if and only if cl XSCZUX.

B8
12.1.3 If X is locally compact, then X x Y is a pseudo-k-space

for each pseudo-k-space Y.

12.1.3 can be proved similarly to 3.5.3 due to Cohen [C.]

1
( ef. also [E, 3.3.27] ). The following result is essentially

due to Comfort [03], who proved it under the assumption that
each compact subset of Y is of non-measurable cardinal; for

completeness we include a proof.
12.1.4 If vX x Y is a k-space, then X x Y is C-embedded in uX x Y.

Proof. We first show that X is pseudo-m -compact. If

1

this were not the case, then there is a discrete family { GA l

A€ A } of non-empty open sets in X with |A| = ml' Choose xké GA

for each A€ A, and set D = { X, | €A }. Since D is C-embedded

in X, it follows from 3.3.1 that uD = ClUXD’ and so uD is a k-~
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-space. This contradicts 3.3.8. Hence X is pseudo-m_-compact.

1
For our end, let fEC(X x Y). TFor each y€Y, f|(X x {y}) has a
continuous extension gy over vX x {y}. We define a function g
on vX x Y by

gl(x, y)) = gy(x); (x, y)EVX x Y.
Then g|(X x Y) = f. In order to prove g€C(uX x Y), uX x Y being
a k-space, it suffices to show that the restriction of g to each
compact subset K of vX x Y is continuous. Since HY(K) is compact

and X is pseudo-m -compact, it follows from .1 that X x ﬂY(K) is

C-embedded in vX x m,(K). This fact shows that g|(uvX x 7_(K)) is

Y

continuous, and thus so is g[K. That completes the proof.

Y

We devide 10.1 into two detailed theorems:

1l2.2 THEOREM. The following conditions on a space X, with

|x| < m, , are equivalent:

(a) X is locally pseudocompact.

(b) X x Y is C-embedded in X X uY for each k-space Y.

(c) X x Y is C-embedded in X x vY for each O-dimensional
locally compact space Y with w(Y) < x(X)-§E.

(a) X x Y is C-embedded in X x vY for each O-dimensional

Moore space Y with w(Y) < x(X)-exp Nb.

Proof. (a) > (b). Let Y be a k-space. Since X is locally
pseudocompact, it suffices to show that S x ¥ is C-embedded in
S x VY for each pseudocompact subset S of X. Let S be a given

pseudocompact subset of X. Since uS is compact by 3.3.3, it
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follows from 3.5.3 and 12.1.4 that S X Y is C-embedded in vS x Y.

Since |uS| < m. , this fact combined with 5.1 shows that u(S x Y)

10
= vS x uY, and hence 5 x Y is C-embedded in S x vY.

(b) > (c¢), (b) = (&). Obvious.

(c) - (a). Suppose on the contrary that X is not locally
pseudocompact at xOE:X. Let Y be the O-dimensional locally com-

pact space Yl(n) constructed in 11.5.1, where n = yx(x_, X).

0°
Then w(Y) < n-ﬂi < X(X)-Xi, and it follows from 11.2 that X x Y
is not C-embedded in X X uY. Thus we have (a).

(a) » (a). The proof is the same as above if one use
Yz(n) constructed in 11.5.3 instead of Yl(n). Hence the proof

is complete.

12.3 REMARK. The equivalence of (a), (b) and (c) has been

proved by the author in [0,], [0,] without the cardinality con-

2 3

dition on Y.

12.4 REMARK. 1In the preceding proof, the assumption that IX] <

my is useful only for the implication (a) + (Db).

12.5 THEOREM. The following conditions on a locally pseudo-
compact space X are equivalent:

(a) Each point of vX - X has a compact neighborhood in uX.
(b) X x Y is C-embedded in uX x Y for each k-space Y.

(c) X X Y is C-embedded in vX x Y for each O-dimensional

Lasnev space Y with w(Y) < exp x (vX).
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Proof. (a) + (b). Let f be a k-space, and let x€vX - X,
Choose a cozero-set neighborhood G of x in uX such that ClUXG is
compact. Then V(GNX) = G by 3.3.2. Since G is locally compact,
it follows from 3.5.3 and 12.1.4% that (GMNX) x Y is C-embedded
in G X Y. Since x€uvX - X was arbitrary, this implies that X x Y
is C-embedded in vX x Y.

(b) =+ (c¢). Every LaSnev space is a k-space { cf. 3.5 ).

(c) » (a). Assume that (a) is false at some xOGEUX - X.
Then by 3.3.3 XO has no pseudo—&b-compact neighborhood in vX.
Let Y be the O-dimensional LaSnev space Y3(n) constructed in
11.10, where n = x(xo, vX). Then w(Y) 2 exp n < exp x(vX), and
it follows from 11.7 that X X Y is not C-embedded in uvX x Y.

Hence the proof is complete.

12.6 REMARKS. (1) Since a LaSnev space is a singly bi-k-space,
12.5 remains true if "k-space" is replaced by "singly bi-k-space",
but it cannot be strengthened to "countably bi-k-space'. In fact,
Kato proved in [Kl] that the space X = BR - BN, where R is the
real line, has the following properties.

(i) X is a locally compact, M-space ( in the sense of Morita

[Mh} ) with |X| < m,, and hence VX is a paracompact M-

l’
-space ( cf. [MS, L4l ).
(ii) vX is not locally compact, and hence vX - X contains a

point having no compact neighborhood in uX.

Then it follows from 3.5.2 and 12.1.4 that X x Y is C~embedded
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in vX x Y for each countably bi-k-space Y.

(2) It is open whether 12.5 can be proved without assum-
ing local pseudocompactness of X. In the preceding proof, this
assumption plays no role everywhere except for the place in which
11.7 is used. Although (c) - (a) is not needed for proving 10.1,
the question is of independent interest, because it suggests the

possibility that one can characterize the class R( LaSnev ).

12.7 Proof of Theorem 10.1. (a) + (b) follows from 12.2 and
12.5. (b) » (c) and (b) + (d) are obvious. (c) - {a). By L.k,
|XI < ml' It follows from 12.2 that uvX is locally pseudocompact.
Then vX is locally compact, because of 3.3.3. The proof of (d) ~

(a) is quite similar to that of (c) -+ (a). Hence the proof is

complete.

Theorem 10.5 as well as 10.1 is devided into two parts;
we require one more lemma that gives an analogue of [PQ’ k1]

for Hewitt realcompactifications.

12.8 LEMMA. If u(X x Y) = vX x uY holds, then the product
A x B of two relatively pseudocompact subsets ACX and BCY is

relatively pseudocompact in X x Y.

Proof. Let A and B be relatively pseudocompact subsets
of X and Y, respectively. Then, by 12.1.2, clBXAi:UX and ClBYB

CvuY. Since v(X x Y) = vX x vY, it follows that
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BCu(X x Y).

ClB(X %y

)(A X B)CfclBXA x cle

Hence A x B is relatively pseudocompact in X x Y by 12.1.2 again.

12.9 THEOREM. The following conditions on a space X, with

|X| < m , are equivalent:

1

(a) X is locally strongly pseudocompact.

(b) X x Y is C-embedded in X % vY for each pseudo-k-space Y.

(c) X x Y is C-embedded in X X vY for each locally pseudo-
compact space Y.

(d) X X Y is C-embedded in X x vY for each locally compact

space Y and for each pseudocompact space Y.

Proof. (a) -+ (b). Let Y be a pseudo-k-space, and let S
be a strongly pseudocompact subset of X. Since X is locally
strongly pseudocompact, it suffices to show that S x ¥ is C-em-
bedded in S x uY. For each pseudocompact subset K of Y, S x K
is pseudocompact, and so S X K is C-embedded in vS x K by 1.1.
Then, vS x Y ( = BS x Y ) being a pseudo-k-space by 12.1.3, the
same argument as in the proof of 12.1.4 assures us that 8 x Y is
C-embedded in uS x Y. Since uS is compact and |uS| < my 5 it
follows from 5.1 that uS X ¥ is C-embedded in uvS x vY. Thus
S x Y is proved to be C-embedded in S X vY.

(b) - (c) » (a). Obvious.

-(d) » (a). Suppose on the contrary that X is not locally

strongly pseudocompact at XOEEX. By 12.2, x. has an open neigh-

0
borhood G such that chG is pseudocompact. Then chG x Y is not
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pseudocompact for some pseudocompact space Y. Since chG x Y
is a regular closed set of X x Y, it is not relatively pseudo-
compact in X x Y by 12.1.1, and so it follows from 12.8 that
u(X x Y) # uX x uY. Since uY is compact by 3.3.3 and |X| < m.
it follows from 4.1 that X x vY is C-embedded in uX x vY, which

shows that X X Y is not C-embedded in X % vY. This contradiction

completes the proof.

12.10 THEOREM. The following conditions on a locally pseudo-

compact space X are equivalent:

(a) Each point of vX - X has a neighborhood G in vX such that
GNX is strongly pseudocompact.

(b) X x Y is C-embedded invuX x Y for each pseudo-k-space Y.

(c) X x Y is C-embedded in uX x Y for each k-space Y and for

each pseudocompact space Y.

Proof. (a) »+ (b). Let Y be a pseudo-k-space, and let
x EvX - X. Choose a cozero-set neighborhood G of x in uX such

that clUxGF\X is strongly pseudocompact. If we set X. = GNX,

1
then Xl is locally strongly pseudocompact and uXi =G by 3.3.2.
Since clBXG<:UX by 12.1.2, qu is locally compact. We now show
that Xl x Y is C-embedded is UXl x Y. To do this, since qu x Y

is a pseudo-k-space by 12.1.3, it suffices to prove that Xl x K
is C-embedded in qu x K for each pseudocompact subset K of Y.
Let K be a given pseudocompact subset of Y. Then, for each

strongly pseudocompact subset S of Xl, S x K is C—embedded in
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S x VK by 1.1. BSince X, is locally strongly pseudocompact,

1
this shows that X1 x K is C-embedded in Xl x VK. Note that vK
is compact by 3.3.3. Then, UXi x VK being locally compact, it
follows from 12.1.L4 that X, * UK is C-embedded in UX, X VK. Thus

Xl x K is proved to be C-embedded in UXl x K, and hence Xl x Y

(= (6NX) x Y ) is C-embedded in VK, X X (=GxY ). Since
x € uvX - X was arbitrary, this implies that X X Y is C-embedded
in vX x Y.

(b) » (c). Obvious.

(c¢) > (a). Assume that (a) is false at some xOEEUX - X.
Since X is locally pseudocompact, each point of X has a compact
neighborhood in vX by 12.1.2 ( cf. also [03] ). This fact com-
bined with 12.5 implies that uX is loecally compact. Choose an
open neighborhood G of x

in vX such that clU G is compact. If

0 X

we set X = clU GN X, Xl is pseudocompact by 12.1.1 and 12.1.2,

1 X

and so Xl x Y is not pseudocompact for some pseudocompact space

Y. Then, Xl x Y being regular closed in X x Y, it follows from
12.1.1 and 12.8 that v(X X Y) # vX X vY. Since VY is compact by
3.3.3, vX x UY is locally compact. Hence it follows from 12.1.L
that vX x ¥ is C-embedded in uvX x vY, which implies that X x Y
is not C-embedded in vX x Y. This contradiction completes the

proof.

12.11 Proof of Theorem 10.5. (a) + (b) follows from 12.9 and
12.10. (b) -+ (c¢) and (¢) - (d) are obvious. (d) - (a) is the

result of 4.4, 12.9 and 12.10. Hence the proof is complete.

TO



13. Problems and remarks

13.1  Recall the Isbell's space ¥ = NUD, where D = { W | s€S 1},
explained in the proof of 6.6.3. In [M8], Mrowka showed that a
maximal family S can be chosen so that BY is the one-point compact-—
ification. Let ¥ be such the space. Then, as noted in 6.6.3, ¥

is & pseudocompact Moore space, and so v¥ = BY by 3.3.3. Further
it is easily checked that ¥ is locally compact. Dividing D into

a pairwise disjoint family of countable subsets, we have a dis-
crete family { Dy | A€A } of closed subsets in ¥ such that |A] =

eprQO and [\ { cl D AEN Y} # §. Then, following the same

5 |
procedure as in 6.6.3, we can make a locally compact Moore space
Y that has a D(Rb)—expandable family F such that |F| = exp 5%

and M{ CluYF [ FEF } # §. This fact can be combined with 10.1

and 11.2 to yelld the fellowing result:

13.1.1 PBOPOSITION. The following conditions on a space X, with
x(vX) < eprQO, are equivalent:

(a) uX is locally compact and |X| < m, -
(b) u(X x Y) = uX x vY holds for each locally compact Moore

space Y.

13.1.2 PROBLEM. Does 13.1.1 remain true if the condition yx(uvX)

< exp Nb is omitted ?

13.2 PROBLEM. Do there exist any other conditions on Y for

which 10.1 remains valid ¢
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13.3 Following [I8], we say that a space X is v-locally compact

if vX is locally compact.
13.3.1 PROBLEM. Characterize R( u-locally compact )%.

In [H.], Hager raised the problem: What property of X is

2

necessary and sufficient that for each pseudo-m-compact space Y,

the projection ﬂX: X xY X is z-closed ? By the following

proposition, we remark that 13.1.1 essentially is the case m = Xb

of his problem, and that R( v-locally compact ) = R( pseudocom-

pact ).

13.3.2 PROPOSITION. The following conditions on a space X are
equivalent:

(a) X is pseudo-m. -compact and 7n,: X x Y - X is z-closed for

1 X

each pseudocompact space Y.

(v) u(X x Y)

it

vX x vY holds for each pseudocompact space Y.

(c) V(X x Y) = vX x uvY holds for each u-locally compact space Y.

Proof. (a) - (b) follows from 3.4. If vY is locally
compact, then by 12.1.1 and 12.1.2 each point of uY has a neigh-
borhood G in uY such that GNY is pseudocompact. Thus the proof
of (b) » (c) follows the same argument as in the proof of 9.k.2.

(e¢) » (a). By L.3, X is pseudo—ml—compact. Let Y be a pseudo-

1.

This problem has been posed by the author in [O3

T2



compact space; then X x Y is C~embedded in X x uvY. Since vY =

: X xY > X is z-closed.

BY by 3.3.3, it follows from 3.4 that M

Hence the proof is complete.

13.4  PROBLEM. Does 11.2 remain true if "(M{ cl _F | FEF } # g"
is weakened to the condition "F is not locally finite at some
YEUY - ¥Y" ? 11.2 and 11.3 would be more useful if this replace-

ment is possible ( ef. 11.4 and 17.2 ).

13.5 PROBLEM. 1In [C Comfort showed that a locally pseudo-

3]’
compact space 1s characterized as a C-embedded subspace of a

locally compact space. Our question is whether a pseudo-k-space

is characterized as a C-embedded subspace of a k-space or not.
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CHAPTER 3

MAPPING THEOREMS AND z-EMBEDDING IN X x BY

As preliminaries to the next chapter, we discuss two
topics which are interesting in themselves. All the results
and problems in this chapter, except 14.8, 15.7 and 15.8 (B),
have been stated in [02], [03] and [Oh]'

1k, Mapping theorems I

One line of attack on the problem about v is to seek for
the analogue of a known result about B. We now fix our eyes upon
the following fact which is an immediate consequence of Glicks-

berg's theorem (1.1).

1.1 FACT. Let £ X > Yy (i=1, 2 ) be onto maps. Then

XY):BY

B(X 1 2

x X.) = BX, x BX, implies B(Y x BY

1 2 1 2’

The analogous result for v is in general false. In fact,
let X be the discrete space of cardinalitywxi, and f the one-to-
-one map from X onto Y = W(wl); then v(Y x 2) # vY x vZ for some

realcompact space Z by 7.6, while uv(X x Z) = vX x vZ.

As 1s well known, for a map f: X -+ Y, there exists a
continuous extension vf: vX -+ vY ( Bf: BX =~ BY ) of £ ( [GJ] ).

The following theorem is the fundamental result of this section.

Th



14.2  THEOREM. Let £ X, > Y, (i=1, 2 ) be onto maps.

. . x
Ir Ufl X Uf2 is a quotient map from UXl X UX2 onto UYl UY2,

then v(X ) = uY. x uY_.

X X ) = uX. x UX2 implies U(Yl x Y 1 5

1 2 1 2

More generally, we have the following theorem:

~

14.3  THEOREM. Let F : X, ~ ?i (i=1, 2 ) be onto maps

such that F = Fl x F2 is a quotient map, and let Xi ( resp. Yi

= F.(X.) ) be dense C-embedded subspaces of i; ( resp. ?; ).

If Xl X X2 is C-embedded in Xl X X2, then Yl X Y2 is C-embedded

= i = = X .
Proof. Let us set f, Fi[Xi (i=1,2) and f £, £,

X YQ).

—~

To show that Y, x Y is C-embedded in'Yi x Y , let geC(y

2
Since h = go:f‘EC(Xl X Xg)’ by our assumption, there exists HE

2’ 1l

c(il x X_) such that H[(X, x X,) = h. We shall show that

2 2

H takes on the constant value tp on
(*){

o~

F_l(p) for eachjpéga'x Y.

Let x€X,; then hix, *) = g(f. (x), *) o f,, Where h(x, *) = n|({x}

1

x XE)' Since g(fl(x), -)EEC(YQ), it has a continuous extension

GX over Y2. Then, X2

it follows that H(x, +) is constant on {x} % FQ'

being dense in‘ié, H(x, *) = G oF Hence

(

o
y) for each y
€Y This implies that H is constant on f -l(y ) x F _l(y )

2° 1 1 2 2

= A . -1
for each (yl, yE)E‘Yl X Y2. Similarly, H is constant on F1 (

x f _l(yz) for each (yl, yz)eaa_x Y To see (¥), let p =

2

yl)

o

(yl, y2)E§Yl X Y2. Then it follows from these facts that

>



H(x, *) = H(x', +) for each x, x'€ Fl—l(yl)’

H(-, x) = H(+, x') for each x, x'€ Febl(yg),

and from which (¥) is proved. Define a function G on.?l x Yg

by G(p) = t, for p€Y, x Y,. Then H = GoF and G](Yl X ¥,) = g.

2

Since F is a quotient map and H is continuocus, it follows that

G is continuous ( cf. [E, 2.4.2] ). This completes the proof.

1k.4  REMARK. 1k.3 remains true if "C-embedded" is replaced
by "C¥-embedded". Then 1Lk.1 can be viewed as a corollary of

14.3, because Bfl X Bf2 is always a perfect map from BXl X BX2

onto BYl X BY2.

In [I.], Ishii proved that if f is an open perfect onto

3
map, so is uf. This leads to the following corollary of 1kL.2.

14.5 COROLLARY. If f,: X, >~ Y, is an open perfect onto map

for i = 1, 2, then v(X, x X.) = UXl x uX

1% x Yy) =

implies U(Yl o

2

qu X uYg.

14.6 THEOREM. Among the following conditions on a space X,

(a) » (b) » (c) are valid. Conversely, (c) - (a) holds if |X|

(a) uX is locally compact.

vk X vY and each

(b) For each space Y satisfying u(X x Y)
quotient image Z of Y, v(X x Z) = vX x vZ holds.

(c) As in (b), with "perfect" instead of "quotient".

76



Proof. (a) - (b). Let Y be a space satisfying v(X x Y)
= VX X vY, and let Z be the image of Y under a quotient map f.
Since vX is locally compact, by 3.5.6, idUX x f is a quotient
map. It follows from 1L4.3 that X x Z is C-embedded in vX x Z.
If we apply 4.1 to our case, then either |UX| < ml or Y is

pseudo-m,~compact. If Y is pseudo-m -compact, then so is Z.

1 1
Hence it follows from L.l that v(uX x Z) = uX x vZ. Thus we

have v(X x Z) = uX x vZ.
(b) = (c). Obvious.

(¢c) + (a). Suppose that |X| < m. and uX is not locally

1

compact at xOGEUX. By 3.3.3, x. has no pseudo—?%—compact neigh-

0

borhood in vX. Let #n = max { |uX|, x(x., vX) }; then n < m, .

03

+
Let W, be the initial ordinal of n , and let us set

T = (W(wa + 1) x w(wO + 1)) - {to},

where t . = (wu, w.). Then vT = w(wa + 1) x w(wo + 1). Let E' =

0]

{on|nc< wy } and F' = { 2n+l | n< wy }. Setting E = {wa} x

E'" and F = {wa} x F', we have disjoint closed subsets E and F of

T such that tOGicluTE(WcluTF.
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Let A be a discrete space of cardinality n, and let S Dbe the
quotient space obtained from R = T X A by collapsing the set
{e} x A to a point s(e) €S for each e€E. We note that

(1) R = (W(wa + 1) X W(‘”o + 1)) x A.

Let g: R ~ S be the quotient map, and let us set EO = { s(e) |

e€E } and FA = g(F x {A}) for each AEA. Then a similar argu-

ment to that of 6.6.2 shows that

(2) Nl el F | xEA Y} # 0.

A
Now g is a closed map and g_l(s) is compact for each sES - EO.
If we set G = g((w(wa + 1) x E') x A), then G is a cozero-set

of 8, and so G = SNG¥ for some cozero-set G¥ of BS. Let us

set Z = SUG¥. We now need the following lemma.

o Suppose that X2 is dense in X

and is C-embedded in Xl. Then, for each open set H of X, X2LJH

mmm.:mtx;ﬁpx

is C-embedded in XlLJH.

The proof is left to the reader, since it requires only
routine verification. We continue the proof of 1L.6. Since
Gf\Fl = @, the above lemma shows that ClUSFA = CluZFk for each
A€ A. Hence N{ cl F, | €A } # ¢ by (2). Setting G, =
g((W(wa + 1) x F') x {X}) for each AE A, we obtain a locally
finite family { GA | AEA } of open sets in Z with GA:)FA’ and
thus { F, | AEA } is a D(é%)-expandable family in Z. Since
x(xg, UX) < |A|, it follows from 11.2 that u(X x Z) # vX x VZ.

For our end, it suffices to show that Z is the perfect image
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of a space Y satisfying v(X x ¥) = uX x vY. There exists the
extension Bg: BR = RS of g. Let us set Y = RUH¥*, where H¥ =
(8g) 1(G*), and set £ = (Bg)|Y. Since G¥DE, it is easily
checked that f is a perfect map from Y onto Z. On the other
hand, since H¥ is a cozero-set of BR, uvY = vVRUH¥* by 3.3.L.

Since Y is a locally compact space with [YI <m , it follows

1
from 7.2 that X x Y is C-embedded in vX x Y. It remains to
prove that vX x Y is C-embedded in vX x vY. Since !UX[ < n+,
uX x Ww ) X w(wo + 1) is C-embedded in vX X w(wa + 1) x w(wo
+ 1). Thus by (1) uX x R is C-embedded in uX x uR. Since
vX x H*¥ is an open set of uvX x BR, it follows from the above
lemma that

(VX x R)U(vX x H¥) ( = vX x Y )
is C-embedded in

(vX x VR)U (uX x H*) ( = uX x vY ).

Hence the proof is complete.

14.7 REMARK. In case |X| > m , (c) + (a) in 14.6 need not be

1

true. In fact, it follows from 4.2 that D(ml) satisfies (ec),

but UD(ml) is not a k-space by 3.3.8.

14.8  COROLLARY. Let £ Xi > ¥, (i =1, 2 ) be quotient onto

maps. If both UXl and UY2 are locally compact, then U(Xl X X2)

) = uY., x vy

= uX. X uX2 implies u(Yl x ¥, 1 x

1

Proof. This is proved by using 14.6 repeatedly.

9



Since the product of bi-quotient onto maps is again a
bi-quotient map ( cf. 3.5.4 ), 14.2 bring to mind the question
of when uf is a bi-quotient onto map. In section 20, we answer
this question by considering the special case where f is a per-
fect map, and give another virsion of 1L4.6 which is apparently
stronger. On the other hand, very little can be said about the
inverse invariance of the equality u(X x ¥) = uX x uY under maps.
We conclude this section with the following problem and counter-

example about it.

14.9  PROBLEM. Let D S (i=1, 2 ) be onto maps.

When does U(Yl X Y2) = oY, x uY, imply u(Xl x X

= p'e ?
) qu vX

2 2

14.10 EXAMPLE. Let f: Y -+ Z be perfect onto map. Then v(X x Z)
= vX x vZ does not necessary imply v(X x Y) = uX % UY even when

idUX x uf is a quotient onto map and uX is compact. To see this,

let us set X = W(wl); then, by 7.6 and 3.3.7, there exists a

realcompact space Y, such that u(X x Yl) # UX x vY, . By [Ng,

2.3], Y. can be embedded as a closed subspace of a pseudocompact

1

space Y Let i: Y. - Y_ be the embedding. Let us set ¥ =

2’ 1 2

Yl C)Y2 and Z = Yg’ where the symbol @ means the topological sum.
Define f: Y » Z by f(y) = i(y) if vyEY, and f(y) =y if YEY,-
Then f is a perfect map and uvf is a quotient map from VY (=

Y, ® vy, ) onto vZ ( = uY, ). Since X is locally compact, it
follows from [E, 3.10.26] that X x Z is pseudocompact, and so
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u(X x Z) = UX ¥ VZ by 1.1. On the other hand, v(X x Y) #

uvX % vY obviously. Further, uvX ( = W(wl + 1) ) being compact,

it follows from 3.5.6 that iy % f is a quotient map.

X
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15, z~embedding in X x RY

As noted in 3.4, barring the existence of measurable
cardinals, u(X x Y) = vX x vY holds whenever X x Y is z-embedded
in X x BY. In this section, we consider the problem of when
X x Y is z-embedded in X x BY. The analogous problem for BX x

BY has been discussed by Blair and Hager in [BH_]. Our results

3

refine their works, and give new characterizations of metrizable

spaces.

15.1 PREREQUISITES. We make use of the following results:
15.1.1 ( Terasawa ) TFor each finite cozero-set cover G of the
product space X x Y of a space X with a compact space Y, there
exist a locally finite cozero-set cover { Uy | a€A } of X and
finite open covers Va’ a€ A, of Y such that { Ua x V ]'VE Ua’
a€A } is a refinement of G ( the proof was described in [CC] ).
15.1.2 ( [F3] ) An open perfect map carries a zero-set to a

zero—-gset.

Following [H. ], by a cozero-rectangle in a product X x Y,

1
we mean a set of the form U x V, where U and V are cozero-sets

in X and Y, respectively.

15.2 PROPOSITION. The following conditions on a product space
X x Y are equivalent:
(a) X x Y is z-embedded in X x RY.

(b) Each cozero-set of X X Y is the union of a family { u, * v,
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@ €A } of cozero-rectangles in X x Y such that { U | €A}
is o-locally finite in X.

(c) Each finite cozero-set cover of X X Y has a refinement
{ Ua X Va | @ €A } by cozero-rectangles in X X Y such

that { U | o €A } is o-locally finite in X.

Proof. (a) - (b). Let G be a cozero-set of X x Y. Then
by (a) there is a cozero-set G¥ = { pEX x BY | g(p) # 0 }, where
g€EC(X x BY), of X x BY with G¥N(X x Y) = G. For each n€N,

let us set

K, ={pexxpy | |gl®)]>1/nl,
b= {pexxpr| [g@)] <1/nl,
and G ={ K ., L }. Then G is a cozero-set cover of X x BY,
n n+l n n

and hence by 15.1.1 there exist a locally finite cozero-set cover
{vu | c€A } of X and finite open covers W, a €A , of BY
no n nao n
such that { U x W | WEW , « €A} is a refinement of G .
no no n n
Since BY is compact, wna has a refinement Una consisting of
finitely many cozero-sets of BY. For each a€A, if we set
v, = JLVeEy | U, X VCK . INY,
then Vna is a cozero-set of Y such that
X C X _ .
(X xY)NK CUL U *xV l a€h ICK .
Since G*¥* = U{ K| n€N }, it follows that G = U{ U__ xV
n no no.
aEAn,nEN }, and then { %w |aEAn,nGN } is o-locally finite
in X. Thus we have (b).

(b) » (c). Let G = { G, | i€ I } be a finite cozero-set
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cover of X x Y. By (b), each G, is the union of a family

{U, xV, | a€A, } of cozero-rectangles in X x Y such that
ia io i

{U, | a€A, } is o-locally finite in X. Then { U, x V. |
ia i io ia

aEAi, 1i€T1 } is the desired refinement of G.

(¢) » (b). The proof goes just as that of (a) + (b) if
one use (c) instead of 15.1.1.

(b) -~ (a). Let G be a cozero-set of X x Y. It suffices
to show that G = G¥MN (X x Y) for some cozero-set G¥ of X x RY.
By (b), G is the union of a family { u, * Vu | 0 €A } of cozero-
-rectangles in X %X Y such that { Ua | a€A } is o-locally finite
in X. For each a €A, there is a cozero-set V: of BY with Vi(\Y
=V, Let us set G* = U{ Uy Vz | « €A }. Since cozero-sets

are closed under o-locally finite union, G¥ is a cozero-set of

X x BY with G¥N(X x Y) = G. Hence the proof is complete.

The following theorems 15.3 and 15.5 are main results of
this section. A space X is said to be extremally disconnected
if the closure of every open set is open { cf. [GJ, 1H] ). For
the notions of P-spaces in the sense of Morita and of M'-spaces

I,

in the sense of Isiwata, the reader is referred to [Mh] and [I5
respectively. In particular, an M'-space is known to be pre-
cisely a C-embedded subspace of the product of a metric space

with a compact space ( see [IO] ).
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15.3  THEOREM. The following conditions on a space X are

equivalent:

(a) X is metrizable.

(b) X x Y is z-embedded in X x BY for each extremally
disconnected space Y.

(c) X x Y is z-embedded in X x BY for each normal P-space

( in the sense of Morita [M, ] ) Y.

h]

(a) X x Y is z-embedded in X x BY for each M'-space { in
the sense of Isiwata [MS] ) Y.

(e) X x Y is z-embedded in X x BY for each discrete space

Y with |Y] < [X|-w(X).

Proof. (a) -~ (b). Let Y be an extremally disconnected
space, and let G = { p€X x Y | glp) # 0} ( g€C(X x ¥Y) ) be a
cozero-set of X x Y. By 3.3.10, X has a o-locally finite base
{ Uo‘ l o€A }. Note that each Ud is a cozero-set. For each n€N
and each o€ A, let us set

Voo = U{ H | H is an open set in Y
such that Ua X HCGrl b

where Gn ={pE€EXxY | |glp)] >1/n }. Then Vnoc is open in Y

and Uu x cl Since Y is extremally disconnected, ClYVncx

YVnOLCGn‘Fl'
is open-and-closed in Y. Hence, setting v, = Ui ClYVna | nen 1},
we have a family { Va [ aE A } of cozero-sets in Y such that G =

Ui, xv, | a€A }. Thus it follows from 15.2 that X x Y is

z-embedded in X x BY.
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(b) ~ (e). Obvious.

(e) -~ (a). The proof is a slight modification of that
of [BHB’ 3.1]. Let B be a base for X, and topologize the set
Y=1{(x, B) | xéB€B } with its discrete topology. Then |Y| <

|X|+w(X). For each (x, B)EY, there is f( B)E C(X) such that

£ )(x) =1 and f )(x - B) = {0}. Define g€C(X x Y) by
(X'):

and set G ={ p€EX x Y | g(p) # 0 }. Since X x Y is z-embedded

x, B x, B

g{x', (x, B)) = £y

in X x BY, by 15.2, G is the union of a family { U x V | a€a}
of cozero-rectangles in X x Y such that { U, | «€A } is o-locally
finite in X. It is easily checked that { Ua l o€A } forms a
base for X. Thus X is metrizable by 3.3.10.

Since the equivalence of (a), (c) and (d) is incidental
in our subsequent discussions, we state only out-line of the
proof. The proof of (a) -+ (c) is the same as that of [Mh’ L.4]
if one use 15.2 (c). To prove (a) - (d), let Y be an M'-space.
Then by [MS, L.4] ( ef. also [15] ) there exists a paracompact
M-space‘Y with YCf?(iuY. Since X x ?’is a k-space by 3.5.2, a
similar argument to that of 12.1.4 shows that X x Y is C-embedded
in X X‘§. Since a paracompact M-space is a normal P-space ( [Mh’
6.3] ), X x Y is z-embedded in X x Y ( = X x BY ). Consequently
X X Y is z-embedded in X x BY. (c) = (e) and (d) »+ (e) are

obvious. Hence the proof is complete.
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15.4 REMARK. T. Hoshina informed me that dim S < dim X holds
whenever S is z-embedded in X10. This fact can be combined with
[M7, Theorem 1] to yeild the following result: If X x Y is
z—embedded in X x BY, then dim (X x Y) < dim X + dim Y. On the
other hand, Wage has proved in [Wl] that there exist a metric
space X and a Lindeldf space Y such that dim (X x Y) > dim X +
dim Y. Therefore the product X x Y of a metric space X with a

Lindelsf space Y need not be z-embedded in X x gY,

15.5 THEOREM. The following conditions on a space X are
equivalent:

(a) X is locally compact, metrizable.

(b) X x Y is z-embedded in X x RY for each space Y.

(¢) X x Y is z-embedded in X x BY for each locally compact,

Moore space Y with w(Y) < |X] +w(X)-exp XO’

Proof. (a) ~ (b). Let Y be a space. By 3.3.10, X has a
o-locally finite base { Ua ] aEA } such that ClXUoc is compact
for each a € A. To prove 15.2 (b), let G be a cozero-set of X x Y.
For each o€ A, let us set

v, = \J{ H | H is an open set in Y
such that ClXUoc x HCG }.

Then G = I u, x v, | a€A }. It suffices to show that each v,

10 For a space X, dim X denotes the covering dimension of
X ( cf. chapter 7 of [E] ).
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is a cozero-set of Y. Since ClXUa is compact, the projection

L from cl Ua X Y to Y is an open perfect map and Va =Y -

X
m, ((el U x ¥) - G). Thus it follows from 15.1.2 that v, is
a cozero-set of Y.

(b) > (e¢). Obvious.

(c) » (a). By 15.3, X is metrizable. Suppose that X is

not locally compact at xOEIX. Then x(x., X) < ﬁ% and x_. has no

0’ 0

pseudo—}%—compact neighborhood in X by 3.3.9, As noted in 13.1,
there exists a locally compact Moore space Y, with w(Y) 2 eXpQQ .
that has a D(NB)-expandable family F such that |F| = exp~Rb and
AL el F | FEF } # #. Then it follows from 11.2 that X x Y is
not C-embedded in X X vY, and so X X Y is not z-embedded in X x BY

by 3.4. This contradiction completes the proof.

15.6 REMARK. In [BH3, 2.2], Blair and Hager essentially proved
the equivalence of the following three conditions:

(a) X is pseudo—Ni—compact.

(b) X x BY is z-embedded in BX x BY for each space Y.

(c) X x BD(X]) is z-embedded in BX x BD().

Since pseudo-X, -compactness coincides with separability for met-

1
rizable spaces, one can obtain characterizations of separable
( resp. separable locally compact ) metrizable spaces by replacing

"X x BY" by "BX x BY" in 15.3 ( resp. 15.5 ). For separable case,

some of those were proved in [BHB].

15.7 PROBLEM. Do there exist any other conditions on Y for

which 15.3 and 15.5 remain valid ?
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15.8 We can apply our theory to answer the following questions

3]'
(a) Does the following condition (d') imply that X x Y is

posed by Blair and Hager in [BH

z—embedded in BX x BY ?  (d') For each F€C(X x Y) and
e > 0, there is a countable open rectangular cover { Gn }
of X x Y such that sup { |f(p) - f(a)| | p, Q€6 } < e
for each n.
(B) If X is o-compact and Y is pseudo—%i—compact, then is
X x Y z-embedded in BRX x BY ?
In [BH3], they proved that if X is a separable metrizable space,
then X x Y satisfies (d') for each space Y. Hence the following

example answers (A) and (B), simultaneously, in the negative.

15.8.1 EXAMPLE. Let Q be the space of all rational numbers with
the usual topology. Then there exists a O-dimensional pseudo-Ni-
-compact locally compact space Y with |Y| = w(Y) =vxi such that

u(Q x Y) # Q x vY ( and hence Q x Y is not z-embedded in BQ x BY

by 3.4 ).

Proof. We take for Y the space Yl(%%) constructed in 11.

5.1. Then Y satisfies the stated conditions by 11.5.1 and 11.5.2
(1). sSince x(Q) = ?% and Q is not locally pseudo—%%—compact, it

follows from 11.2 that v(Q x Y) # Q x uY.

15.8.2 REMARK. (A) was first answered by the author in [02].
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CHAPTER &
CHARACTERIZATIONS OF THE CLASSES

R( metrizable ) AND R( locally compact metrizable )

Two distinct lines of investigation in chapter 3 will be
combined. In dealing with R( P(m) ) and R( k ), some kinds of
local compactness were the central ideas. By contrast, in this
chapter weak cb¥*-property plays a crucial role. A space X is
called a weak cb¥*-space if for each decreasing sequence { Fn [
né N } of regular closed sets in X with empty intersection,

M{ el o | n€¥ } = ¢ holds. This notion Ffirst appeared in

X
[HW] without a name, and was named by Isiwata in [I8]. Recall
from [MJ] that a space X is a weak cb-space if for each decreas-
ing sequence { Fn |11€N'} of regular closed sets in X with
empty intersection, there is a decreasing sequence { Zn l néN }
of zero-sets in X with empty intersection such that FanZn for
each n€N. Weak cb¥-~property is a simultaneous generalization
of weak cb-property and realcompactness. Since normal countably
paracompact spaces, extremally disconnected spaces and pseudo-
compact spaces ( or more generally, M'-spaces in the sense of
Isiwata [I5] ) are weak cb-spaces, they are weak cb*-spaces.

- The most important fact about weak cb¥-spaces X is that vE(X) =
”E(UX) is valid, where E(X) denotes the absolute of X. A brief

account of absolutes and various characterizations of weak cb¥*-

—-spaces are given in section 17 below.
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16. Main theorems

We state main theorems of this chapter and discuss

some remarks. The proofs will be given later in section 18.

3]'

Hereafter X“ denotes the product of countably many copies of

A1l the results in this section have been presented in [O

a space X.

16.1 THEOREM. The following conditions on a space X are
equivalent:

(a) X is a weak cb*-space and |X| < m, -
(b) u(X x T) = vX x UT holds for each metrizable space T.

(c) v(x x D(a(x))¥) = ux x wp(a(x))".

16.2 REMARKS. (1) It is to be noted that D(A(X))” is a 0-
~dimensional metrizable space, and that w(D(a(x))¥®) = a(x) if
a(x) > &, (ef. [E, 2.3.13] ).

(2) In view of 10.1, "metrizable space" cannot be weak-
ened to "Moore space" in (b). Further, it cannot be weakened to
"Lagnev space". In fact, since an M-space is a weak cb¥*-space,
Kato's example X ( = BR - BN ) quoted in 12.6 (1) is a weak cb¥*-
-space, but V(X x Y) # uX x uUY for some Lagnev space Y by 12.5.

' In section 19, we shall, however, prove that R( metrizable ) =

R( paracompact M ) under the assumption that each cardinal is

non-megsurable.
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In the following theorem, the equivalence of (a) and
(c) has been described in 4.L; however, we repeat it here to

compare with 16.1 (c).

16.3 THEOREM. The following conditions on a space X are
equivalent:
< m..
(2) x| <m
(b) u(X x T) = vX x uT holds for each locally compact,
metrizable space T.

(e) u(X x D(A(X))) = uX x uD(d(X)).

16.4 REMARK. It is open whether "locally compact, metrizable"
can be weakened to "locally compact, paracompact" or not in (b)

( ef. 21.1 ).

One more purpose of this chapter is to discuss the problem
of finding necessary and sufficient conditions for X and Y in
order that v(X x Y) = uX x uY holds in the restrictive situation
when Y is a ( locally compact ) metrizable space. The following

theorem generalizes Theorem k.2 due to HuSek.

16.5 THEOREM. Suppose that T is a locally compact, metrizable
space. Then u(X x T) = uX x uT holds if and only if either |X|

<m or |T] < m, .

It would be nice to have a theorem analogous to the above

in the case where T is only assumed to be metrizable. Our next
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theorem gives a partial answer to this requirement.

16.6 THEOREM. BSuppose that X satisfies the countable chain
condition ( i.e., e(X) < X% ) and T is a metrizable space.
Then v(X x T) = uX x uT holds if and only if (i) either |X[ <m,

or |T] < my and (ii) either X is a weak cb¥*-space or T is locally

compact.

16.7 EXAMPLE. 16.6 fails to be valid if we drop the assumption
that c(X) < Xb ( in this sense 16.6 is best possible ). To see
this, we take for X the space Zu(%%) constructed in 8.1.2. The
proof of 8.1.2 essentially shows that X is not a weak cb¥-space.
Let T be the space of all rational numbers with the usual topology.
Obviously T is metrizable but not locally compact. To prove that
U(X x T) = X x v ( = vuvX x T ), let f€C(X x T). Recall that

the only point x. in vX - X is a P-point in uvX. Since lT[ =X,

0

xo has a neighborhood G in uX such that f takes on the constant
value r, on (GNX) x {t} for each t€T. Extend f over vX x T by
setting f((xo, t)) = T, for t€ T. Then the extension is continu-
ous, and so X x T is proved to be C-embedded in vX x T. Hence
u(X x T) = vX x uT holds, but X is not a weak cb¥*-space and T is

not locally compact.
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17. Absolutes and weak cb¥-spaces

17.1 Recall that a space X is extremally disconnected if the
closure of every open set of X is open. A map f: X - ¥ is called
irreducible if f carries a proper closed subset of X to a proper
closed subset of Y. Associated with each space X, there exist an
extremally disconnected space E(X) and a perfect irreducible map
e, from E(X) onto X. The space E(X) is unique up to homeomorphism

and is called the absolute ( or projective cover ) of X. More

detailed information on absolutes may be found in [IF] and [SS].

] ) For a space X, BE(X) = E(BX) and Be, =

17.1.1 ( [1F], [W X

3

X hold, where SeX is the extension of e. over RE(X).

eB X

17.1.2 ( [1F], [85] ) If f: X~ Y is a perfect onto map, then

there exists a perfect map h from E(Y) onto a closed subset of

X such that eY = foh.

Although E(vX) is usually different from vE(X), the
situation is simpler if X is a weak cb¥-space. In the follow-
ing theorem, the equivalence of (a) and (b) follows immediately
from [HW, 2.4] and [HT, 1.2] ( ef. also [Il] ); for completeness

we include a proof.
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17.2 THEOREM. The following conditions on a space X are

equivalent:

(a) X is a weak cb¥-space.

(b) VE(X) = E(uX) ( and then ve, = e o ).

(¢) ve,: VE(X) = uX is a countably bi-quotient onto map.

X
(d) X x Y is C-embedded in vX % Y for each bi-sequential

space Y.
(e) X x T is C-embedded in vX X T for each metrizable space T.
(£) X x D(e(x))” is C-embedded in uvX x D(c(x))".
(g) Each countable locally finite family G of open sets in X
is locally finite in uX.
(n) Each locally finite family G of open sets in X, with |G|

< ml, is locally finite in vuX.

Proof. (a) =+ (b). Since cl, G = ClUE( (GNE(X)) for

E(X) X)
each open set G in VE(X), VE(X) is extremally disconnected. By

the uniqueness of E(uX), it suffices to show that vey: VE(X) ~ uX

is a perfect irreducible onto map. Clearly vey is irreducible.

Suppose that ve_, is not perfect onto; then there exists poegﬂE(X)

X
- VE(X) such that (BeX)(pO)EEUX. By 3.3.4, there is a zero-set

7z ={p&BE(X) | £f(p) =0} ( FEC(BE(X)) ) of BE(X) with p,€2C

BE(X) - VE(X). For each n€N, let us set Hn =X - e (E(X) - Gn),

X
where G = { per(X) | |£(®)| <1/n }. Then, ey being a perfect

irreducible map, Hn is a non-empty open set 1in X with chHn =

eX(ClE(X)Gn)' Since pO(EClBE(X)Gn’ (Bex)(pO)GEclstn for each
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n€ N, and hence (Bex)(pO>EifW{ clUxHn | n€N }. This contradicts
the fact that X is a weak cb*-space.

(b) » (c). As noted in 17.1.1, BE(X) = E(BX) holds. If
we set X = (Bex)_l(ux), then X is extremally disconnected and e =
(Bex)li is a perfect irreducible map onto vX. Because of the
uniqueness of E(uX), X = E(uX) and e = e .. Since VE(X) = E(uX)

vX
by (b), X = uE(X) and e = ey Hence vey is a perfect onto map,
and so it is a countably bi-quotient map.
(¢) » (d). Let Y be a bi-sequential space; then there is
a bi-quotient map f from a metrizable space T onto Y. By 15.3,
E(X) x T is z-embedded in BE(X) x T, and so it is C-embedded in
VE(X) x T by 3.4. Since ve, is a countably bi-quotient onto map,

it follows from 3.5.5 that ve, X f is a quotient map from vE(X)

X
x T onto vX x T. Hence it follows from 14.3 that X x Y is C-em~
bedded in vX x Y.

(@) = (e) = (£). Obvious.

(f) + (g). Suppose that there is a countable locally
finite family { G, | nEN } of open sets in X such that it is
not locally finite in vX. Then, setting H = Ui G, | i >n}
for each n €N, we have a locally finite family { Hn [ nEN }
of open sets in X such that M{ el | n€N } # §. Since
e

x(D(c(x))®) = & and each point of D(c(X)) has no pseudo-c(X)-

0
-compact neighborhood, it follows from 11.3 that X x D(c(X))”
is not C-embedded in vX x D(c(X))®. Thus we have (g).

Since (h) + (g) » (a) are obvious, it remains to prove

96



that (b) implies (h). To do this, let { G | 0€A } be a

locally finite family of open sets in X with |A]| < m_.

W
. e may

assume without loss of generality that it covers X. Setting
H =cl Ga) for each o € A, we obtain a locally finite
cover H = { H, | w€A } of E(X) by open-and-closed subsets.

For our end, since e, is a perfect map from vE(X) onto uX by

X
(b), it suffices to show that H is locally finite in VE(X).
Define A to be the family of all finite subsets of A. If, for
each BE A, we set

U(B) = N{ H | aeB F- ULH | €A -3 1,
then { U(B) | BE€A } is a locally finite cover of E(X). Since
each U(B) is open-and-closed in E(X), we can find a disjoint
open cover { V(B) | BEA } of E(X) with V(B)CU(B). For each
BEA, let us set W(B) = cluE(X)V(B). Then W(B) is an open-and-
-closed subset of VE(X) with W(B)NE(X) = V(B). We shall show
that uE(x) = U{ W(B) | BEA }. Suppose that there exists Py €
VE(X) - U{ W(B) | BEA }. Let P(A) denote the power set of A,
and define a function p: P(A) »~ {0, 1} by

B = { 0 if po¢c1UE(X)(U{ W(B) | BEB 1),

1 if poécluE(X)(U{ W(B) | BEB 1).

Then u(A) = 1 and p({B}) = 0 for each BEA. Since (b) implies
(g), X satisfies (g), and so it follows that u is a countably
additive {0, 1l}-valued measure on A. This contradicts the fact

that |A| <m Thus { W(B) | BEA } is proved to be an open

1

cover of UE(X). Since each U(B) meets only finitely many members
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of H, so is W(B). This implies that H is loecally finite in

VE(X). Hence the proof is complete.

17.3 REMARK. The equivalence of (a) and (e) has been proved

by the author in [O.].

3

17.4 REMARKS. (1) In 17.2, (d) and (e) are to be compared
with 12.5. 1In particular, 12.6 (1) shows that "bi-sequential"
cannot be weakened to "Fréchet" in (d). Further, if the exist-
ence of measurable cardinals is assumed, then one can see that
it cannot be weakened to even "countably bi-sequential". In

fact, let Y be the one-point compactification of X = D(m ); then

1
it is known [MB, 10.15] that Y is countably bi-sequential, and
X is clearly a weak cb¥*-space, while it follows from 4.2 that

X x Y is not C-embedded in uvX x Y.

(2) The reader might ask whether the product X x T of a
weak cb*-space X with a metrizable space T is z-embedded in BX
x T, Since Lindeldf spaces are weak cb¥-spaces, 15.4 provides
a negative answer to this question.

(3) A more direct proof of (a) + (e), not using E(X),

can be given by slightly modifying the proof of 19.2 below.

The following corollary improves a result of Woods [Wh,
2.10], who proved it with the assumption that vX is locally

compact.
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17.5 COROLLARY. If uvX is a countably bi-k-space, then X is

a weak cb¥-space, and hence vE(X) = E(uvX).

Proof. Let T be a metrizable space; then vX x T is a k-
-space by 3.5.2, and so X x T is C-embedded in uX x T by 12.1.k,

Hence it follows from 17.2 that X is a weak cb¥*-space.

17.6 REMARK. In 17.5, "countably bi-k" cannot be weakened to
"singly bi-k". To see this, let X be the space ZM(XB) constructed
in 8.1.2. Then, as noted in 16.7, X is not a weak cb¥*-space.

On the other hand, vX is a singly bi-k-space, because it 1s the

closed image of a locally compact, paracompact space.

17.7 The following chart provides a summary of the relationship
of weak cb¥*-spaces to other more familiar ones:

M-space in the
sense of Morita [Mh] : pseudocompact space

M'-space in the ‘///

sense of Isiwata [15]

normal countably extremally disconnected
paracompact space space

™~ /

weak cb-space

space X that vX is a
realcompact space countably bi-k-space

e

weak cb¥-space

I

VE(X) = E(uX)
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18. Proofs of theorems ( 16.1, 16.3, 16.5 and 16.6 )

18.1  Proof of Theorem 16.1. (a) + (b). Let X be a weak cb¥*-
-space with [X]| < m and T a metrizable space. Since |E(x)] < ms
it follows from 3.4 and 15.3 that v(E(X) x T) = vE(X) x vT. By

17.2, ve,: VE(X) - uX is perfect onto, and so ve, x id _ is a

e X uT
perfect map from vE(X) x uT onto uvX x uT. Hence it follows from
1k.2 that v(X x T) = vX x uT.

(b) =+ (c). Obvious.

(¢) = (a). Let { F | REN } be a decreasing sequence of
regular closed sets in X with empty intersection. Clearly it is

locally finite in X. Since c(X) < d(X), each point p of D(a(x))®

has no pseudo-c (X)-compact neighborhood and x(p, D{d(x))*) = %%.

Since X x D(d(X))” is C-embedded in uX x D(a(X))®, it follows

from 11.3 that M{ cl ,F_ | n€N } = @, and thus X is a weak

cb¥-space. To prove that ‘Xl <m , find a discrete family { Ga l

1
€A } of non-empty open sets in D(d(X))® with |A| = a(X). Pick
p, €G, for each a €A, and set D = {pal @€A }. Then it is
easily checked that X x D is C-embedded in X x D(d(X))*. Since
wCub(d(X))” by 3.3.1, (c) implies that v(X x D) = vX x uD.
Then it follows from 4.2 that |X| < m, or ID| < m. If [D| <m
by 3.2.2. Hence the proof is complete.

19

then |X| < m

18.2 Proof of Theorem 16.2. (a) » (b) follows from 3.4 and
15.5. (b) - (c) is obvious. (c¢) - (a) has been stated in L.hL.

Hence the proof is complete.
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18.3 REMARKS. (1) Michael proved that if X is a space and
S is a closed subspace of a metrizable space T, then X x S is
C-embedded in X x T ( for the proof, see [Sh] ). If one make
use of this result to prove 16.1, then (c¢) - (a) turns a corol-
lary of 4.4 and 17.2, because both D(d(X)) and D(c(x))* are closed
subspaces of D(a(x))®.

(2) In 16.1 and 16.3, "d(X)" cannot be weakened to "c(X)"

in general. To see this, let X be the product of m copies of

1
D(2); then c(X) < exp XO by [KB, 5.4] ( cf. also [E, 2.7.10] ).
Hence u(X x T) = vX x vT ( = X x T ) holds for each metrizable
space T with w(T) < c(X), while x| = m . Of course, if we

assume that each cardinal is non-measurable, then the above

replacement is possible.

18.4  Proof of Theorem 16.5. Since the sufficiency is straight-
forward by use of 3.4 and 15.5, we shall prove only the necessity.
Suppose on the contrary that [X| > m 7| > m, and u(X x T) =

vX x uT. Then w(T) > m, by 3.2.2, and hence by 3.3.10 we can
find a discrete family { Ga | @ EA } of non-empty open sets in T

with |A| = m . Pick t €G, for each a€A. If we set D ={t, |

I
a €A }, then a similar argument to that of 18.1 shows that v(X x D)
= vX x uD. Since |D| =m , this contradicts 4.2. Hence the

proof is complete.

18.5 Proof of Theorem 16.6. Necessity: The proof that |X| < m,

or |T| < m is similar to that of 16.5. Suppose that T is not
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locally compact; then it is not'locally pseudo—%%—compact by
3.3.9. Hence it follows from 11.3 that X must be a weak cb¥-
-space, Sufficiency: In case X is a weak cb*-space and ]TI
<mp, since T is realcompact by 3.3.7, it follows from 17.2
that V(X x T) = uX x uT ( = uX x T ). The remaining cases

follow from 16.1 and 16.5, and hence the proof is complete.
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19. On R( paracompact M )

In this section, we prove the equality R( paracompact M )
= R( metrizable ) under the assumption that each cardinal is non-

-measurable, from which several corollaries are deduced.

19.1 PREREQUISITES. We make use of the following results:
19.1.1 ( [Tl] ) Let S be a dense subspace of a space X. Then S
is C¥-embedded in X if and only if every two disjoint zero-sets
of S have disjoint closures in X ( cf. also [E, 3.2.1] ).

19.1.2 ( [Sh] ) If X is a space and S is a compact subspace of

a space Y, then X x S5 is C-embedded in X x Y.

We denote the following condition on a space by (C).
FEach compact subset of the space is of non-measurable

(c)

cardinal.

19.2 THEOREM. Let X be a weak cb¥-space and Y a paracompact
M-space. If either X is pseudo-m -compact or Y satisfies (c),

then X x Y is C-embedded in uvX x Y.

Proof. By 3.3.4, 3.3.5 and 3.3.6, it suffices to prove
that X x Y is C¥-embedded in vX x Y. To verify 19.1.1, let Zi
(i=1, 2 ) be disjoint zero-sets in X x Y; then there is fE

C(X x Y) such that f(Zl) = {0} and £(Z.) = {1}. Let P, = (xo, yO)

2

EuX x Y. We shall show that poép el iy x y2 Nl y  yZ,e Since

Y is a paracompact M-space, Yo is contained in a compact subset
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K that has a countable neighborhood base in Y. Then, since X is
pseudo-m, ~compact or k| < m it follows from 4.1 that u(X x K)

= VX x K, and so f|(X x K) is extended to h€C(uX x K). Let us

set
El={pex><Y|f(p);1/3 }s
E, = {p€XxY [ f(p) 2 2/31,
W= { pEVX x K | h(p) < 2/3 1},
W,={ pEUX x K | n(p) > 1/3 }.
Then (X x K){‘\ZiC(X x K)(‘\EiC(X X K)nwi and { W_, W, } is a

cozero-set cover of vX x K. By 15.1.1, there exist a locally
finite cozero-set cover U of UX and binary open covers VU =

{ VU(l), VU(2) }, UEU, of K such that U x Vi
Choose U €U with XOEU. Let us set 8 = UNX; then v8 = U by 3.3.2,

(i)CWi for i =1, 2.

and it i1s easily checked that S is a weak cb¥*-space. Since K is
compact, there exist a cozero-set cover { A(1), A(2) } of K and
zero-sets B(i) of K such that A(i)CB(i)CVU(i) for i = 1, 2.

(1) In case yOEB(l)r\B(e), let us set K. = B(1)NB(2);

0
then (S x Ko)ﬂ(ElU EE) = . Since K has a countable neighbor-

hood base in Y, and since K_ is a zero-set of K, K. also has a

0 0
countable neighborhood base { G | n€N } in ¥ with G_DG___.

n n n+l
For each n&€N, let us set

H

0 { x€8 | x has a neighborhood H in S

such that (H x Gn)ﬂ(ElUEg) =0 1,

Fn = clS(S - clSHn).

Then (cl Hn X Gn)ﬂ(ZlU Zz) = p, and { Hn | nEN } is a increasing

S
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open cover of S, because K. is compact. Thus { Fn ] neEN } is

0

a decreasing sequence of regular closed sets in S with empty

intersection. Then, S being a weak cb*-space, {1{ clUsFn |

néN } = ¢, and so XOEFclU Fn for some n€ N. If we set J = vS -

S

- _ F . . .
CluSFn ( U clU n ), then J x Gn is a neighborhood of PO in
UX x Y such that (J x ¢ )N(Z.UZ.) = ¢ since JNSCecl H . Hence
n 1 2 S'n
Po% Ly x y?1Y%%ux « voor
(2) 1In case yoe{;B(l)ﬂB(E), then yOE,f,A(l) or yoa‘:A(Z);
we assume that yOQEA(Q). If we set KO = K - A(2), then KO is a

zero-set of K containing Y, such that (8 x Ko)f\EE = p. Hence,

by the same argument as above, we can prove that p06§c1UX « YZE'

Therefore cl | Zlf\cl = f, and so it follows

X x Y uX X YZQ
from 19.1.1 that X x Y is C¥-embedded in uX x Y. Hence the proof

is complete.

19.3 REMARKS. (1) Since a paracompact M-space of non-measura-
ble cardinal is realcompact by 3.3.7, the preceding theorem 19.2,
together with 16.1, shows that R( paracompact M ) = R( metrizable )
under the assumption that all cardinals are non-measurable. The
author does not know whether this equality holds or not in general.
(2) The converse of 19.2 is also valid; that is, if the
product X x Y of a weak cb¥*-space X with a paracompact M-space Y
is C-embedded in vX X Y, then either X is pseudo—ml-compact or Y
satisfies (C). 1In fact, more generally, 4.1 combined with 19.1.2
shows that, for each spaces R, S, if R x 5 is C-embedded in uR x S,

then either R is pseudo—ml-compact or S satisfies (C).
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19.4 COROLLARY. Let X be a weak cb¥-space and Y a bi-k-space.
If either X is pseudo-m -compact or Y satisfies (C), then X x Y

is C-embedded in vX x Y.

Proof. There is a bi-quotient map f from a paracompact
M-space T onto Y. If Y satisfies (C), then by the proof of [M3,
3E3] T can be chosen in such a way that each point is contained

in a compact subset K, with IKI < m,, that has a countable neigh-

lJ
borhood base in T. Hence, in any case, X x T is proved to be
C-embedded in vk X T similarly to the proof of 19.2. Since iduX
x £ is a quotient map by 3.5.4, it follows from 14.3 that X x Y

is C-embedded in vX % Y.

19.5 COROLLARY. Let X be a weak cb¥-space and Y a realcompact
bi-k-space. If either X is pseudo-m -compact or Y satisfies (C),
then V(X x ¥Y) = uX x Y ( = X x Y ) holds and X x Y is a weak

cb¥-space.

Proof. The first assertion follows from 19.4. If Y sat-
isfies (C), then so is Y x D(c(X x ¥))*. Since Y x D(e(X x Y))¥
is a bi-k-space by 3.5.1, it follows from 19.4 that

X x ¥ x D(e(x x ¥))*
is C-embedded in
uX x ¥ x D(e(X x ¥))* (= u(X x ¥) x D(c(X x ¥))¥ ).

Hence X x Y is a weak cb¥*-space by 17.2.
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In [H8], Hufek proved that if a locally compact realcom-
pact space X satisfies (C), then |X| < m and he asked whether
this result remains true for realcompact k-spaces. Our next

corollary provides a partial answer to this question.

19.6 COROLLARY. If X is a realcompact bi-k-space satisfying
(C), then [X] < m.

Proof. This follows from 4.4 and 19.5.
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20. Mapping theorems II

In this section the investigation of mapping theorems
which was begun in section 14 is continued. We have an interest
in the consequence of weak cb¥*-property, and summarize some of
pleasant properties which result from the additional assumption.

The following theorem gives other versions of 1T.2.

20.1  THECOREM. The following conditions on a space Y are

equivalent:
(a) Y is a weak cb¥*-space.
(b) For any perfect onto map f: X = Y, there exists a closed

subset X  of uX such that (Uf)IXO is a perfect map from
XO onto vY.

(¢) For any perfect onto map f: X - Y, uf: vX » VY is a bi-
-quotient onto map.

(d) For any perfect onto map f: X - Y, uvf: vX » vY is a count-
ably bi-quotient onto map.

(e) For any perfect irreducible onto map f: X > Y, vf: vX > vY

is a perfect onto map.

Proof. (a) » (b). Let f: X + Y be a perfect onto map.
By 17.1.2 there exist a closed subset Xl of X and a perfect map

= (o] =
h from E(Y) onto Xl such that e foh. Let us set XE clBXX1

Y
and % = (Bf)[XQ. Since X2 is compact, h has a continuous exten-
sion h from BE(Y) onto Xg' Then
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(1) Be. = foh.

Y
Let us set XO = er\uX. We shall prove that
(2) h(vE(Y)) = X,
o~ ~e1 . ~-1
Since h is perfect, h (XO) is realcompact and h (XO)I)E(Y).
This implies that uE(Y)C"ﬁ‘l(XO), and so E(UE(Y))CXO. To show

the converse inclusion, suppose that there exists a point pegXO

- h(vE(Y)). Then E(q) = p for some q€ BE(Y) — vE(Y). Since Y

is a weak cb¥*-space, it follows from 17.2 that ve, is a perfect

Y
map onto vY, and so (BeY)(q)E BY — vY. Hence f(p)E BY - uY by

(1), which contradicts the fact that (Bf)(uX)CvuY. Thus (2) is

proved. Since ve: VE(Y) + vY is perfect onto,

(3) VE(Y) = (Be,) ™ (vY).
Hence it follows from (1), (2) and (3) that

X, = ROUE(Y)) = B((8e,) (vr)) = FHuy).

Since T is perfect, this shows that §|XO (= (uf)IXO ) is a

perfect map from XO onto VY.

(b) + (c). Let f: X ~ Y be a perfect onto map. By (b),

there is a closed subset X  of uX such that (Uf)]XO is a perfect

map onto VY. Let y€vY, and let U be a cover of (Uf)—l(y) by

open sets in vX. Since (Uf)_l(y)f\X is compact, it is covered

0
by a finite subfamily { Ul,..., Un } of U. If we set

G=vY - (uE)(X_ - (Ulu...uun)),

0

then G is an open neighborhood of y in uY such that GCZ(Uf)(Ul)LJ
...L)(uf)(Un). Hence uf is a bi-quotient onto map.

(e) - (d) is obvious. (d) - (a) and (e) » (a) follow
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from 17.2. (a) = (e) can be proved similarly to that of 17.2

(a) > (b). Hence the proof is complete.

20.2 REMARK. The reader might ask whether, in 20.1 (e), "ir=-
reducible" can be omitted or not. The answer is negative. In
fact, Isiwata [18] and the author independently proved that vf:
vX -+~ uY is perfect onto for any perfect onto map f: X + Y if and
only if Y satisfies the following condition (¥):

For every decreasing sequence { Fn | n€N } of closed

(*) subsets in Y with empty intersection, M{ el n€N }

F

Y n l
is empty.

A space Y satisfying (¥) is called a cb¥-space, and there exists

a weak cb¥*-space that is not a cb¥-space ( e.g., (W(w, + 1) %

1

W(wo + 1)) - {(wl, wo)} ). We note that normal countably para-—

compact spaces are cb¥-spaces.

20.3 THEOREM. Among the following conditions on a space Y,
(a) - (b) + (c) are valid. Conversely, (c) - (a) holds if |Y|

<m

1
(a) Y is a weak cb¥-space.
(b) For each perfect onto map f: X - Y and each space Z satis-
fying v(X x Z) = vX x vZ, v(Y x Z) = v¥ x vZ holds.
(e) For each perfect onto map f: X + Y and each perfect map
. ¥ X =
g: Z, » 7, onto a weak cb¥-space Zy u(Y Z2) vy x vZ,

holds whenever u(X x Zl) = vX x UZl'
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Proof. (a) - (b). Since Y is a weak cb¥*-space, uf: uX
+ vY is bi-quotient onto by 20.1. Then, by 3.5.4%, uf x idUZ is
a bi-quotient map from vX X vZ onto vY x vZ. Hence it follows
from 14.2 that u(Y x Z) = uY x UZ.

(b) » (¢). By (b), v(Y x Z.) = vY x vZ.. Then, Z

1 1
) = uY x u22 by (b) again.

5 being

a weak cb¥-space, u(Y x Z,
(¢) » (a). Suppose on the contrary that |Y| < m and Y
is not a weak cb¥*-space. By 16.1, there exists a metrizable
space T such that v(Y x T) # vY x vT. Let us set X = E(Y) and
f=e,. Then f: X >~ Y is a perfect onto map and v(X x T) =

vX x VT, because X is a weak cb¥-space with IX[ < m - This con-

tradicts (¢), and hence the proof is complete.

20.4  REMARK. The author does not know whether (c) = (a) could

be proved without the assumption that IYI <m .

The preceding theorem raises the question of what happens
if the second factor g is merely a quotient map. Our next result

answers this question, and improves 1k4.6 above.

20.5 THEOREM. Among the following conditions on a space Y,

(a) +~ (b) + (c) are valid. Conversely, (c) - (a) holds if |Y]

(a) uY is locally compact.
(b) For each perfect onto map f: X - Y and each quotient

onto map g: Z, -+ 22, u(Y x Zg) = VY x vuZ. holds whenever

1 2

v(X x Z.) = uX x UZl.

1
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(c) For each perfect onto maps f: X + Y and g: 2, » 22,
(Y x 22) = vY x UZ2 holds whenever v(X x Zl) = yX

X uZl.

Proof. (a) - (b). If uY is locally compact, then Y is
a weak cb¥-space by 17.5. Hence it follows from 20.3 that

u(Y x zl) = UY X uzl, and so v(Y x Z_ ) = vY X u22 by 14.6. (b)

2
+ (¢) is obvious. (c) =+ (a) follows from 1L.6. Hence the proof

is complete.

20.6 REMARK. As noted in 14.7, (c) =+ (a) cannot be proved

without the assumption that |Y| < m, .
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21. Problems and remarks!!

21.1 PROBLEMS. Do 16.1 and 16.6 remain true if "metrizable
space" is weakened to "paracompact M-space" ? Do 16.3 and 16.5
remain true if "locally compact, metrizable space'" is weakened

to "locally compact, paracompact space" ?

To attack these problems, the following facts may be

available ( cf. [A_], [M, ] ): A locally compact, paracompact
L

3
space ( resp. a paracompact M-space ) X has a perfect map f from
X onto a locally compact, metrizable space ( resp. a metrizable

space ) T. Moreover, since a metrizable space satisfies (¥) in

20.2, vf: vX » uT is then a perfect onto map.

21.2 PROBLEM. Do there exist any other conditions on T for

which 16.1 remains valid ?

21.3 PROBLEM. Find necessary and sufficient conditions for X
and T in order that uv(X x T) = uX x uT holds in the case where

T is a metrizable space.

21.4  PROBLEM. Characterize R( weak cb* ). We note that it
follows from 14.2 and 17.2 that R( weak cb* ) = R( extremally

disconnected ). Moreover, since every paracompact space is a

11 Problems 21.1, 21.3 and 21.L4 have been posed by the
author in [03]
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weak cb¥-space, it follows from 4.4 and 7.6 that every member
of R( weak cb* ) is a realcompact space of non-measurable cardi-

nal.

21.5 PROBLEM. Find characterizations of an onto map f: X + Y
such that vf: uvX » vY is bi-quotient onto. We are interested in

this problem in view of 22.1 (3) below.
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CHAPTER 5

MISCELLANEOUS REMARKS

22. Common properties of R( P )

22.1 It seems that the classes R( P ) considered above have
several common properties. We list some of these below: Let

P be a topological property of spaces. Xach assertion follows
from results in the bracket.

(1) R( P ) includes all locally compact, realcompact spaces
of non-measurable cardinals ( 1.2 ).

(2) R( P ) is closed under cozero-subspaces ( [BHQ, 3.2] ).
(3) R( P ) is closed under open perfect images ( 1L.5 ); more
generally, if uf: vX - uY is bi-quotient onto, then YER( P )
whenever X€R( P ) ( 3.5.4 and 1k.2 ).

(L) If f: X >~ Y is a perfect map onto a weak cb¥-space Y,
then YER( P ) whenever X€R{ P ) ( 20.3 ).

(5) If each P-space is v-locally compact, then R( P ) is
closed under quotient images ( 14.6 ).

(6) If X€R( P ) and Y is a locally compact, realcompact space

wﬁh|Y|<mr'm81XXYeR(P) (1.2).

22.2 REMARK. (1), (2), (3) and (5) have been stated by the

1.

‘author in [O

3
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23. A continuation of section 2

This section is devoted to the example and the result
announced in section 2. In the interest of simplicity, we assume

that all cardinals are non-measurable.

23.1 EXAMPLE. There exist spaces Xi and Yi (i= 1, 2 ), nei-
ther of which is locally compact and realcompact, such that X1 X

Y, and X, x Y, are homeomorphic, but U(Xl x Yl) = uX, x vY, and

v(X sz) # UX_ x uY

2 2 2’

Proof. Let R be an arbitrary pseudocompact non-compact
space, and let P be an arbitrary first countable non-weak cb¥*-
2(@5) constructed in 11.5.3 ), and let Q =
D(d(R x P))®. Then, since uR is compact by 3.3.3 and P x Q is

-space ( e.g., Y

a k-space, it follows from 10.1 that

u(R x (P x Q)) = vR x u(P x Q).
On the other hand, it follows from 16.1 that

v({R x P) x Q) # v(R x P) x uQ.
Therefore, if we set

X, =R, Y. =P xQ,

1

X
2

H

g
x
g
<

= Q,

then Xi and Yi satisfy the stated conditions.

We next show the existence of a v-pair which cannot be

described in terms of function spaces. The following theorem
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gives a negative answer to Husek's problem, quoted in section 2.

I (or [H,] )3

That (a) implies (b) was observed by Husek in [H9 7

however, we include a proof for completeness.

23.2 THEOREM. The following conditions on a space X are

equivalent:

(a) X is locally compact.

(b) For each space Y, if (X, Y) is a v-pair, then it can be
described in terms of function spaces, that is, there
exists a completely regular Hausdorff topology t for C(X)
satisfying the following three conditions:

(1) Ct(X) is realcompact,

£ (X))

(x))cco(x x vy)li2,

(2) c(xxvy)cc(y, C

(3) c(uy, C,

Before proving the theorem, let us agree on some termi-
nology. Recall from [Kz] that a topology t for C(X) is jointly
continuoﬁs if the real-valued function o on X x Ct(X) defined by
a((x, £)) = £(x) is continuous. The function o is called the
evaluation. Let H be a family of subsets of a space X. In C(X),
the topology of uniform convergence on members of H is that

having the family { S(H, £, €) | HEH, FEC(X), € > 0 } as a sub-

base, where S(H, £, ¢) = { geC(X) | sup |f(x) - g(x)| <€ }.
X EH

12 See section 2 ( p.8 ).
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Proof of Theorem 23.2. (a) » (b). Since X is locally
compact, the compact-open topology t for C(X) satisfies (2) and
(3) for each space Y ( cf. [E, 3.4.8] ). On the other hand, a

locally compact space being a k-space, C, (X) has a complete uni-

t

formity by [K,, Theorem 12, p.231]. Since all cardinals are

X
assumed to be non-measurable, it follows from 3.3.7 that Ct(X)
is realcompact. Thus we have (b).

(b) + (a). Suppose on the contrary that X is not locally
compact at XOEX. Let { G>\ I AELA } be a neighborhood base at

X, in X. Then, for each A€ A, there exists an open cover Ux of

X such that no finite subfamily covers chG Let Hk be the

.
family of all open sets in X whose closures are contained in some

members of uk, and let t()A) be the topology for C(X) of uniform

convergence on members of HA' If we set XA = Ct(k A

Theorem 10, p.228], and hence

)(x), then X
has a complete uniformity by [Kz,
it is realcompact by 3.3.7. Since t(A) is jointly continuous by

% X x Xx + R ( = the

[K2, Thebrem 10, p.228], the evaluation a

real‘line ) is continuous. Define ® to be the family of all com-

pletely regular Hausdorff topologies t for C(X) such that Ct(X)

is realcompact. For each tE& @, let Xt = Ct(X)’ and let us set
Y=(®{XA{AEA})@(@{Xt|t€®}L

Then Y is realcompact, and so (X, Y) is a v-pair. It remains to

prove that (X, Y) cannot be described in terms of function spaces.

To do this, let T be an arbitrary completely regular Hausdorff

topology for C(X) satisfying (1), and let o: X X CT(X) + R be
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the evaluation. Then T €®. We shall show that either (2) or
(3) fails for T.
In case 1 is jointly continuous, then pick an arbitrary
N
element g of C(X), and define a function f from vY ( = Y ) into
CT(X) by

g if hEX,, AEA,

~
f(h) = g 1if hEXt,tetb with t # T,
h if heX_.
T

Then %EC(UY, CT(X)) obviously, but the real-valued function f
on X x vY defined by f((x, h)) = [%(h)](x) is not continuous,
because f] (X x XT) = o and T is not jointly continuous. Hence
it follows that C(vY, CT(X))q‘:C(X X vY), i.e., (3) fails.
In case 1 is Jjointly continuous, then define a real-valued
function £ on X x ¥ by |
o, ((x, b)) if hE€X,, AEN,
£((x, h)) ={
0 if heX , t€ d.
Then fEC(X x Y). To show that f: Y CT(X) ( = the function
defined by /f\‘(y) = £|(X x {y}) ) is not continuous, assume that
it is continuous. Choose a constant function kECT(X) with k(X)
= {0}. Since k(xo) = a((xo, k)) = 0 and o is continuous, there
exist A€ A and t-neighborhood V of k in CT(X) such that
|e((x, h))| <1 for each (x, h)EGA x V.

Since £|X,: C )(X) > C_(X) is the identity, and since it is

(A
continuous, there is a t(A)-neighborhood W of k with WCV. Then

some basic t(A)-neighborhood
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N{s(H, X, ) | i=21,...,n}

of k must be contained in W. Since ClXGA cannot be covered by

finitely many members of UA, we can find a point Xle'GX -

UL el H, | i =1,..., n } and J€ C(X) such that J(x;) =1 and

JUL el H, | i =1,..., n}) = {0}. Since jEW, (xl, j)éGA x V,

but a((xl

A
f is not continuous, which shows that C(X x Y)d ¢(Y, CT(X)), i.e.,

» J)) = j(xl) = 1, that is a contradiction. Therefore

(2) fails. Hence the proof is complete.

23.3 REMARKS. (1) The essential idea of the proof of (b) ~
(a) is due to Arens [Al].

(2) In the proof of (b) » (a), we can deform Y into a
non-realcompact space. Consider Y x W(wa) instead of Y, where

+
Y|) ; then the proof goes

w, is the initial ordinal of ([X]-

Just as above.
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24, Dieudonné topological completions of products

A space 1s called topologically complete if it is complete
with respect to its finest uniformity. For each space X, there
exists a unique topologically complete space yX containing X
densely such that each map f: X = Y admits a continuous extension
vyf: yX - yY¥. The space yX is called the Dieudonné topological
completion of X, and yX as well as uvX has been studied by several
researchers. For a survey of yX, the reader is referred to [CNE].
In general, a result about Hewitt realcompactifications of prod-
ucts has an obvious analogue for Dieudénné topological completions

1, [0.]1, [P.] ), and most of

(er. (8], [cal, [ow,), (1], M1, [0,], [P,

1 >

our results about v, except those of chapter 4, can also be trans-
formed in a straightforward manner into results about y. In this
section, we only state the corresponding theorems to those of

chapter L4 without proofs.

2k.1 THEOREM. Consider the following conditions on a space X:

(1) Fach locally finite family of open sets in X is locally
finite in ¥X.

(2) E(yX) = yE(X) ( and then e x = Yo ).

(3) Yoy YE(X) +~ vX is a bi-quotient onto map.

(L) For any perfect onto map f: Y -+ X, there exists a closed
subset Y, of yY such that (v£) |YO is a perfect map from
YO onto vX.
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(5) For any perfect onto map f: Y - X, yf: y¥ - vyX is a bi-
~quotient onto map.

(6) For any perfect irreducible onto map f: Y -+ X, vf: v¥ +~ vX
is a perfect onto map.

(7) For each perfect onto map f: Y + X and each space Z satis-
fying y(Y x Z) = yY¥ x vZ, yv(X x Z) = yX x yZ holds.

(8) For any perfect onto map f: ¥ - X, yf: vY¥ » vX is a count-
ably bi-quotient onto map.

(9) ey YE(X) »- yX is a countably bi-quotient onto map.

(10) X x Y is C-embedded in YX X Y for each bi-k-space Y.

(11)  y(X x Y) = yX x Y holds for each paracompact M-space Y.

(12) y(X x T) = yX x T holds for each metrizable space T.

(13)  v(X x D(e(X))*) = yX x D(c(x))".

(14)  Each countable locally finite family of open sets in X is
locally finite in vX.

(15) Each locally finite family G of open sets in X, with |G]
< ml, is locally finite in vX.

Then these conditions are related as follows:

(1) <> (2) < (3) «> (k) < (5) < (6) < (T) » (8) »

+ (9) » (10) +> (11) <> (12) <+ (13) +> (14) <= (15).

24,2  REMARKS. (1) 1In case ]XI <m, all of these conditions
are equivalent. The author does not know whether (10) - (9) ~

(8) -~ (7) are true or not in general.
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(2) 1In [0,], the author called a space X satisfying (1)

1
a weak b*-gpace, where a weak b¥-space is defined by internal
properties of X. Extremally disconnected spaces, M'-spaces in

the sense of Isiwata [15], and collectionwise normal countably

paracompact spaces are weak b¥-spaces ( cf. [01] ).

123



[BH2]

REFERENCES

R. F. Arens, A topology for spaces of transformations,
Ann. Math. L7 (19L46), L480-L9s.

A. Arhangel'skil, Some types of factor mappings and the
relations between classes of topological spaces, Soviet
Math. Dokl. 4 (1963), 1726-1729. |

A. Arhangel'skii, On a class of spaces containing all
metric and all locally compact spaces, Soviet Math. Dokl.
L (1963), 1051-1055.

R. A. Al6 and H. L. Shapiro, Normal topological spaces,
Cambridge Univ. Press, Cambridge (197k).

H. Buchwalter, Produit topologique, produilt tensoriel et
c-replétion, Proc. Colloque (1971), International d'Analyse
Fonctionelle de Bordeaux 1-26, Univ. Claude-Bernard Lyon.
R. L. Blair, On v-embedded sets in topological spaces,
TOPO-T2, Lecture Notes in Math. 378 ( Springer-Verlag,
Berlin-Heidelberg-New York ) (1974), 46-T79.

J. L. Blasco, On p-spaces and kR-spaces, Proc. Amer. Math.
Soc. 67 (1977), 179-186.

D. K. Burke, On subparacompact spaces, Proc. Amer. Math.
Soc. 23 (1969), 655-663.

R. L. Blair and A. W. Hager, Extensions of zero-sets and
of real-valued functions, Math. Z. 136 (197k), 41-52.

R. L. Blair and A. W. Hager, Notes on Hewitt realcompact-

124



[BH31

ification of a product, Gen. Topology Appl. 5 (1975), 1-8.
R. L. Blair and A. W. Hager, z-embedding in BX x BY,
Set-Theoretic Topology, Academic Press (1977), 4T7-T2.

D. E. Cohen, Spaces with weak topology, Quart. J. Math.
Oxford Ser. (2) 5 (195k4), TT-80.

W. W. Comfort, Locélly compact realcompactifications,
General Topology and its Relations to Modern Analysis

and Algebra II, Proc. Second Prague Topology Symp. (1966),
95-100.

W. W. Comfort, On the Hewitt realcompactification of a
product space, Trans. Amer. Math. Soc. 131 (1968), 107-118.
T. Chiba and K. Chiba, Q-paracompactness and closed map=-
pings, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A 11 (1972),
230-23h.

W. W. Comfort and H. Herrlich, On the relations P(X x Y)

[}

PX x PY, Gen. Topology Appl. 6 (1976), 37-L3.

W. W. Comfort and S. Negrepontis, Extending continuous
functions on X x Y to subsets of BX x 8Y, Fund. Math. 59
(1966), 1-12.

W. W. Comfort and S. Negrepontis, Continuous pseudometrics,
Lecture Notes in Pure and Applied Math. 14 (1975), Marcel
Dekker, Inc. New York.

R. Engelking, General Topology, Polish‘Scientific Publishers,
Warszawa (1977).

7. Frolik, Generalizations of compact and LindelSf spaces,

125



Czech. Math. J. 9 (1959), 172-21T7 ( Russian ).

Z. Frolik, The topological product of two pseudocompact
spaces, Czech. Math. J. 10 (1960), 339-349.

Z. Frolik, Applications of complete families of continuous
functions to the theory of Q-spaces, Czech. Math. J. 11
(1961), 115-133.

R. F. Gitting, Some results on weak covering conditions,
Canad. J. Math. 26 (197L4), 1152-1156.

I. Glicksberg, Stone-Cech compactifications of products,
Trans. Amer. Math. Soc. 90 (1959), 369-382.

L. Gillman and M. Jerison, Rings of continuous functions,
Van Nostrand, Princeton (1960).

A. W. Hager, On inverse closed subalgebras of C(X), Proc.
London Math. Soc. (3) 19 (1969), 233-25T.

A, W. Hager, Projections of zero-sets ( and the fine uni-
formity on a product ), Trans. Amer. Math. Soc. 140 (1969),
87-9L.

A. W. Hager, Uniformities of a product, Canad. J. Math.
2k (19712), 379-389.

D. Harris, The local compactness of vX, Pacific J. Math.
50 (197k), 469-LT6.

E. Hewitt, Rings of real-valued continuous functions I,
Trans. Amer. Math. Soc. 64 (1948), 45-99.

M. Hugek, The Hewitt realcompactification of a product,

Comment. Math. Univ. Carolinae 11 (1970), 393-395.

126



M. Husek, Pseudo-M-compactness and v(P x Q), Indag. Math.
33 (1971), 320-326.

M. Hufek, Realcompactness of function spaces and v(P x Q),
Gen. Topology Appl. 2 (1972), 165-179.

M. Hugek, Hewitt realcompactification of products, Topics
in Topology, Keszhely (1972), 427-L435.

A. W. Hager and S. G. Mrowka, Compactness and the projec-—
tion mapping from a product space, Notices Amer. Math. Soc.
12 (1965), 368.

K. Hardy and I. Juhasz, Normality and weak cb property,
Pacific J. Math. 64 (1976), 167-1T72.

K. Hardy and R. G. Woods, On c-realcompact spaces and
locally bounded normal functions, Pacific J. Math. 43
(1972), 6L4T-656.

Y. Ikeda, Mappings and c-realcompact spaces, Bull. Tokyo
Gakugei Univ. Ser. IV, Math. and Sci. 28 (1976), 12-16.

JL R. Isbell, Uniform spaces, Amer. Math. Soc. Providence
(196L).

T. Ishii, On the completions of maps, Proc. Japan Acad.

50 (197k), 39-L3.

T. Isiwata, Z-mappings and C¥-embedding, Proc. Japan Acad.
k5 (1969), 889-893.

T. Isiwata, Generalizations of M-spaces I, II, Proc. Japan
Acad. 45 (1969), 359-363, 36L-36T.

T. Isiwata, Topological completions and realcompactifica-

127



(10]

(M, ]

tions, Proc. Japan Acad. 47 (1971), 941-9k6.

T. Isiwata, Some properties of the remainder of Stone—éech
compactifications, Fund. Math. 83 (1974), 129-1k2.

T. Isiwata, d-, d*¥-maps and cb¥*-spaces, Bull. Tokyo Gakugei
univ. Ser. IV, Math. and Seci. 29 (1977), 19-52.

8. Iliadis and S. Fomin, The methods of centered systems

in the theory of topological spaces, Russian Math. Surveys
21 (1966), 37-62.

T. Ishii and H. Ohta, Generalizations of C-embedding and
their applications, to appear in Math. Japonicae 23 (1978).
A. Kato, Solutions of Morita's problems concerning countably-
—compact-ifications, Gen. Topology Appl. 7 (1977), 77-87.
J. L. Kelley, General Topology, Van Nostrand, Princeton
(1955).

P. Kurepa, The cartesian multiplication and the cellularity
number, Publ. Inst. Math. 2 (1962), 121-139.

ﬁ. LaSnev, Closed images of metric spaces, Soviet Math.
Dokl. T (1966), 1219-1221.

W. G. McArthur, Hewitt realcompactifications of products,
Canad. J. Math. 22 (1970), 6L5-656.

E. A. Michael, Bi-quotient maps and cartesian products of
quotient maps, Ann. Inst. Fourier, Grenoble 18,2 (1968),
287-302.

E. A. Michael, A quintuple quotient quest, Gen. Topology

Appl. 2 (1972), 91~-138.

128



K. Morita, Products of normal spaces with metric spaces,
Math. Ann. 154 (196L), 365-382.

K. Morita, Topological completions and M-spaces, Sci. Rep.
Tokyo Kyoiku Daigaku Sect. A 10 (1970), 271-288.

K. Morita, Countably compactifiable spaces, Sci. Rep.
Tokyo Kyoiku Daigaku Sect. A 12 (1973), T-15.

K. Morita, On the dimension of the product of Tychonoff
spaces, Gen. Topology Appl. 3 (1973), 125-133.

8. G. Mrowka, Set theoretic constructions in topology,
Fund. Math. 94 (1977), 83-92.

J. Mack and D. G. Johnson, The Dedekind completion of
C(X), Pacific J. Math. 20 (1967), 231-243.

S. Negrepontis, An example on realcompactifications, Arch.
Math. 20 (1969), 162-16L.

N. Noble, Countably compact and pseudocompact products,
Czech. Math. J. 19 (1969), 390-397.

H; Ohta, Topologically complete spaces and perfect maps,
Tsukuba J. Math. 1 (1977), 77-89.

H. Ohta, Local compactness and Hewitt realcompactifica-
tions of products, Proc. Amer. Math. Soc. 69 (1978),
339-3k43.

H. Ohta, On spaces which are defined in terms of the re-
lation v(X x Y) = vX x vY, to appear.

H. Chta, Some new characterizations of metrizable spaces,

to appear.

129



[0_.] N. Onuchic, On the Nachbin uniform structures, Proc. Amer.
Math. Soc. 11 (1960), 177-179.

[P.] T. Przymusinski, On locally finite coverings, Collog. Math.
38 (1978), 187-192.

[P.] R. Pupier, Topological completion of a product, Rev. Rou-
maine Math. Pures Appl. 19 (197h), 925-933.

[(R.] M. E. Rudin, A normal space X for which X x I is not normal,
Fund. Math. 73 (1971), 179-186.

[R.] M. E. Rudin, x-Dowker spaces, Czech. Math. J. 28 (1978),
32L4-326.

(s.] J. R. Schoenfield, Mathematical Logic, Addison-Wesley
Publishing Co. Readings, Massachusetts (1967).

[s.] T. Shirota, A class of topological spaces, Osaka Math. J.
4 (1952), 23-ko.

[s.] F. Siwiec, Sequence-covering and countably bi-quotient
mappings, Gen. Topology Appl. 1 (1971), 1Lk3-15h.

[Sh] M. Starbird, Extending maps from products, Studies in
Topology, Academic Press, New York (1975), 559-56k.

[s_.] ©D. P. Strauss, Extremally disconnected spaces, Proc. Amer.
Math. Soc. 18 (1967), 305-309.

[sM] F. Siwiec and V. J. Mancuso, Relations among certain map-
pings and conditions for their equivalence, Gen. Topology
Appl. 1 (1971), 33-L1.

[T.] A. D. Taimanov, On the extension of continuous mappings
of topological spaces, Mat. Sb. 31 (1952), 459-462.

( Russian ).

130



H.

Tamano, A note on the pseudo-compactness of the product

of two spaces, Mem. Coll. Sci. Univ. Kyoto Ser. A 33

(1960), 225-230.

M.

HA

J.

Wage, An easy counterexample to the inequality dim (X x ¥)
dim X + dim Y, preprint.

H. C. Whitehead, A note on a theorem due to Borsuk,

Bull. Amer. Math. Soc. 54 (1958), 1125-1132.

R.

G. Woods, Co-absolutes of remainders of Stone-Cech

compactifications, Pacific. J. Math. 37 (1971), 545-560.

R.

G. Woods, Ideals of pseudocompact regular closed sets

and absolutes of Hewitt realcompactifications, Gen. Topology

Appl. 2 (1972), 315-331.

131



INDEX

( TERMS )

absolute 9k
a(m)-space L6

bi-k-space 1L
bi-quotient map 13
bi-sequential space 1k

cb*~space 110

cellularity 10

C-embedded 1

C*-embedded 1

character 10

completely separated 11

countable chain condition 93

countably bi-k-space 1k

countably bi-quotient map 13

countably bi-sequential space
1h

converge 56

cozero-rectangle 82

density 10

developable space 30

development 30

Dieudonné topological comple—
tion 121

Dowker space L3

D(m)-expandable family 53

evaluation 117
expandable family 53
extremally disconnected 117

Fréchet space 1L

Glicksberg's theorem 3

Ga—dense 11

hereditarily closure-preserv-
ing 59
Hewitt realcompactification 2

irreducible map 9k

Isbell's space 30
jointly continuous 117

k-space L8
k-Dowker space U5

Lasnev space 62

locally pseudocompact 49

locally pseudo-m-compact 52

locally strongly pseudocompact
50

locally weakly-m-compact 19

measurable cardinal 10

metacompact 18

Moore space 30

M'-space in the sense of
Isiwata 8L

non-measurable cardinal 10

paracompact M-space 1k
paracompact p-space 14
product map 1h
projective cover 9k
pseudo-k-space 50
pseudo-M-compact 52
pseudo—ml—compact 12

pseudo-open map 13

P-space 7T
P-space in the sense of
Morita 84

P(m)-point 28
P(m)-space 18

quasi-k-space 51

realcompact 2

regular closed set 63
relatively pseudocompact 63
relatively pseudo-mM-compact 56

subparacompact 18

singly bi-k-space 1L
strongly pseudocompact 50
strong topology 27

topologically complete 121
topology of uniform convergence
on members of H 117

v-locally compact 72
v-pair 8

132



weak b¥-space 123 weak topology 48
weak ch-space 90 weight 10

weak cb¥*-space 90
. z-closed 12
weakly D(m)-expandable family | _ -~ 0 .7

59 . .
weakly-m-compact 19 O-dimensional 19

( SYMBOLS )

|A] 1 m¥ 19 BX 2
Al <m 2 N By 7
(c) 103 N 1 RE Th
c(x) 1 R ] yX 121
Ct(X) 8 R( P ) L yf 121
c*(X) 1 st(x, U) 30 ¥ (X) 10
c(y, z) 8 W(a) 1 y(x, X) 10
e (X) 10 w(X) 10 W, 1
D(m) 1 x¥ 91 w 1
D*(m) 16 Yl(n) 57 Ty 12
a(x) 10 Yz(n) 58 4 30
dim 87 ¥ (n) 62 B 50
E(X) ol 7, (n, m) 28 (R, m) 23
ey . oL Zz(n) 30 zz(h, m) 32
F(y, ) 24 Z3(XB) L3 vX 2
£ 8 7, (X)) Ll u

£, % £, 1k vf ,
my 1 ® 80

133



	0001.tif
	0002.tif
	0003.tif
	0004.tif
	0005.tif
	0006.tif
	0007.tif
	0008.tif
	0009.tif
	0010.tif
	0011.tif
	0012.tif
	0013.tif
	0014.tif
	0015.tif
	0016.tif
	0017.tif
	0018.tif
	0019.tif
	0020.tif
	0021.tif
	0022.tif
	0023.tif
	0024.tif
	0025.tif
	0026.tif
	0027.tif
	0028.tif
	0029.tif
	0030.tif
	0031.tif
	0032.tif
	0033.tif
	0034.tif
	0035.tif
	0036.tif
	0037.tif
	0038.tif
	0039.tif
	0040.tif
	0041.tif
	0042.tif
	0043.tif
	0044.tif
	0045.tif
	0046.tif
	0047.tif
	0048.tif
	0049.tif
	0050.tif
	0051.tif
	0052.tif
	0053.tif
	0054.tif
	0055.tif
	0056.tif
	0057.tif
	0058.tif
	0059.tif
	0060.tif
	0061.tif
	0062.tif
	0063.tif
	0064.tif
	0065.tif
	0066.tif
	0067.tif
	0068.tif
	0069.tif
	0070.tif
	0071.tif
	0072.tif
	0073.tif
	0074.tif
	0075.tif
	0076.tif
	0077.tif
	0078.tif
	0079.tif
	0080.tif
	0081.tif
	0082.tif
	0083.tif
	0084.tif
	0085.tif
	0086.tif
	0087.tif
	0088.tif
	0089.tif
	0090.tif
	0091.tif
	0092.tif
	0093.tif
	0094.tif
	0095.tif
	0096.tif
	0097.tif
	0098.tif
	0099.tif
	0100.tif
	0101.tif
	0102.tif
	0103.tif
	0104.tif
	0105.tif
	0106.tif
	0107.tif
	0108.tif
	0109.tif
	0110.tif
	0111.tif
	0112.tif
	0113.tif
	0114.tif
	0115.tif
	0116.tif
	0117.tif
	0118.tif
	0119.tif
	0120.tif
	0121.tif
	0122.tif
	0123.tif
	0124.tif
	0125.tif
	0126.tif
	0127.tif
	0128.tif
	0129.tif
	0130.tif
	0131.tif
	0132.tif
	0133.tif
	0134.tif
	0135.tif
	0136.tif

