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0 Introduction

1 Closed embeddings of complete metric spaces

2 Non-existence of universal spaces for some
stratifiable spaces

3 Normal spaces X x Y satisfying the inequality
dim (X x Y) > dim + dim Y

Summary. We shall solve the following three

problems, which come from the attempt to develope

harmonious dimension theory:

(1)

(2)

(3)

Find a non-separable complete metric space which

plays a role of the space of real line.

Find universal spaces for generalized metric spaces
within the class of stratifiable spaces,

Find strongly zero dimensional spaces X and Y.such that
dimension dim (X = Y) of the product is arbitrary

high. '
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CONVENTIONS.,

The Greak letters o,8 will indicate ordinal numbers,
and each ordinal will be taken to be the set of its
predecessors. Thus, o € B8 and « < B means the same
thing, These same Greak letters will also stand for
cardinal numbers. w is the first infinite ordinal,

and w, is the first uncountable ordinal. We also use

w to denote the set of positive integers. No difficulty

will result from these ambiguity. The cardinality of
continuum is sometimes denoted by c.

A sequence {A;} of sets is called decreasing if
A, > A;,; for each 1.

All spaces considered are assumed to be Tychonoff,
and all maps are continuous. The dimension dim X of a
normal space X means  the covering dimension of it,
which dgoes back to the idea of Cech [13 and Lebesgue [13,

(When X is non-normal, we adapt the dimension function

due to Katétov [13,) In particular, we say that X is
strongly O-dimensiondl when dim X = 0.

We shall use several different topologies t on the
Cantor-set C, and we denote it by (C,t). In particular,
by (C,e,) we denote the usual Euclidean topology on C.
For a topology = on C and for a subset U of C, we say
sometimes that U is_t-open if U is open in (C,t),
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We say that U is clopen if it is closed and open
simultaniously, For a subset A of (C,t) t|A denotes
its relative topology. The unit interval with the
Euciideon topology is denoted by I (the letter e
stands for its topology)., Exp (X) denotes the hyper-
space consisting of all closed sets of a topological
space X with the Vietoris topology.

For the undefined terminology, we refer to the
reader to Engelking 13 and Kunen [13,
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Introduction,

[t is difficult to determine the origin of the
concept of dimension (see Duda [13). But, it is no
doubt to believe that the discoVery by Peano (13 (that is,
a continuous map on the unit interval, the image of which
is the full saquare) reminded the people that it is
necessary to define the concept of dimension precisely.

Nowadays, we have some satisfactory dimension
functions for a space X; ind X,.Ind X, and dim X,

One of the most remarkable facts concerning their
definitions is that we can assign dimensions to fairly
general spaces. For example, we can define the above
three dimension functions for every (not necessarily,
metrizable) normal spaces.

On the other hand, we believe that our dimension
functions are satisfactory, since for separable metric

spaces we have a beaqutiful harmonious dimension theory
(see Hurewicz and Wallman C11),

Hence, one of the main prolbems in dimension theory
is to construct a harmonious dimension theory for more
general spaces,

From this point of view we have remarkable
developments for metrizable spaces (see Morita (2] and
Nagata [71), and have important results for some
stratifiable spaces (Nagami [6,71 and Oka [13).



There are, however, many theorems, which are valid
for separable metric spaces, but are open for more
general (even, complete metric) spaces in dimension
theory. In this thesis we shall discuss three such
theorems, and shall solve them completely,

(1) There is no doubt to believe that the real 'line R
is one of the most important and useful 1-dimensional
spaces. Our first problem is to seak a non-separable
complete metric space, which plays a role of the space R.
To specify our problem, we quickly review the
strongly O-dimensional case. For the strongly
O-dimensional spaces we believe that we have a
satisfactory one. It is the Baire's O-dimensional space,

The reason, why it is, is that the Baire's 0-dimensional
space B(«) of weight « satisfies not only that B(w)
(that is, the separable case) is homeomorphic to the
familiar space, “the space of irrational numbers”, but
also that
(1) every strongly O-dimensional complete metric space
of weight « 1is homeomorphic to a closed subset
of B(e) (Stone [11),
Closed embeddings are frequently used in topology
(for example, it is indispensable for ANR theory).
In particular, the above result (1) is essentially used



in the recent work of Jayne and Rogers [11 to obtain
their representation theorem,

On the other hand, it is known that every finite
dimensional separable locally compact space can be
closed-embedded in the finite iterated product of R
(Isbell [11),

(Note that we cannot embed an n-dimensional space in

the same dimensional product R in general. We can,
however, embed it into the 2n+l dimensional product R2”+?)

Therefore, we can specify our problem as follows:

PROBLEM, For a given infinite cardinal number «
find a 1-dimensional complete metric space Z, of
weight o such that
every 1-dimensional complete metric space of weight o
can be closed-embedded in a finite iterated product of Z,.

In chapter 1 we can obtain more general results
together with the solution of this problem;

THEOREM 1.2. For a given infinite cardinal number o
and every non-negative integer n there exists an
n-dimensional complete metric space Z, , of weight «
such that.every n-dimensional complete metric space of

weight o can be closed-embedded in the product (Zn’a)g.



(2) It is one of the most important theorems in
dimension theory that there exist universal spaces for

several subclasses C of separable metric spaces. (A

space X is called a universal space for a class C if

(@) X is a member of C ;

(b) every member of C is homeomorph;c to a subset of X.)
For example, the countable infiﬁ%e product of the

real lines R is a universal space for all separable

metric spaces. It is also known that there are universal

spaces for several (non-separable) metric spaces (Nagata [71),
One of the important properties of universal spaces

is that it reduces a general problem to a special problem

for a subset of a particular space., (That is, when we
want to prove a problem for every separable metric space,
it suffices to show it for a subset of R”.  Hence,

We can use some special properties of R” for this
problem.)

We believe that one of the reasons, why we cannot
complete a harmonious dimension theory for stratifiable
spaces, is that it was not known that whether or not
there exist universal spaces,

Hence, we specify our problem as follows:



PROBLEM. For every infinite cardinal number o
find a universal space for strongly 0-dimensional
stratifiable spaces of netweight «,

(Note that the netweight of a space X is equal to its
weight when X is metrizable, and that it is known that
when we classify stratifiable spaces, it is convenient
to use its netweight instead of its weight.)

In contrast with the known results for metric spaces
we shall give a complete negative solution to this
problem in chapter 2 (Theorem 2.1). We shall also
show that there are none for almost all of known
important subclasses of stratifiable spaces. (When
we use their weight instead of their netweight, we
obtain similar results in Corollary 2.1.)

Therefore, our results show that there are
unexpected deep gaps between the class of metric spaces
and that of stratifiable spdces.



(3) The third problem is concerned with the inequality
(*) dim (X x Y) < dim X + dim Y,
which is called the product theorem in dimension theory,

It is known that the equality in the above formula
is not valid in general. Namely, it is Pontjagin (13
who constructed a 3-dimensional compact metric space
X » Y with 2-dimensional factor spaces X and Y for the
first time in the literature.

It is also known that there are higher dimensional
examples (Kuz'minov €13): For a given triple (m,n,k)
of positive integers which satisfies g certain
condition (that is, the Bockstein condition) there
exist compact metric spaces X and Y such that
dim X = m, dim Y = n, but dim (X x Y) = m+n -k,

There exists an algebraic characterization in
terms of the homology groups of X that
the equality is valid for every compact metric space Y
(independently, Boltvanskii (see Kuz'minov ([11) and
Kodama [11),

On the other hand, it seems that almost all theorems,
which say that the inequality is valid, have been
establided in o way parallel to the discovery of the
theorems, which say that the product is normal (for
example, Morita £131), Hence, there had been long
(for about 20 vears) standing the following problem:



PROBLEM, When X x Y is normal does the inequality
(*) hold ?

The first counter-example for the ineguality (*),
and hence which solves the above problem negatively,
was constructed by Wage {131 , under the assumption of
continuum hypothesis (CH), After that, Przymusinski (3]
eliminates CH, and constructed a counter-example within
ZFC,

Following their results, we specify our problem as
follows,

HIGHER DIMENSIONAL PROBLEM. For a given pair of
non-negative integers (m,n) and k = 1,2,..., =, 1s
there any normal product space X x Y such that
dim X =m, dim Y = n, while dim (X x Y) =m+n+k ?

We shall solve this prolbem affirmatively. In the
case k = = our example also solves a problem naised in
Fedorluk 23 under CH.

Therefore, we now have fairly complete information
about the behaviour of the dimension function on the
product spaces.,
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1 Closed embeddings of complete metric spaces.

DEFINITION 1.1, We say that a metric space X has
the type (n,o) if X is of dimension n and of weight «,
A (complete) metrizable space X of type (n,s) is called
(complete) (n,a)-universal if it satisfies that
(1) every (completely) metrizable space of type (n,c)

can be embedded in X as a (closed) subset,

When X is not necessarily of type (n,a), we say that
a space X is (closed) (n,a)-embeddable if X satisfies (i),

There is no doubt to believe that the real line R

is one of the most important useful l-dimensional spaces
among sepdrable metric spaces. - OQur present attempt is
to seak a non-separable 1-dimensional complete metric
space T of weight o satisfies-that
(*) for every n there exists an m < = such that T

is closed (n,«)-embeddable;
(**) T has some nice properties such as linearly

orderable or ANR,



REMARK 1.1, (a) One of the frequently used
non-separable 1-dimensional space is the hedgehog (or,
star) space J(a) of weight o (see for example, Nagata
(7, Definition IV. 81). Since every J(a) is
o-locally compact, the space.-of irrationals P cannot
be embedded as a closed subset in any finite iterated
products of it (it is only known that the countable
product J(a)” is complete (=,a)-universal). Therefore,
J(@) does not serve our purpose.

(b) On the other hand, we have satisfactory spaces for
the O-dimensional case. We believe that the Baire’s

0-dimensional space B(a) of weight o is the space we
want., It is because B(w) (that is, the separable case)
is homeomorphic to P and every B(e) is complete (0,o)-
universal (Stone C11),

(c) It is also known (Nogata €7, Theorem VI. 103) that
there are (n,o«)-universal spaces for every (n,o),
Finally, we note that Lipscomb [11 defined a complete
metric space L(o) of weight o such that n+l fold

"t1 contains an easy definable

product L(a)
(n,o)-universal spaces. But, these embeddings are not

necessarily closed.
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We begin with the following lemma which is a slight
variation of a lemma due to Nagata, Its proof is
achieved in a parallel manner of Nagata €7, VI. 2 A)1J,
so that we omit it,

LEMMA 1.1. Let M be an n-dimensional metric space,
and let {U;: 1 ¢ o} and {F;: 1 ¢ w} be a collection of
open, and of closed subsets of M, respectively, with
U; » F;, for each 1. Then, for every pair = u; > v; of
real numbers there exists a collection

v, =1V, +u; > t>v,, tis rationall

of open sets in M for each i sqtisfying
(i) Fi < Vi,r < V%,P < Vi,S c V

1,8

< Ui if r < S;
(i1) V; , =oV; ;rs>rrandV; , =v iV, ;+s<rk

1
(iti) ord {3V : Ve V} <n, where V = v _,{

Next, we shall prove the following theorem, We
introduce the following spacial subset Z, of R”.
Let Z, be the set of points in R” at most n of whose

coordinates are rational. Then, Z_  is completely

n
metrizable, since it is a Gs-subset of R™. It is also

known that Z, is n-dimensional (cf. Nagata U7, p. 1551),
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THEOREM 1,1, Let M be any completely metrizable
space which is (n,a)-universal. Then, the product space
M x Z, is closed (n,a)-universal.

Proof. Let X be any completely metrizable space of
type (n,o), Since M is (n,o)-universal, we may think
of X as a subspace of M. Then, by Lavrentiev's theorem
(Kuratowski €1, & 35, II3) X is a Gg-subset of M,

If X =M, our proof is complete, since M x {g} is @
closed subspace homeomorphic to X, where g is a point
of Z,. So we may assume that M \ X # @u Put
MANX= v Foand F, < F,,,,
where each F; is a closed subset of M. First, we shall
define a continuous map f,;: X » R for each i such that
(1) for each number r > 1 and every point z « F;
there exists a 6 > 0 such that fy(x) > r for any
X € X nBs(z);
(2) f=n,_f.: X~ R is a Z,-valued map (that is,
f is g continuous map into Z,).

Let {r,} be a strictly decreasing sequence of irrational
numbers which converges:to 0. Put '

m+1 r I
Then, for the collections{iF, i,me w}, (U. : 1,me wl,

7,m m
z,m’

and each pair of irrationals u; r, and Viom~ Vmea

s m

we can apply Lemma 1.1 to get a collection
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=WV et Ty > U > 1, tis rationall

_ i,m
of open sets in M which satisfies (i) - (iii) of the
lemma for each pair of integer i and m. For each i we
shall define a map f;: X >~ R as follows,

(3) f;(X) =1/r; If x ¢ Uz, 1

i
Fo 00 =1/r if xoe Uy o N vV,
and
fe ) = 1/Inf {re xoe Vb if xe v v, 0 NVFL
Then, it is easy to see (Nagata (13) that f, is
continuous and that
(4) f,(x) = rational if and only if x e 3V for some

oo

VeV, where V, = v _. Vime

From the definition (3) of f,, we have f (x) > 1/r, for
every x € U; ,,» s0 that (1) holds. We can also show
that (2) holds, since {r, )} is strictly decreasing, (4)
holds, and ord?3V <n by (iii). Let

g: X>MxZ, beglx)=(x,F(x)),
Then, it is easy to see that g is an embedding
(cf, Kuratowski [1, 521 XIII, Theoreml). Let us show
that g is a closed embedding.. Take any point

(v,z) ¢ g(X),

At first, we consider the case y « X. Then, we have
z # f{y), since (v,z) # g(y) = (y,f(y)). Therefore,
there exists an i such that z, # f.(y), where
z=1(z;) «Z,. Take two open sets U and V in R such

13



that z; « U, f;(y) e Vand U o V=4, Since f; Is
continuous, there exists a ¢ > 0 such that
fiix n Bg(y)) =V, Put
W =Bs(y) x =%,
where m,: Z, > R is a restriction of the natural
projection from R” to the n-th factor space. Then, W
is an open neighborhood of (y,z) and it is easy to see
that W n g(X) = 2,
Next, we consider the case y ¢ X. In this case we shall
use the property (1), Since y ¢ X, there exists an i
with v « F;,. Then, for r = [z;] + 1 there exists a
§ > 0 such that f (x) > r for any x « X n Bs(y)., Put
W= Bs(y) x m, " (==,1),
Then, W is an open neighborhood of (y,z) and
Wng(X) =0, Thus, the proof is complete,

14



THEOREM 1,2, For every non nedgative integer n and
every infinite cardinal o, there exists a (n,e)-universal
2
)

such that the 2n-dimensional space (Z,

space Z,

is closed (n,a)-embeddable,

Proof. For the case o = w (that is, for the
separable case), put M =7Z,. Then, since Z, 1is
(n,w)-universal (e.g, Nagata L7, Theorem IV. 8.1), Z,
satisfies Theorem 1.1, so that Z, , = Z, satisfies the
theorem for the case o = w,

For the case « > w, let S(A) be the hedgehog space
with its weight « = |A] (see Nagata C7, Definition VI, 61
for the definition of the hedgehog space)., Let
E, = [0,13; and E, = [0,11, be some distinct sedments
in S(A). Put

T(A) = SCA)Y N {1;: 1 = 1,21,
where each 1, is the end point of E;, 1 = 1,2, Put

Zm =1 T,

where each T(A), 1is a copy of T(A). Since
(E; v Eg) n T(A) is homeomorphic to the real line R,
we may think of R¥ as a closed subset of the completely
metrizable space Z(A). Let Z (A) be the set of points
in Z(A) at most n of whose non-zero coordinates are
rational. Then, Z (A) is (n,e)-universal, since it
contains a topological copy of the universal space
K,(A) defined in €7, Theorem VI, 103, and vice versa.
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On the other hand, Z,(A) is completely metrizable, since
it is a Gg-subset of Z(A). Since RY n Z,(A) is
homeomorphic to Z,,
(5) Z,(A) contains Z, as a closed subspace.
Put
M=2Z,(A),
Then, M satisfies Theorem 1.1, so that Z, , = Z,(A)
also satisfies our theorem from (5). This completes
the proof.

REMARK 1.2, (a) Since each Baire’s 0-dimensional
space B(a) of weight a« > w contains the space of
irrationals Z, as a closed subset and B(a)? is
homeomorphic to itself, Stone’s result in Remark 1 (b)
follows from Theorem 1.2,

(b) Recently, above Stone’s theorem is used by Jayne
and Rogers [11 to obtain their representation theorem.
(c) Let S(w) be the hedgehog space of weight w, Put
F; = {1,: k 2 1}, where 1, is the end point of each
segment of S(w), For the space X = S(w) \ v _

f,(x) = 1/e(x,F;) for each x e X,

Then, f(0) = (1,1,...), where 0 is the origin of S(w)
and f =1,_7 f,;: X~ R". Therefore, the closed

embeddings used in Kuratowski [1,821 XIII, Theoreml
does not necessarily satisfy our condition (2).

16



(d) For spaces which are not necessarily completely
metrizable, the corresponding results are not valid,

even for separable spaces. In fact, assume that there
exists a finite dimensional separable metric space Z
such that every O-dimensional sepdrable metric space

can be embedded as a closed subset in Z. Since Z is
separable, the power of the set of all its closed
subsets is at most the cardinality of continuum c. But,
it is known that there exists a family of power 2 which
is homeomorphic to any other (Kuratowski [1, 8§35, I,
Therorem 51), This is a contradiction,

(e) The following problem is communicated from R. Brown:
)2

If Z is (n,a)-universal, then (Z, )" 1s closed

7, o

(n,a)-universal ?

Since there exist compact (n,w)-universal spaces, it is
not the case when o = w,

(f) Professor R. Engelking [3] has kindly communicated
the problem whether or not there exists a complete
(n,a)-universal space. He also announced in [31 that
R. Pol showed that it is the case for « = w, Quite
recently, A. Wadko [13 showed that for every infinite
cardinal number o our space Z, . in Theorem 1.2 1s
complete (n,a)-universal.

17



Using her resul, we have the following theorem
(Tsuda 5, Theorem 231) which improves a result of
J. Nagata,

THEOREM 1.3, The n+1 fold product of 1-dimensional
space Z; , is closed (n,o)-embeddable.

Therefore, our space Z,, has the property (*). 0On the
other hand, though our space cannot satisfy the
property (**), we have the following theorem, using a
result of Kodama [51:

THEOREM 1.4 (Tsuda €5, Corollary 31). There exists
2-dimensional complete ANR metric space whose n+l fold

product is closed (n,a)-embeddable,

We conclude this chapter with the following simple
improvement of a theorem of Fréchet (see, Engelking
(2, Problem 1.3. G (b)1), which will be used in the
next chapter,

THEOREM 1.5. Every metric space consisting of

countable points can be embedded in the space of
rational numbers Q as a closed subset,

18



Proof., Let X be arbitrary metric space consisting
of countable points. Then, by the theorem of Fréchet
we may think X is a subspace of Q. Put

Z =Q%\ 10¥x(Q \ X),
Then, X is a closed subset of Z, 0On the other hand,
by a theorem of Sierpinski (Engelking [2, Problem 1.3.
G (b)1) Z is homeomorphic to Q. This completes the
proof,

19
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2 Non-existence of universal spaces for some stratifiable
spaces,

One of remarkable properties of metric spaces is
that there cdre universal spaces with a given weight
(for example, the Baire’s 0-dimensional space and
generalized Hilbert spaces). The purpose of this
chapter is to show that there are none for some

stratifiable spaces. We also discuss some positive
result at the end of this chapter.

THEOREM 2.1. There are no universal spaces for the
following subclasses of stratifiable spaces with a given
network weight o > w;

(1) o -discrete stratifiable spaces,

(2) M,-spaces in the sense of Heath and Junnila 13,

(3) stratifiable w-spaces (Mizokami [11),

(4) stratifiable spaces with encircling nets (Oka [11),

(5) (strongly O-dimensional) stratifiable spaces,

(6) (strongly O-dimensional) L-spaces in the sense of
Nagami [61,

(7) (strongly O-dimensional) free L-spaces in the

- sense of Nagami (73,

21



When we use a given weight instead of a given network
weight, we have a similar result:

COROLLARY 2.1. For any given infinite cardinal
number o there exists a cardinal number 8 > o such that
there exist no universal spaces for the above classes
(1) - (7) with a given weight 8,

When we consider more restricted subclasses, contained
in Lasnev spaces or Nagata spaces, we also have d
similar result:

THEOREM 2.2, There are no universal spaces for
either countable Lasnev spaces or first-countable,

separable, strongly O-dimensional stratifiable spaces.

COROLLARY 2.2, There dre no universal spaces for
separable Lasnev spaces.

22



We start with the following proposition.

PROPOSITION 2.1, For every infinite cardinal
number o there exists a family $ of cardinality ZZQ,
none of whose members are homeomorphic to each other,
and which consists of o-discrete stratifiable spaces
S with IS| = nw(S) = o and w(S) = 2%,

Proof. Let {a;} be countable disjoint copies of
«, Then, for each ultrafilter p on «, let §, be the
space «, uipl}, where o,= v {o;}, with the following
topology T
(1) U e T if and only if p ¢ U, or p « U and there
exist an n « wand an F e p such that U n o, = F
for every i > n,
Then, since each e, is a clopen discrete subspace of
Sp, it is readily seen that Sp is a o-discrete
stratifiable space and that [S,[ = nw(S,) = o and
W(s,) < 2%, Next, we shall show that
(i1) the family of all Sq's which are homeomorphic to
a fixed S, is of the cardinality at most 2%,
Let S, and S, be homeomorphic to a fixed S,. Then,
take any homeomorphisms h,: S, ~ S, and f,: S, = S,
To show (ii) it suffices to show that
(1i1) thuO # hle, if g #r,

23



On the contrary, assume that there exists a permutation
h: o, ~ o, such that h = h,le, = h.le, Since a # r,
we can assume without loss of generality that there
exists an F « g \ r, Put

F,=u ;.. F, where each F, is a copy of F in o,
and put

U, = {a v F,.

Then, U, is a .neighborhood of g by the definition (i)
of t,. Hence, hphq“l(ug) is a neighborhood of r, and
by the definition(i) there existann e wand a G e r
such that 6 < oy n h,n " (Uy) for 1 2 n, Hence, F, > G,
n hh, T, = o, 0 hhTU) = F

n r'q n n'

n
since a
Since F,, is a copy of F and r is an ultrafilter, we

have F ¢ r. This controdiétion shows that (iii) holds,
Since (i1) holds and there exist 22% many ultrafilters
on o (Engelking [1, Theroem 3.6,111), there exists d
family S = {S,: p « A}, with [4] = 22%, none of whose
members are homeomorphic to each other. Thus, our family
S is the required one.
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REMARK 2.1, For the case a = w We can show the
above proposition much easier, using subspaces « u {p}
of the Stone-Cech compactification Bw (cf. Nagami (6]
and Shelah and Rudin [11),

Proofs of Theorem 2.1 and Corollary 2,1. The proofs

for all the cases of Theorem 2.1 and Corolilary 2.1 are

derived simultaneously from the following observation,

since every class (i+l) contains the preceding class

(1) except i =5, the class (3) contains the class (7),

and the collection S in Proposition 2.1 consists of

o-discrete L-spaces (cf., references cited in Theorem 2.1).
Let us denote by [AI® the family consisting of all

subsets of a set A having cardinality <, If « and A

are infinte and « < A, then |ta3%] =%, It follows

that if X is a stratifiable space (more generally, a

paracompact o-space) with nw(X) < 2%, where x is infinite,

then [X| < [02°9°] = [(2)%] = 2%; consequently,

|tx3°] < 2, and we see that X cannot contain copies

of all the spaces in Proposition 2.1, wWith a = «,
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Procfs of Theorem 2.2 and Corollary 2.2. It suffices

to show that there exists a family T (respectively, U)
of cardinality 2°, where ¢ = 2%, none of whose members
are homeomorphic to each other, and which consists of
countable LaSnev spaces (respectively, o-compact,

first countable, separable, strongly O-dimensional,
stratifiable spaces).

Let C be the Cantor set in the real line with usual
Euclidean topology, and let O € C. Take a countable
dense subset D of C, and let {x,} = C be a sequence
converging to 0. At first, we show the existence of T,
Put

F=1{0)>xC, and A =1{(x,,dz): kK=<n, and n ¢ wh,
where D = {d,: k « w}, Then, A is a countable discrete
subset in C% with Cl1(A) > F. For every subset T < F
let

Yo =T vuA,
Take a point py ¢ A, and let
' Xp = {py} v A,

Define a function ¢,: Y, > X, @S
¢5(T) = py and ¢,(a)=a for every a « A,
We topologize the set X, as
U is open in X, if ¢, '(U) is open in Y.
By the definition of ¢,,¢, is a closed map between Y,
and X,. Thus, each X, is a countable LaSnev space.
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By the proof of Proposition 2.1, one can show that
there exists a family T = {Xy,: T e F 1}, with | F| =29,
none of whose members are homeomorphic to each other,

Next, we show the existence of U, We shall modify
the examples constructed in van Douwen and Przymusinski
(11, Let F be a free ultrafilter on w, Then, enumerate
the family of all elements of F as {F;: s « C}, and
for each s « C and m ¢ w choose a g,(m) « D such that
0<ls-a,ml < 1/m, and put

Dy = {ag(m): me w}, and E; = {X,: n € F.},
We topologize the set
bp=(C*x {0}) v (D x {x,: n e wl)
as follows., Points of D x {x,: n ew} are isolated, and
basic neighborhoods of point (s,0) « C x {0} have the
form
B (8)={06Y) e ap:|s-x|<1/m} \ (D, xE_ v {s} x{x :newlj,

for m € w, Then, it is known (van Douwen and
Przymusifiski [11) that each 4, is first countable,
o-compdct, strongly O-dimensional, cosmic. We can show
without difficulty that each A is stratifiable. Here,
we show moreover that it admits a free L-structure.
Let v =1{V.: 1 ¢ w} be a countable clopen base of C.
Put

L, =C = {0}, Ly, =V, = C, and L,, ,= {u;l,
where A -\ L, ={u;: 1 ¢ wl,
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Put

up, = ur: u £ L, , and tiLi = (ap N L3
for each L; # L,. Then, one can easily checks that

(L="fl;slewl, Uy Lel)
is a free L-structure of & ;. Again, by the proof of
Proposition 2,1, we can show that there exists @
family U = (s .: F e A}, with |A] = 2%, none of
whose members are homeomorphic to each other. This
completes the proof of Theroem 2.2,

The proof for Corollary goes on a way parallel in
Corollary 2.1,

Professor Junnila £23 has kindly communicated to
the author the following problem,

PROBLEM 2,1. Does there exist a universal space
for closed images of countable metric spaces ?

Though the above problem is still open, the
following proposition shows that it is enough to
consider the case of “closed images of the space of
natural numbers Q”.

PROPOSITION 2.2, Every closed map f:X =Y, where
- X 1s a countable metric space, is a restriction of a
closed map from Q to a countable space containing Y.
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Proof. By Theorem 1.5 we can assume that X is @
closed subset of Q. Then, consider the following
decomposition of Q;

Hx} o x £ XY v (F2y) 1y e YD,
Then, the decomposition space S and the natural

quotient map q: Q ~ S satisfies that

qlx = f.
[t is easy to see that g is a closed map. This completes
the proof,

The following problem is communicated by T. Nogura:

PROBLEM 2.2, Can every closed images of countable
metric space be embedded in the E-product E,0f countably
many Q's ?

It is known that (San-ou [11) £, is a stratifiable space
consisting of countable points.

Finally, we discuss some positive result, We
believe that the class of simplicial complexes with
weak topology IKl, is one of the most important classes
among those of generalized metric spaces., In particular,
it is known that (Ceder £11) every |K|, is stratifiable,
and that (Cauty £13) every |K[, is ANR(stratifiable),
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For a given cardinal « let |K(a)|, be the full

complex with its vertices A, where the cardinality A
is equal to «, Let Z, be the countable Cartesian
product of |K(a)|,. Then, we consider the class ¢
defined as follows:

X e € if and only if X is a subset of Z, for

some cardinal number o,
It is easy to see that
(1) if A< X eC, then A ¢ C (that is, .subset hereditary);
(2) if X;e €, then X, e C (that is, countably productive);
(3) every (not necessary full) complex belongs to C,
Here, we show that every metric space belongs to cC:

THEOREM 2.3. Every metric space of weight « can::
be embedded in Z,.

Proof. It suffies to see that the hedgehog space
S(A) of weight o = |A| can be embedded in Z,. Put
S(A) = v, , I,, where each I, is a copy of unit
interval 1, and I, o I = {0} for distinct A and w.

On the other hand, for each vertex » « A and an
integer 1 « w , where * is distinct from a fixed vertex 0,
put A, = (Q,.%.,Qll,o,...) e Zy
Since each factor |Kl,, of Z, has the ordinary convex
structure, we can define
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th, + (1-0xr,,, foreach 2;, X,,; and 0 < t < 1,
Then, put also

J%\',i: {t>\7’ + (l_t)}\i-l-l: 0 = t Y l}.
Note that J, = v ;. Jy, ¢ v1€0,0,..) is  homeomorphic
to the unit interval., It is not dificult to see that

Uy 4 Jy 1s homeomorphic to S(A). This completes the
proof.

REMARK 2.3, (a) By the definition of ¢ we see that
the space Z, is a universal space for the members in c
of weight «,
(b) The class C is not contained in either the class
of L-spaces or free L-spaces, since the full complex
is not a free L-space by Nagami and Tsuda €11,
On the other hand, every (strongly O-dimensional)
member of it is an EM3(M0—spoce) respectively, since
every member of C is d u-space,

PROBLEM 2.3, Find an inner characterization of
the members of the class C,
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In Chapter 3 we shall discuss the counter-examples
for the inequality
(*) dim (X = Y) = dim X + dim Y,
Here, we mainly discuss the problem under the condition
that X x Y is pormal, since-it seems that there is still
room to discuss what the suitable dimension function
for non-normal spaces is (see Nagata [71, and compare
the two treatments in Engelking 1 and 21 of the

dimension function due to Katétov [11,)

We believe, however, that it is an interesting area
of dimension theory to treat the cases when the product
spaces are non-normal, Hence, we shall mention it in
the final section,

The problem whether or not the inequality (*) is
valid if X x Y is normal has been standing (at least
20 vears) (for example, see Gillman and Jerison [11),

[t is Wage [11, who constructed for the first time
the following counter-example for the inequality (%),
assuming Continuum Hypothesis(CH):

EXAMPLE 1 (CH)., There exist two spaces X and Y

such that dim (X x Y) > dim X + dim Y = 0 and that
X = Y is perfectly normal and locally compact.,
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Eliminating the assumption CH, Przymusifiski [1,33
constructed the following counter-example, without any
set-theoretic assumptions beyond ZFC:

EXAMPLE 2. There exists a separable, first-countable,
LindelSf space X such that dim X = 0 and X* is normal,
while dim X° > 0.

Since Wage [13 discoverd a counter-example for the
inequality (*) for the first time, we say that a triple
(X,Y,X xY) is a Wage-type example when it does not

satisfy the inequality (*),

The construction of the Wage-type examples in
Examples 1 and 2 can be outlined as follows,

At first, we show that there exists a “special”
separable complete metric space T, which we want to
call the l-dimensional Wage's metric space. Then, we

extend it to a metric space T. Next, we approximate T
by a product topology of X x Y, Finally, using some
properties of our approximation, we calculate the
dimensions of factors X and Y, and of the product X x Y,

To solve our problem, we follow the above procedure,
ThCI.t is:
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§83,4, We shall find at first an n-dimensional

Wage's metric space and next find its extension.

§§§ 5,6,7. We shall perform a delicate and complicated
approximation of 1it.

§§5 9,10,11. We can show that not only dim (X x Y) 1is
positive, but also it is exactly equal to n. Hence,
we must work very hard, using the properties derived
from our approximations.

One of the main points of our construction is to
find the metric spaces in §4. Such spaces will be
produced in Theorems 4,1 and 4.2, Their completeness
is heavily relates the elimination of CH. We shall
explain this point in some detail,

A space which satisfies all the conditions in
Theorem 4,1 except completeness would be easily
obtained by a simple modification of Rubin, Scori, and
Walsh C13 construction. But, if we use such a space,
we must assume CH throughout our constructions.

Moreover, the fact that our space satisfies the
condition (1) in Theorem 4.1 is deeply related to make
dim (X x Y) = n, So, we must try to find a space which
has the property (1) and completeness, simultaneously,

Since the space we found is satisfactory for our
purpose, we can use both of approximation techniques
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due to Wage (1,21 (which is also called the factorization

technique in there), and due to Przymusifiski [33,
(There 1s, however, some room to improve our space for
producing other Wage-type examples (see the appendix
and Remark 4.2(b)).)

Though we can proceed our approximation in a way
parallel to their ones, rough constructions sometimes
cause some errors to make our product space being
normal (see the footenote 7 in Przymusifiski [61),
Therefore, we must do the delicate and complicated
inductive constructions very carefully. The techniques
used here go back to the idea of Kunen (as cited in
Przymusifiski £53) and that of van Douwen [13,
respfetively. In Chapter 3 we will construct both of
heigher dimensional version of Examples 1 and 2.
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A 1-dimensional Wage's metric space.
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3,A 1-dimensional Wage's metric space..

The first Wage's metric space was constructed in
Wage [11 as a l-dimensional subspace of 2-dimensional
cube 1%, In £23 Wage gives a more elementary one as
follows:

THEOREM 3,1, There exists a 1-dimensional separable
metric topology 5 on C such that
(1) # is the topology generated by the subbase
eo v (7 + U e e}, where h:C > 1 is a lower
semi-continuous function;
(2) there exists a pair of disjoint closed sets A; and
B1 in (C, #) such that every separation S between
A, and B, has the cardinality of continuum,

Since we shall show the above result as the special case
of Theorem 4.1, there is no need to prove it here., But
we believe that Wage's function h in [2] is defined
more explicitely than ours, and is interesting in itself
(see also explanation of computer graphics 1 & I,
Therefore, we give here the defintion of the function

h in €27 together with the proof of (2), We begin with
the definition of the function h. Let Q be a countable
dense subset in the open interval (0,1). Let

foCom,, o 10,13,
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be a natural homeomorphism between the Cantor set and
the countable product of 2-point set {0,1}, Then,
define h:C ~ I as follows.
h(x) = Sup {q:15 f(x) =1},
where i I, o o 10,13, >~ (0,1} is the natural projection.

q
Then, it is easy to see that h is lower semi-continuous.

Proof of (2) (due to Wage [13). Put
A, = h™(0) and B, = h™*(1),
Let S be any separation between A, and B,. Then, there

exist two open sets U and V in X such that
UvV=X\NS, UnV=0 U=>A,adV->B,
Fix x ¢ U ondeositive integer n, Consider the following
procedure for generating x', x"”, B', and B”:
Let B be an e ,-clopen neighborhood of x with its
diameter < 1/n. Define

A=Sup { hty) t veBalsl,
It follows from the definition of h that » > h(x),
Fix two distinct points x’ and x” of B n U such that
Ih(x') - x| and |h(x") -x] are less than [h(x) - r|/2.
(Note that h(x’), h(x”) > h(x),) Since h is lower
semi-continuous, choose disjoint e,-clopen sets B’ and
B” such that diameters of B' and B” are less than 1/n+1,
x' e B', x" e B", B' v B” < B, and h(t) > h(x) for
every t e« B’ v B”,
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Fix Xo ¢ Uand ny =1, We can inductively generate
sequences {x,}and {B,', B,"} from X, and n, using the
above procedure: Having chosed X, for each m < k, fix
n,= k and x; as either x,_;' or X,_;". Since we have
two choises at each step, there are ¢ possible such
sequences. The construction guarantees that each
sequence has a different (unique) limit point in the
Euclidean topology €,, Let x = 1im x,. By construction,
th(x,)} 1s monotone increasing., Hence, h(x) < lim h(x,),
since h is lower semi-continuous. On the other hand, by
the definition of h, h(x) = lim h(x,).
Therefore, f(x) = 1im h(x,), and hence X ¢ Cly (U),
since x, < U, We complete the proof of (2) by showing
that x ¢ U, Suppose that x « U, Then, there are real
numbers a, b, and an e ,-clopen set B, such that

X« B n h'(a,b) < U,
This implies that » > b for each » defined in the
procedure above in the construction of {x,}, . ,. BUL
this contradicts at some step, the condition that

lh(x") - x| and |h(x") - A ] are less than Ih(x) - r[/2,
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REMARK 3.1 (a) (due to Wage [11)., It is probably

egsist to think of ¢ as the restriction of the Euclidian
topology on 1% to the subset

X = {(x,h(x)) : x « C}
(h(x) stands for the “height” of x in I°),
(b) Comparing two Wage's metric spaces in [1, 2 3, we
would say that the latter is better, since topologies on
Cantor set C dre more convenient to determine the dimension
of itself, the factors, and products (see 88§ 9, 10, 11),
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Explanation of computer graphics I.

We shall explain here the following computer graphics
given in the next page, which is performed by Mrs. K., Nogurda,
We believe that the graphs show some daspects of Wage’s
metric space given in the preceding section,

Let {qi: 1 <1 <N} be acollection of N rational numbers.
For each N-tuple x = (X;,...,Xy) consisting of 0, 1
sequence we assign ¢ (x) by the following formula:
¢ (x) =Max fa,: 1 <1 <Nandx, =1},
We also put
x* =z ¥ _x./2%
Let
C* = {x*: x ¢ {0,1}"3,
Then, the graphs consist of
6% = {(x*, (X)) : x* ¢ C*},
where N = 8 in the bottom half, and N = 10 in the upper
half, respectively., (We put
| (qz""’qzo) - (1/2,1/3,1/4,2/3,1/5,1/6,2/5,3/4,3/5,1/7) )
We may think that the graph G* is the restriction of the
Wage's metric space in Theorem 3.1 to the following
subset
{OGh)) ¢ x e 10,117 % {0} x {0} x ...},
where the first N-terms of { a.} in Theorem 3.1 are
equal to the above ones.
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For each 1 let B, be d finiii disjoint clopen cover
of (C,e,) with its mesh 1/1, and,each B, . refines B8,
Then, since h is lower semi-continuous, there exists @
monotone increasing continuous functions {h,:C ~ I}
such that h;(x) + h(x) and h; | B is constant for each
Be B,. Now,we define a function H:C? > 1 as follows.

hix) if x =,
HOGY) = | 0 if (Gy) ¢ v (B2 B e B3,
h; (x) = h;(y)

if (,y) ¢ v (B%: Be B\ ui(B’iBe B, )

1+1
Let o be the topology on C2 generated by the subbase
€,V (H'(U) : U <<}, Then, (C°, o) is homeomorphic
to the set L(OGLY),HOGY)) & (X,V) « C°) with the

restriction of the Euclidean topology on CZ x 1, Hence,

THEOREM 3.2, (C”, o) is o complete separable metric
space satisfying
(1) % = ol & , where & ={0(X) : X < C};
(2) o | ¢ \ & {is homeomorphic to usual Euclidean
topology on 1t;
(3) both topologies e | ({t} x C) and o | (C x {t})
are homeomorphic to e€,;
(4) o 1is coaser than both topologies # x ¢, and €, x 7,
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We say that the above extension (C%, o) is a natural
extension of Wage's metric space (C, #). In Wage (1,21
diffrent kinds of extensions are used, and the property
(4) is not mentioned there. We give here its proof,
since it is deeply concerned in constructing our examples
With a pseudocompact (or, metric) factor,

Proof of (4). We shall show that e is coaser than

~

6 x e,.(the proof for €, x 6 goes on in a parallel way),
It suffices to show that for any point (x,x) and a given
§ > 0 there exists a r.-open neighborhood U of x and an
e ,-open neighborhood B of X such that

(i) ITH(y,z) = H(x,x)| < & for every (y,z) ¢ U x B,

Since h;(x) t h(x), there exists an n such that

02 hx) - h,(x) < /2, Llet BeB,j2n, Dedn ey-open
neighborhood of x such that [h,(y) - h, (x)]<8/2 for every
y « B, Let U< B be a ¢-neighbornood of x such that
Ih(x) - h(z)| < 8/2 for every z « U, Then, note that
H(y,z) < h(y) and |h,(x) - h(y)| < & for (y,z) « U x B,
Thus, for (y,z) « (Y x B) n &, (i) holds, since

H(y,z) = h(y), Let (v,z) ¢ Ux B\ A, and put

H(y,z) = hy(y) = h,(z) for k 2 j. Then, if h(y) > h(x),
(1) holds, since h, (y) = H(y,z) < h(y) 2 h(x) + 8/2,

If h(y) 2 h(x), then (1) holds, since

h,(y) 2 H(y,z) < h(y) < h(x),
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REMARK 3.2, The above natural extension, using an
increasing sequence of continuous functions, is a slight
modification of the construction given by Przymusinski
(31, The extension suggested in Wage (1,21 are too
complicated to verfify the property (4) in Theorem 3.2,
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Explanation of computer grapics II.

We shall explain here the following computer graphics
in the next page, together with the ones given in the
front pages of every sectiorm, ‘We believe that they show
some outlines of the natural extension given in the
preceding section as well as the extension given in
Wage (23,

We shall use same notations given in Explanation I,
For each x, v « {0,137, we define
¢ (x,y) = Min { ¢ (z): for all z such that x* < z* < V%,
Then, the graph consists of

G* = {(x*v*, ¢ (GLY)) 1 X,y e 10,1373,

The one given in the upper half of the next page is
performed for the case N = 4, The bottom half is the
corresponding Wage's metric space given in explanation I.

The graphics in every section are the ones performed
for the case N = 10, In this case, however, they only
show the graphs around the diagonal (they consist of 9

pieces), since the whole graphs need the capacity
beyond our computer,

We may regard that the graph G* is the restriction
of the natural extention of Wage’s metric space to the
subset

LOGYLHOGY)) 1%y e 10,137 x {0} x 10} x ...},
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4, n-dimensional Wage’s metric spaces,

We begin with the following two lemmas due to
Mazurkiewicz C13,

LEMMA 4,1, Let h:C + 1" be a Baire function of
class 1. Then, the graph G = {(x,h(x)):x ¢ C} is @
6 5-set of 1""dnd hence, is completely metrizable.

LEMMA 4,2, There exists a function n :Exp(1™) » I”
such that
(@ n(M) « M for each M « Exp(1™),
(b) if My, > My,, and M, e Exp(I") for each k ¢ w, then
lim n (M) = "(kizm ) in 17,

koo

Proof of Lemma 4.2. Let w: C~ I be an order

preserving continuous surjective map (for example, see
Engelking €2, Problem 1,3.D1). Put

¢ =" C" - 17,
Let us regard C" as a subset of the real line. Put
for each M « Exp(I™)
(*) n (M = ¢ minCe (M),
where minimum is taken with respect to the usual order
of the real line, Note that our definition (*) is
well-defined, since min( ¢ ~1(M)) « C" for every above M.

Then, one can show that n sotiSfies (@), ().
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THEOREM 4.1, (An n-dimensional Wage's metric space).

For every n = 1,2,..., =, there exists a separable

completely metrizable, n-dimensional space (C, 8 (n))

such that

(0) #(n) is the topology generated by the subbase
e, v th™(U) : U ce,l, where h:C > [ is a
Baire function of class 1, and h is lower
semi-continuous when n = 1;

(1) there exists a collection {(A;,B;) : 1 =1,.,..,n}
of n-pairs of disjoint closed sets which satisfies
that, if for each i, a closed set S; separates A;
and B;, then the set W S, has the cardinality

=1
of continuum,

Proof. At first, we consider the case n < =, Put

~

-1 D -1
A - (0) and Bh+1 - (1),

n+1

where = :1"*! » I is the natural projection to the
first factor. Let T be the collection of all continua

meeting both A . and B . in I"*1, Then, 7 is closed
in Exp(1®*2), and is compact metrizable, and hence there
exists a continuous map g from (C, e ;) onto T such that
(2) Jg7i(M) | =c forany T e T,

By the definition of T we note that

(3) for each p « Cwe have T n «_ 7" (p) » @

forany T « T,

51



Let ™ : "™ > 1" be the projection to the last
n factors. Then, using Lemma 4.2 and property (3) we
can obtain a function h:C » 1" such that
h(p) = n(n™(gp) n w, " (p)))
for each p « C. Put
X = {(p,h(p)) : p e C,

Then, from (2) and (3) we have
(4) |TnaX|=cforeachTerT.,
To see that h satisfies (0), let { B ,} be a sequence
of clopen disjoint covers of (C, eo) with its mesh 1/1i
and we assume that B;,; refines B ;, Define a function
h, + C+ I" by the following formula:

e (O = Oy g(p) ow "H(p) 2 p < B}
for each t « B« B,, Since g is continuous and B is
clopen, the set v (g(p) n #-%p) : p e By is closed
in I, Hence h, : (Coe,) » I" is well-defined and
is continuous. By Lemma 4,2(b) we can see that h is
the limit function of {h,}, so that h is a Baire
function of class 1, and hence X is a 6, -set in I"™
by Lemma 4,1,

When n = 1, one can show without difficulty that

h is lower semi-continuous, since {h,} is monotone
increasing in this case by the definition (*) in
Lemma 4.2,
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To verify the property (1), let

A =K om,, 71 10,1/71 and By = X n m, 7T 16/7,13

k+1

for each k = 1,...,n. Then, each A, and B, are non-empty,
since ,,,”" (0) and s (1) are continua meeting
both A,,; and B,,;. Let S, be a separation of A, and
B, for each k and let S, be a separation of

A = e (0 and By =7, 7(D)
which extends S, (that is, $, separates A, and B, in
I7’L+1
a continuum meeting both A _,, and B, ,,by Rubin-Schori-
Walsh C13, there exists a T « T such that

Te nSandTnXe n§nfe ng,,

From (4) [X n T| = ¢ so that | n S| = c, and hence

and S, n X < Sz). Then, since o §, contains

for the case n < « the theorem has been established. .
For the case n =~ we teplqce I”+1'by the Hilbert
cube 1. Then, the construction goes on analogously.

REMARK 4.1, (a) The above theorem is a slight
improvement of Tsuda [1, Theorem 2.11, Since (C,p(1))
in our Theorem 4,1 satisfies Theorem 3.1, we believe
that our Theorem 4.1 is an n-dimensional version of

Theorem 3.1,
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(b) Using Lemma 4.1, Mazurkiewicz 131 has constructed
n-dimensional totally disconnected, separable, complete
metric space. The lemma is also used.elsewhere
efflciently ( see Krasinkiewicz rl13),

(c) Comparing our spaces with other spaces used in
Engelking-Pol [13 or charalambous t21, ours have
several advantages, In the former paper they used a
separable complete metric space due to R. Pol 13 which
Is not A-weak infinite dimensional. In their setting
thelir space satisfies our theorem (see Section 5), and
we‘believe that the property (1) is the key point in
their case, too. We also note that we cannot apply
their method for the finite dimensional case (see

Section 5 why), because of lacking the property (1),
On the other hand, though we can obtain his result
much easier (see Section 8), we cannot use the space
in Charalambous [21 to produce Wage-type examples,
because his space is not completely metrizable, and
hence we cannot obtain the following natural extension

for his space,
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We shall embed (C,3(n)) in the natural extension
(C?,e(n)) as follows: Using the functions {h,} in the
proof of Theorem 4,1, we get a function H : % ~ 17
and the topology e(n) in the same manner given in § 3,
Therefore, we have:

THEOREM 4.2, For every n = 1,2,...,=, (C%,o(n))
is a complete separable metric space satisfying
(1) p(m|a =5(n), where & = {(x,X) : X < C};
(2) p(n) €% \ 5 is homeomorphic to the usual Euclidean
topology on 1t;
(3) both topologies e(n)|({t} x C) and e(n)|(C x {t})
are homeomorphic to €,;
(4) when n =1, eo(n) is coaser than both
p(n) x €, and €, x p(n),

REMARK 4.2, (a) The extension space given in
Engelking & PolC17 is some modification of the one used
in Wage [13, Therefore, when n = 1, our method has an
advantage (see §3). |
(b) It is an open problem whether or not the n-fold
product (C,e)" of Wage’s metric space (C,e) in Theorem
3 1 satisfies the condition (2) in Theorem 4.1, If it
were the case, there could be ¢ space satifying
Theorem 4.2 together with the condition (4) for every n,
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5. Some consequences of Kunen construction and those
of van Douwen construction,

In the following 1) we assume the continuum
hypothesis, CH. While, in 2) we do not assume any
set-theoretic assumptions beyohd ZFC,

1) Some consequences of Kunen construction,

In this place we review the outline of the machine
given in JuhGsz,Kunen g Rudintll for refining given
topologies. While it is the techniaue for some
general topologies, we specify it for our Wage's metric
topologies #(n) on C, Let {x,:a < w,} De.a.well-ordering
of C, and put X, = {xg:8 < o}, Then, we have:

LEMMA 5.1 (CH). There exists an enumeration
{Sy:e < w,} of all countable subsets of C (respectively,
¢?) such that S, < X, (respectively, S, < (Xa)g).

Proof, Let 7 = {Tu:a < “z} be a well-ordering of
the collection of all countable subsets of C. Then, for
each o we define an ordinal f(a) < w, by the following

formula:
f(a) =min {(B: 8 ¢ {(f(y):y <ol and T  « XB}.
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Then, since each T, is countable, f(a) is well-defined,
It Is easy to see that f:w; + w, is bijective. Put

Sa = Tf_l(a)'
Then, 1t is easy to see that (S :e¢ < w,} is @ required
well-ordering. The assertion for C% follows in @ way
parallel,

It 1s shown in Juh@sz,Kunen &Rudinl1] that (see
also § 6) there exists a topology ¥ on C such that
(1) Vv is finer than 8(n),

(ii)  for each @ < 8, if x5 < Cl
| Xg ¢ Clg (S,).

50n)(Sy) . then

o
From (ii) we see (Juhdsz,Kunen &Rudinf11) that

(#) 1f A is VY-closed, then the set Cly.,,(A) \ A is
countable.

We believe that the above property (#) is one of
the most important properties of Kunen construction,
so that we conclude this section to see the following
lemma, which uses (#) extensively:

LEMMA 5,2, dim (C,%) = Ind (C,9) = n. Moreover,
for the case n = » (C,%) is strongly infinite dimensional.

Proof. Let {(A;,B;) : 1 <1 <n} be the n-pairs of
disjoint #(n)-closed sets in Theorem 4.1 (1), Then, take
n-pairs of #(n)-open sets {(U;,V;)} such that
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(2) A; = Uz By < Ve, and My o N; = @, where

Then, M; and N; are 9-closed, since (i) holds, Let T,

o(n

be a closed separation between M; and N, in (C;%). Then,
put M; < G;, N; < H;, C\NT,==06; vH;, for some open
disjoint sets G; and H;. Let

Sp = Clypy) (Ty) u(Cly,, (6 o Cly,,, (Hy)),
Then, S; is a e(n)-closed separation between A, and B,
from (2). It follows from (#) that
(3) the set S; \ T, is countable,
Hence, the set n S; has the cardinality of continuum
from Theorem 4.1 (1), Therefore, the set n T, also
has the cardinality of continuum from (3). Hence,
dim (C,¥) 2 n. On the other hand, it follows from
Fedorfuk [1, Lemmas 7,91 that dim (C,¥) < Ind (C,9) < n,
This completes the proof,

REMARK 5,1, (a) We follow Engelking&Polll, p, 167 to
say that the construction given here “Kunen construction”,
It is also called “Juhasz-Kunen-Rudin construction” in
E. Pol 13, |

(b) As mentioned in Remark 4,1 (c) our condition (1)

in Theorem 4,1 is crucial at least for finite dimensional
cases. Indeed, let (C,eo) be the n-dimensional space

in Charalambous (23 or that of Engelking&Polll1, which
does not necessarily satisfy (1), Then, we cannot
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determine exactly the dimension of Kunen construction

(C,v) for it., As is shown in FedorCuk C11 (see also
Gruenhage &PolC11), we can only say that

n-1 < dim (C,v) £ nand n-1 2 Ind (C,v) < n,
(c) Let (4,0) be the strongly infinite dimensional
complete separable metric space given in Engelking&Pol
(13, Then, it is known that its Kunen construction is
strdngly infinite dimensional (see Gruenhage &PqlC11),
Moreover, we have:

PROPOSITION 5.1, Every strongly infinite dimensional
complete metric space satisfies the property (1) in
Thoerem 4,1,

Proof. let {(A.,B.) : i « w} be a countable
collection of pairs of disjoint closed sets satisfying
(4) if a closed set S, saparates A, and B, for each i,

then o S, # 0,
We show that the collection {(A, ,B. ) : 1 ¢ w}
satisfies (1) in Theorem 4.1, Indeed, let S, be d
closed separation between A and B.. We must show that
the set -ﬁ»ﬁi has the cardinality of continuum,

On the contrary, assume that | 3,8;1 < ¢ Then,

n
igsi

is countable, since every uncountable complete separable
metric space has the cardinality of continuum, Hence,

60



dim (.0 §;) <0, and therefore, there exists a
separation S, between A; and By which does not meet the
set igzsi. Then, the collection {S;: 1 ¢ w} does not
satisfy (4). This contradiction completes the proof.

2) Some consequences from van Douwen construction.

In this place we review the techniques of van Douwen
[11, which does not require the continuum hypothesis,

As in the preceding section, we specify the construction
for our Wage's metric topologies 5(n), though it can
be applied for some general topologies (see also s 8).

One of the key points of van Douwen construction is
(i) it is a topology % on C finer than p(n),

(ii) if A and B are disjoint t-closed sets, then the
set Clﬁ(n)(A) n Clb(n)(B) is countable.

Though the property (ii) is weaker than (ii) in
Kunen'’s, we can deduce from it.thot (C,%) is countably
paracompact, collectionwise normal (see §10)., Here,
we shall show the following lemma, using (ii):

LEMMA 5.3 (Tsuda [1, Lemma 5.61), When n =«
(C,%) is not strongly countable dimensional.
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Proof. If we assume that (C,%) is strongly
countable-dimensional, there exists a countable collection
tH;3 of closed subspaces of (C,%) such that C = v H,,
and dim H; < m; for some integer m; for each i. By
Theorem 4,1 there exists a countable collection {(A;,B.)}
of pairs of disjoint #(n)-closed sets such that
(1) if for each i, #(n)-closed set S; separates A; and

B;, then | o S,| =c.
Take disjoint #(n)-open sets U; and V, satisfying
Lemma 5.2 (2). Then, since dim H; < m;, for each m;+1
pairs
(M) o 1+ siimes k<1 + 28 o),
there exists azero set separation T, of H; » M, and
H.

; 0 N in H; such that

() 0 (T i+ 350 mysksl+i,m) =0,

By (1) we have a #(n)-closed separation S, of A, o H;
and B, o H; such that

(3) 18, \ Tylcw, and S; < (C\ (M u Ny,

By the hereditarily normality of #(n), there exists a
8(n)-closed separation S, of A, and B, such that

S, = Sg n H,. Then, from (1) | o $ =c, and from (3)
| 0 §,] =c. Since C= v H;, there exists an H; such
that |H, o ( n S,)| =c. On the other hand, for each
k such that 1 « Zjigl m. < k< i+, m we have

1§, n H, \ Tl = w from (2), and hence from (3) we have
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IH; o ¢ n S| 2w, This contradiction shows that
(C,v) is not strongly countable-dimensional,

REMARK 5,1, Recently, we learned in Engelking -& .Pol
(11 that every normall strongly countable-dimensional
space is A-weakly infinite-dimensional. Moreover, it
is known that (van Douwen [2, Theorem 3.4 (a)J) a normal
space which is the union of countably many closed
A-weak infinite dimensional subspaces is A-weak infinite
dimensional. Therefore, our lemma also follows from
their results,

By a way parallel in the above lemma we have:

LEMMA 5.4, dim (C,t) = Ind (C,T) = n when n < =,
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6. Wage's factorization technique.

In this section we approximate e(n) in 4 by the
method of Wage sugested in Wage £1,23, (Note that we
follow the improved method due to Przymusifnski (57,

See also Remark 6.1 (a).) Our aim is to show that

there exist two topologies v(i) on C such that

(1) v =v(1l) x v(2) is finer than e(n), and

(i1) if A and B are disjoint v-closed sets, then
ICl, ) (A) 0 Clyp,, (B, 2w, where Sl
denotes the 2-cardinality of the set S e C?
defined in Przymusinski (27,

Since we want to make our factors same (that is, X = Y),

we also make our topologies satisfy

(iii) 1if A and B are disjoint v(i)®~closed sets, then

IClg 2(A) n Cl, 2(B)], £ o,
To achieve v satisfying (i)-(iii), we need the following
lemma, which is also used for other examples in ss10,11,

LEMMA 6.1, Let Gm be the (1/m)-neighborhood of
Z,= (xo,xo) with respect to the metric e(n), and let
D be a countable B(n)-dense set in C. Let (rm) and

-(zm = (sm,tm)) be two sequences convergent to the

2
0

there exist two sequences (xm), (ym) in C and three

point Z, in o(n) and in e.°, respectively, Then,

sequences of descreasing eo—clopen sets
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(H}, {U,}, V) such that
(1) (Xg¥,) € Ho x V. €6, (X ,X,) U xH <G ;

m

(2) D° n (X, * Y,) and R, n (X, *Y,) are non-empty;
(3) 7, n Xmg, L, 0 Ym2 are also non-empty,

m

where P, denotes the set {p,:k > m}, for a sequence (p,).

Proof. We show the assertion by induction on k,
and suppose that we have chosen X;, V;, H;, U;, V;, for
i < 6k. We shall choose them for all m satisfying
bk < m < 6(k+t1), By Thoerm 4,2(3) we can always choose
e,-Clopen set H,' < H, _; such that

H,' x {x,} vix,} xH," <G,
(@) For m = 6k (respectively, m = bk+1l) we define
x, and vy, (respectively, x,,; and vy, ;) by toking any
poiNnt ry, = (X,.V,) € R, n G, n (H ")
(respectively, any point (x_,v,) =G, o D° n (H %),
since (r;) is e(n)-converging (respetively, D is
p(n)-dense), Then, take any H, ;s U, z0 Vs
satisfying (1), 1 = 0,1,
(b) For m = 6k+2, we define x,, X,,; by taking
any point z, = (X,.%,,;) < Z, 0 (H,")?. Take e,-clopen
such that H, ' = H, > H 7.
(XypzXp) € Uy xH s < G,,; Take any point
Vmes = Ty € H, ;o since (ty) 1s e,-converging to X,.

sets H,,.;s U,

7z

Let V,,; be any e,-clopen set satisfying (1), 1 = 0,1,
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(¢c) For m = bk+4, define (y,.v,.,) Dy taking any
point z;, = (V,, V1) € L, n (Hm')z. Take € ,-clopen
sets Hypzs Vpeg SUch that H " = H, = H .,

(xg;ym+i) e Ho,; * Ve < G,z Then, take any point
point X,,; = Sy ¢ H,.;, since (s;) 1s e,-converging
to x,. Let U,,; be any e,-clopen set satisfying (1),
i =0,1.

This completes the proof of our lemma.

In the sequel, we assume CHand show that there is
a topology satisfying (i)-(iii),

Since we assume CH, let {x,:e < w,}be a well-ordering
of C and let
| Xa={XB:B<0c}.
It follows from Lemma 5.1 that the family of all countable
subsets {Aj:o<w } of ¢* can be well-ordered so that

A e (X)Z,

o o
For each x, we define two neighborhood bases N, (x,);}
i = 1,2, so that the following inductive assumptions

(0)-(3) are satisfied:

(0) N, (x,); n D+ @ for each m,1, where D is @ fixed
countable p(n)-dense set. .

(1) The o(n)-diameter of B =N (x ), x N (x ), is
less than 1/m. |
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(2) The ¢,-diameter of N (x, ), is less than 1/m,

N (x,); is a compact set consisting of countable
points, and for any v « N (x,),; there exists an
integer kK such that N, (y); < N_(X,);.

(3) Let v(i,a) be the topology on X, whose local base
is IN,(Xg) :B<a and m ewh Then, for every
i=1,2, and B,y < @

(@) if (XgoXy) € Clyp,, (AL, then

A, By, A D forany moe w;

(b) 1If (Xg.x,) ¢ Clg 2(A)), then
Ay 0 (N, (x) ) # 8 for any m e w;

(c) 1f (XgoXg) € Clg w yez,q) (Ay)s then
Ay n B, # 0 forany m e w;

(d) 1f (Xgoxy) € Clyg o) x (YD, then
Ay n B, # @ forany m e w,

Suppose that two such neighborhood bases have been

constructed for each xg such that g < o,

Let 1 be the collection of D and all A, such that

v <aand (X,x,) e C1 (AL,

Let RZ be the collection of all A such that v < a,

A, ¢ RL and (xx,) e Cl, 2(A),

Let s’ (1 = 1,2) be the collection of all A such

’thot v <o, and (X ,Xg) e CIqu v(i,a)(AY) for some B < o.
Let 7% (i =1,2) be the collection of all A such

that v < o, and (Xgx,) < Cl, (A,) for some 8<a,

7,0) X €y
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Put
Ko = iizRg v Sg v Té‘
Then, take a convergent set A(A) for each A< K, which
converges to one of the POINts (X, X)s (XgsXg), aNd
(xg,X,) according to the collection it belongs to. Put
Z(A) = 7, (A(A)) and €(A) = 7w ,(A(A)),

: C2 +~ C is the projection to the i-th factor,

where m .:
Then, by Lemma 6.1 we can choose a sequence <(X,.,X,)>
converging to (x,,X,), which satisfies the following (4):
(4) Let G, be the (1/m)-nejghborhood of (x,,X,) with
respect to the metric e(n). Then, there exist
e,~clopen sets H,, U,, and V_ such that
(@) (Xo¥y,) € 6o (XgsV,) € Hy x V<G, and
(X, Xy) € Uy X Hy < 6,
(b)Y H,=H, .;andH, > U, .70 V.
(C) X, # Xgand y, # vy, form=# Kk
(d) ilet » = {(x,,y,)}, ¢ =1{x} & =1y}, then
(1) * n A(A) — P for each A <R,
(2) ¢ 0 A(M) # B and €2 0 A(A) # B for each A < R,
(3) © nz(A) # @ for each A e~S§,
() £ E(A) #P for each A e TS
te) when -S§= B or ‘T§= B, we put U, =V, =9, and

we do not define x,. v, for the corresponding m.
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Since X,, ¥, < Xy, there exist two integers i(m) and
j(m) by our inductive assumptions such that
NG (m) 1€ Upo N ) W) = Vs and
Niom) X % Ny ) W) g < Gy
Put
N (Xg) g = Il v (o NG ) (X 7 k2 mb),
and
Ny (Xgdg = IXg b v Qv NS gy (yg) 0 k2 mb),
Then, we shall show that (1) holds. By our censtruction
Li = wNi i) O g Ny ) Wi g < 28060
Lo = Nogm) OG0 1 Gl i) W g) = Ny ) OG0 5 > e

Lz = 29 (N; 2 ) (X ) ;% %SsgkNi(s)(ys)Z)) sl Vo

La = w9n N o) O > CGouaNya) Wrd 2D < qeunUn > Hy
Therefore, (1) holds, since B, = {(xxy)} v (2,00,
[t is easy to see that (N, (xg);:B <o, mew}, {=1,2,
satisfy all the remaining conditions. Thus, our
inductive construction is completed. Let v(i) be the
tobology whose local base is N, (x);: x ¢ C}. Then,
they satisfy that
(5) v =v(1) x v(2) is finer than e(n);
and
(6) 1Cly¢p,) (M) N\ Al, 2w for any v-closed set A,

From (3)(b)
(7) ICl. 2(A) \ Af, = w for any 6.%-closed set A,
where 5, = v(i), 1 = 1,2,
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REMARK 6.1, (a) In the above construction we use
the method due to Przymusifiski [51, since the procedure
suggested in Wage {13 is not sufficient (see, Remark 9.1),
(b)There are someapplications of Wage’s factorization
technique outside of dimension theory (Rudin [27,

Wage [1,21),

(c) Be careful that there are ogther famous
“factorization ” theorems in dimension theory . (for
example, that of Marde$ic €13 and that of Pasynkov [31),
The meaning “facotrization” in there is different from
ours.
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7. Przymusinski’s method,

In this section we shall define topologies t. on C

i
so that © =1, x T, approximates e(n), Our method is

due to Przymusinski C31, which eliminated the continuum
hypothesis from the argument in the preceding section,

and is based on a technique of van Douwen instead of
Kunen,

" For our inductive construction we need the following
subset P of C°, Let F - {(A,B),:2 e A} be the collection
of all pairs of countable subsets of C* such that
(0) IClp(n)(A) " Cly,)y (B g > w,

Note that for any (A,B), <F we have by Przymusinski [2]
1CL, () (M) 0 Cl g, (), =,

In the sequel let < be a well-ordering of C and idet

fix a e (n)-dense countable set D, Then, define for x « C

[(x) ={y e C:y < x} v D,

Then, for each x» ¢ A, since |A v B] = w, there exists

an x, € C such that A v B < I(xk)g, where (A,B) = (A,B),.

Hence, we can construct @ transfinite sequence <Py>

of points in €% satisfying |

Py € Cly ) (A) 0 Cl ., (B) \ 1(x,)?, where (A,B) = (A,B),,

and

p(n)

If A % u, then Pyn B, =0, where D denotes the set
{p;,pg of C for p=(p;,p,). Put

P={D>\_:>\e/\}.
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Since D is a countable e(n)-dense set of C, in

a way parallel in the preceding section we can choose

a sequence <(x,,v,)> for each p « P, satisfying the

following condition (1),

(1) Llet G, be the (1/m)-neighborhood of p = p, =(X,,v,)
Wwith respect to o(n), Then,

(@) X,v,) € G, X, * X, and v, # v, for m#Kk, and
{Xg00 V3t = A {(X5, 70V 35,70 = B, where
(A,B) = (A,B), and (X, ,9,V5,,9)} < D;

(b) there exist eyclopen sets H,, K, U, and V, such
that p ¢ H, * K, (XpV,) ¢ H, xV, < 6,, and
(X, Vp) ¢ U, * K, =G,;

(€ Hy 2 Hopgs Ky 2 Kpygo By > Upygs and K 2 Vg

Now, by transfinite induction on < we assign to

each point of C two neighborhood bases (B, (x) .}, i = 1,2

so that the following inductive assumptions (2) and (3)

are satisfies.

(2) Each B,(x); is a compact set consisting of countable
points, and for any v ¢ B, (x), there exists a K
such that B,(x); > By(y);.,

(3) The diameter of B, = B, (x); * B, (x), is less than
1/m with respect to the metric o(n),

Let each point of D be isolated, and suppose that x ¢ C

and such bases of neighborhoods have been constructed

for each v < x. Then, we consider the following cases.
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(@) x =p; = py, for some (unique) p < P,

(b) x =p,; for some (unique) p « P and p; # p,.

(c) x #p; for any p ¢ P and i,

In the cases (a) and (b) we have X, v, < p; for 1 =1,2

and m ¢ w, because p, ¢ I(xx)g

and X, v, ¢ 1(xy). Thus
inductive assumptions can be applied so that there exist
integers k(m) for each m such that

Bretm) )z € Ups Brepm) W) g © Vypr G

Bretm) %)z X Brgm) W)z < Gy
The last inclusion follows from the following observation,
If x, =V,, then the inclusion follows from (3). If
X Yo then (x,v,) e Int_ 2(G,). Therefore, the
inclusion follows from the fact that both x, and vy, have
neighborhood bases finer than eo,
Case (a), Put foreachi=1,2 andm ¢ w

B (X)t = {X} u (tgmBk(t)(Xt) ).

m i
Case (b). If x =p,, put for each m ¢
B, (x); = {x} v (Ly By, (X)),and B (x), = {x},
If X = py, put for each m ¢ w

B,(x); = {x}, and B, (x), = {x} v (LY Br,s)(Vy)g),

Case (c), Put B, (x);, = {x} foreach i =12 and m ¢ o,

Because there does not exist any decreasing chains in
a well-ordered set and (1) holds, we can show that

{B, (x) .} satisfies (2) and (3) for each i in a way
parallel in the preceding section. Thus, inductive
construction has completed.
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From (2) and (3) {B, (X);: m e w, X ¢ C} constitutes a
local base on C and it produces a Hausdorff topology .
for each i = 1,2. This completes the constructions of
T, and Ty,
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8. An application to inverse sequences,

The purpose of this section is to give some
application of the Wage's metric spaces in 84 and of
the ‘technique of van Douwen in §5. We begin with the
following theorem due to Charalambous C13:

THEOREM 8.1, There exists an inverse sequence
X, f;3 with the limit space X such that each X; is
O-dimensional, first countable, separable, Lindeldf,
while X is normal with dim X = 1,

REMARK 8,1, (a) We do not give here the proof of

the theorem; since we shall show an n-dimensional

version of it below which contains the above result as

its corollary,

(b) Before Charalambous it is already known in Engelking

(1, Problem 6.3.251 that

(#) the limit of an inverse sequence of strongly
0-dimensional spaces need not be strongly 0-dimensional.

Comparing these two constructions, Charalambous

construction has the advantage of nice factor spaces X;.

On the other hand, by Engelking’s construction we have
d sequence with a nice limit space: there exists an

inverse sequence, which satisfies (#), ahd whose limit
is metrizable,
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Indeed, let X be the Roy's 1-dimensional space. Since
X has a clopen base of cardinality of continuum C, we
can assume that X is a subspace of the generalized
Cantor-set C®. Take a suitable sequence x,) of points
in € such that the sequence {(x;)} of I-products
with base point x; is mutually disjoint., Put
X; = X v {2(x) + k 2 1},

Then, each X; 1s strongly O-dimensional, since X; is
C*-embedded in C° (Engelking 1, Problem 3.11,23(c)1),

Let f;; + X; = X; be the inclusion map, Then, it
is readily seen that X is the limit of the inverse
sequence {X;, f;;1,

THEOREM 8.2, For every k = 1,2,...,> there exists
an inverse sedquence {X;, f;;} with the limit space X
such that each X; is O-dimensional, first countable,
: . . . (Separable ) .
Lindeldf, while X is™countably paracompact, collection-

wise normal with dim X = Ind X = k.

Proof., Let (C,B(k)) be the k-dimensional Wage's
metric space in Theorem 4.1, Then, take a sequence
{E;: 1 « w) of pairwise disjoint Bernstein sets

satisfying that
(1) the set A o E; has the cardinality of continuum

for any s(k)-closed uncountable set A,
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Let 7, be the approximation of the topology w; = B(k)[E,

on E; due to van Douwen(see $5, 2) ). Thus,

(2) T, is first countable, separable, having a clopen
base, collectionwise normal, countably paracompact,
and the set Clpi(A) n Clui(B) Is countable
whenever A and B are disjoint t,-closed sets.

Now, we shall define topologies v; on C, which is

generated by the subbase e, v {t;: j < i}, Let v, be

the topology on C which is generated by {t;: je o},

Put for each i

X;= (C,v;), and let
fi;1 X; > X; be the identiy function,

Then, by (1) and (2) each X; is first countable,

O-dimensional, separable, and Lindel6f. By the

definition, f;; is continuous. Let X, be the limit of

the inverse sequence {X;, f;;}. Then, it can be seen
from the construction that
Xo = (C,u,) = ;8 (E.,v,),

Hence, by (2) X, 1§3¥%E%%6b1y paracompact, collection-

wise normal, and dim X, = Ind X, = k by the proof of

Lemma 5.4,
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REMARK 8.,2. (a) The above construction is a slight
improvement of the one given in Tsuda [11 (separability
is not achieved there). Ih Charalambous [21 similar
examples are given, independently. Comparing ours and

his construction, we believe that our construction is ,
much simpler. For example, we can show that the limit
space is collectionwise normal and countably paracompact
much easier than he does in Charalambous (213,

(b) When we consider more special case when the limit
space is X” and its factors are X®, we have no Wage-type
example from the following theorem due to Nagami,

THEOREM 8.1 (Nagami [51), Let each X; be a normal
space with dim X; < n. Let its:limit X, be countably
paracompact and each bonding map f;; be open. Then,
X, is a normal space with dim X, < n.
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9, Perfect normality of products.

We shall show the following theorem under continuum
hypothesis, CH:

THEOREM 9.1 (CH). For every n=1,2,...,=, there
exists a space X(n) such that

dim X(m? = Ind X(W)? = n > dim X(n) = 0,
and X(n)? 1is perfectly normal, separable, first-countable,
and locally compact. Moreover, X(=)?is not
countable dimensional,

Proof. Put
X(n) = (C,v(1)) @ (C,v(2)),
where v(i) is defined in 86. Hence, X(n

)% 1s separable,
first-countable, locally compact, regular and
O-dimensional by the definition. Let us show that at
first X(n)? is perfectly normal. We begin with the

following lemma essentially due to Kunen,
LEMMA 9,1. For every i and every subset A of C

there exists a v < w, such that
if o« 2 v and x, « Cl_,(A), then x,  Cl, ;(A).

83



LEAMA 9.2, For every A = C* there exists a 2 < o,
such that if o + 8, o,8 > A, and (XyuXg) € Cl, 2(A),
0
then (XOLJXB) € (Cl\)(k) XE(A)) n (C]'EX\)(Z()(A))} k = 112-

LEMMA 9.3, For every A < c? there exists a vy such
that 1if (xg,Xg) € Cl ., (A) and ,8 > v , then
(xu,xB) « Cl,(A),

LEMMA 9.4, For every i and A < c? there exists a v
such that if Cx ,xg) « Cl_ 2(A) and o,8 2 v, then
(XOL"XB) € C].\)(i)Z(A).

Proof of Lemma 9,1, Let L be a countable Euclidean
dense subset of A, Then, by (3) (@) in 86, if
e Cl (M) With o > v, then (x,,X,) ¢ Cly,, (A =
Cl, ) (L7, Since L? = A, for some v, each neighborhood

Xa

of X, in v(i) contians a subset of L by the definition
of v(i) and (3) (a) in 56,

The proofs for the remaining lemmas follow from
(5), (6) in %6 and by ways parallel to
Przymusifiski [5, Lemmas 1,2,37.

Now, we shall show that X(n)? is perfectly normal.
At first, we show that X(n) is perfectly normal by a
method due to Juhdsz,Kunen and Rudin C11.
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It suffices to see that each v(i) is perfectly normal,
Let A/-\ be a v(i)d-closed set. Then, the set Cle (A VA
Is countable by Lemma 9.1, Since Cl ., (A) is €,-64 and
hence v(1)-65, so A is a v(i)-G;., Let H, K be v(i)-closed
disjoint. To see that they can be separated, it is
sufficient to produce a countable cover of (C,v(i)) by
v(i)-open sets U such that Cl,;(U) intersects at most
one of H and K; call such U "nice”, By Lemma 9.1 the
set S =Clg (H) o Cl. (K) is countable, and around each
its points we may put a nice U, Since C\ S is
e,-Lindeldf, we may cover it with a countable collection
of nice U (which are in fact ¢,-open and whose e,-closure
intersect at most one of H and K). Thus, these two
collections together produce the desired cover,
Therefore, X(n) is perfectly normal.

We see that X(m)? is perfectly normal by a way
parallel to the above observation, since v is finer than
e(n) , 1Cl e, (A N Al, < w for any v-closed set A, and
ICl, 2 (A) \ Al < w for any v(1)?-closed set A (see
56 (1) - (i11)).

By Lemma 5.2 we have dim X(m? 2 n, (It is easy
to see that dim X(n) = 0.) By Fedorfuk [1, Lemmas 7,3
dim X% < Ind X(m? < n. By Lemma 5.2 X(=7 is not
countable dimensional: - This completesthe proof.
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REMARK 9,1, (1) Theorem 9.1 solves a problem raised
in Fedorcuk [2, Problem 63 affirmatively. Similar
example is outlined in Engelking and Pol C[1, Example 4,17,
(2) Our present construction of X(n) is a slight
improvement of the construction given in Tsuda [27, The
main differences are
(1) our space X(n) is separable,

(ii) while two different factor spaces X and Y are
constructed in Tsuda [21, we can construct here
one satisfying that X =Y,

a

(3) Since the product of X(n)” and k-dimensional cube

1% is perfectly normal (Engelking C1, Problem 4,5.16(b)1),
we have: For every n = 1,2,3,..., =, and

_for every pair of non-negative integers (%,m)
there exist spaces X and Y such that
(@) dim X =2 and dim Y = m, while dim (X x Y) = m+n+2;
(b) X x Y is locally compact, separable, and perfectly

normal .

(4) As mentioned in WageC21 the first Wage-type example
in the literature is the one satisfying Theorem 9.1 for
the case n = 1, The construction suggested in Wage [1]
remains correct if we do not force X =Y (in other word,
in our terminology his proof that v(1) x v(2) is normal
is correct, though the method to make X* being normal
was incorrect (cited in Przymusifiski (6, Footenote 71).
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Since he said nothing about Lemma 9.4, we cannot
conclude that v(i)? is normal. By the lemma we can
show that it is normal.

(5)° It is annouced in Wage [13 that Theorem 9.1 holds
for general dimension,
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Local compactness and collectionwise normality

of products.

10.

88



10. Local compactness and collectionwise normality of
products,

In this section we shall prove the following theorem
without any set-theoretic assumptions beyond ZFC:

THEOREM 10.1. For every n = 1,2,...,=, there exist
two first-countable, separable, locally compact,
locally countable spaces X and Y such that
(@) X x Y is countably paracompact, collectionwise normal;
(b) dim X = dim Y = 0, while dim (X x Y) and Ind (X x Y)
are exactly equal to n. Moreover, our space X x Y
in the case n = = {s not strongly countable dimensional.

Proof. We put
XK= (Cr)and Y = (Cir,),
where t. is defined in §7. By the construction it
follows that X x Y is first-countable, separable, locally
compact, and locally countable. We shall show at first
that it is countably paracompact and collectionwise
normal. We need the following lemma.

LEMMA 10.1., (a) If A and B are closed disjoint sets
in X or Y, then the set Cl_ (A) o CI_ (B) is countable,
(b) Let A and B be closed disjoint sets in X x Y., Then,

€1, (A) n Cly. (B, < u.

p(n) p(n)
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Proof. (a) The assertion follows from the fact that
if [CL (A nCl. (B)l=c, then [CL ,,(A%) nCl (B> w,

(b) It follows from the definition of t(see §7),

By the above lemma we can prove that each of X and Y is
countably paracompact, collectionwise normal, and
w,~compact (that is, every closed discrete sets in it -
is countable). Hence, we can show that X x Y is also
countably paracompact and collectionwise normal by the
technique of Przymusifiski [1,37,

Next, we determine the dimension of our products
and factors. We need the following lemma.

LEMMA 10.2. (a) Let U be a cozero-set of X or Y,
Then, the set U n Cl. (C \ U) is countable.
(b) Let Z be a zero-set of (4,t[a), Then, the set
Cly i) (Z) \ Z is countable.
(c) Let A be closed in X x Y and U = A be a cozero-set
in A, Then, U n Cl ., (AN U, <.

The proof goes on similarly as Lemma 10.1, so we
omit it,
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Now, we show that dim X = dimY = 0. Let U be a
cozero-set in X (or, Y). Then, by Lemma 10.2(a) the
set C\ Cl. (C N U) is countable. Then, there exists
an e,-clopen collection {G;: i ¢ w} such that

U sew 6 = CNCI (CN U and [U N v Gyl 2w,
Therefore,

U= v {6;: 1 ewru{B):yelU\N vGl,
where B(y) is a clopen neighborhood of y in X (or Y)
satisfying B(y) < U, Hence, dim X = dim Y = 0 by
Terasawa C1, Theorem 11,

Next, we shall show that

LEMMA 10.3, dim (X x Y) 2 n,

Proof. Since & is closed in X = Y, it suffices to

show that dim (2,7|2) 2 n. Let Z = (a,7|a), Put
A =& 0w, '00,1/31 and B,' = b n w7 12/3,13

for each 1 < k < n, (Remember that e(n) = 3(n)|A,) Then,
it is obvious that each A’ and'Bk' are disjoint zero-set
in Z, We shall show that if for each k, a zero-set S’
separates A,' and B’ in Z, then o S # 8.
At first, for such a separation S;" we shall show that
‘there exists a closed separation S, of A, and B, in
(4,5(n)) such that
(1) S, \ §,' is a countable set for each K.
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Because the zero-set S,’ separates A,’ and B,', there
exist two cozero-sets U,' and V,' for each k such that
Up' 0 Vi =0, Uy’ 2 Ag's V' 2 Be'sand &\ S0 = Uy v V'
Since U,' v S’ is a zero-set, it follows from Lemma 10.2(b)
that
(2)  the set Cly,,(Up") \ (U" v § ') 1s countable, and
By 0 (Clyy,,(Ug")) = B for each k = 1,....n.
(Remember that
By = & 0 7y, 106/7,10 and Clgp,, ) (Uy) € & 0 1,7 700,2/30,)
Put
Vi = 8N Cly g, ("),
Then, V. is open in (2,5(n)), V, = By and
Ap n Cly,, (Vi) = @, Finally, put
S = Clyg) Ve N Vi

Then, the set S, \ S;' is countable, since the inclusion
aonom,,7M01/3,11 5 V' v S, 2V, holds, (2) and
Lemma 10.2 (b) holds. Thus, S, is a closed separation
of A, and B, satisfying (1). On the other hand, by
Theorem 4,1 (1) we can see that | o S| =c. From (1)
and the fact that (a S,) \ S." < S, \ S, we have
[ CnS)n Cn S =c¢, s0 that o S.' # 0. This
completes the proof of Lemma 10.3.

Finally, we shall show that Ind (X * Y) <n, For
this purpose we need the following lemma.
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LEMMA 10.4., Let A be a closed set in X x Y such that
A=Tu S for some e(n)-closed set T of |Tl, < w, and a
set S satisfying dim (S,e(n)|S) < m for some non-negative
integer m. Then, dim (A,7|A) < Ind (A,tlA) < m,

Proof. Since A is normal, it suffices to show that

Ind (A,t|A) < m. We shall prove it by induction on m.
Because |T|, < w, dim (S,e(n)|S) < m, and the countable
sum theorem holds, we first note that

(1) dim (A,e(n)|A) < m,

(Remember that 3(n)|{t} x C and 3(n)|C *x{t} are
homeomorphic to (C,e,) for each t « C by Theorem 4.2.)
For the case m = 0 we take arbitrary cozero-set U in
(A,T|A)., Then, the 2-cardinality of the set

F=UnCl,,, AN
is countable by Lemma 10.2 (c). For the o(n)|A-open set
UNF=ANClyp,, AN U
we have a collection U of countably many er(n)}A-clopen
sets such that
v U =U\F
from (1), For the set F we take a countable set W = C
such that
WxCulCxW->F,

Then, for each y « W we shall show that there exist
two collections u(y) and v(y) consisting of countably
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many t|A-open sets such that
(2) U=uv Uly)=2Un{ylr=xC) and U=vu V(y)=>Un (Cx{yl}),
Let G be a t-open set such that U=G o A, Since U is
a Fy-set in X x Y, put U= v K;, where each K; is
t-closed. Because dim Y = 0, we have a clopen set Z;
in Y for each K; and G such that
(3) Ky n (yr x C) « {yl x Z, < G n ({y} x C),
Let {6,: s < w} be a countable clopen base of y in Y.
Put
U, = v {V: Visopen in Y and G, * V <« G},
Then, from (3) {U,:sew} is a countable open cover of Z;.
Because dim Z; = 0 and Z; is countably paracompact normal,
there exists a disjoint clopen cover ¥ = {W :s € w}
of Z, such that W, < U, Put
U, ={A n (Gg x W) &+ s € wl,

Then, U; is a countable t|A-clopen cover of the set
K; o ({y} = C) satisfying v U, < U, Similarly, for
each i, we have a countable t|A-clopen collection V
satisfying

K.

T

i

n (Cxly)) ev v, <,
Finally, put
uty) = v t, and V(y) = u v,
Thus, (2) holds. Then, dim (A,t|A) < 0 by Terasawa
[1, Theorem 13, since

U= v u v {Uly), viy) + v e W},
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This completes the proof for the case m = 0. Suppose

that.our lemma is true for m-1. For the case m let H

and F be disjoint closed set in (A,tlA), and let U and

V be disjoint cozero-sets in it such that

(W) U=>H, V=>F and Cl_(U) n Cl (V) =,

Put

T = Clyy) () 0 Cly gy, (V).

Then, [T'[, < » by Lemma 10,1(b). Because

dim (A,e(n)|IA) < m from (1), we have an at most

(m-1)-dimensional closed separation S’ in the space

(AN T',e(m) AN T') between the sets Cl ., (U) \ T’

and Cl, ., (V) N T, (Note that §' n (U v V) =4.) Put
Al =S" v (T" VU v V),

Then, A’ is a closed separation of H and F in (A,t[A)

from (4) and the construction of S’, Hence, inductive

assumption can be applied to the set A’ so that

Ind (A',t|A") < m-1, and therefore, Ind (A,t|A) <m,

This completes the proof of our lemma.

To show that Ind (X x Y) < n take two disjoint
closed sets Hand F in X x Y. Then, by taking
cozero-sets U and V satisfying (4), we have a closed
separation A of H and F which satisfies all the
conditions in Lemma 10,4 for the case m = n-1, Hence,
H and F are separated by a closed set A of Ind A < n-1,
therefore Ind (X x Y) <n.
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The assertion for the case n = = follows form Lemma 5,3,
since the topology ¥ = t|a satisfies the conditions
i) and ii) in 85, 2),

REMARK 10.1. (a) For the case n = 1 the existence
of our example was suggested in Przymusifiski [31,
(b) Our present examples are slight improvements of
the ones given in Tsuda L11 (our examples are separable).
(c) Since X * Y is countably paracompact normal, we
have: for every n = 1,2,...,*, and for every pair of
non-negative integers (&,m) there exist two spaces
X and Y such that
(1) dim X =2 and dim Y = m, while dim (X x Y) = 2+mn;
(ii) X x Y is locally compact, separable, countably

paracompact and collectionwise normal.

One of the remaining problems in this section is:

PROBLEM 10,1, Whether or not we can construct
one with X =Y,

In Przymusifiski [33 or Engelking and Pol [11
it is announced that it is the case.
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11, With Lindelof factors and normality of products,

In this section we prove the following theorem
without any set-theoretic assumptions beyond ZFC:
s
THEOREM 11.1., For every n = 1,..., =, .and integer

m > 1 there exists a separable and first-countable space X

such that
(i) X" is Lindeldf and dim X" = 0;
(i1) X" is normal but dim X™** = n. Moreover, X™*

is not strongly countable dimensional when n = -,

COROLLARY 11.1., For every n =1,2,...,~, there
exists a separable and first-countable Lindeltf space
X such that '

(i) dim X = 0.
(i1) X% is normal but dim X% = n. Moreover, X* is
not strongly countable dimensional when n = =,

At first, we shall show the following lemma, which 1is

some version of the natural extension of &(n)
(cf, Theorem 4.,2),
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LEMMA 11.1. There exists a complete separable metric
space (C"*1,5(n)) satisfying
(1) o(m)la =5(M), where b = {(X, %X, 04,X) ¢+ X € C};
(2) s |c™*! \ 4 is homeomorphic to the usual
Euclidean topology on it;
(3) for each t < C (m+1) topologies B(n)|m ~*(t) are
homeomorphic to e,, where ﬂi:Cm+1 - C 1s the
projection to the i-th factor,

Proof. Let h:C » 1" and B, be the function and
the development given in Theorem 4.1, respectively.

We shall extend h to the function H : €™ > 1" as
follows.
hix;) if (X;) e 8,
HOx) = |001F (x) e v B™7: B < 8,3,
h;(x;)
if (x,) e v BT Bes} \ v B BeB,,, ),

Since h|B is constant for each B « B, the above
definition of H is well-defined., Let s(n) be the

m+1

topology on C generoted by the subbase
o u T Ueeyt,
Then, (C™1,5(n)) is homeomorphic to the set
LU HUG)D D) 0 (xg) e €7
with the restriction of the Euclidean topoligy on C

By an argument parallel in Theorem 4.2 we see that (1)

£

m+}(1n.
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and (2) hold and that o (n) is separable complete metric,
Let us show that (3) holds. By the definition of H,
we see that there exists a sequence of €,-open sets
U, in wi'l(t) such that

T P SO (C 323 HIUi Is constant, and

e, ~distance between the point (t,...,t) and U; is less
than 1/1.

Since 1im H(U) = H(t,..., 0 =h(t), Kl () is
e,-continuous, Hence, (3) holds. This completefthe
proof,

Next, we need the following lemma.

LEMMA 11.2. There exist m+2 disjoint subsets
Egsvvvs E,pp in C such that the m+l-cardinality of the
set A n (E)™
o(n)-closed set A in C

is the cordinality of continuum for any
m*+1 when A has uncountable

m+1l-cardinality.

Proof. Since s(n) is complete separable metric,
the assertion follows from Przymusifiski 2, Theorem 21,

On the other hand, we choose the following collection
m+1 "

P of points from (E,)""", which plays the role of P

given in section 7.
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Let F = {(A,B),: * <A} be the collection of all pairs
of countable subsets of Cm+lsuch that
let < be g well-ordering of C and for each x « C we

m+1 > W,

define I(x) ={y ¢« C : v e x}, - Let D be some fixed
countable »o(n)-dense set in C., Then, by an argument

parallel in Lemma 7.3 we can choose a transfinite

m*+1 satisfying

sequence <py: A e A> of points in (E,)

the following (4) and (5),

(W) pye (BT aClz, (A Clsg,, BN (1) vD™H),
where (A,B) = (A,B),, and X
such that A v B = 1(x)"""

(5) If A #w, then py n p, =8, where D = {py...,p,}

\ is some element of C

for p = (Pgsvsby,).
Put P=1(py: A e A},
Finally, we can show by @ way parallel to §510, 11 that
(6) Let G, be the (1/k)-neighborhood of p, = (t;) with
respect to the metric eo(n). Then, there exists a
sequence 1z, = (z;, ;)1 such that
(@) 7y, € Gy 2y o # Z5 ; TOr s # K Uzg ;) <A
((Zg347. )7 < B, z3k+g€ D", where (A,B) = (A,B)
(b) there exist 2(m+1) e,-clopen sets H, , and U,
such that
Dy € WM 0 (T g by
for every 1 21 £ m+l,

Hk . x U, L@

s d ki Tk

j#i
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Proof of Theorem 11,1. 1) Construction of X,
At first, we construct m+1l local bases

Hy(X); t kKew, xeCl, 121 <ml,
satisfying the following conditions as inductive
assumptions,

(7)) Each Hp(x); is e,-closed, and for any v « Hy(x);
there exists an s ¢ w such that H (y); < H (x),,

(8) The diameter of Hy(X);* *H,(x), ., is less than 1/k
with respect to the metric e(n),

Suppose that x < C and such bases of neighborhoods

have been constructed for each v < x,

We consider the following four cases:

(c) (X,.v.sX) =p,y < b for some (unique) A e A, Put
for each k ¢ w
He OO = X o v Hoy) (2 g 121 2mel,
where k(t) is defined by a way parallel to the one
in 811,

(d) x =p,, 4 and py ¢ &, Put for each k « v
H (XD, = I3 1f X # Py, 5 and
H o (X). = {X} v H

e Ytk s (t)
(&) x e E, 121 cmel, Put Hp(X)y = {x} forJ + 1,

(z, ) 1T X =0y 4
and H, (x); is an e,-clopen neighborhood of x whose
diameter with respect to e, is less than 1/s.

(f) x does not belong to the above three cases. Let

H,(x); = {x} for 1 < i <m+l, and K e w,
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[t is easy to see that tH, () ke w, x e C)
satisfies (7), Thus, inductive construction has
completed. From (7) and (8) they constitute local bases
on C, and they produce Hausdoeff topologies o.. This
completes the construction of o_.
2) Desired properties of X. We put

X = @Tt1(C,0;),
Then, it follows from Przymusifiski C13 that X" is
first-countable, separable, Lindeldf. We have
dim X" = 0, and dim X ™= Ind X ™= n by a way
parallel to Theorem 10.1 (b). The assertion for n = =
follows from an argument parallel to Theorem 10.1 (b),

also. This completes the proof,
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REMARK 11.1. (1) For the case (m,1) our result was
stated in Przymusifiski (31 without proof. For the case
(2,*) our result was outlined in Engelking and Pol [1 ,
Example 4,23, Corollary 11,1 is a slight improvement
of Tsuda €1, Theorem 1.23. Here, our space is separable,
[t is also announced in Charalambous [2, Footnote at
p. 64831 that Engelking and Pol have independently
showed this corollary.

(2). We have no Wage-type examples for the casem = «
(see also section 8):

THEOREM 11,2 (Nagami (51), Let X* be normal, If
each X* is.paracompact (respectively, Lindeldf), then
X is paracompact (respectively, Lindeldf).

One of remaining problems in this section is:

PROBLEM 11.1. For every triple of non-negative
integers (m,k,n) find a space X such that
(1) dim X* = k, and X* is Lindelsf for each i < m;

(ii) X™? is normal but dim X™* = k+m.-
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Non-normal Wage-type examples,
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12. Non-normal Wage-type examples.,

1) The purpose of this section is to show the following
theorem due to Wage [21, We also discuss some related
problems.

THEOREM 12.1. There exists a separable metric space
X and a first-countable separable Lindeldf space Y
such that
dim X =dim Y = 0, and dim (X x Y) =1,

Proof. 1) Constructions of X and Y., Let # and e

be the Wage's metric topologies given in Theorem 3.1,
and Theorem 3.2, respectively. Let E; and E, be two
Bernstein sets given in Lemma 11,2 which also satisfy
(0) [An (E; x Ey)l, = c for any e-closed set A < C\ 4,
Finally, let t, be the approximation by the method of
van Douwen (see § 5) of the topology 5, of the
restriction of # to the usbset E,. That is, 7, 1Is
first-countable, locally countable, locally compact,
separable topology on E, finer than &, such that
(1) if A and B are disjoint t,-closed sets, then the
set Cly (A) n Cly (B) is countable.

106



Put
X=(E,e"), and Y = (C,v),

where e’ = e,|E; and v is the topology generated by
the subbase €, v 7.
2) Dimension of factors and the product X *x Y. Since
e, 1s 0-dimensional separable metric topology, X is also
O-dimensional separable metrizable, On the other hand,
since £, 1s a Bernstein set, Y is Lindeldf (see § 11),
By the definition of Y, we see that Y is separable,
first-countable, and has a clopen base. We shall show
that dim (X x Y) = 1,
At first, we note that from Theorem 3.2 (4) the topology
e’ x v is finer than the topology 3lE; » C . Hence,
since HIX x Y is continuous, it can be seen in ¢
parallel way as in § 3 that dim (X x Y) > 0, Therefore,
it suffices to see that dim (X x Y) <1, Llet U = {U;!
be a finite cozero-sets cover of X x Y, and let F = {F;}
be a finite zero-set shrinking of U such that U; = F,.
We shall show at first that &' = {(x,x): X € E;} is
covered by finite cozero-sets of order at most 2. Put

T= v (cly (" N F;) o Cly (A7 N U)),
Then, by (1) T is a countable set in a‘, and is
t,-closed, so that when we consider the finite ©,-open
cover tA'\ Cly (&' \ U;)} of the space &’ \ T, we have
a p,-open cover V' = {V. '} of order at most 2 such that
(1) v;' = a” N Cly (0 N U and vV =a8 AT,
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Let p, De the restriction of the topology o to the
subset E; x C. Then, by the following theorem we have
a finite family of o,-open sets 6 satisfying the
fol'lowing (2),

THEOREM (K. Kuratowski C1, p. 2263). Given a family
V" of B,-open sets, there exists a family G of p,-open
sets such that
(2) 8" n Gz =V;' and the condition V; ' n .., 0 ViK’ =9
implies G; n ... n G, =0, for every (finite)

K

system of indices i,,...,1{,.

Then, G is a cozero-set collection of X x Y such that
(3) (uG)and = vV = A"\T,
For each t « T we can take a clopen set
N(t) = G(t) x B(t),
where G(t) is an e’-clopen neighborhood of t and B(t)
Is a t,-clopen neighborhood of t consisting countable
points such that N(t) < U; for some U; « U, Note
that N(t) is Lindel0f. Put
S= v {N(t) : t eT},

Then, S is a O-dimensional Lindeldf space, becudse N(t)
is Lindel®f and T is countalbe. Since S is a cozero-set
containing the sero-set &’ in X x Y, there exists a
finite clopen collection $ = {S.} in X x Y such that

S; cU,and v ST,
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Hence, the set W= v G v u S {s g cozero-set containing
the set 4’, Hence, there exists a zero-set Z and a
cozero-set G in X *x Y such that
A e G e Z\ W,
Because space X x Y \ A" s O-dimensional LindelSf by
(O),‘we can choose a clopen set K in X x Y \ A’ such that
KnZ=0andKeXxY\W,
Since Cly,y(K) < X x Y \ G, K is also clopen in X x VY,
Put
Vi" = (6 v S; VK v s ;S0),
Then, V;" is a cozero-set of X x Y such that
u V=X x Y N K 2 A,
and its order is at most 2 by (2), (3), Because K is
strongly O-dimensional, there eixsts a finite disjoint
collection K = {K;} of clopen sets such that
K; = U; and v K=K,
At last, put
V. = V" v K
for each 1. Then, it can be seen that V = {V;} is a
cozero-sets refinement of U and its order is at most
2. This completes the proof of our theorem.
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REMARK 12.1, (a) OQur present construction of X and
Y is a slight improvement of the costruction given in
Wage [21. In there some approximation on El Is used,
which is defined more easier than ours. But, it seems
that its definition is too simple to see that it
satisfies our condition (1). Therefore, he can only
announce that dim (X = Y) is positive. In our case,
however, we can determine the dimension of our product
space exacly, using the property (1) and Lemma 10.2 (b),
(b) One of the main characteristic properties of
Wage-type examples with g metric factor is that its

product cannot be normal (see Kodama C41), In this

point of view we can consider our space Y ds some
variation of the well-known Michael line Cp : Its

topology is defined by declaring the set of the form
U v K, where U is e,-open and K < C \ E;, as its open set.
(It is some times called the Hannerization in C with

respect to E;). Since it is known (Terasawa [11) that
dim (X < Cg) = 0 for every strongly O-dimensional metric
space X, Michael line does not serve our purpose in

the view of Wage-type examples. (From our constructions
we see that the discrete topology on E; in Cp 1s too
storng to construct Wage-type example with d metric
factor.) |

(c) There is another well-known Michael ‘line C,, which
is the Hannerization in C with respect to the countable
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dense subset Q in C. Itsadvantage is that its product
with the space of irrational numbers P is not normal.
Hence, we can raise a following problem. (Note that
our space X in Theorem 12.1 cannot be complete metric.)

PROBELM 12.1. Are there any Wage-type examples with
a complete metric factor ?

We also note that we cannot replace complete metric by
compact metric in the above problem, since
dim (X x 1) =dim X + 1 for every X (see,
Chiba and Chiba C1. Lemma 11 or Morita C41 ),

We also note that there exists a strongly 0O-dimensional
Dwoker space (Dow and van Mill 11,

We can specify the above problem as follows.,

PROBELM 12.2. Are there any Wage-type examples
with an 1irrational factor ?

As mentioned at the end of Remark 12.1 (b), when
we attempt to prove this problem by modifying the
Michael line, I believe that one of the key points 1s
(*) whether or not there exists a topology on P finer

than #, which is 1-dimensional paracompact and
has a clopen base.

111



We can raise one more problem for higher dimensional
examples:

PROBLEM 12.3. Does there exist for every non-negative
integer n a separable metric space X and a first-countable
separable Lindeldf space Y such that

Cdim X =dimY =0, and dim (X x Y) = n ?
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2) With a pseudocompact factor.

One of the most remarkable facts among the
previously known Wage-type examples is that all of
them satisfy the first-countablity axiom (hence are

k-spaces), and some of their products are also locally
compact, The purpose of this section is to show that
there exists another Wage-type example which cannot be
d k—sbace.

By a theorem due to H. Tamano [13, we can specify
our problem as follows,

PROBLEM 12.4., Are there any. counter-examples for
the inequality (*) with a pseudocompact factor ?

The following theorem solves this problem
affirmatively:

THEOREM 14,2 (Tsuda £31), Without any set-theoretic
assumptions beyond ZFC there exist a hereditarily
separable, hereditarily Lindeldf space X and @
first-countable, locally compact, separable,
pseudocompact spdce Y such that

dim X = dim Y = 0, while dim (X x Y) > O,
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To prove our theorem we need the following another
factorization thechnigue:

THEOREM 12.2 (Tsuda £3, Key Lemmal). For each
point (x,x) ¢ C and each countable set *» which
converges to x in the usual Euclidean topology on C,
and for a given e-open neighborhood G of (X,x), there
exists a f-clopen set B and a finite set F such that

(x,X) ¢ %F) x B < G,

Now, we define our space X as the set C with the
topology u determined by assigning to each point X « C
a base of neighborhoods consisting of those subset U
of C which satisfy the condition :
(1) U contains some p-clopen set B with X ¢ B,
On the other hand, the space Y is a space which is an
N v R for some maximal almost disjoint collection
(m.a,d, collection for short) R, By N v R we medn
a space which is defined in the following way on the
set-theoretic union of a countable infinte set N and
an almost disjoint collection r of infinite subsets of N:

each point of N is isolated and A « R has d
neighborhood base

{{x} u (W \ F) : F is a finite subset of NI,
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REMARK 12,2, (a) Spaces N v R have been introduced
by Mrowkat 11, and have been found to have interesting
properties Mrowka 2,33, Terasawa [2,31, The use of
spaces N v R for dimension thebry Is not new., One of
the remarkable results among them is the one of
Terasawa 31,

(b) Our present example was given in Tsudal3 3, It
gives a partial answer to the problem given in
Przymusifiski L6, Problem 181, that whether or not there
exists a Wage-type example with a countably compact

factor.

(c) We remark that our factor space X is perfectly
ggﬁmgL, since it 1s a o-space. We cannot, however,
improve X to be also pseudocompact, since Y is frist-
countable, locally compact. We also note that Y is
neither normal nor countably compact, since Y has
uncountable closed discrete subset. Hence, we can
raise the following problem:

PROBLEM 12.5. Are there any Wage-type example with
a pseudocompact factor whose product are also normal ?

We can raise one more problem (see also, Remark 8.1):

PROBLEM 12.6. For a given positive integer n are
there any Wage-type examples with a pseudocompact factor
which satisfy that dim X = dim Y = 0, while dim (X x Y)=n 7
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Appendix. Several product theorems.

Here, we review some positive results for the
inequality (¥), because we can conclude from them some
topological properties of our examples in Chapter 3
(fo} example, non-paracompactness of products, with
non-metric factor, or with non-pseudocompact factor).
It gives also some motivations of the attempt to look
for other Wage-type examples in Chapter 3. In the
sequel, we do not assume the normality of products
unless otherwise specified. Hence, by the dimension

of a space we mean the covering dimension due to
Katétov C131. Therefore, it coincides with the ordinaly
covering dimension when the space is normal.

We begin with the relatively strong theorem due to
Pasynkov. For this purpose we need the following
interesting and importnat concept of the "(piecewise)
rectangularity” of a product (Pasynkov [1 - 51),

Definition A.1. A subset of the product space X x Y
is said to be (piecewise) cozero rectangular if it is

(a clopen subset of the set) of the form U x V, where
U and V are cozero sets of X and Y, respectively,

The product space is said to be (piecewise)
rectangular if any finite cozero cover of it has a
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e
o-]ocally finite refinement consisting of (ngéwise)

cozero rectangular subsets,

THEOEM A.1 (Pasynkov [1 , 431). Every (piecewise)
rectangular product satisfies the inequality (*),

In each of the following cases (a) through (c), and
(d) the product is rectangular and piecewise rectangular,
respectively. ,
(@) X 1s a metric space and X = Y is countably

~ paracompact and normal (Kodama €43), Moreover,

X 1s a paracompact p-space and X x Y is countably

paracompact and normal (Filippov [1J1 and

Pasynkov [1,31),
(b) X is locally compact and paracompact (Morita C41),
(c) The projection py: X x Y » X is g z-closed map

(that 1s, py(Z) is closed in X for every zero set

Z of X xY) (Filippov [13, Nagami {83, Pasynkov [21),

(d) X x Y is completely paracompact. (That is, for any

open cover U there exists a sequence V . of

star-finite open cover such that v V; contains

a refinement of U. In particular, every Lindeldf

space is completely parccompact.) Zolotarev [11,
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REMARK A.1, (a) By a result of Rudin and Starbird
[11 we can remove the assumption countably paracompact-

ness in the case (a) when it is a metric factor. But,

Wwe cannot remove the normality of the product (see §12),
(b) When X is compact, the result is due to Terasawd
(see Chiba and Chiba (1, Lemma 131),

(c) The concept of the z-closed map was introduced by
[shiwata. The proof of Theorem 1.1 in Ishiwata C13]
contains a proof that the inequality (*) is valid

in the case (c), implicitly. In particular, py is
z-closed, when X is a pseudocompact and Y is a k-space
(implicitly, H., Tamano [13).

(d) More general results can be found in Filippov [21,
and Pasynkov [517,

The Pasynkov’s theorem is relatively strong, but
it is known that
(i) there exist non-rectangular storngly O-dimensional
products (Hoshina and Morita C13, Ohta €13,
Przymusinski €71, K. Tamano C1J, and Terasawa [13),
Moreover, Ohta [1] showed a machine to produce normal
non-rectangular products X = Y which satisfy the
inequality (*) for every normal non-paracompact (not
necessary strongly 0O-dimensional) space X.
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One of the remarkable conseguences of the
introduction of the piecewise rectangularity is that
it Is a necessary and sufficient condition for the
validity of the inequality (*) when the factor spaces
are strongly O-dimensional. Hence, all the examples in

(1) are piecewise rectangular. In Tsuda (73 we showed
that for every positvie integer n there exists an
n-dimensional, collectionwise normal, non-piecewise

rectangular product which satisfies the inequality (*),
The idea we used there goes back to Chiba and Chiba
23, and Chiba €11,

On the other hand, there is a theorem which cannot
be deduced from Theorem A.1.

THEOREM A.2 (Moritag £63)., Let X be o -locally compact
paracompact. Then, the inequality (*) is valid.

The following problem is communicated by T. Goto.

PROBLEM A,1. Is the inequality (*) valid for the
normal product with a LaSnev factor ?

It is known (Hoshina [131) that the normality of
product and countably paracompactness of it is
equivalent in this case.
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Finally, we mention infinite products. The
following definition is suggested by Pasynkov [53 and
Yajima [37,

DEFINITION A.2, A Cartesian product X =T, _, X,
Is said to be (piecewise) cylindrical if each finite

cozero cover of X has a o-loclly finite refinement by
sets of (a clopen subset of) the form ﬂg"i(U), where
£ 1s g finite subset of A and U is a cozero set in

Xg =H)é/\ X)\-

Then, the following theorem is obtained in a way
parallel to Pasynkov {531 and Yajima (33,

THEOREM A.3, If X is piecewise cylindrical, then
(**) dim X = Sup {dim Xg : £ is a finite subset of A},

Note that our definition is slight different from

the piecewise rectangularity of infinte product due to
Pasynkov [51, The following result shows that it is
sometimes easy to see piecewise cylindricality instead
of picewise rectangularity.

Theorem A.4 (Filippov [21)., Every Cartesian product
of paracompact p-spaces is piecewise cylindrical.
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REMARK A.2., Filippov [23 announced that it is
indeed picewise rectangular in the sense of Pasynkov.
But, "the proof given there is the one for our Theorem A.3.
L
COROLLARY A.1 (E, Pol £21). Every Catesian product
of metric spaces satisfies (*¥*),

REMARK A.3., It is known in Anderson and Kleisler [113
that for every n there exists an n-dimensional separable
metric space X such that every finite product X“ s
(and, hence countable product X" is) n-dimensional.

We conclude this section with the following problem:
PROBLEM A.2. Does every Cartesian product of

paracompact Z-spaces satisfy (**) ?

When we assume countable tightness, it is the case
(Yojima [21), It is also known that every finite product
of paracompact I-spaces is rectangular (Pasynkov (23 ,
and see also, Nagami [23),
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